Search Results

Search found 5915 results on 237 pages for 'practices'.

Page 25/237 | < Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >

  • Announcing: Oracle Enterprise Manager 12c Delivers Advanced Self-Service Automation for Oracle Database 12c Multitenant

    - by Scott McNeil
    New Self-Service Driven Provisioning of Pluggable Databases Today Oracle announced new capabilities that support managing the full lifecycle of pluggable database as a service in Oracle Enterprise Manager 12c Release 3 (12.1.0.3). This latest release builds on the existing capabilities to provide advanced automation for deploying database as a service using Oracle Database 12c Multitenant option. It takes it one step further by offering pluggable database as a service through Oracle Enterprise Manager 12c self-service portal providing customers with fast provisioning of database cloud services with minimal time and effort. This is a significant addition to Oracle Enterprise Manager 12c’s existing portfolio of cloud services that includes infrastructure as a service, database as a service, testing as a service, and Java platform as a service. The solution provides a self-service mechanism to provision pluggable databases allowing users to request and access database(s) on-demand. The self-service operations are also enabled through REST APIs allowing customers to integrate with third-party automation systems or their custom enterprise portals. Benefits Self-service provisioning allows rapid access to pluggable database as a service for hosting or certifying applications on Oracle Database 12c Self-service driven migration to pluggable database as a service in order to migrate a pre-Oracle Database 12c database to a pluggable database as a service model and test the consolidation strategy Single service catalog for all approved pluggable database as a service configurations which helps customers achieve standardization while catering to all applications and users in the enterprise Resource guarantee via database resource manager (and IORM on Oracle Exadata) that enables deployment of mixed workloads in a shared environment Quota, role based access, and policy based management that enforces governance and reduces administrative overhead Chargeback or showback which improves metering and accountability for services consumed by each pluggable database Comprehensive REST APIs that support integration with ticketing or change management systems, and or with other self-service portals Minimal administrative and maintenance overhead through self-managing automation that allows for intelligent placement of pluggable databases To understand how pluggable database as a service works, watch this quick demo: Stay Connected: Twitter | Facebook | YouTube | Linkedin | Newsletter Download the Oracle Enterprise Manager Cloud Control12c Mobile app

    Read the article

  • How would you refactor nested IF Statements?

    - by saunderl
    I was cruising around the programming blogosphere when I happened upon this post about GOTO's: http://giuliozambon.blogspot.com/2010/12/programmers-tabu.html Here the writer talks about how "one must come to the conclusion that there are situations where GOTOs make for more readable and more maintainable code" and then goes on to show an example similar to this: if (Check#1) { CodeBlock#1 if (Check#2) { CodeBlock#2 if (Check#3) { CodeBlock#3 if (Check#4) { CodeBlock#4 if (Check#5) { CodeBlock#5 if (Check#6) { CodeBlock#6 if (Check#7) { CodeBlock#7 } else { rest - of - the - program } } } } } } } The writer then proposes that using GOTO's would make this code much easier to read and maintain. I personally can think of at least 3 different ways to flatten it out and make this code more readable without resorting to flow-breaking GOTO's. Here are my two favorites. 1 - Nested Small Functions. Take each if and its code block and turn it into a function. If the boolean check fails, just return. If it passes, then call the next function in the chain. (Boy, that sounds a lot like recursion, could you do it in a single loop with function pointers?) 2 - Sentinal Variable. To me this is the easyest. Just use a blnContinueProcessing variable and check to see if it is still true in your if check. Then if the check fails, set the variable to false. How many different ways can this type of coding problem be refactored to reduce nesting and increase maintainability?

    Read the article

  • Third Party Applications and Other Acts of Violence Against Your SQL Server

    - by KKline
    I just got finished reading a great blog post from my buddy, Thomas LaRock ( t | b ), in which he describes a useful personal policy he used to track changes made to his SQL Servers when installing third-party products. Note that I'm talking about line-of-business applications here - your inventory management systems and help desk ticketing apps. I'm not talking about monitoring and tuning applications since they, by their very nature, need a different sort of access to your back-end server resources....(read more)

    Read the article

  • maintaining a growing, diverse codebase with continuous integration

    - by Nate
    I am in need of some help with philosophy and design of a continuous integration setup. Our current CI setup uses buildbot. When I started out designing it, I inherited (well, not strictly, as I was involved in its design a year earlier) a bespoke CI builder that was tailored to run the entire build at once, overnight. After a while, we decided that this was insufficient, and started exploring different CI frameworks, eventually choosing buildbot. One of my goals in transitioning to buildbot (besides getting to enjoy all the whiz-bang extras) was to overcome some of the inadequacies of our bespoke nightly builder. Humor me for a moment, and let me explain what I have inherited. The codebase for my company is almost 150 unique c++ Windows applications, each of which has dependencies on one or more of a dozen internal libraries (and many on 3rd party libraries as well). Some of these libraries are interdependent, and have depending applications that (while they have nothing to do with each other) have to be built with the same build of that library. Half of these applications and libraries are considered "legacy" and unportable, and must be built with several distinct configurations of the IBM compiler (for which I have written unique subclasses of Compile), and the other half are built with visual studio. The code for each compiler is stored in two separate Visual SourceSafe repositories (which I am simply handling using a bunch of ShellCommands, as there is no support for VSS). Our original nightly builder simply took down the source for everything, and built stuff in a certain order. There was no way to build only a single application, or pick a revision, or to group things. It would launched virtual machines to build a number of the applications. It wasn't very robust, it wasn't distributable. It wasn't terribly extensible. I wanted to be able to overcame all of these limitations in buildbot. The way I did this originally was to create entries for each of the applications we wanted to build (all 150ish of them), then create triggered schedulers that could build various applications as groups, and then subsume those groups under an overall nightly build scheduler. These could run on dedicated slaves (no more virtual machine chicanery), and if I wanted I could simply add new slaves. Now, if we want to do a full build out of schedule, it's one click, but we can also build just one application should we so desire. There are four weaknesses of this approach, however. One is our source tree's complex web of dependencies. In order to simplify config maintenace, all builders are generated from a large dictionary. The dependencies are retrieved and built in a not-terribly robust fashion (namely, keying off of certain things in my build-target dictionary). The second is that each build has between 15 and 21 build steps, which is hard to browse and look at in the web interface, and since there are around 150 columns, takes forever to load (think from 30 seconds to multiple minutes). Thirdly, we no longer have autodiscovery of build targets (although, as much as one of my coworkers harps on me about this, I don't see what it got us in the first place). Finally, aformentioned coworker likes to constantly bring up the fact that we can no longer perform a full build on our local machine (though I never saw what that got us, either, considering that it took three times as long as the distributed build; I think he is just paranoically phobic of ever breaking the build). Now, moving to new development, we are starting to use g++ and subversion (not porting the old repository, mind you - just for the new stuff). Also, we are starting to do more unit testing ("more" might give the wrong picture... it's more like any), and integration testing (using python). I'm having a hard time figuring out how to fit these into my existing configuration. So, where have I gone wrong philosophically here? How can I best proceed forward (with buildbot - it's the only piece of the puzzle I have license to work on) so that my configuration is actually maintainable? How do I address some of my design's weaknesses? What really works in terms of CI strategies for large, (possibly over-)complex codebases?

    Read the article

  • Managing .NET External Dependencies

    - by Ben Griswold
    Noah and I continue our screencast series by sharing our approach to managing external dependencies referenced within a .NET solution.  This is another introductory episode but you might find a hidden gem in the short 4-minute clip.  ELMAH (Error Logging Modules and Handlers) is the external dependencies we are focusing on in the presentation.  If you are not familiar with ELMAH, this episode may be worth your time.   YouTube - Managing .NET External Dependencies This is one of our first screencasts.  If you have feedback, I’d love to hear it.

    Read the article

  • Should the Joel Test be essential for every software company? [closed]

    - by Mahbubur R Aaman
    Joel Test has 12 steps for better code. They are: Do you use source control? Can you make a build in one step? Do you make daily builds? Do you have a bug database? Do you fix bugs before writing new code? Do you have an up-to-date schedule? Do you have a spec? Do programmers have quiet working conditions? Do you use the best tools money can buy? Do you have testers? Do new candidates write code during their interview? Do you do hallway usability testing? Should these steps mandatory for every software companies? While recruiting programmers, then programmers should ask the company, as they follow joel steps?

    Read the article

  • Convert ddply {plyr} to Oracle R Enterprise, or use with Embedded R Execution

    - by Mark Hornick
    The plyr package contains a set of tools for partitioning a problem into smaller sub-problems that can be more easily processed. One function within {plyr} is ddply, which allows you to specify subsets of a data.frame and then apply a function to each subset. The result is gathered into a single data.frame. Such a capability is very convenient. The function ddply also has a parallel option that if TRUE, will apply the function in parallel, using the backend provided by foreach. This type of functionality is available through Oracle R Enterprise using the ore.groupApply function. In this blog post, we show a few examples from Sean Anderson's "A quick introduction to plyr" to illustrate the correpsonding functionality using ore.groupApply. To get started, we'll create a demo data set and load the plyr package. set.seed(1) d <- data.frame(year = rep(2000:2014, each = 3),         count = round(runif(45, 0, 20))) dim(d) library(plyr) This first example takes the data frame, partitions it by year, and calculates the coefficient of variation of the count, returning a data frame. # Example 1 res <- ddply(d, "year", function(x) {   mean.count <- mean(x$count)   sd.count <- sd(x$count)   cv <- sd.count/mean.count   data.frame(cv.count = cv)   }) To illustrate the equivalent functionality in Oracle R Enterprise, using embedded R execution, we use the ore.groupApply function on the same data, but pushed to the database, creating an ore.frame. The function ore.push creates a temporary table in the database, returning a proxy object, the ore.frame. D <- ore.push(d) res <- ore.groupApply (D, D$year, function(x) {   mean.count <- mean(x$count)   sd.count <- sd(x$count)   cv <- sd.count/mean.count   data.frame(year=x$year[1], cv.count = cv)   }, FUN.VALUE=data.frame(year=1, cv.count=1)) You'll notice the similarities in the first three arguments. With ore.groupApply, we augment the function to return the specific data.frame we want. We also specify the argument FUN.VALUE, which describes the resulting data.frame. From our previous blog posts, you may recall that by default, ore.groupApply returns an ore.list containing the results of each function invocation. To get a data.frame, we specify the structure of the result. The results in both cases are the same, however the ore.groupApply result is an ore.frame. In this case the data stays in the database until it's actually required. This can result in significant memory and time savings whe data is large. R> class(res) [1] "ore.frame" attr(,"package") [1] "OREbase" R> head(res)    year cv.count 1 2000 0.3984848 2 2001 0.6062178 3 2002 0.2309401 4 2003 0.5773503 5 2004 0.3069680 6 2005 0.3431743 To make the ore.groupApply execute in parallel, you can specify the argument parallel with either TRUE, to use default database parallelism, or to a specific number, which serves as a hint to the database as to how many parallel R engines should be used. The next ddply example uses the summarise function, which creates a new data.frame. In ore.groupApply, the year column is passed in with the data. Since no automatic creation of columns takes place, we explicitly set the year column in the data.frame result to the value of the first row, since all rows received by the function have the same year. # Example 2 ddply(d, "year", summarise, mean.count = mean(count)) res <- ore.groupApply (D, D$year, function(x) {   mean.count <- mean(x$count)   data.frame(year=x$year[1], mean.count = mean.count)   }, FUN.VALUE=data.frame(year=1, mean.count=1)) R> head(res)    year mean.count 1 2000 7.666667 2 2001 13.333333 3 2002 15.000000 4 2003 3.000000 5 2004 12.333333 6 2005 14.666667 Example 3 uses the transform function with ddply, which modifies the existing data.frame. With ore.groupApply, we again construct the data.frame explicilty, which is returned as an ore.frame. # Example 3 ddply(d, "year", transform, total.count = sum(count)) res <- ore.groupApply (D, D$year, function(x) {   total.count <- sum(x$count)   data.frame(year=x$year[1], count=x$count, total.count = total.count)   }, FUN.VALUE=data.frame(year=1, count=1, total.count=1)) > head(res)    year count total.count 1 2000 5 23 2 2000 7 23 3 2000 11 23 4 2001 18 40 5 2001 4 40 6 2001 18 40 In Example 4, the mutate function with ddply enables you to define new columns that build on columns just defined. Since the construction of the data.frame using ore.groupApply is explicit, you always have complete control over when and how to use columns. # Example 4 ddply(d, "year", mutate, mu = mean(count), sigma = sd(count),       cv = sigma/mu) res <- ore.groupApply (D, D$year, function(x) {   mu <- mean(x$count)   sigma <- sd(x$count)   cv <- sigma/mu   data.frame(year=x$year[1], count=x$count, mu=mu, sigma=sigma, cv=cv)   }, FUN.VALUE=data.frame(year=1, count=1, mu=1,sigma=1,cv=1)) R> head(res)    year count mu sigma cv 1 2000 5 7.666667 3.055050 0.3984848 2 2000 7 7.666667 3.055050 0.3984848 3 2000 11 7.666667 3.055050 0.3984848 4 2001 18 13.333333 8.082904 0.6062178 5 2001 4 13.333333 8.082904 0.6062178 6 2001 18 13.333333 8.082904 0.6062178 In Example 5, ddply is used to partition data on multiple columns before constructing the result. Realizing this with ore.groupApply involves creating an index column out of the concatenation of the columns used for partitioning. This example also allows us to illustrate using the ORE transparency layer to subset the data. # Example 5 baseball.dat <- subset(baseball, year > 2000) # data from the plyr package x <- ddply(baseball.dat, c("year", "team"), summarize,            homeruns = sum(hr)) We first push the data set to the database to get an ore.frame. We then add the composite column and perform the subset, using the transparency layer. Since the results from database execution are unordered, we will explicitly sort these results and view the first 6 rows. BB.DAT <- ore.push(baseball) BB.DAT$index <- with(BB.DAT, paste(year, team, sep="+")) BB.DAT2 <- subset(BB.DAT, year > 2000) X <- ore.groupApply (BB.DAT2, BB.DAT2$index, function(x) {   data.frame(year=x$year[1], team=x$team[1], homeruns=sum(x$hr))   }, FUN.VALUE=data.frame(year=1, team="A", homeruns=1), parallel=FALSE) res <- ore.sort(X, by=c("year","team")) R> head(res)    year team homeruns 1 2001 ANA 4 2 2001 ARI 155 3 2001 ATL 63 4 2001 BAL 58 5 2001 BOS 77 6 2001 CHA 63 Our next example is derived from the ggplot function documentation. This illustrates the use of ddply within using the ggplot2 package. We first create a data.frame with demo data and use ddply to create some statistics for each group (gp). We then use ggplot to produce the graph. We can take this same code, push the data.frame df to the database and invoke this on the database server. The graph will be returned to the client window, as depicted below. # Example 6 with ggplot2 library(ggplot2) df <- data.frame(gp = factor(rep(letters[1:3], each = 10)),                  y = rnorm(30)) # Compute sample mean and standard deviation in each group library(plyr) ds <- ddply(df, .(gp), summarise, mean = mean(y), sd = sd(y)) # Set up a skeleton ggplot object and add layers: ggplot() +   geom_point(data = df, aes(x = gp, y = y)) +   geom_point(data = ds, aes(x = gp, y = mean),              colour = 'red', size = 3) +   geom_errorbar(data = ds, aes(x = gp, y = mean,                                ymin = mean - sd, ymax = mean + sd),              colour = 'red', width = 0.4) DF <- ore.push(df) ore.tableApply(DF, function(df) {   library(ggplot2)   library(plyr)   ds <- ddply(df, .(gp), summarise, mean = mean(y), sd = sd(y))   ggplot() +     geom_point(data = df, aes(x = gp, y = y)) +     geom_point(data = ds, aes(x = gp, y = mean),                colour = 'red', size = 3) +     geom_errorbar(data = ds, aes(x = gp, y = mean,                                  ymin = mean - sd, ymax = mean + sd),                   colour = 'red', width = 0.4) }) But let's take this one step further. Suppose we wanted to produce multiple graphs, partitioned on some index column. We replicate the data three times and add some noise to the y values, just to make the graphs a little different. We also create an index column to form our three partitions. Note that we've also specified that this should be executed in parallel, allowing Oracle Database to control and manage the server-side R engines. The result of ore.groupApply is an ore.list that contains the three graphs. Each graph can be viewed by printing the list element. df2 <- rbind(df,df,df) df2$y <- df2$y + rnorm(nrow(df2)) df2$index <- c(rep(1,300), rep(2,300), rep(3,300)) DF2 <- ore.push(df2) res <- ore.groupApply(DF2, DF2$index, function(df) {   df <- df[,1:2]   library(ggplot2)   library(plyr)   ds <- ddply(df, .(gp), summarise, mean = mean(y), sd = sd(y))   ggplot() +     geom_point(data = df, aes(x = gp, y = y)) +     geom_point(data = ds, aes(x = gp, y = mean),                colour = 'red', size = 3) +     geom_errorbar(data = ds, aes(x = gp, y = mean,                                  ymin = mean - sd, ymax = mean + sd),                   colour = 'red', width = 0.4)   }, parallel=TRUE) res[[1]] res[[2]] res[[3]] To recap, we've illustrated how various uses of ddply from the plyr package can be realized in ore.groupApply, which affords the user explicit control over the contents of the data.frame result in a straightforward manner. We've also highlighted how ddply can be used within an ore.groupApply call.

    Read the article

  • What design patterns are the worst or most narrowly defined?

    - by Akku
    For every programming project, Managers with past programming experience try to shine when they recommend some design patterns for your project. I like design patterns when they make sense or if you need a scalbale solution. I've used Proxies, Observers and Command patterns in a positive way for example, and do so every day. But I'm really hesitant to use say a Factory pattern if there's only one way to create an object, as a factory might make it all easier in the future, but complicates the code and is pure overhead. So, my question is in respect to my future career and my answer to manager types throwing random pattern-names around: Which design patterns did you use, that threw you back overall? Which are the worst design patterns, that you shouldn't have a look at if it's not that only single situation where it makes sense (read: which design patterns are very narrowly defined)? (It's like I was looking for the negative reviews of an overall good product of amazon to see what bugged people most in using design patterns). And I'm not talking about Anti-Patterns here, but about Patterns that are usually thought of as "good" patterns. Edit: As some answered, the problem is most often that patterns are not "bad" but "used wrong". If you know patterns, that are often misused or even difficult to use, they would also fit as an answer.

    Read the article

  • Better Programming By Programming Better?

    - by ahmed
    I am not convinced by the idea that developers are either born with it or they are not. Where’s the empirical evidence to support these types of claims? Can a programmer move from say the 50th to 90th percentile? However, most developers are not in the 99th or even 90th percentile (by definition), and thus still have room for improvement in programming ability, along with the important skills.The belief in innate talent is “lacking in hard evidence to substantiate it” as well.So how do I reconcile these seemingly contradictory statements? I think the lesson for software developers who wish to keep on top of their game and become experts is to keep exercising the mind via effortful studying. I read a lot technical books, but many of them aren’t making me better as a developer.

    Read the article

  • Laptops or Notebooks in a meeting? [closed]

    - by greengit
    Is taking the laptop to the meeting a good idea? Of course, the project leader needs to have one -- but the programmers -- especially those who only need to get straight instructions on what to do next on the project -- do they need to take laptops? I feel it takes longer to save notes in a software -- and it's lot easier to just jot down "things to do" in a simple note book. That way you can keep up with the discussion and not lose track of what someone else is saying by spending too much time entering text in the machine.

    Read the article

  • Best practice to propagate preferences of application

    - by Shebuka
    What is your approach with propagation to all classes/windows of preferences/settings of your application? Do you share the preference_manager class to all classes/windows who need it or you make variables in each classes/windows and update them manually each time setting are changed? Currently I have a PreferencesInterface class that hold all preferences and is responsible to default all values with a dedicated method called on create and when needed, all values are public, so non getters/setters, also it have virtual SavePreferences/LoadPreferences methods. Then I have PreferencesManager that extends from PreferencesInterface and is responsible for actually implementation of SavePreferences/LoadPreferences. I've made this basically for cross-platform so that every platform can have a different implementation of actual storage (registry, ini, plist, xml, whatever).

    Read the article

  • Should I reuse variables?

    - by IAdapter
    Should I reuse variables? I know that many best practice say you should not do it, however later when different developer is debugging the code and have 3 variables that look a like and only difference is that they are created in different places in the code he might be confused. unit-testing is a great example of this. However I do know that best practice are most of the time against it. For example they say not to "overide" method parameters. Best practice are even are against nulling the previous variables (in Java there is Sonar that has warning when you assign null to variable that you don't need to do it to call garbage collector since Java6. you cant always control what warnings are turned off, most of the time the default is on)

    Read the article

  • What's the best Open Source code you've ever seen?

    - by Andrew Theken
    Part of the value of Open Source is to provide great example code to people getting started with a new platform or language. What's the best Open Source code you've encountered, and why do you like your choice? Any language will do, but I'm particularly interested in the best examples of Objective-C you can point out. Obviously this is an open-ended question, so I'll leave the question open for a while and see what kinds of answers we get. Thanks!

    Read the article

  • Should one always know what an API is doing just by looking at the code?

    - by markmnl
    Recently I have been developing my own API and with that invested interest in API design I have been keenly interested how I can improve my API design. One aspect that has come up a couple times is (not by users of my API but in my observing discussion about the topic): one should know just by looking at the code calling the API what it is doing. For example see this discussion on GitHub for the discourse repo, it goes something like: foo.update_pinned(true, true); Just by looking at the code (without knowing the parameter names, documentation etc.) one cannot guess what it is going to do - what does the 2nd argument mean? The suggested improvement is to have something like: foo.pin() foo.unpin() foo.pin_globally() And that clears things up (the 2nd arg was whether to pin foo globally, I am guessing), and I agree in this case the later would certainly be an improvement. However I believe there can be instances where methods to set different but logically related state would be better exposed as one method call rather than separate ones, even though you would not know what it is doing just by looking at the code. (So you would have to resort to looking at the parameter names and documentation to find out - which personally I would always do no matter what if I am unfamiliar with an API). For example I expose one method SetVisibility(bool, string, bool) on a FalconPeer and I acknowledge just looking at the line: falconPeer.SetVisibility(true, "aerw3", true); You would have no idea what it is doing. It is setting 3 different values that control the "visibility" of the falconPeer in the logical sense: accept join requests, only with password and reply to discovery requests. Splitting this out into 3 method calls could lead to a user of the API to set one aspect of "visibility" forgetting to set others that I force them to think about by only exposing the one method to set all aspects of "visibility". Furthermore when the user wants to change one aspect they almost always will want to change another aspect and can now do so in one call.

    Read the article

  • Design patterns to avoiding breaking the SRP while performing heavy data logging

    - by Kazark
    A class that performs both computations and data logging seems to have at least two responsibilities. Given a system for which the specifications require heavy data logging, what kind of design patterns or architectural patterns can be used to avoid bloating all the classes with logging calls every time they compute something? The decorator pattern be used (e.g. Interpolator decorated to LoggingInterpolator), but it seems that would result in a situation hardly more desirable in which almost every major class would need to be decorated with logging.

    Read the article

  • How to document/verify consistent layering?

    - by Morten
    I have recently moved to the dark side: I am now a CUSTOMER of software development -- mainly websites. With this new role comes new concerns. As a programmer i know how solid an application becomes when it is properly layered, and I want to use this knowledge in my new job. I don't want business logic in my presentation layer, and certainly not presentation stuff in my data layer. Thus, I want to be able to demand from my supllier that they document the level of layering, and how neat and consistent the layering is. The big question is: How is the level of layering documented to me as a customer, and is that a reasonable demmand for me to have, so I don't have to look in the code (I'm not supposed to do that anymore)?

    Read the article

  • what is best book to learn optimized programming in java [closed]

    - by Abhishek Simon
    Possible Duplicate: Is there a canonical book for learning Java as an experienced developer? Let me elaborate a little: I used to be a C/C++ programmer where I used data structure concept like trees, queues stack etc and tried to optimize as much as possible, minimum no. of loops, variables and tried to make it efficient. It's been a couple of years that I started writing java codes, but it is simply not that efficient in terms of performance, memory intensive etc. To the point: I want to enter programming challenges using java so I need to improve my approach at things I program. So please suggest me some books that can help me learn to program better and have a chance in solving challenges in programming.

    Read the article

  • What is your unique programming problem-solving style? [closed]

    - by gcc
    Everyone has their own styles and technique for approaching and solving real world problems. These distinguish us from other people or other programmers. (Actually, I think it make us more desirable as programmers and improves computer science) To improve, we read a lot of books; for example, programming style, how to solve problems, how to approach problems, software and algorithms, et al. Can I learn your technique? In other words, if someone gives you a problem, at first step, what are you doing to solve it? I want learn the style in which you approach, analyze, and solve a problem. EDIT: every programmer is a unique instance; each of us approach problems and converge on solutions in our own... idiomatic manner. This manner is sometimes a quirk of training, a bias of tools, but often it is an insightful nugget, a little golden hammer that cracks nuts just slightly faster then others. When answering, give your general approaches but also take a moment to identify how you look at things in ways that your peers do not. Let's call this your Unique Solving Perspective, or USP.

    Read the article

  • Should I comment Tables or Columns in my database?

    - by jako
    I like to comment my code with various information, and I think most people nowadays do so while writing some code. But when it comes to database tables or columns, I have never seen anyone setting some comments, and, to be honest, I don't even think of looking for comments there. So I am wondering if some people are commenting their DB strcuture here, and if I should bother commenting, for instance when I create a new column to an existing table?

    Read the article

  • First 10 programs in a new scripting languge

    - by pro_metedor
    When a peron is learning a new scripting language like: bash python perl pike What kind of simple (yet practical) problem solutions to get through to make say that a person is comprehend with this scripting language enough to approach some complex yet still practical problems encountered in everyday job. In other words, which problems would you give that person to solve to make sure that he/she is familiar with the scripting language.

    Read the article

  • Are short identifiers bad?

    - by Daniel C. Sobral
    Are short identifiers bad? How does identifier length correlate with code comprehension? What other factors (besides code comprehension) might be of consideration when it comes to naming identifiers? Just to try to keep the quality of the answers up, please note that there is some research on the subject already! Edit Curious that everyone either doesn't think length is relevant or tend to prefer larger identifiers, when both links I provided indicate large identifiers are harmful!

    Read the article

  • Does heavy library and snippet codes usage make you a bad programmer?

    - by Henrik P.
    Overall I'm in programming for about 8 years now and it seems to me that I'm relying more and more on open source libraries and snippets (damn you GitHub!) to "get the job done". I know that in time I could write me own implementation but I like to focus on the overall design. Is this normal (non cooperate environment)? Does it make you a bad programmer if "programming" is nothing more than cluing different libraries together. Feels like it. I know about "don't reinvent the wheel" but what happens when you don't invent a single wheel anymore. What's your take on this?

    Read the article

  • Serial plans: Threshold / Parallel_degree_limit = 1

    - by jean-pierre.dijcks
    As a very short follow up on the previous post. So here is some more on getting a serial plan and why that happens Another reason - compared to the auto DOP is not on as we looked at in the earlier post - and often more prevalent to get a serial plan is if the plan simply does not take long enough to consider a parallel path. The resulting plan and note looks like this (note that this is a serial plan!): explain plan for select count(1) from sales; SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY()); PLAN_TABLE_OUTPUT -------------------------------------------------------------------------------- Plan hash value: 672559287 -------------------------------------------------------------------------------------- | Id  | Operation            | Name  | Rows  | Cost (%CPU)| Time     | Pstart| Pstop | -------------------------------------------------------------------------------------- PLAN_TABLE_OUTPUT -------------------------------------------------------------------------------- |   0 | SELECT STATEMENT     |       |     1 |     5   (0)| 00:00:01 |       |     | |   1 |  SORT AGGREGATE      |       |     1 |            |          |       |     | |   2 |   PARTITION RANGE ALL|       |   960 |     5   (0)| 00:00:01 |     1 |  16 | |   3 |    TABLE ACCESS FULL | SALES |   960 |     5   (0)| 00:00:01 |     1 |  16 | Note -----    - automatic DOP: Computed Degree of Parallelism is 1 because of parallel threshold 14 rows selected. The parallel threshold is referring to parallel_min_time_threshold and since I did not change the default (10s) the plan is not being considered for a parallel degree computation and is therefore staying with the serial execution. Now we go into the land of crazy: Assume I do want this DOP=1 to happen, I could set the parameter in the init.ora, but to highlight it in this case I changed it on the session: alter session set parallel_degree_limit = 1; The result I get is: ERROR: ORA-02097: parameter cannot be modified because specified value is invalid ORA-00096: invalid value 1 for parameter parallel_degree_limit, must be from among CPU IO AUTO INTEGER>=2 Which of course makes perfect sense...

    Read the article

  • Does relying on intellisense and documentation a lot while coding makes you a bad programmer? [duplicate]

    - by sharp12345
    This question already has an answer here: Forgetting basic language functions due to use of IDE, over reliance? [duplicate] 4 answers Is a programmer required to learn and memorize all syntax, or is it ok to keep handy some documentation? Would it affect the way that managers look at coders? What are the downside of depending on intellisense and auto-complete technologies and pdf documentation?

    Read the article

  • How to protect a peer-to-peer network from inappropriate content?

    - by Mike
    I’m developing a simple peer-to-peer app in .Net which should enable users to share specific content (text and picture files). As I've learned with my last question, inappropriate content can “relatively” easily be identified / controlled in a centralized environment. But what about a peer-to-peer network, what are the best methods to protect a decentralized system from unwanted (illegal) content? At the moment I only see the following two methods: A protocol (a set of rules) defines what kind of data (e.g. only .txt and jpg-files, not bigger than 20KB etc.) can be shared over the p2p-network and all clients (peers) must implement this protocol. If a peer doesn’t, it gets blocked by other peers. Pro: easy to implement. Con: It’s not possible to define the perfect protocol (I think eMail-Spam filters have the same problem) Some kind of rating/reputation system must be implemented (similar to stackoverflow), so “bad guys” and inappropriate content can be identified / blocked by other users. Pro: Would be very accurate. Con: Would be slow and in my view technically very hard to implement. Are there other/better solutions? Any answer or comment is highly appreciated.

    Read the article

< Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >