Search Results

Search found 4580 results on 184 pages for 'faster'.

Page 25/184 | < Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >

  • Mark Hurd and Balaji Yelamanchili present Oracle’s Business Analytics Strategy

    - by swalker
    Join Mark Hurd and Balaji Yelamanchili as they unveil the latest advances in Oracle’s strategy for placing analytics into the hands of every decision-makers—so that they can see more, think smarter, and act faster. Wednesday, April 4, 2012 at 1.0 pm UK BST / 2.0 pm CET Register HERE today for this online event Agenda Keynote: Oracle’s Business Analytics StrategyMark Hurd, President, Oracle, and Balaji Yelamanchili, Senior Vice President, Analytics and Performance Management, Oracle Plus Breakout Sessions: Achieving Predictable Performance with Oracle Hyperion Enterprise Performance Managemen Explore All Relevant Data—Introducing Oracle Endeca Information Discovery Run Your Business Faster and Smarter with Oracle Business Intelligence Applications on Oracle Exalytics In-Memory Machine Analyzing and Deciding with Big Data

    Read the article

  • SPARC T4-4 Beats 8-CPU IBM POWER7 on TPC-H @3000GB Benchmark

    - by Brian
    Oracle's SPARC T4-4 server delivered a world record TPC-H @3000GB benchmark result for systems with four processors. This result beats eight processor results from IBM (POWER7) and HP (x86). The SPARC T4-4 server also delivered better performance per core than these eight processor systems from IBM and HP. Comparisons below are based upon system to system comparisons, highlighting Oracle's complete software and hardware solution. This database world record result used Oracle's Sun Storage 2540-M2 arrays (rotating disk) connected to a SPARC T4-4 server running Oracle Solaris 11 and Oracle Database 11g Release 2 demonstrating the power of Oracle's integrated hardware and software solution. The SPARC T4-4 server based configuration achieved a TPC-H scale factor 3000 world record for four processor systems of 205,792 QphH@3000GB with price/performance of $4.10/QphH@3000GB. The SPARC T4-4 server with four SPARC T4 processors (total of 32 cores) is 7% faster than the IBM Power 780 server with eight POWER7 processors (total of 32 cores) on the TPC-H @3000GB benchmark. The SPARC T4-4 server is 36% better in price performance compared to the IBM Power 780 server on the TPC-H @3000GB Benchmark. The SPARC T4-4 server is 29% faster than the IBM Power 780 for data loading. The SPARC T4-4 server is up to 3.4 times faster than the IBM Power 780 server for the Refresh Function. The SPARC T4-4 server with four SPARC T4 processors is 27% faster than the HP ProLiant DL980 G7 server with eight x86 processors on the TPC-H @3000GB benchmark. The SPARC T4-4 server is 52% faster than the HP ProLiant DL980 G7 server for data loading. The SPARC T4-4 server is up to 3.2 times faster than the HP ProLiant DL980 G7 for the Refresh Function. The SPARC T4-4 server achieved a peak IO rate from the Oracle database of 17 GB/sec. This rate was independent of the storage used, as demonstrated by the TPC-H @3000TB benchmark which used twelve Sun Storage 2540-M2 arrays (rotating disk) and the TPC-H @1000TB benchmark which used four Sun Storage F5100 Flash Array devices (flash storage). [*] The SPARC T4-4 server showed linear scaling from TPC-H @1000GB to TPC-H @3000GB. This demonstrates that the SPARC T4-4 server can handle the increasingly larger databases required of DSS systems. [*] The SPARC T4-4 server benchmark results demonstrate a complete solution of building Decision Support Systems including data loading, business questions and refreshing data. Each phase usually has a time constraint and the SPARC T4-4 server shows superior performance during each phase. [*] The TPC believes that comparisons of results published with different scale factors are misleading and discourages such comparisons. Performance Landscape The table lists the leading TPC-H @3000GB results for non-clustered systems. TPC-H @3000GB, Non-Clustered Systems System Processor P/C/T – Memory Composite(QphH) $/perf($/QphH) Power(QppH) Throughput(QthH) Database Available SPARC Enterprise M9000 3.0 GHz SPARC64 VII+ 64/256/256 – 1024 GB 386,478.3 $18.19 316,835.8 471,428.6 Oracle 11g R2 09/22/11 SPARC T4-4 3.0 GHz SPARC T4 4/32/256 – 1024 GB 205,792.0 $4.10 190,325.1 222,515.9 Oracle 11g R2 05/31/12 SPARC Enterprise M9000 2.88 GHz SPARC64 VII 32/128/256 – 512 GB 198,907.5 $15.27 182,350.7 216,967.7 Oracle 11g R2 12/09/10 IBM Power 780 4.1 GHz POWER7 8/32/128 – 1024 GB 192,001.1 $6.37 210,368.4 175,237.4 Sybase 15.4 11/30/11 HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 8/64/128 – 512 GB 162,601.7 $2.68 185,297.7 142,685.6 SQL Server 2008 10/13/10 P/C/T = Processors, Cores, Threads QphH = the Composite Metric (bigger is better) $/QphH = the Price/Performance metric in USD (smaller is better) QppH = the Power Numerical Quantity QthH = the Throughput Numerical Quantity The following table lists data load times and refresh function times during the power run. TPC-H @3000GB, Non-Clustered Systems Database Load & Database Refresh System Processor Data Loading(h:m:s) T4Advan RF1(sec) T4Advan RF2(sec) T4Advan SPARC T4-4 3.0 GHz SPARC T4 04:08:29 1.0x 67.1 1.0x 39.5 1.0x IBM Power 780 4.1 GHz POWER7 05:51:50 1.5x 147.3 2.2x 133.2 3.4x HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 08:35:17 2.1x 173.0 2.6x 126.3 3.2x Data Loading = database load time RF1 = power test first refresh transaction RF2 = power test second refresh transaction T4 Advan = the ratio of time to T4 time Complete benchmark results found at the TPC benchmark website http://www.tpc.org. Configuration Summary and Results Hardware Configuration: SPARC T4-4 server 4 x SPARC T4 3.0 GHz processors (total of 32 cores, 128 threads) 1024 GB memory 8 x internal SAS (8 x 300 GB) disk drives External Storage: 12 x Sun Storage 2540-M2 array storage, each with 12 x 15K RPM 300 GB drives, 2 controllers, 2 GB cache Software Configuration: Oracle Solaris 11 11/11 Oracle Database 11g Release 2 Enterprise Edition Audited Results: Database Size: 3000 GB (Scale Factor 3000) TPC-H Composite: 205,792.0 QphH@3000GB Price/performance: $4.10/QphH@3000GB Available: 05/31/2012 Total 3 year Cost: $843,656 TPC-H Power: 190,325.1 TPC-H Throughput: 222,515.9 Database Load Time: 4:08:29 Benchmark Description The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC. TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system. The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor. Key Points and Best Practices Twelve Sun Storage 2540-M2 arrays were used for the benchmark. Each Sun Storage 2540-M2 array contains 12 15K RPM drives and is connected to a single dual port 8Gb FC HBA using 2 ports. Each Sun Storage 2540-M2 array showed 1.5 GB/sec for sequential read operations and showed linear scaling, achieving 18 GB/sec with twelve Sun Storage 2540-M2 arrays. These were stand alone IO tests. The peak IO rate measured from the Oracle database was 17 GB/sec. Oracle Solaris 11 11/11 required very little system tuning. Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric in which to compare systems. The SPARC T4-4 server and Oracle Solaris efficiently managed the system load of over one thousand Oracle Database parallel processes. Six Sun Storage 2540-M2 arrays were mirrored to another six Sun Storage 2540-M2 arrays on which all of the Oracle database files were placed. IO performance was high and balanced across all the arrays. The TPC-H Refresh Function (RF) simulates periodical refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T4-4 server outperformed both the IBM POWER7 server and HP ProLiant DL980 G7 server. (See the RF columns above.) See Also Transaction Processing Performance Council (TPC) Home Page Ideas International Benchmark Page SPARC T4-4 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Sun Storage 2540-M2 Array oracle.com OTN Disclosure Statement TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org. SPARC T4-4 205,792.0 QphH@3000GB, $4.10/QphH@3000GB, available 5/31/12, 4 processors, 32 cores, 256 threads; IBM Power 780 QphH@3000GB, 192,001.1 QphH@3000GB, $6.37/QphH@3000GB, available 11/30/11, 8 processors, 32 cores, 128 threads; HP ProLiant DL980 G7 162,601.7 QphH@3000GB, $2.68/QphH@3000GB available 10/13/10, 8 processors, 64 cores, 128 threads.

    Read the article

  • Why do you like Lisp ?

    - by Geek
    Why does Paul Graham advocate Lisp? Why did ITA Software choose Lisp over other High Level languages? Lisp obviously is an advantage for the AI stuff but I don't think Lisp is any faster than Java, C# or as a matter of fact faster than C. Still it is considered as a Hackers language? I am not a master of Lisp but I find it incredibly difficult to understand the advantage one would get in writing Business Software in Lisp.

    Read the article

  • The Road to Professional Database Development: Database Normalization

    Not only is the process of normalization valuable for increasing data quality and simplifying the process of modifying data, but it actually makes the database perform much faster. To prove the point, Peter Larsson takes a large unnormalised database and subjects it to successive stages of normalisation. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • What are the Top Developer Productivity Tools/Plugins for Java in Eclipse?

    - by Ryan Hayes
    I personally use CodeRush in Visual Studio 2010 to do refactoring, write code faster with templates and generally navigate my code 10 times faster than stock VS. Recently, I've been working on another Android app and got to thinking...What are the top productivity plugins for Eclipse? Preferably free. I'm looking for plugins that help write in Java, not PHP or Rails or any of the other languages Eclipse supports.

    Read the article

  • Which language and platform features really boosted your coding speed?

    - by Serge
    The question is about delivering working code faster without any regard for design, quality, maintainability, etc. Here is the list of things that help me to write and read code faster: Language: static typing, support for object-oriented and functional programming styles, embedded documentation, short compile-debug-fix cycle or REPL, automatic memory management Platform: "batteries" included (text, regex, IO, threading, networking), thriving community, tons of open-source libs Tools: IDE, visual debugger, code-completion, code navigation, refactoring

    Read the article

  • Facebook android app changes

    - by jogabonito
    I am referring to this article about how Facebook has rolled out a native app for android replacing their previous HTML5 based one. From my usage, things have definitely become much faster. I was wondering whether this native app is purely java based, or involves some JNI. Image loading for one has become faster, which is generally not thought of as a java strong point. (IMHO) Are there any details on what Facebook has done?

    Read the article

  • Is there a mirror for the daily Natty ISO (/daily-live/current) in Asia?

    - by Jon
    I've been trying to download Natty for days now, but either the internet here in Vietnam is totally shot or the Ubuntu CD server has a lot of traffic, because I can't get it to download faster than about 15Kbps. Does anyone know of a mirror, preferably close to Vietnam, where I could download (zsync) this image faster? Googling hasn't helped me, nor has Ubuntu's list of mirrors (I get stuck in a rabbithole of FTP folders, and nothing seems to point to the daily image).

    Read the article

  • Free eBook - Control Your Transaction Log so it Doesn't Control You

    Download your free copy of SQL Server Transaction Log Management and see why understanding how log files work can make all the difference in a crisis. Want to work faster with SQL Server?If you want to work faster try out the SQL Toolbelt. "The SQL Toolbelt provides tools that database developers as well as DBAs should not live without." William Van Orden. Download the SQL Toolbelt here.

    Read the article

  • SQL Server Reporting Services ReportItems Collection

    What is SQL Server Reporting Services 2012 (SSRS) ReportItems collection and how do I use it? Are there any restrictions on its use? Check out this tip to learn more. Want to work faster with SQL Server?If you want to work faster try out the SQL Toolbelt. "The SQL Toolbelt provides tools that database developers as well as DBAs should not live without." William Van Orden. Download the SQL Toolbelt here.

    Read the article

  • RDA version 4.28 released

    - by THE
    Oracle proudly presents: RDA 4.28  This version of RDA comes with a new HCVE rule set (pre installation checks) Doc ID 1435695.1 now alsocollects Calc Manager Information Enjoy a faster resolution and clear communication about what Software is installed, the logs retrieved and have Tech Support react faster to the issue at hand by getting a detailed overview of the system they are dealing with. More information about RDA in general can be found here.

    Read the article

  • Maximizing Throughput with TVPs

    TVPs offer several performance optimization possibilities that other bulk operations do not allow, and these operations may allow for TVP performance to exceed other bulk operations by an order of magnitude, especially for a pattern where subsets of the data are frequently updated. Want to work faster with SQL Server?If you want to work faster try out the SQL Toolbelt. "The SQL Toolbelt provides tools that database developers as well as DBAs should not live without." William Van Orden. Download the SQL Toolbelt here.

    Read the article

  • SQL in the City Seminar Portland 2013 –Deployment Stairway

    Join Red Gate for a free seminar on November 15 (the day before SQL Saturday Oregon). Steve Jones and Grant Fritchey, SQL Server MVPs, will present best practices for SQL Server version control, continuous integration and deployment, in addition to showing Red Gate tools in action. Want faster, smaller backups you can rely on? Use SQL Backup Pro for up to 95% compression, faster file transfer and integrated DBCC CHECKDB. Download a free trial now.

    Read the article

  • Why a 10 years old software still is so slow even today?

    - by Cawas
    I just noted this question due to a game (which happens to be Diablo 2), but the matter of fact is: why is my brand new mac book pro, made in 2009 with latest technology (tho it's the cheapest one) can't rival my computer which used to run this much faster back in 2000? Really, it was much faster on my AMD K6 450 back in those days, and I could even run two clients at same time with no slow down. I've always had the feeling this machine was slow, but this is a very odd way to attest it. Granted, the machine is smaller, runs on wifi and "boots" way faster thanks to sleep mode. But other than that, what have we evolved after all?! I'm pretty sure this shouldn't be graphical card's fault. Sure if I buy latest technology it will run fast, and probably most people here can confirm this and won't even understand my question. But the thing is, all the hardware is supposedly much faster and better than the stuff from 10 years ago. The software and operating system became more complex, but also more well refined. Now I'm trying a piece of software that is actually 10 years old and it's not getting any better results! Why?

    Read the article

  • Should I use nginx exclusively, or have it as a proxy to Tomcat (performance related)?

    - by Kevin
    I've planned to create a website that'll be pretty heavy on dynamic content, and want to know what would be the wisest choice for part of my webstack. Right now I'm trying to decide whether I should develop upon nginx, using PHP to deliver the dynamic content, or use nginx as a proxy to Tomcat and use servlets to deliver the dynamic content. I have a good amount of experience with Java, JSP, and servlets, so that's a plus right off the bat. Also, since it is a compiled language, it will execute faster than PHP (it is implied here that Java is around 37x faster than PHP) , and will create the web pages faster. I have no experience with PHP, however i'm under the impression that it is easy to pick up. It's slower than Java, but since the client will only be communicating with nginx, I'm thinking that serving the dynamically created web pages to the client will be faster this way. Considering these things, i'd like to know: Are my assumptions correct? Where does the bottleneck occur: creating pages or serving them back to the client? Will proxying Tomcat with nginx give me any of nginx performance benefits if I'm going to be using Tomcat to generate the dynamic content (keeping in mind my site is going to be heavy in this aspect)? I don't mind learning PHP if, in the end, its going to give me the best performance. I just want to know what would be the best choice from that standpoint.

    Read the article

  • Rough estimate for speed advantage of SAN-via-fibre to san-via-iSCSI when using VMware vSphere

    - by Dirk Paessler
    We are in the process of setting up two virtualization servers (DELL R710, Dual Quadcore Xeon CPUs at 2.3 Ghz, 48 GB RAM) for VMware VSphere with storage on a SAN (DELL Powervault MD3000i, 10x 500 GB SAS drives, RAID 5) which will be attached via iSCSI on a Gbit Ethernet Switch (DELL Powerconnect 5424, they call it "iSCSI-optimized"). Can anyone give an estimate how much faster a fiber channel based solution would be (or better "feel")? I don't mean the nominal speed advantage, I mean how much faster will virtual machines effectively work? Are we talking twice the speed, five times, 10 times faster? Does it justify the price? PS: We are not talking about heavily used database servers or exchange servers. Most of the virtualized servers run below 3-5% average CPU load.

    Read the article

  • SCSI vs SATA? Is SCSI "actually" better?

    - by earlz
    Well, I was talking with a guy about servers the other day. I was a bit shocked whenever I asked him if there was any significant difference between SCSI and SATA and why he always uses SCSI. (note, I'm not sure if by SCSI he meant SAS) He told me that SCSI is always faster and that the drives are always more reliable.. I mean, this seems like a bold statement. He told me something about how SCSI will always be faster than SATA because the OS sends the SCSI (controller?) a request to get a file and it will build the file inside of the SCSI controller, instead of searching all over the disk.. which I do not understand how that would work, so I figure it is BS. SAS and SATA currently have equivalent data rate speeds.. Is there any true backing for his reasoning that SCSI is always faster and more reliable than SATA?

    Read the article

  • Why is hibernation still used?

    - by Moses
    I've never quite understood the original purpose of the Hibernation power state in Windows. I understand how it works, what processes take place, and what happens when you boot back up from Hibernate, but I've never truly understood why it's used. With today's technology, most notably with SSDs, RAM and CPUs becoming faster and faster, a cold boot on a clean/efficient Windows installation can be pretty fast (for some people, mere seconds from pushing the power button). Standby is even faster, sometimes instantaneous. Even SATA drives from 5-6 years ago can accomplish these fast boot times. Hibernation seems pointless to me when modern technology is considered, but perhaps there are applications that I'm not considering. What was the original purpose behind hibernation, and why do people still use it? Edit: I rescind my comment about hibernation being obsolete, as it obviously has very practical applications to laptops and mobile PCs, considering the power restrictions. I was mostly referring to hibernation being used on a desktop.

    Read the article

  • What can impact the throughput rate at tcp or Os level?

    - by Jimm
    I am facing a problem, where running the same application on different servers, yields unexpected performance results. For example, running the application on a particular faster server (faster cpu, more memory), with no load, yields slower performance than running on a less powerful server on the same network. I am suspecting that either OS or TCP is causing the slowness on the faster server. I cannot use IPerf , unless i modify it, because the "performance" in my application is defined as Component A sends a message to Component B. Component B sends an ACK to component A and ONLY then Component A would send the next message. So it is different from what IPerf does, which to my knowledge, simply tries to push as many messages as possible. Is there a tool that can look at OS and TCP configuration and suggest the cause of slowness?

    Read the article

  • New Release of Oracle Berkeley DB

    - by Eric Jensen
    We are pleased to announce that a new release of Oracle Berkeley DB, version 11.2.5.2.28, is available today. Our latest release includes yet more value added features for SQLite users, as well as several performance enhancements and new customer-requested features to the key-value pair API.  We continue to provide technology leadership, features and performance for SQLite applications.  This release introduces additional features that are not available in native SQLite, and adds functionality allowing customers to create richer, more scalable, more concurrent applications using the Berkeley DB SQL API. This release is compelling to Oracle’s customers and partners because it: delivers a complete, embeddable SQL92 database as a library under 1MB size drop-in API compatible with SQLite version 3 no-oversight, zero-touch database administration industrial quality, battle tested Berkeley DB B-TREE for concurrent transactional data storage New Features Include: MVCC support for even higher concurrency direct SQL support for HA/replication transactionally protected Sequence number generation functions lower memory requirements, shared memory regions and faster/smaller memory on startup easier B-TREE page size configuration with new ''db_tuner" utility New Key-Value API Features Include: HEAP access method for constrained disk-space applications (key-value API) faster QUEUE access method operations for highly concurrent applications -- up 2-3X faster! (key-value API) new X/open compliant XA resource manager, easily integrated with Oracle Tuxedo (key-value API) additional HA/replication management and communication options (key-value API) and a lot more! BDB is hands-down the best edge, mobile, and embedded database available to developers. Downloads available today on the Berkeley DB download pageProduct Documentation

    Read the article

  • OpenGL CPU vs. GPU

    - by Nitrex88
    So I've always been under the impression that doing work on the GPU is always faster than on the CPU. Because of this, in OpenGL, I usually try to do intensive tasks in shaders so they get the speed boost from the GPU. However, now I'm starting to realize that some things simply work better on the CPU and actually perform worse on the GPU (particularly when a geometry shader is involved). For example, in a recent project I did involving procedurally generated terrain, I tried passing a grid of single triangles into a geometry shader, and tesselated each of these triangles into quads with 400 vertices whose height was determined by a noise function. This worked fine, and looked great, but easily maxed out the GPU with only 25 base triangles and caused a very slow framerate. I then discovered that tesselating on the CPU instead, and setting the height (using noise function) in the vertex shader was actually faster! This prompted me to question the benefits of using the GPU as much as possible... So, I was wondering if someone could describe the general pros and cons of using the GPU vs CPU for intensive graphics tasks. I know this mainly comes down to what your trying to achieve, so if necessary, use the above scenario to discuss why the "CPU + vertex shader" was actually faster than doing everything in the geometry shader on the GPU. It's possible my hardware (newest macbook pro) isn't optomized well for the geometry shader (thus causing the slow framerate). Also, I read that the vertex shader is very good with parallelism, and would love a quick explanation of how this may have played a role in speeding up my procedural terrain. Any info/advice about CPU/GPU/shaders would be awesome!

    Read the article

  • OpenGL CPU vs. GPU

    - by Nitrex88
    So I've always been under the impression that doing work on the GPU is always faster than on the CPU. Because of this, in OpenGL, I usually try to do intensive tasks in shaders so they get the speed boost from the GPU. However, now I'm starting to realize that some things simply work better on the CPU and actually perform worse on the GPU (particularly when a geometry shader is involved). For example, in a recent project I did involving procedurally generated terrain, I tried passing a grid of single triangles into a geometry shader, and tesselated each of these triangles into quads with 400 vertices whose height was determined by a noise function. This worked fine, and looked great, but easily maxed out the GPU with only 25 base triangles and caused a very slow framerate. I then discovered that tesselating on the CPU instead, and setting the height (using noise function) in the vertex shader was actually faster! This prompted me to question the benefits of using the GPU as much as possible... So, I was wondering if someone could describe the general pros and cons of using the GPU vs CPU for intensive graphics tasks. I know this mainly comes down to what your trying to achieve, so if necessary, use the above scenario to discuss why the "CPU + vertex shader" was actually faster than doing everything in the geometry shader on the GPU. It's possible my hardware (newest macbook pro) isn't optomized well for the geometry shader (thus causing the slow framerate). Also, I read that the vertex shader is very good with parallelism, and would love a quick explanation of how this may have played a role in speeding up my procedural terrain. Any info/advice about CPU/GPU/shaders would be awesome!

    Read the article

  • Monitoring Visual Studio 2010 Performance Problems

    - by TATWORTH
    At http://visualstudiogallery.msdn.microsoft.com/fa85b17d-3df2-49b1-bee6-71527ffef441, Microsoft have provided a tool for Visual Studio to provide reports on Visual Studio 2010 performance problems. The use of it has been discussed at http://blogs.msdn.com/b/visualstudio/archive/2011/05/02/perfwatson.aspx as follows: "Would you like Visual Studio 2010 to be even faster? Would you like any performance issue you see to be  reported automatically without any hassle? Well now you can, with the new Visual Studio PerfWatson extension! Install this extension and help us deliver a faster Visual Studio experience. We’re constantly working to improve the performance of Visual Studio and take feedback about it very seriously. Our investigations into these issues have found that there are a variety of scenarios where a long running task can cause the UI thread to hang or become unresponsive. Visual Studio PerfWatson is a low overhead telemetry system that helps us capture these instances of UI unresponsiveness and report them back to Microsoft automatically and anonymously. We then use this data to drive performance improvements that make Visual Studio faster." Now instead of complaining you too can help Microsoft locate and fix performance problems with Visual Studio 2010. The requirements are: "Following are the pre-requisites for installing Visual Studio PerfWatson: Windows Vista/2008/2008 R2/7 (Note: PerfWatson is not supported for Windows XP) Visual Studio 2010 SP1 (Professional, Premium, or Ultimate)"

    Read the article

  • Japanese Multiplication simulation - is a program actually capable of improving calculation speed?

    - by jt0dd
    On SuperUser, I asked a (possibly silly) question about processors using mathematical shortcuts and would like to have a look at the possibility at the software application of that concept. I'd like to write a simulation of Japanese Multiplication to get benchmarks on large calculations utilizing the shortcut vs traditional CPU multiplication. I'm curious as to whether it makes sense to try this. My Question: I'd like to know whether or not a software math shortcut, as described above is actually a shortcut at all. This is a question of programming concept. By utilizing the simulation of Japanese Multiplication, is a program actually capable of improving calculation speed? Or am I doomed from the start? The answer to this question isn't required to determine whether or not the experiment will succeed, but rather whether or not it's logically possible for such a thing to occur in any program, using this concept as an example. My theory is that since addition is computed faster than multiplication, a simulation of Japanese multiplication may actually allow a program to multiply (large) numbers faster than the CPU arithmetic unit can. I think this would be a very interesting finding, if it proves to be true. If, in the multiplication of numbers of any immense size, the shortcut were to calculate the result via less instructions (or faster) than traditional ALU multiplication, I would consider the experiment a success.

    Read the article

  • SOA performance on SPARC T5 benchmark results

    - by JuergenKress
    The brand NEW super fast SPARC T5 servers are available. The platform is superb to run large SOA Suite environments or to consolidate your whole middleware platform. Some performance advices, recommended for all workloads: Performance profile for SOA apps on Oracle Solaris 11 BPEL (Fusion Order Demo) instances per second OSB (messages / transformations per second) Crypto acceleration study for SOA transformations SPARC T4 and T5 platform testing, pre-tuning Performance suitable for mid-to-high range enterprise in stand-alone SOA deployment or virtualized consolidation environment shared with Oracle applications 2.2x to 5x faster than SPARC T3 servers 25% faster SOA throughput, core to core than Intel 5600-series servers (running Exalogic software) SPARC T5 has 2x the consolidation density of Intel 5600-class processors 2x faster initial deployment time using Optimized Solutions pre-tested configuration steps Over 200 Application adapters for easiest Oracle software integration Would you like to get details? We can share with you on 1:1 bases T5 SOA Suite performance benchmarks, please contact your local partner manager or myself! SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Mix Forum Technorati Tags: T5,TS Sparc,T5 SOA,bechmark,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

< Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >