Search Results

Search found 4874 results on 195 pages for 'ssis integration servic'.

Page 25/195 | < Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >

  • Channel Revenue Management and General Ledger Integration

    - by LuciaC-Oracle
    Back in February of this year, we told you about the EBS Business Process Advisor: CRM Channel Revenue Management document which has detailed information about the Channel Revenue Management application business flow and explains integration points with other applications.  But we thought that you might like to have even more information on exactly how Channel Revenue Management passes data to General Ledger. Take a look at Integration Troubleshooting: Oracle Channel Revenue Management to GL via Subledger Accounting (Doc ID 1604094.2).  This note includes comprehensive information about the data flow between Channel Revenue Management and GL, offers troubleshooting tips and explains some key setups. Let us know what you think - start a discussion in the My Oracle Support Channel Revenue Management Community!

    Read the article

  • DB Enterprise User Security Integration With Directory Services

    - by Etienne Remillon
    Gain a better understanding of how to integrate Enterprise User Security (EUS) with various Directories by attending this 1 hour Advisor Webcast!  When: July 11, 2012 at 16:00 UK / 17:00 CET / 08:00 am Pacific / 9:00 am Mountain / 11:00 am Eastern Enterprise User Security (EUS) is a DB feature to externalize, and centrally manage DB users in a directory server. The webcast will briefly introduce EUS, followed by a detailed discussion about the various directory options that are supported, including integration with Microsoft Active Directory. We'll conclude how to avoid common pitfalls deploying EUS with directory services. TOPICS WILL INCLUDE: - Understand EUS basics - Understand EUS and directory integration options - Avoid common EUS deployment mistakes Make sure to register and mark this date on your calendar! - Details and registration.

    Read the article

  • OOW 2012 Tuesday: Hands-On Introduction to Integration and Oracle SOA Suite 11g

    - by Simone Geib
    This year's SOA Suite hands on lab offers three different options, dependant on your level of expertise and interest. If you're new to SOA Suite, you should pick option 1 and learn how to build a SOA composite from the ground up, including a BPEL process, adapters, business rules and human task. The end result will be a purchase order process to be deployed through JDeveloper and tested in Enterprise Manager Fusion Middleware Control. If you're already experienced in SOA Suite, lab option 2 walks you through setting up the components that will allow you to utilize continuous integration with your SOA Suite 11g development projects. For those who want to learn more about security in the context of SOA Suite, option 3 shows you how to secure WebLogic services and SOA composites using Oracle Web Services Manager (OWSM). Hope to see you there! Session ID: HOL9989Session Title: Hands-On Introduction to Integration and Oracle SOA Suite 11gVenue / Room: Marriott Marquis - Salon 3/4Date and Time: 10/2/12, 11:45 - 12:45

    Read the article

  • Current State EA: Focus on the Integration!!!

    - by Eric A. Stephens
    A recent project has me at the front end of a large implementation effort covering multiple software components. In addition to the challenges of integrating 15-20 separate and new software components there is the challenge of integrating the portfolio into an existing environment. Like other clients I've worked with and other environments I've worked in for many years, this is typical. The applications are undocumented and under patched leading to a mystery for any architect leading change.  We can boil down most architecture development methodologies (ADM) into first understanding the current/baseline state and then envisioning one or more future states. Many pundits emphasize the need to focus on the future/target states. I agree since enterprise architecture (EA) is about where you are going and not so much where you have been. But to be effective in the future, I contend some focused time needs to be spent on the current state. And specifically on the integration. Integration is always the difficult part of a project (I might put it more coarsely at a cocktail party). While I don't have a case study, my anecdotal experience suggests poorly integrated application portfolios tend to cost more to operate and create entropy when trying to respond to new changes and opportunities. In the aforementioned project, I was able to get one of our EAs assigned to focus on just integration almost immediately. While we're still early in the process, this EA is uncovering all sorts of information that will greatly assist our future state planning for this solution. This information is driving early decision making that we anticipate will accelerate our efforts moving forward. #next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; } #next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; } #next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; } #next_pages_container { width: 5px; hight: 5px; position: absolute; top: -100px; left: -100px; z-index: 2147483647 !important; }

    Read the article

  • Oracle BPM and Open Data integration development

    - by drrwebber
    Rapidly developing Oracle BPM application solutions with data source integration previously required significant Java and JDeveloper skills. Now using open source tools for open data development significantly reduces the coding needed.  Key tasks can be performed with visual drag and drop designing combined with menu selections entry and automatic form generation directly from XSD schema definitions. The architecture used is extremely lightweight, portable, open platform and scalable allowing integration with a variety of Oracle and non-Oracle data sources and systems. Two videos available on YouTube walk through the process at both an introductory conceptual level and then a deep dive into the programming needed using JDeveloper, Oracle BPM composer and Oracle WLS (WebLogic Server) along with the CAM editor and Open-XDX open source tools. Also available are coding samples and resources from the GitHub project page, along with working online demonstration resources on the VerifyXML site. Combining Oracle BPM with these open source tools provides a comprehensive simple and elegant solution set. Development times are slashed and rapid prototyping is enabled. Also existing data sources can be integrated using open data formats with either XML or JSON along with CRUD accessing via the Open-XDX Java component. The Open-XDX tool is a code-free approach where data mapping is configured as templates using visual drag and drop in the CAM Editor open source tool.  XML or JSON is then automatically generated or processed (output or input) and appropriate SQL statements created to support the data accessing.   Also included is the ability to integrate with fillable PDF forms via the XML templates and the Java PDF form filling library.  Again minimal Java coding is needed to associate the XML source content with the PDF named fields.  The Oracle BPM forms can be automatically generated from XSD schema definitions that are built from the data mapping templates.  This dramatically simplifies development work as all the integration artifacts needed are created by the open source editor toolset. The developer level video is designed as a tutorial with segments, hands-on demonstrations and reviews.  This allows developers to learn the techniques and approaches used in incremental steps. The intended audience ranges from data analysts to developers and assumes only entry level Java skills and knowledge.  Most actions are menu driven while Java coding is limited to simply configuring values and parameters along with performing builds and deployments from JDeveloper and Oracle WLS.   Additional existing Oracle online training resources can be referenced on Oracle BPM and WLS that cover other normal delivery aspects such as user management and application deployment.

    Read the article

  • Planning to shift career from Java/J2EE technologies to Java Integration technologies. Please sugges

    - by konda
    Hi, I am Java/J2EE programer with over 5 years of experience. I recently read some posts and I realized that Java Based Integration platforms such as WLI, oracle SOA, Tibco, will rule the future in Java Space. And there are other reasons as well for my move. So, I am planning to move to java integration technologies and I wanted to know from you guys which integration platform will be good one based on my experience. thanks in advance.

    Read the article

  • Things to consider when building a continuous integration server?

    - by Dave
    I'm new to continuous integration, but immediately realize its value, and I want to get one set up right away. I have played with TeamCity and have it working in a VM great. Now, I don't want to spend money on another system, so I was planning on just doing the VM again on a faster machine (i.e. my dev system). There are a few questions that come to mind with this: Hard disk allocation - how big should it be? Sure, 60GB seems like more than enough, but people also used to think that we'd never need more than 64KB of RAM Backups - is it even important to back up the integration server? Sure, I guess it's nice so that one doesn't have to go through the entire configuration process again, but I would think that's about it. I could snapshot my VM every time I do a configuration change, and then do a backup of applications only (ignore the buildAgent stuff). Migration - if I want to go away from a VM on my dev system, to a new server, which maybe even runs Windows Server 2003, is it easy enough? Perhaps this is a particular point best suited for StackOverflow.

    Read the article

  • CreationName for SSIS 2008 and adding components programmatically

    If you are building SSIS 2008 packages programmatically and adding data flow components, you will probably need to know the creation name of the component to add. I can never find a handy reference when I need one, hence this rather mundane post. See also CreationName for SSS 2005. We start with a very simple snippet for adding a component: // Add the Data Flow Task package.Executables.Add("STOCK:PipelineTask"); // Get the task host wrapper, and the Data Flow task TaskHost taskHost = package.Executables[0] as TaskHost; MainPipe dataFlowTask = (MainPipe)taskHost.InnerObject; // Add OLE-DB source component - ** This is where we need the creation name ** IDTSComponentMetaData90 componentSource = dataFlowTask.ComponentMetaDataCollection.New(); componentSource.Name = "OLEDBSource"; componentSource.ComponentClassID = "DTSAdapter.OLEDBSource.2"; So as you can see the creation name for a OLE-DB Source is DTSAdapter.OLEDBSource.2. CreationName Reference  ADO NET Destination Microsoft.SqlServer.Dts.Pipeline.ADONETDestination, Microsoft.SqlServer.ADONETDest, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 ADO NET Source Microsoft.SqlServer.Dts.Pipeline.DataReaderSourceAdapter, Microsoft.SqlServer.ADONETSrc, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Aggregate DTSTransform.Aggregate.2 Audit DTSTransform.Lineage.2 Cache Transform DTSTransform.Cache.1 Character Map DTSTransform.CharacterMap.2 Checksum Konesans.Dts.Pipeline.ChecksumTransform.ChecksumTransform, Konesans.Dts.Pipeline.ChecksumTransform, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b Conditional Split DTSTransform.ConditionalSplit.2 Copy Column DTSTransform.CopyMap.2 Data Conversion DTSTransform.DataConvert.2 Data Mining Model Training MSMDPP.PXPipelineProcessDM.2 Data Mining Query MSMDPP.PXPipelineDMQuery.2 DataReader Destination Microsoft.SqlServer.Dts.Pipeline.DataReaderDestinationAdapter, Microsoft.SqlServer.DataReaderDest, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Derived Column DTSTransform.DerivedColumn.2 Dimension Processing MSMDPP.PXPipelineProcessDimension.2 Excel Destination DTSAdapter.ExcelDestination.2 Excel Source DTSAdapter.ExcelSource.2 Export Column TxFileExtractor.Extractor.2 Flat File Destination DTSAdapter.FlatFileDestination.2 Flat File Source DTSAdapter.FlatFileSource.2 Fuzzy Grouping DTSTransform.GroupDups.2 Fuzzy Lookup DTSTransform.BestMatch.2 Import Column TxFileInserter.Inserter.2 Lookup DTSTransform.Lookup.2 Merge DTSTransform.Merge.2 Merge Join DTSTransform.MergeJoin.2 Multicast DTSTransform.Multicast.2 OLE DB Command DTSTransform.OLEDBCommand.2 OLE DB Destination DTSAdapter.OLEDBDestination.2 OLE DB Source DTSAdapter.OLEDBSource.2 Partition Processing MSMDPP.PXPipelineProcessPartition.2 Percentage Sampling DTSTransform.PctSampling.2 Performance Counters Source DataCollectorTransform.TxPerfCounters.1 Pivot DTSTransform.Pivot.2 Raw File Destination DTSAdapter.RawDestination.2 Raw File Source DTSAdapter.RawSource.2 Recordset Destination DTSAdapter.RecordsetDestination.2 RegexClean Konesans.Dts.Pipeline.RegexClean.RegexClean, Konesans.Dts.Pipeline.RegexClean, Version=2.0.0.0, Culture=neutral, PublicKeyToken=d1abe77e8a21353e Row Count DTSTransform.RowCount.2 Row Count Plus Konesans.Dts.Pipeline.RowCountPlusTransform.RowCountPlusTransform, Konesans.Dts.Pipeline.RowCountPlusTransform, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b Row Number Konesans.Dts.Pipeline.RowNumberTransform.RowNumberTransform, Konesans.Dts.Pipeline.RowNumberTransform, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b Row Sampling DTSTransform.RowSampling.2 Script Component Microsoft.SqlServer.Dts.Pipeline.ScriptComponentHost, Microsoft.SqlServer.TxScript, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Slowly Changing Dimension DTSTransform.SCD.2 Sort DTSTransform.Sort.2 SQL Server Compact Destination Microsoft.SqlServer.Dts.Pipeline.SqlCEDestinationAdapter, Microsoft.SqlServer.SqlCEDest, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 SQL Server Destination DTSAdapter.SQLServerDestination.2 Term Extraction DTSTransform.TermExtraction.2 Term Lookup DTSTransform.TermLookup.2 Trash Destination Konesans.Dts.Pipeline.TrashDestination.Trash, Konesans.Dts.Pipeline.TrashDestination, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b8351fe7752642cc TxTopQueries DataCollectorTransform.TxTopQueries.1 Union All DTSTransform.UnionAll.2 Unpivot DTSTransform.UnPivot.2 XML Source Microsoft.SqlServer.Dts.Pipeline.XmlSourceAdapter, Microsoft.SqlServer.XmlSrc, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Here is a simple console program that can be used to enumerate the pipeline components installed on your machine, and dumps out a list of all components like that above. You will need to add a reference to the Microsoft.SQLServer.ManagedDTS assembly. using System; using System.Diagnostics; using Microsoft.SqlServer.Dts.Runtime; public class Program { static void Main(string[] args) { Application application = new Application(); PipelineComponentInfos componentInfos = application.PipelineComponentInfos; foreach (PipelineComponentInfo componentInfo in componentInfos) { Debug.WriteLine(componentInfo.Name + "\t" + componentInfo.CreationName); } Console.Read(); } }

    Read the article

  • Introducing SQL Server 2008 and 2008 R2 Integration Services

    The latest release of SSIS strengthens its position as one of the primary foundations of Business Intelligence, delivering a powerful framework for solutions that combine data from disparate sources, facilitating its analysis and reporting. Join Marcin Policht as he reviews its general characteristics.

    Read the article

  • SQL Server 2012 Integration Services- Using Environments in Package Execution

    SQL Server 2012 Integration Services offers several different options for deploying and storing SSIS packages along with their associated projects, two of which are directly related to two deployment models available in SQL Server Data Tools console. Marcin Policht presents one of these methods, which deals with packages deployed using Project Deployment Model and leverages newly introduced Environments.

    Read the article

  • SQL Server 2012 Integration Services - Package and Project Parameters

    In SQL Server 2012, Microsoft introduced SQL Server Data Tools to accommodate the dynamic nature of SSIS constructs in the form of package and project parameters. This approach lets you combine multi-package projects into a single unit, eliminating the possibility of breaking dependencies between parent and child packages during subsequent deployments. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • SQL Server 2012 Integration Services - Package and Project Configurations

    Marcin Policht examines SSIS 2012 package and project configurations, which offer different ways of modifying values of variables and parameters without having to directly edit content of the packages and projects of which they are a part. Get smart with SQL Backup ProGet faster, smaller backups with integrated verification.Quickly and easily DBCC CHECKDB your backups. Learn more.

    Read the article

  • SQL Server 2012 Integration Services - Using PowerShell to Configure Project Environments

    Continuing our discussion on how to leverage the capabilities of PowerShell to automate the most basic SSIS management tasks, this article will explore more complex topics by demonstrating the use of PowerShell in implementing and utilizing project environments. ‘Disturbing Development’Grant Fritchey & the DBA Team present the latest installment of the Top 5 hard-earned lessons of a DBA – read it now

    Read the article

  • Data Mining: Part 14 Export DMX results with Integration Services

    In this chapter we will explain how to work with Data Mining models and the Integration Services. Specifically, we will talk about the Data Mining Query Task in SSIS. Free ebook "TortoiseSVN and Subversion Cookbook - Oracle Edition"Use these recipes to work better, faster, and do things you never knew you could do with SVN. If you're new to source control, this book provides a concise guide to getting the most out of Subversion. Download it for free.

    Read the article

  • How do I tweak columns in a Flat File Destination in SSIS?

    - by theog
    I have an OLE DB Data source and a Flat File Destination in the Data Flow of my SSIS Project. The goal is simply to pump data into a text file, and it does that. Where I'm having problems is with the formatting. I need to be able to rtrim() a couple of columns to remove trailing spaces, and I have a couple more that need their leading zeros preserved. The current process is losing all the leading zeros. The rtrim() can be done by simple truncation and ignoring the truncation errors, but that's very inelegant and error prone. I'd like to find a better way, like actually doing the rtrim() function where needed. Exploring similar SSIS questions & answers on SO, the thing to do seems to be "Use a Script Task", but that's ususally just thrown out there with no details, and it's not at all an intuitive thing to set up. I don't see how to use scripting to do what I need. Do I use a Script Task on the Control Flow, or a Script Component in the Data Flow? Can I do rtrim() and pad strings where needed in a script? Anybody got an example of doing this or similar things? Many thanks in advance.

    Read the article

  • Java Cloud Service Integration using Web Service Data Control

    - by Jani Rautiainen
    Java Cloud Service (JCS) provides a platform to develop and deploy business applications in the cloud. In Fusion Applications Cloud deployments customers do not have the option to deploy custom applications developed with JDeveloper to ensure the integrity and supportability of the hosted application service. Instead the custom applications can be deployed to the JCS and integrated to the Fusion Application Cloud instance.This series of articles will go through the features of JCS, provide end-to-end examples on how to develop and deploy applications on JCS and how to integrate them with the Fusion Applications instance.In this article a custom application integrating with Fusion Application using Web Service Data Control will be implemented. v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} Pre-requisites Access to Cloud instance In order to deploy the application access to a JCS instance is needed, a free trial JCS instance can be obtained from Oracle Cloud site. To register you will need a credit card even if the credit card will not be charged. To register simply click "Try it" and choose the "Java" option. The confirmation email will contain the connection details. See this video for example of the registration. Once the request is processed you will be assigned 2 service instances; Java and Database. Applications deployed to the JCS must use Oracle Database Cloud Service as their underlying database. So when JCS instance is created a database instance is associated with it using a JDBC data source. The cloud services can be monitored and managed through the web UI. For details refer to Getting Started with Oracle Cloud. JDeveloper JDeveloper contains Cloud specific features related to e.g. connection and deployment. To use these features download the JDeveloper from JDeveloper download site by clicking the “Download JDeveloper 11.1.1.7.1 for ADF deployment on Oracle Cloud” link, this version of JDeveloper will have the JCS integration features that will be used in this article. For versions that do not include the Cloud integration features the Oracle Java Cloud Service SDK or the JCS Java Console can be used for deployment. For details on installing and configuring the JDeveloper refer to the installation guide. For details on SDK refer to Using the Command-Line Interface to Monitor Oracle Java Cloud Service and Using the Command-Line Interface to Manage Oracle Java Cloud Service. Create Application In this example the “JcsWsDemo” application created in the “Java Cloud Service Integration using Web Service Proxy” article is used as the base. Create Web Service Data Control In this example we will use a Web Service Data Control to integrate with Credit Rule Service in Fusion Applications. The data control will be used to query data from Fusion Applications using a web service call and present the data in a table. To generate the data control choose the “Model” project and navigate to "New -> All Technologies -> Business Tier -> Data Controls -> Web Service Data Control" and enter following: Name: CreditRuleServiceDC URL: https://ic-[POD].oracleoutsourcing.com/icCnSetupCreditRulesPublicService/CreditRuleService?WSDL Service: {{http://xmlns.oracle.com/apps/incentiveCompensation/cn/creditSetup/creditRule/creditRuleService/}CreditRuleService On step 2 select the “findRule” operation: Skip step 3 and on step 4 define the credentials to access the service. Do note that in this example these credentials are only used if testing locally, for JCS deployment credentials need to be manually updated on the EAR file: Click “Finish” and the proxy generation is done. Creating UI In order to use the data control we will need to populate complex objects FindCriteria and FindControl. For simplicity in this example we will create logic in a managed bean that populates the objects. Open “JcsWsDemoBean.java” and add the following logic: Map findCriteria; Map findControl; public void setFindCriteria(Map findCriteria) { this.findCriteria = findCriteria; } public Map getFindCriteria() { findCriteria = new HashMap(); findCriteria.put("fetchSize",10); findCriteria.put("fetchStart",0); return findCriteria; } public void setFindControl(Map findControl) { this.findControl = findControl; } public Map getFindControl() { findControl = new HashMap(); return findControl; } Open “JcsWsDemo.jspx”, navigate to “Data Controls -> CreditRuleServiceDC -> findRule(Object, Object) -> result” and drag and drop the “result” node into the “af:form” element in the page: On the “Edit Table Columns” remove all columns except “RuleId” and “Name”: On the “Edit Action Binding” window displayed enter reference to the java class created above by selecting “#{JcsWsDemoBean.findCriteria}”: Also define the value for the “findControl” by selecting “#{JcsWsDemoBean.findControl}”. Deploy to JCS For WS DC the authentication details need to be updated on the connection details before deploying. Open “connections.xml” by navigating “Application Resources -> Descriptors -> ADF META-INF -> connections.xml”: Change the user name and password entry from: <soap username="transportUserName" password="transportPassword" To match the access details for the target environment. Follow the same steps as documented in previous article ”Java Cloud Service ADF Web Application”. Once deployed the application can be accessed with URL: https://java-[identity domain].java.[data center].oraclecloudapps.com/JcsWsDemo-ViewController-context-root/faces/JcsWsDemo.jspx When accessed the first 10 rules in the system are displayed: Summary In this article we learned how to integrate with Fusion Applications using a Web Service Data Control in JCS. In future articles various other integration techniques will be covered. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";}

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 3.5: Node.js relay

    - by Elton Stoneman
    This is an extension to Part 3 in the IPASBR series, see also: Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service Integration Patterns with Azure Service Bus Relay, Part 2: Anonymous full-trust .NET consumer Integration Patterns with Azure Service Bus Relay, Part 3: Anonymous partial-trust consumer In Part 3 I said “there isn't actually a .NET requirement here”, and this post just follows up on that statement. In Part 3 we had an ASP.NET MVC Website making a REST call to an Azure Service Bus service; to show that the REST stuff is really interoperable, in this version we use Node.js to make the secure service call. The code is on GitHub here: IPASBR Part 3.5. The sample code is simpler than Part 3 - rather than code up a UI in Node.js, the sample just relays the REST service call out to Azure. The steps are the same as Part 3: REST call to ACS with the service identity credentials, which returns an SWT; REST call to Azure Service Bus Relay, presenting the SWT; request gets relayed to the on-premise service. In Node.js the authentication step looks like this: var options = { host: acs.namespace() + '-sb.accesscontrol.windows.net', path: '/WRAPv0.9/', method: 'POST' }; var values = { wrap_name: acs.issuerName(), wrap_password: acs.issuerSecret(), wrap_scope: 'http://' + acs.namespace() + '.servicebus.windows.net/' }; var req = https.request(options, function (res) { console.log("statusCode: ", res.statusCode); console.log("headers: ", res.headers); res.on('data', function (d) { var token = qs.parse(d.toString('utf8')); callback(token.wrap_access_token); }); }); req.write(qs.stringify(values)); req.end(); Once we have the token, we can wrap it up into an Authorization header and pass it to the Service Bus call: token = 'WRAP access_token=\"' + swt + '\"'; //... var reqHeaders = { Authorization: token }; var options = { host: acs.namespace() + '.servicebus.windows.net', path: '/rest/reverse?string=' + requestUrl.query.string, headers: reqHeaders }; var req = https.request(options, function (res) { console.log("statusCode: ", res.statusCode); console.log("headers: ", res.headers); response.writeHead(res.statusCode, res.headers); res.on('data', function (d) { var reversed = d.toString('utf8') console.log('svc returned: ' + d.toString('utf8')); response.end(reversed); }); }); req.end(); Running the sample Usual routine to add your own Azure details into Solution Items\AzureConnectionDetails.xml and “Run Custom Tool” on the .tt files. Build and you should be able to navigate to the on-premise service at http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc/rest/reverse?string=abc123 and get a string response, going to the service direct. Install Node.js (v0.8.14 at time of writing), run FormatServiceRelay.cmd, navigate to http://localhost:8013/reverse?string=abc123, and you should get exactly the same response but through Node.js, via Azure Service Bus Relay to your on-premise service. The console logs the WRAP token returned from ACS and the response from Azure Service Bus Relay which it forwards:

    Read the article

  • How the "migrations" approach makes database continuous integration possible

    - by David Atkinson
    Testing a database upgrade script as part of a continuous integration process will only work if there is an easy way to automate the generation of the upgrade scripts. There are two common approaches to managing upgrade scripts. The first is to maintain a set of scripts as-you-go-along. Many SQL developers I've encountered will store these in a folder prefixed numerically to ensure they are ordered as they are intended to be run. Occasionally there is an accompanying document or a batch file that ensures that the scripts are run in the defined order. Writing these scripts during the course of development requires discipline. It's all too easy to load up the table designer and to make a change directly to the development database, rather than to save off the ALTER statement that is required when the same change is made to production. This discipline can add considerable overhead to the development process. However, come the end of the project, everything is ready for final testing and deployment. The second development paradigm is to not do the above. Changes are made to the development database without considering the incremental update scripts required to effect the changes. At the end of the project, the SQL developer or DBA, is tasked to work out what changes have been made, and to hand-craft the upgrade scripts retrospectively. The end of the project is the wrong time to be doing this, as the pressure is mounting to ship the product. And where data deployment is involved, it is prudent not to feel rushed. Schema comparison tools such as SQL Compare have made this latter technique more bearable. These tools work by analyzing the before and after states of a database schema, and calculating the SQL required to transition the database. Problem solved? Not entirely. Schema comparison tools are huge time savers, but they have their limitations. There are certain changes that can be made to a database that can't be determined purely from observing the static schema states. If a column is split, how do we determine the algorithm required to copy the data into the new columns? If a NOT NULL column is added without a default, how do we populate the new field for existing records in the target? If we rename a table, how do we know we've done a rename, as we could equally have dropped a table and created a new one? All the above are examples of situations where developer intent is required to supplement the script generation engine. SQL Source Control 3 and SQL Compare 10 introduced a new feature, migration scripts, allowing developers to add custom scripts to replace the default script generation behavior. These scripts are committed to source control alongside the schema changes, and are associated with one or more changesets. Before this capability was introduced, any schema change that required additional developer intent would break any attempt at auto-generation of the upgrade script, rendering deployment testing as part of continuous integration useless. SQL Compare will now generate upgrade scripts not only using its diffing engine, but also using the knowledge supplied by developers in the guise of migration scripts. In future posts I will describe the necessary command line syntax to leverage this feature as part of an automated build process such as continuous integration.

    Read the article

  • The Best Data Integration for Exadata Comes from Oracle

    - by maria costanzo
    Oracle Data Integrator and Oracle GoldenGate offer unique and optimized data integration solutions for Oracle Exadata. For example, customers that choose to feed their data warehouse or reporting database with near real-time throughout the day, can do so without decreasing  performance or availability of source and target systems. And if you ask why real-time, the short answer is: in today’s fast-paced, always-on world, business decisions need to use more relevant, timely data to be able to act fast and seize opportunities. A longer response to "why real-time" question can be found in a related blog post. If we look at the solution architecture, as shown on the diagram below,  Oracle Data Integrator and Oracle GoldenGate are both uniquely designed to take full advantage of the power of the database and to eliminate unnecessary middle-tier components. Oracle Data Integrator (ODI) is the best bulk data loading solution for Exadata. ODI is the only ETL platform that can leverage the full power of Exadata, integrate directly on the Exadata machine without any additional hardware, and by far provides the simplest setup and fastest overall performance on an Exadata system. We regularly see customers achieving a 5-10 times boost when they move their ETL to ODI on Exadata. For  some companies the performance gain is even much higher. For example a large insurance company did a proof of concept comparing ODI vs a traditional ETL tool (one of the market leaders) on Exadata. The same process that was taking 5hrs and 11 minutes to complete using the competing ETL product took 7 minutes and 20 seconds with ODI. Oracle Data Integrator was 42 times faster than the conventional ETL when running on Exadata.This shows that Oracle's own data integration offering helps you to gain the most out of your Exadata investment with a truly optimized solution. GoldenGate is the best solution for streaming data from heterogeneous sources into Exadata in real time. Oracle GoldenGate can also be used together with Data Integrator for hybrid use cases that also demand non-invasive capture, high-speed real time replication. Oracle GoldenGate enables real-time data feeds from heterogeneous sources non-invasively, and delivers to the staging area on the target Exadata system. ODI runs directly on Exadata to use the database engine power to perform in-database transformations. Enterprise Data Quality is integrated with Oracle Data integrator and enables ODI to load trusted data into the data warehouse tables. Only Oracle can offer all these technical benefits wrapped into a single intelligence data warehouse solution that runs on Exadata. Compared to traditional ETL with add-on CDC this solution offers: §  Non-invasive data capture from heterogeneous sources and avoids any performance impact on source §  No mid-tier; set based transformations use database power §  Mini-batches throughout the day –or- bulk processing nightly which means maximum availability for the DW §  Integrated solution with Enterprise Data Quality enables leveraging trusted data in the data warehouse In addition to Starwood Hotels and Resorts, Morrison Supermarkets, United Kingdom’s fourth-largest food retailer, has seen the power of this solution for their new BI platform and shared their story with us. Morrisons needed to analyze data across a large number of manufacturing, warehousing, retail, and financial applications with the goal to achieve single view into operations for improved customer service. The retailer deployed Oracle GoldenGate and Oracle Data Integrator to bring new data into Oracle Exadata in near real-time and replicate the data into reporting structures within the data warehouse—extending visibility into operations. Using Oracle's data integration offering for Exadata, Morrisons produced financial reports in seconds, rather than minutes, and improved staff productivity and agility. You can read more about Morrison’s success story here and hear from Starwood here. From an Irem Radzik article.

    Read the article

  • Presenting to the New England SQL Server Users Group 10 Jun 2010!

    - by andyleonard
    I am honored to present Applied SSIS Design Patterns to the New England SQL Server Users Group on 10 Jun 2010! This is a reprise of the spotlight session presented at the PASS Summit 2009. Abstract "Design Patterns" is more than a trendy buzz phrase; design patterns are a way of breaking down complex development projects into manageable tasks. They lend themselves to several development methodologies and apply to SSIS development. Chances are you're using your own design patterns now! In this spotlight...(read more)

    Read the article

  • Running a simple integration scenario using the Oracle Big Data Connectors on Hadoop/HDFS cluster

    - by hamsun
    Between the elephant ( the tradional image of the Hadoop framework) and the Oracle Iron Man (Big Data..) an english setter could be seen as the link to the right data Data, Data, Data, we are living in a world where data technology based on popular applications , search engines, Webservers, rich sms messages, email clients, weather forecasts and so on, have a predominant role in our life. More and more technologies are used to analyze/track our behavior, try to detect patterns, to propose us "the best/right user experience" from the Google Ad services, to Telco companies or large consumer sites (like Amazon:) ). The more we use all these technologies, the more we generate data, and thus there is a need of huge data marts and specific hardware/software servers (as the Exadata servers) in order to treat/analyze/understand the trends and offer new services to the users. Some of these "data feeds" are raw, unstructured data, and cannot be processed effectively by normal SQL queries. Large scale distributed processing was an emerging infrastructure need and the solution seemed to be the "collocation of compute nodes with the data", which in turn leaded to MapReduce parallel patterns and the development of the Hadoop framework, which is based on MapReduce and a distributed file system (HDFS) that runs on larger clusters of rather inexpensive servers. Several Oracle products are using the distributed / aggregation pattern for data calculation ( Coherence, NoSql, times ten ) so once that you are familiar with one of these technologies, lets says with coherence aggregators, you will find the whole Hadoop, MapReduce concept very similar. Oracle Big Data Appliance is based on the Cloudera Distribution (CDH), and the Oracle Big Data Connectors can be plugged on a Hadoop cluster running the CDH distribution or equivalent Hadoop clusters. In this paper, a "lab like" implementation of this concept is done on a single Linux X64 server, running an Oracle Database 11g Enterprise Edition Release 11.2.0.4.0, and a single node Apache hadoop-1.2.1 HDFS cluster, using the SQL connector for HDFS. The whole setup is fairly simple: Install on a Linux x64 server ( or virtual box appliance) an Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 server Get the Apache Hadoop distribution from: http://mir2.ovh.net/ftp.apache.org/dist/hadoop/common/hadoop-1.2.1. Get the Oracle Big Data Connectors from: http://www.oracle.com/technetwork/bdc/big-data-connectors/downloads/index.html?ssSourceSiteId=ocomen. Check the java version of your Linux server with the command: java -version java version "1.7.0_40" Java(TM) SE Runtime Environment (build 1.7.0_40-b43) Java HotSpot(TM) 64-Bit Server VM (build 24.0-b56, mixed mode) Decompress the hadoop hadoop-1.2.1.tar.gz file to /u01/hadoop-1.2.1 Modify your .bash_profile export HADOOP_HOME=/u01/hadoop-1.2.1 export PATH=$PATH:$HADOOP_HOME/bin export HIVE_HOME=/u01/hive-0.11.0 export PATH=$PATH:$HADOOP_HOME/bin:$HIVE_HOME/bin (also see my sample .bash_profile) Set up ssh trust for Hadoop process, this is a mandatory step, in our case we have to establish a "local trust" as will are using a single node configuration copy the new public keys to the list of authorized keys connect and test the ssh setup to your localhost: We will run a "pseudo-Hadoop cluster", in what is called "local standalone mode", all the Hadoop java components are running in one Java process, this is enough for our demo purposes. We need to "fine tune" some Hadoop configuration files, we have to go at our $HADOOP_HOME/conf, and modify the files: core-site.xml hdfs-site.xml mapred-site.xml check that the hadoop binaries are referenced correctly from the command line by executing: hadoop -version As Hadoop is managing our "clustered HDFS" file system we have to create "the mount point" and format it , the mount point will be declared to core-site.xml as: The layout under the /u01/hadoop-1.2.1/data will be created and used by other hadoop components (MapReduce = /mapred/...) HDFS is using the /dfs/... layout structure format the HDFS hadoop file system: Start the java components for the HDFS system As an additional check, you can use the GUI Hadoop browsers to check the content of your HDFS configurations: Once our HDFS Hadoop setup is done you can use the HDFS file system to store data ( big data : )), and plug them back and forth to Oracle Databases by the means of the Big Data Connectors ( which is the next configuration step). You can create / use a Hive db, but in our case we will make a simple integration of "raw data" , through the creation of an External Table to a local Oracle instance ( on the same Linux box, we run the Hadoop HDFS one node cluster and one Oracle DB). Download some public "big data", I use the site: http://france.meteofrance.com/france/observations, from where I can get *.csv files for my big data simulations :). Here is the data layout of my example file: Download the Big Data Connector from the OTN (oraosch-2.2.0.zip), unzip it to your local file system (see picture below) Modify your environment in order to access the connector libraries , and make the following test: [oracle@dg1 bin]$./hdfs_stream Usage: hdfs_stream locationFile [oracle@dg1 bin]$ Load the data to the Hadoop hdfs file system: hadoop fs -mkdir bgtest_data hadoop fs -put obsFrance.txt bgtest_data/obsFrance.txt hadoop fs -ls /user/oracle/bgtest_data/obsFrance.txt [oracle@dg1 bg-data-raw]$ hadoop fs -ls /user/oracle/bgtest_data/obsFrance.txt Found 1 items -rw-r--r-- 1 oracle supergroup 54103 2013-10-22 06:10 /user/oracle/bgtest_data/obsFrance.txt [oracle@dg1 bg-data-raw]$hadoop fs -ls hdfs:///user/oracle/bgtest_data/obsFrance.txt Found 1 items -rw-r--r-- 1 oracle supergroup 54103 2013-10-22 06:10 /user/oracle/bgtest_data/obsFrance.txt Check the content of the HDFS with the browser UI: Start the Oracle database, and run the following script in order to create the Oracle database user, the Oracle directories for the Oracle Big Data Connector (dg1 it’s my own db id replace accordingly yours): #!/bin/bash export ORAENV_ASK=NO export ORACLE_SID=dg1 . oraenv sqlplus /nolog <<EOF CONNECT / AS sysdba; CREATE OR REPLACE DIRECTORY osch_bin_path AS '/u01/orahdfs-2.2.0/bin'; CREATE USER BGUSER IDENTIFIED BY oracle; GRANT CREATE SESSION, CREATE TABLE TO BGUSER; GRANT EXECUTE ON sys.utl_file TO BGUSER; GRANT READ, EXECUTE ON DIRECTORY osch_bin_path TO BGUSER; CREATE OR REPLACE DIRECTORY BGT_LOG_DIR as '/u01/BG_TEST/logs'; GRANT READ, WRITE ON DIRECTORY BGT_LOG_DIR to BGUSER; CREATE OR REPLACE DIRECTORY BGT_DATA_DIR as '/u01/BG_TEST/data'; GRANT READ, WRITE ON DIRECTORY BGT_DATA_DIR to BGUSER; EOF Put the following in a file named t3.sh and make it executable, hadoop jar $OSCH_HOME/jlib/orahdfs.jar \ oracle.hadoop.exttab.ExternalTable \ -D oracle.hadoop.exttab.tableName=BGTEST_DP_XTAB \ -D oracle.hadoop.exttab.defaultDirectory=BGT_DATA_DIR \ -D oracle.hadoop.exttab.dataPaths="hdfs:///user/oracle/bgtest_data/obsFrance.txt" \ -D oracle.hadoop.exttab.columnCount=7 \ -D oracle.hadoop.connection.url=jdbc:oracle:thin:@//localhost:1521/dg1 \ -D oracle.hadoop.connection.user=BGUSER \ -D oracle.hadoop.exttab.printStackTrace=true \ -createTable --noexecute then test the creation fo the external table with it: [oracle@dg1 samples]$ ./t3.sh ./t3.sh: line 2: /u01/orahdfs-2.2.0: Is a directory Oracle SQL Connector for HDFS Release 2.2.0 - Production Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved. Enter Database Password:] The create table command was not executed. The following table would be created. CREATE TABLE "BGUSER"."BGTEST_DP_XTAB" ( "C1" VARCHAR2(4000), "C2" VARCHAR2(4000), "C3" VARCHAR2(4000), "C4" VARCHAR2(4000), "C5" VARCHAR2(4000), "C6" VARCHAR2(4000), "C7" VARCHAR2(4000) ) ORGANIZATION EXTERNAL ( TYPE ORACLE_LOADER DEFAULT DIRECTORY "BGT_DATA_DIR" ACCESS PARAMETERS ( RECORDS DELIMITED BY 0X'0A' CHARACTERSET AL32UTF8 STRING SIZES ARE IN CHARACTERS PREPROCESSOR "OSCH_BIN_PATH":'hdfs_stream' FIELDS TERMINATED BY 0X'2C' MISSING FIELD VALUES ARE NULL ( "C1" CHAR(4000), "C2" CHAR(4000), "C3" CHAR(4000), "C4" CHAR(4000), "C5" CHAR(4000), "C6" CHAR(4000), "C7" CHAR(4000) ) ) LOCATION ( 'osch-20131022081035-74-1' ) ) PARALLEL REJECT LIMIT UNLIMITED; The following location files would be created. osch-20131022081035-74-1 contains 1 URI, 54103 bytes 54103 hdfs://localhost:19000/user/oracle/bgtest_data/obsFrance.txt Then remove the --noexecute flag and create the external Oracle table for the Hadoop data. Check the results: The create table command succeeded. CREATE TABLE "BGUSER"."BGTEST_DP_XTAB" ( "C1" VARCHAR2(4000), "C2" VARCHAR2(4000), "C3" VARCHAR2(4000), "C4" VARCHAR2(4000), "C5" VARCHAR2(4000), "C6" VARCHAR2(4000), "C7" VARCHAR2(4000) ) ORGANIZATION EXTERNAL ( TYPE ORACLE_LOADER DEFAULT DIRECTORY "BGT_DATA_DIR" ACCESS PARAMETERS ( RECORDS DELIMITED BY 0X'0A' CHARACTERSET AL32UTF8 STRING SIZES ARE IN CHARACTERS PREPROCESSOR "OSCH_BIN_PATH":'hdfs_stream' FIELDS TERMINATED BY 0X'2C' MISSING FIELD VALUES ARE NULL ( "C1" CHAR(4000), "C2" CHAR(4000), "C3" CHAR(4000), "C4" CHAR(4000), "C5" CHAR(4000), "C6" CHAR(4000), "C7" CHAR(4000) ) ) LOCATION ( 'osch-20131022081719-3239-1' ) ) PARALLEL REJECT LIMIT UNLIMITED; The following location files were created. osch-20131022081719-3239-1 contains 1 URI, 54103 bytes 54103 hdfs://localhost:19000/user/oracle/bgtest_data/obsFrance.txt This is the view from the SQL Developer: and finally the number of lines in the oracle table, imported from our Hadoop HDFS cluster SQL select count(*) from "BGUSER"."BGTEST_DP_XTAB"; COUNT(*) ---------- 1151 In a next post we will integrate data from a Hive database, and try some ODI integrations with the ODI Big Data connector. Our simplistic approach is just a step to show you how these unstructured data world can be integrated to Oracle infrastructure. Hadoop, BigData, NoSql are great technologies, they are widely used and Oracle is offering a large integration infrastructure based on these services. Oracle University presents a complete curriculum on all the Oracle related technologies: NoSQL: Introduction to Oracle NoSQL Database Using Oracle NoSQL Database Big Data: Introduction to Big Data Oracle Big Data Essentials Oracle Big Data Overview Oracle Data Integrator: Oracle Data Integrator 12c: New Features Oracle Data Integrator 11g: Integration and Administration Oracle Data Integrator: Administration and Development Oracle Data Integrator 11g: Advanced Integration and Development Oracle Coherence 12c: Oracle Coherence 12c: New Features Oracle Coherence 12c: Share and Manage Data in Clusters Oracle Coherence 12c: Oracle GoldenGate 11g: Fundamentals for Oracle Oracle GoldenGate 11g: Fundamentals for SQL Server Oracle GoldenGate 11g Fundamentals for Oracle Oracle GoldenGate 11g Fundamentals for DB2 Oracle GoldenGate 11g Fundamentals for Teradata Oracle GoldenGate 11g Fundamentals for HP NonStop Oracle GoldenGate 11g Management Pack: Overview Oracle GoldenGate 11g Troubleshooting and Tuning Oracle GoldenGate 11g: Advanced Configuration for Oracle Other Resources: Apache Hadoop : http://hadoop.apache.org/ is the homepage for these technologies. "Hadoop Definitive Guide 3rdEdition" by Tom White is a classical lecture for people who want to know more about Hadoop , and some active "googling " will also give you some more references. About the author: Eugene Simos is based in France and joined Oracle through the BEA-Weblogic Acquisition, where he worked for the Professional Service, Support, end Education for major accounts across the EMEA Region. He worked in the banking sector, ATT, Telco companies giving him extensive experience on production environments. Eugen currently specializes in Oracle Fusion Middleware teaching an array of courses on Weblogic/Webcenter, Content,BPM /SOA/Identity-Security/GoldenGate/Virtualisation/Unified Comm Suite) throughout the EMEA region.

    Read the article

  • How to Avoid Your Next 12-Month Science Project

    - by constant
    While most customers immediately understand how the magic of Oracle's Hybrid Columnar Compression, intelligent storage servers and flash memory make Exadata uniquely powerful against home-grown database systems, some people think that Exalogic is nothing more than a bunch of x86 servers, a storage appliance and an InfiniBand (IB) network, built into a single rack. After all, isn't this exactly what the High Performance Computing (HPC) world has been doing for decades? On the surface, this may be true. And some people tried exactly that: They tried to put together their own version of Exalogic, but then they discover there's a lot more to building a system than buying hardware and assembling it together. IT is not Ikea. Why is that so? Could it be there's more going on behind the scenes than merely putting together a bunch of servers, a storage array and an InfiniBand network into a rack? Let's explore some of the special sauce that makes Exalogic unique and un-copyable, so you can save yourself from your next 6- to 12-month science project that distracts you from doing real work that adds value to your company. Engineering Systems is Hard Work! The backbone of Exalogic is its InfiniBand network: 4 times better bandwidth than even 10 Gigabit Ethernet, and only about a tenth of its latency. What a potential for increased scalability and throughput across the middleware and database layers! But InfiniBand is a beast that needs to be tamed: It is true that Exalogic uses a standard, open-source Open Fabrics Enterprise Distribution (OFED) InfiniBand driver stack. Unfortunately, this software has been developed by the HPC community with fastest speed in mind (which is good) but, despite the name, not many other enterprise-class requirements are included (which is less good). Here are some of the improvements that Oracle's InfiniBand development team had to add to the OFED stack to make it enterprise-ready, simply because typical HPC users didn't have the need to implement them: More than 100 bug fixes in the pieces that were not related to the Message Passing Interface Protocol (MPI), which is the protocol that HPC users use most of the time, but which is less useful in the enterprise. Performance optimizations and tuning across the whole IB stack: From Switches, Host Channel Adapters (HCAs) and drivers to low-level protocols, middleware and applications. Yes, even the standard HPC IB stack could be improved in terms of performance. Ethernet over IB (EoIB): Exalogic uses InfiniBand internally to reach high performance, but it needs to play nicely with datacenters around it. That's why Oracle added Ethernet over InfiniBand technology to it that allows for creating many virtual 10GBE adapters inside Exalogic's nodes that are aggregated and connected to Exalogic's IB gateway switches. While this is an open standard, it's up to the vendor to implement it. In this case, Oracle integrated the EoIB stack with Oracle's own IB to 10GBE gateway switches, and made it fully virtualized from the beginning. This means that Exalogic customers can completely rewire their server infrastructure inside the rack without having to physically pull or plug a single cable - a must-have for every cloud deployment. Anybody who wants to match this level of integration would need to add an InfiniBand switch development team to their project. Or just buy Oracle's gateway switches, which are conveniently shipped with a whole server infrastructure attached! IPv6 support for InfiniBand's Sockets Direct Protocol (SDP), Reliable Datagram Sockets (RDS), TCP/IP over IB (IPoIB) and EoIB protocols. Because no IPv6 = not very enterprise-class. HA capability for SDP. High Availability is not a big requirement for HPC, but for enterprise-class application servers it is. Every node in Exalogic's InfiniBand network is connected twice for redundancy. If any cable or port or HCA fails, there's always a replacement link ready to take over. This requires extra magic at the protocol level to work. So in addition to Weblogic's failover capabilities, Oracle implemented IB automatic path migration at the SDP level to avoid unnecessary failover operations at the middleware level. Security, for example spoof-protection. Another feature that is less important for traditional users of InfiniBand, but very important for enterprise customers. InfiniBand Partitioning and Quality-of-Service (QoS): One of the first questions we get from customers about Exalogic is: “How can we implement multi-tenancy?” The answer is to partition your IB network, which effectively creates many networks that work independently and that are protected at the lowest networking layer possible. In addition to that, QoS allows administrators to prioritize traffic flow in multi-tenancy environments so they can keep their service levels where it matters most. Resilient IB Fabric Management: InfiniBand is a self-managing network, so a lot of the magic lies in coming up with the right topology and in teaching the subnet manager how to properly discover and manage the network. Oracle's Infiniband switches come with pre-integrated, highly available fabric management with seamless integration into Oracle Enterprise Manager Ops Center. In short: Oracle elevated the OFED InfiniBand stack into an enterprise-class networking infrastructure. Many years and multiple teams of manpower went into the above improvements - this is something you can only get from Oracle, because no other InfiniBand vendor can give you these features across the whole stack! Exabus: Because it's not About the Size of Your Network, it's How You Use it! So let's assume that you somehow were able to get your hands on an enterprise-class IB driver stack. Or maybe you don't care and are just happy with the standard OFED one? Anyway, the next step is to actually leverage that InfiniBand performance. Here are the choices: Use traditional TCP/IP on top of the InfiniBand stack, Develop your own integration between your middleware and the lower-level (but faster) InfiniBand protocols. While more bandwidth is always a good thing, it's actually the low latency that enables superior performance for your applications when running on any networking infrastructure: The lower the latency, the faster the response travels through the network and the more transactions you can close per second. The reason why InfiniBand is such a low latency technology is that it gets rid of most if not all of your traditional networking protocol stack: Data is literally beamed from one region of RAM in one server into another region of RAM in another server with no kernel/drivers/UDP/TCP or other networking stack overhead involved! Which makes option 1 a no-go: Adding TCP/IP on top of InfiniBand is like adding training wheels to your racing bike. It may be ok in the beginning and for development, but it's not quite the performance IB was meant to deliver. Which only leaves option 2: Integrating your middleware with fast, low-level InfiniBand protocols. And this is what Exalogic's "Exabus" technology is all about. Here are a few Exabus features that help applications leverage the performance of InfiniBand in Exalogic: RDMA and SDP integration at the JDBC driver level (SDP), for Oracle Weblogic (SDP), Oracle Coherence (RDMA), Oracle Tuxedo (RDMA) and the new Oracle Traffic Director (RDMA) on Exalogic. Using these protocols, middleware can communicate a lot faster with each other and the Oracle database than by using standard networking protocols, Seamless Integration of Ethernet over InfiniBand from Exalogic's Gateway switches into the OS, Oracle Weblogic optimizations for handling massive amounts of parallel transactions. Because if you have an 8-lane Autobahn, you also need to improve your ramps so you can feed it with many cars in parallel. Integration of Weblogic with Oracle Exadata for faster performance, optimized session management and failover. As you see, “Exabus” is Oracle's word for describing all the InfiniBand enhancements Oracle put into Exalogic: OFED stack enhancements, protocols for faster IB access, and InfiniBand support and optimizations at the virtualization and middleware level. All working together to deliver the full potential of InfiniBand performance. Who else has 100% control over their middleware so they can develop their own low-level protocol integration with InfiniBand? Even if you take an open source approach, you're looking at years of development work to create, test and support a whole new networking technology in your middleware! The Extras: Less Hassle, More Productivity, Faster Time to Market And then there are the other advantages of Engineered Systems that are true for Exalogic the same as they are for every other Engineered System: One simple purchasing process: No headaches due to endless RFPs and no “Will X work with Y?” uncertainties. Everything has been engineered together: All kinds of bugs and problems have been already fixed at the design level that would have only manifested themselves after you have built the system from scratch. Everything is built, tested and integrated at the factory level . Less integration pain for you, faster time to market. Every Exalogic machine world-wide is identical to Oracle's own machines in the lab: Instant replication of any problems you may encounter, faster time to resolution. Simplified patching, management and operations. One throat to choke: Imagine finger-pointing hell for systems that have been put together using several different vendors. Oracle's Engineered Systems have a single phone number that customers can call to get their problems solved. For more business-centric values, read The Business Value of Engineered Systems. Conclusion: Buy Exalogic, or get ready for a 6-12 Month Science Project And here's the reason why it's not easy to "build your own Exalogic": There's a lot of work required to make such a system fly. In fact, anybody who is starting to "just put together a bunch of servers and an InfiniBand network" is really looking at a 6-12 month science project. And the outcome is likely to not be very enterprise-class. And it won't have Exalogic's performance either. Because building an Engineered System is literally rocket science: It takes a lot of time, effort, resources and many iterations of design/test/analyze/fix to build such a system. That's why InfiniBand has been reserved for HPC scientists for such a long time. And only Oracle can bring the power of InfiniBand in an enterprise-class, ready-to use, pre-integrated version to customers, without the develop/integrate/support pain. For more details, check the new Exalogic overview white paper which was updated only recently. P.S.: Thanks to my colleagues Ola, Paul, Don and Andy for helping me put together this article! var flattr_uid = '26528'; var flattr_tle = 'How to Avoid Your Next 12-Month Science Project'; var flattr_dsc = 'While most customers immediately understand how the magic of Oracle's Hybrid Columnar Compression, intelligent storage servers and flash memory make Exadata uniquely powerful against home-grown database systems, some people think that Exalogic is nothing more than a bunch of x86 servers, a storage appliance and an InfiniBand (IB) network, built into a single rack.After all, isn't this exactly what the High Performance Computing (HPC) world has been doing for decades?On the surface, this may be true. And some people tried exactly that: They tried to put together their own version of Exalogic, but then they discover there's a lot more to building a system than buying hardware and assembling it together. IT is not Ikea.Why is that so? Could it be there's more going on behind the scenes than merely putting together a bunch of servers, a storage array and an InfiniBand network into a rack? Let's explore some of the special sauce that makes Exalogic unique and un-copyable, so you can save yourself from your next 6- to 12-month science project that distracts you from doing real work that adds value to your company.'; var flattr_tag = 'Engineered Systems,Engineered Systems,Infiniband,Integration,latency,Oracle,performance'; var flattr_cat = 'text'; var flattr_url = 'http://constantin.glez.de/blog/2012/04/how-avoid-your-next-12-month-science-project'; var flattr_lng = 'en_GB'

    Read the article

  • Hudson.. another Continuous Integration tool

    - by Narendra Tiwari
    In my previous posts I discussed about Cruisecontrol.net and its legacy support to .Net development. Hudson  is yet another continuous integration tool. Hudson is also free like CCNet and built in java. - CCNet has its legacy support to .Net applications where as Hudson can be easily configured on both the environments (.Net and Java). - One of the major differences in CCNet and Hudson is the richer GUI of Hudson provide user interactive screens for project configuration where as in CCNet we have to play with a few xml configuration files. Both the tools are capable of providing basic features of continuous integration e.g.:- - Source Control configuration - Code Compilation/Build - Ad hoc plugin tools to be configured along with compilation Support for adhoc tools seems to be bigger with CCNet e.g. There are almost every source control plugin available with CCNet where as Hudson has support for limited source control servers. Basically there is an interseting point to see is that there are 2 major partsof whole CI system one performed by build tool and rest. Build tool takes care of all adhoc plugin tools  so no matter if CI tool does not have plugin for that tool if thet tools provides command line support that can be configured in build tool and that build tool is then configured with CI tool inturn. For example if I have a build script configured in MSBuild and CCNet can be easily switched to Hudson. Here we need not to change anything in build script we just need to configure MSBuild on Hudson and pass the path of script file and thats it... all is same. Hudson Resources:- - https://hudson.dev.java.net/ - http://wiki.hudson-ci.org/display/HUDSON/Meet+Hudson - http://wiki.hudson-ci.org/display/HUDSON/Plugins - http://callport.blogspot.com/2009/02/hudson-for-net-projects.html Java support on CCNet http://confluence.public.thoughtworks.org/display/CC/Getting+Started+With+CruiseControl?focusedCommentId=19988484#comment-19988484 Please share your thoughts...

    Read the article

  • Oracle SOA Suite for healthcare integration Dashboard By Nitesh Jain

    - by JuergenKress
    Oracle SOA Suite Healthcare came up with a new way of monitoring where user can configure a dashboard and follow the dynamic runtime changes. Oracle SOA Suite for healthcare integration dashboards display information about the current health of the endpoints in a healthcare integration application. You can create and configure multiple dashboards as needed to monitor the status and volume metrics for the endpoints you have defined. The Dashboards reflects changes that occur in the runtime repository, such as purging runtime instance data, new messages processed, and new error messages. You can display data for various time periods, and you can manually refresh the data in real time or set the dashboard to automatically refresh at set intervals. Dashboard shows the following information: Status: The current status of the endpoint, such as Running, Idle, Disabled, or Errors. Messages Sent: The number of messages sent by the endpoint in the specified time period. Messages Received: The number of messages received by the endpoint in the specified time period. Errors: The number of messages with errors for the endpoint in the given time period. Last Sent: The date and time the last message was sent from the endpoint. Last Received: The date and time the last message was received from the endpoint. Last Error: The date and time of the last error for the endpoint. It also shows the detailed view of a specific Endpoint. The document type. The number of messages received per second. The total number of message processed in the specified time period. The average size of each message. For more information please visit Nitesh Jain blog SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit  www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Technorati Tags: SOA Suite,SOA heathcare,soa health,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

< Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >