Search Results

Search found 2912 results on 117 pages for 'std tr1'.

Page 25/117 | < Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >

  • Contents changed(cleared?) when access the pointer returned by std::string::c_str()

    - by justamask
    string conf()     {         vector v;         //..         v = func(); //this function returns a vector         return v[1];     }     void test()     {         const char* p = conf().c_str();         // the string object will be alive as a auto var         // so the pointer should be valid till the end of this function,right?           // ... lots of steps, but none of them would access the pointer p         // when access p here, SOMETIMES the contents would change ... Why?         // the platform is solaris 64 bit         // compiler is sun workshop 12         // my code is compiled as  ELF 32-bit MSB relocatable SPARC32PLUS Version 1, V8+ Required         // but need to link with some shared lib which are ELF 32-bit MSB dynamic lib SPARC Version 1, dynamically linked, stripped     }

    Read the article

  • Does std::vector change its address? How to avoid

    - by kunigami
    Since vector elements are stored contiguously, I guess it may not have the same address after some push_back's , because the initial allocated space could not suffice. I'm working on a code where I need a reference to an element in a vector, like: int main(){ vector<int> v; v.push_back(1); int *ptr = &v[0]; for(int i=2; i<100; i++) v.push_back(i); cout << *ptr << endl; //? return 0; } But it's not necessarily true that ptr contains a reference to v[0], right? How would be a good way to guarantee it? My first idea would be to use a vector of pointers and dynamic allocation. I'm wondering if there's an easier way to do that? PS.: Actually I'm using a vector of a class instead of int, but I think the issues are the same.

    Read the article

  • Why does Visual Studio 2010 throw this error with Boost 1.42.0?

    - by ra170
    I'm trying to recompile application, that compiles fine with warning level 4 in visual studio 2005 and visual studio 2008. Since the errors (look below) are coming from std:tr1, I'm thinking there's some conflict, but not sure how to fix. My first thought was to remove all references to boost, such as but then I get an error that it can't find format method. So here's one of the errors: (not sure what it means) Any ideas, suggestions, solutions? Thanks! > c:\program files (x86)\microsoft > visual studio > 10.0\vc\include\type_traits(197): error C2752: > 'std::tr1::_Remove_reference<_Ty>' : > more than one partial specialization > matches the template argument list 1> > with 1> [ 1> > _Ty=bool (__cdecl &)(const BlahBlah &) 1> ] 1> c:\program > files (x86)\microsoft visual studio > 10.0\vc\include\xtr1common(356): could be > 'std::tr1::_Remove_reference<_Ty&&>' > 1> c:\program files > (x86)\microsoft visual studio > 10.0\vc\include\xtr1common(350): or 'std::tr1::_Remove_reference<_Ty&>' 1> > c:\program files (x86)\microsoft > visual studio > 10.0\vc\include\type_traits(962) : see reference to class template > instantiation > 'std::tr1::remove_reference<_Ty>' > being compiled 1> with

    Read the article

  • C++ visibility of privately inherited typedefs to nested classes

    - by beldaz
    First time on StackOverflow, so please be tolerant. In the following example (apologies for the length) I have tried to isolate some unexpected behaviour I've encountered when using nested classes within a class that privately inherits from another. I've often seen statements to the effect that there is nothing special about a nested class compared to an unnested class, but in this example one can see that a nested class (at least according to GCC 4.4) can see the public typedefs of a class that is privately inherited by the closing class. I appreciate that typdefs are not the same as member data, but I found this behaviour surprising, and I imagine many others would, too. So my question is threefold: Is this standard behaviour? (a decent explanation of why would be very helpful) Can one expect it to work on most modern compilers (i.e., how portable is it)? #include <iostream> class Base { typedef int priv_t; priv_t priv; public: typedef int pub_t; pub_t pub; Base() : priv(0), pub(1) {} }; class PubDerived : public Base { public: // Not allowed since Base::priv is private // void foo() {std::cout << priv << "\n";} class Nested { // Not allowed since Nested has no access to PubDerived member data // void foo() {std::cout << pub << "\n";} // Not allowed since typedef Base::priv_t is private // void bar() {priv_t x=0; std::cout << x << "\n";} }; }; class PrivDerived : private Base { public: // Allowed since Base::pub is public void foo() {std::cout << pub << "\n";} class Nested { public: // Works (gcc 4.4 - see below) void fred() {pub_t x=0; std::cout << x << "\n";} }; }; int main() { // Not allowed since typedef Base::priv_t private // std::cout << PubDerived::priv_t(0) << "\n"; // Allowed since typedef Base::pub_t is inaccessible std::cout << PubDerived::pub_t(0) << "\n"; // Prints 0 // Not allowed since typedef Base::pub_t is inaccessible //std::cout << PrivDerived::pub_t(0) << "\n"; // Works (gcc 4.4) PrivDerived::Nested o; o.fred(); // Prints 0 return 0; }

    Read the article

  • How to use c++0x thread in Android NDK?

    - by m-ric
    I am trying to compile this simple program with android-ndk-r8b: jni/hello_jni.cpp #include <iostream> #include <thread> void hello() { std::cout << "Hi i'm a thread!!!" << std::endl; } int main() { std::thread th(hello); th.join(); return 0; } jni/Application.mk APP_OPTIM := release APP_MODULES := hello_thread APP_STL := gnustl_static jni/Android.mk LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) LOCAL_CPPFLAGS += -std=c++0x -frtti LOCAL_MODULE := hello_thread LOCAL_LDLIBS := -L$(SYSROOT)/usr/lib -pthread LOCAL_SRC_FILES := hello_thread.cpp include $(BUILD_EXECUTABLE) ndk-build returns me an error arguin that 'thread' is not a member of 'std'. I issued ndk-build -n to get the compilation command and issued it alone in my shell: /home/evigier/android-ndk-r8b/toolchains/arm-linux-androideabi-4.6/prebuilt/linux-x86/bin/arm-linux-androideabi-g++ -MMD -MP -MF /home/evigier/eclipse_workspace/hello_thread/obj/local/armeabi/objs/hello_thread/hello_thread.o.d -fpic -ffunction-sections -funwind-tables -fstack-protector -D__ARM_ARCH_5__ -D__ARM_ARCH_5T__ -D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__ -march=armv5te -mtune=xscale -msoft-float -fno-exceptions -fno-rtti -mthumb -Os -fomit-frame-pointer -fno-strict-aliasing -finline-limit=64 -I/home/evigier/android-ndk-r8b/sources/cxx-stl/gnu-libstdc++/4.6/include -I/home/evigier/android-ndk-r8b/sources/cxx-stl/gnu-libstdc++/4.6/libs/armeabi/include -I/home/evigier/eclipse_workspace/hello_thread/jni -DANDROID -Wa,--noexecstack -std=c++0x -frtti -O2 -DNDEBUG -g -I/home/evigier/android-ndk-r8b/platforms/android-14/arch-arm/usr/include -c /home/evigier/eclipse_workspace/hello_thread/jni/hello_thread.cpp -o /home/evigier/eclipse_workspace/hello_thread/obj/local/armeabi/objs/hello_thread/hello_thread.o Compile++ thumb : hello_thread <= hello_thread.cpp In file included from /home/evigier/android-ndk-r8b/platforms/android-14/arch-arm/usr/include/stdio.h:55:0, from /home/evigier/android-ndk-r8b/platforms/android-14/arch-arm/usr/include/wchar.h:33, from /home/evigier/android-ndk-r8b/sources/cxx-stl/gnu-libstdc++/4.6/include/cwchar:46, from /home/evigier/android-ndk-r8b/sources/cxx-stl/gnu-libstdc++/4.6/include/bits/postypes.h:42, from /home/evigier/android-ndk-r8b/sources/cxx-stl/gnu-libstdc++/4.6/include/iosfwd:42, from /home/evigier/android-ndk-r8b/sources/cxx-stl/gnu-libstdc++/4.6/include/ios:39, from /home/evigier/android-ndk-r8b/sources/cxx-stl/gnu-libstdc++/4.6/include/ostream:40, from /home/evigier/android-ndk-r8b/sources/cxx-stl/gnu-libstdc++/4.6/include/iostream:40, from jni/hello_thread.cpp:4: /home/evigier/android-ndk-r8b/platforms/android-14/arch-arm/usr/include/sys/types.h:124:9: error: 'uint64_t' does not name a type /home/evigier/eclipse_workspace/hello_thread/jni/hello_thread.cpp: In function 'int main()': /home/evigier/eclipse_workspace/hello_thread/jni/hello_thread.cpp:14:5: error: 'thread' is not a member of 'std' /home/evigier/eclipse_workspace/hello_thread/jni/hello_thread.cpp:14:17: error: expected ';' before 'th' /home/evigier/eclipse_workspace/hello_thread/jni/hello_thread.cpp:15:5: error: 'th' was not declared in this scope I read a lot of threads/questions about POSIX threads and C++ threads, but still cannot find my answer. My arm-linux-androideabi/include/c++/4.6/thread file defines class thread in std only: #if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1) They don't seem to be defined in my sdk (c++config.h). But how can I possibly turn them on safely? Do i need to compile my own toolchain to use (non-p)threads? My host computer is : Linux evigier-ThinkPad-X220 3.0.0-17-generic #30-Ubuntu SMP Thu Mar 8 20:45:39 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux

    Read the article

  • Is there any reasonable use of a function returning an anonymous struct?

    - by Akanksh
    Here is an (artificial) example of using a function that returns an anonymous struct and does "something" useful: #include <iostream> template<typename T> T* func( T* t, float a, float b ) { if(!t) { t = new T; t->a = a; t->b = b; } else { t->a += a; t->b += b; } return t; } struct { float a, b; }* foo(float a, float b) { if(a==0) return 0; return func(foo(a-1,b), a, b); } int main() { std::cout << foo(5,6)->a << std::endl; std::cout << foo(5,6)->b << std::endl; void* v = (void*)(foo(5,6)); float* f = (float*)(v); //[1] delete f now because I know struct is floats only. std::cout << f[0] << std::endl; std::cout << f[1] << std::endl; delete[] f; return 0; } There are a few points I would like to discuss: As is apparent, this code leaks, is there anyway I can NOT leak without knowing what the underlying struct definition is? see Comment [1]. I have to return a pointer to an anonymous struct so I can create an instance of the object within the templatized function func, can I do something similar without returning a pointer? I guess the most important, is there ANY (real-world) use for this at all? As the example given above leaks and is admittedly contrived. By the way, what the function foo(a,b) does is, to return a struct containing two numbers, the sum of all numbers from 1 to a and the product of a and b. EDIT: Maybe the line new T could use a boost::shared_ptr somehow to avoid leaks, but I haven't tried that. Would that work?

    Read the article

  • Odd behavior when recursively building a return type for variadic functions

    - by Dennis Zickefoose
    This is probably going to be a really simple explanation, but I'm going to give as much backstory as possible in case I'm wrong. Advanced apologies for being so verbose. I'm using gcc4.5, and I realize the c++0x support is still somewhat experimental, but I'm going to act on the assumption that there's a non-bug related reason for the behavior I'm seeing. I'm experimenting with variadic function templates. The end goal was to build a cons-list out of std::pair. It wasn't meant to be a custom type, just a string of pair objects. The function that constructs the list would have to be in some way recursive, with the ultimate return value being dependent on the result of the recursive calls. As an added twist, successive parameters are added together before being inserted into the list. So if I pass [1, 2, 3, 4, 5, 6] the end result should be {1+2, {3+4, 5+6}}. My initial attempt was fairly naive. A function, Build, with two overloads. One took two identical parameters and simply returned their sum. The other took two parameters and a parameter pack. The return value was a pair consisting of the sum of the two set parameters, and the recursive call. In retrospect, this was obviously a flawed strategy, because the function isn't declared when I try to figure out its return type, so it has no choice but to resolve to the non-recursive version. That I understand. Where I got confused was the second iteration. I decided to make those functions static members of a template class. The function calls themselves are not parameterized, but instead the entire class is. My assumption was that when the recursive function attempts to generate its return type, it would instantiate a whole new version of the structure with its own static function, and everything would work itself out. The result was: "error: no matching function for call to BuildStruct<double, double, char, char>::Go(const char&, const char&)" The offending code: static auto Go(const Type& t0, const Type& t1, const Types&... rest) -> std::pair<Type, decltype(BuildStruct<Types...>::Go(rest...))> My confusion comes from the fact that the parameters to BuildStruct should always be the same types as the arguments sent to BuildStruct::Go, but in the error code Go is missing the initial two double parameters. What am I missing here? If my initial assumption about how the static functions would be chosen was incorrect, why is it trying to call the wrong function rather than just not finding a function at all? It seems to just be mixing types willy-nilly, and I just can't come up with an explanation as to why. If I add additional parameters to the initial call, it always burrows down to that last step before failing, so presumably the recursion itself is at least partially working. This is in direct contrast to the initial attempt, which always failed to find a function call right away. Ultimately, I've gotten past the problem, with a fairly elegant solution that hardly resembles either of the first two attempts. So I know how to do what I want to do. I'm looking for an explanation for the failure I saw. Full code to follow since I'm sure my verbal description was insufficient. First some boilerplate, if you feel compelled to execute the code and see it for yourself. Then the initial attempt, which failed reasonably, then the second attempt, which did not. #include <iostream> using std::cout; using std::endl; #include <utility> template<typename T1, typename T2> std::ostream& operator <<(std::ostream& str, const std::pair<T1, T2>& p) { return str << "[" << p.first << ", " << p.second << "]"; } //Insert code here int main() { Execute(5, 6, 4.3, 2.2, 'c', 'd'); Execute(5, 6, 4.3, 2.2); Execute(5, 6); return 0; } Non-struct solution: template<typename Type> Type BuildFunction(const Type& t0, const Type& t1) { return t0 + t1; } template<typename Type, typename... Rest> auto BuildFunction(const Type& t0, const Type& t1, const Rest&... rest) -> std::pair<Type, decltype(BuildFunction(rest...))> { return std::pair<Type, decltype(BuildFunction(rest...))> (t0 + t1, BuildFunction(rest...)); } template<typename... Types> void Execute(const Types&... t) { cout << BuildFunction(t...) << endl; } Resulting errors: test.cpp: In function 'void Execute(const Types& ...) [with Types = {int, int, double, double, char, char}]': test.cpp:33:35: instantiated from here test.cpp:28:3: error: no matching function for call to 'BuildFunction(const int&, const int&, const double&, const double&, const char&, const char&)' Struct solution: template<typename... Types> struct BuildStruct; template<typename Type> struct BuildStruct<Type, Type> { static Type Go(const Type& t0, const Type& t1) { return t0 + t1; } }; template<typename Type, typename... Types> struct BuildStruct<Type, Type, Types...> { static auto Go(const Type& t0, const Type& t1, const Types&... rest) -> std::pair<Type, decltype(BuildStruct<Types...>::Go(rest...))> { return std::pair<Type, decltype(BuildStruct<Types...>::Go(rest...))> (t0 + t1, BuildStruct<Types...>::Go(rest...)); } }; template<typename... Types> void Execute(const Types&... t) { cout << BuildStruct<Types...>::Go(t...) << endl; } Resulting errors: test.cpp: In instantiation of 'BuildStruct<int, int, double, double, char, char>': test.cpp:33:3: instantiated from 'void Execute(const Types& ...) [with Types = {int, int, double, double, char, char}]' test.cpp:38:41: instantiated from here test.cpp:24:15: error: no matching function for call to 'BuildStruct<double, double, char, char>::Go(const char&, const char&)' test.cpp:24:15: note: candidate is: static std::pair<Type, decltype (BuildStruct<Types ...>::Go(BuildStruct<Type, Type, Types ...>::Go::rest ...))> BuildStruct<Type, Type, Types ...>::Go(const Type&, const Type&, const Types& ...) [with Type = double, Types = {char, char}, decltype (BuildStruct<Types ...>::Go(BuildStruct<Type, Type, Types ...>::Go::rest ...)) = char] test.cpp: In function 'void Execute(const Types& ...) [with Types = {int, int, double, double, char, char}]': test.cpp:38:41: instantiated from here test.cpp:33:3: error: 'Go' is not a member of 'BuildStruct<int, int, double, double, char, char>'

    Read the article

  • What am I not getting about this abstract class implementation?

    - by Schnapple
    PREFACE: I'm relatively inexperienced in C++ so this very well could be a Day 1 n00b question. I'm working on something whose long term goal is to be portable across multiple operating systems. I have the following files: Utilities.h #include <string> class Utilities { public: Utilities() { }; virtual ~Utilities() { }; virtual std::string ParseString(std::string const& RawString) = 0; }; UtilitiesWin.h (for the Windows class/implementation) #include <string> #include "Utilities.h" class UtilitiesWin : public Utilities { public: UtilitiesWin() { }; virtual ~UtilitiesWin() { }; virtual std::string ParseString(std::string const& RawString); }; UtilitiesWin.cpp #include <string> #include "UtilitiesWin.h" std::string UtilitiesWin::ParseString(std::string const& RawString) { // Magic happens here! // I'll put in a line of code to make it seem valid return ""; } So then elsewhere in my code I have this #include <string> #include "Utilities.h" void SomeProgram::SomeMethod() { Utilities *u = new Utilities(); StringData = u->ParseString(StringData); // StringData defined elsewhere } The compiler (Visual Studio 2008) is dying on the instance declaration c:\somepath\somecode.cpp(3) : error C2259: 'Utilities' : cannot instantiate abstract class due to following members: 'std::string Utilities::ParseString(const std::string &)' : is abstract c:\somepath\utilities.h(9) : see declaration of 'Utilities::ParseString' So in this case what I'm wanting to do is use the abstract class (Utilities) like an interface and have it know to go to the implemented version (UtilitiesWin). Obviously I'm doing something wrong but I'm not sure what. It occurs to me as I'm writing this that there's probably a crucial connection between the UtilitiesWin implementation of the Utilities abstract class that I've missed, but I'm not sure where. I mean, the following works #include <string> #include "UtilitiesWin.h" void SomeProgram::SomeMethod() { Utilities *u = new UtilitiesWin(); StringData = u->ParseString(StringData); // StringData defined elsewhere } but it means I'd have to conditionally go through the different versions later (i.e., UtilitiesMac(), UtilitiesLinux(), etc.) What have I missed here?

    Read the article

  • Iterator not accessible because of private inheritance

    - by Bo Tian
    I've created a new class that composes std::deque by private inheritance, i.e, class B : private std::deque<A> { ... }; and in my source code I tried to use iterator of B, i.e., B::iterator it The compiler error is error C2247: 'std::deque<_Ty>::iterator' not accessible because 'B' uses 'private' to inherit from 'std::deque<_Ty>' So the question is, how can I make the iterator accessible?

    Read the article

  • C++ stl collections or linked lists

    - by Lucas
    I'm developing a OpenGL based simulation in C++. I'm optmizing my code now and i see throughout the code the frequently use of std:list and std:vector. What is the more performatic: to continue using C++ stl data structs or a pointer based linked list? The main operation that involve std::list and std::vector is open a iterator and loop through all items in the data structs and apply some processing

    Read the article

  • What's the fastest lookup algorithm for a key, pair data structure (i.e, a map)?

    - by truncheon
    In the following example a std::map structure is filled with 26 values from A - Z (for key) and 0 – 26 for value. The time taken (on my system) to lookup the last entry (10000000 times) is roughly 250 ms for the vector, and 125 ms for the map. (I compiled using release mode, with O3 option turned on for g++ 4.4) But if for some odd reason I wanted better performance than the std::map, what data structures and functions would I need to consider using? I apologize if the answer seems obvious to you, but I haven't had much experience in the performance critical aspects of C++ programming. #include <ctime> #include <map> #include <vector> #include <iostream> struct mystruct { char key; int value; mystruct(char k = 0, int v = 0) : key(k), value(v) { } }; int find(const std::vector<mystruct>& ref, char key) { for (std::vector<mystruct>::const_iterator i = ref.begin(); i != ref.end(); ++i) if (i->key == key) return i->value; return -1; } int main() { std::map<char, int> mymap; std::vector<mystruct> myvec; for (int i = 'a'; i < 'a' + 26; ++i) { mymap[i] = i - 'a'; myvec.push_back(mystruct(i, i - 'a')); } int pre = clock(); for (int i = 0; i < 10000000; ++i) { find(myvec, 'z'); } std::cout << "linear scan: milli " << clock() - pre << "\n"; pre = clock(); for (int i = 0; i < 10000000; ++i) { mymap['z']; } std::cout << "map scan: milli " << clock() - pre << "\n"; return 0; }

    Read the article

  • The cost of passing by shared_ptr

    - by Artem
    I use std::tr1::shared_ptr extensively throughout my application. This includes passing objects in as function arguments. Consider the following: class Dataset {...} void f( shared_ptr< Dataset const > pds ) {...} void g( shared_ptr< Dataset const > pds ) {...} ... While passing a dataset object around via shared_ptr guarantees its existence inside f and g, the functions may be called millions of times, which causes a lot of shared_ptr objects being created and destroyed. Here's a snippet of the flat gprof profile from a recent run: Each sample counts as 0.01 seconds. % cumulative self self total time seconds seconds calls s/call s/call name 9.74 295.39 35.12 2451177304 0.00 0.00 std::tr1::__shared_count::__shared_count(std::tr1::__shared_count const&) 8.03 324.34 28.95 2451252116 0.00 0.00 std::tr1::__shared_count::~__shared_count() So, ~17% of the runtime was spent on reference counting with shared_ptr objects. Is this normal? A large portion of my application is single-threaded and I was thinking about re-writing some of the functions as void f( const Dataset& ds ) {...} and replacing the calls shared_ptr< Dataset > pds( new Dataset(...) ); f( pds ); with f( *pds ); in places where I know for sure the object will not get destroyed while the flow of the program is inside f(). But before I run off to change a bunch of function signatures / calls, I wanted to know what the typical performance hit of passing by shared_ptr was. Seems like shared_ptr should not be used for functions that get called very often. Any input would be appreciated. Thanks for reading. -Artem

    Read the article

  • Policy-based template design: How to access certain policies of the class?

    - by dehmann
    I have a class that uses several policies that are templated. It is called Dish in the following example. I store many of these Dishes in a vector (using a pointer to simple base class), but then I'd like to extract and use them. But I don't know their exact types. Here is the code; it's a bit long, but really simple: #include <iostream> #include <vector> struct DishBase { int id; DishBase(int i) : id(i) {} }; std::ostream& operator<<(std::ostream& out, const DishBase& d) { out << d.id; return out; } // Policy-based class: template<class Appetizer, class Main, class Dessert> class Dish : public DishBase { Appetizer appetizer_; Main main_; Dessert dessert_; public: Dish(int id) : DishBase(id) {} const Appetizer& get_appetizer() { return appetizer_; } const Main& get_main() { return main_; } const Dessert& get_dessert() { return dessert_; } }; struct Storage { typedef DishBase* value_type; typedef std::vector<value_type> Container; typedef Container::const_iterator const_iterator; Container container; Storage() { container.push_back(new Dish<int,double,float>(0)); container.push_back(new Dish<double,int,double>(1)); container.push_back(new Dish<int,int,int>(2)); } ~Storage() { // delete objects } const_iterator begin() { return container.begin(); } const_iterator end() { return container.end(); } }; int main() { Storage s; for(Storage::const_iterator it = s.begin(); it != s.end(); ++it){ std::cout << **it << std::endl; std::cout << "Dessert: " << *it->get_dessert() << std::endl; // ?? } return 0; } The tricky part is here, in the main() function: std::cout << "Dessert: " << *it->get_dessert() << std::endl; // ?? How can I access the dessert? I don't even know the Dessert type (it is templated), let alone the complete type of the object that I'm getting from the storage. This is just a toy example, but I think my code reduces to this. I'd just like to pass those Dish classes around, and different parts of the code will access different parts of it (in the example: its appetizer, main dish, or dessert).

    Read the article

  • Const-correctness semantics in C++

    - by thirtythreeforty
    For fun and profit™, I'm writing a trie class in C++ (using the C++11 standard.) My trie<T> has an iterator, trie<T>::iterator. (They're all actually functionally const_iterators, because you cannot modify a trie's value_type.) The iterator's class declaration looks partially like this: template<typename T> class trie<T>::iterator : public std::iterator<std::bidirectional_iterator_tag, T> { friend class trie<T>; struct state { state(const trie<T>* const node, const typename std::vector<std::pair<typename T::value_type, std::unique_ptr<trie<T>>>>::const_iterator& node_map_it ) : node{node}, node_map_it{node_map_it} {} // This pointer is to const data: const trie<T>* node; typename std::vector<std::pair<typename T::value_type, std::unique_ptr<trie<T>>>>::const_iterator node_map_it; }; public: typedef const T value_type; iterator() =default; iterator(const trie<T>* node) { parents.emplace(node, node->children.cbegin()); // ... } // ... private: std::stack<state> parents; // ... }; Notice that the node pointer is declared const. This is because (in my mind) the iterator should not be modifying the node that it points to; it is just an iterator. Now, elsewhere in my main trie<T> class, I have an erase function that has a common STL signature--it takes an iterator to data to erase (and returns an iterator to the next object). template<typename T> typename trie<T>::iterator trie<T>::erase(const_iterator it) { // ... // Cannot modify a const object! it.parents.top().node->is_leaf = false; // ... } The compiler complains because the node pointer is read-only! The erase function definitely should modify the trie that the iterator points to, even though the iterator shouldn't. So, I have two questions: Should iterator's constructors be public? trie<T> has the necessary begin() and end() members, and of course trie<T>::iterator and trie<T> are mutual friends, but I don't know what the convention is. Making them private would solve a lot of the angst I'm having about removing the const "promise" from the iterator's constructor. What are the correct const semantics/conventions regarding the iterator and its node pointer here? Nobody has ever explained this to me, and I can't find any tutorials or articles on the Web. This is probably the more important question, but it does require a good deal of planning and proper implementation. I suppose it could be circumvented by just implementing 1, but it's the principle of the thing!

    Read the article

  • Calling fuctions of header file

    - by navinbecse
    i want to know the way i am calling the methods defined in windows.h from c++ program is correct or wrong.. when i tried to get the library files out of it, it is showing the errors saying that unresolved methods... i am using this for jni purpose... #define _WIN32_WINNT 0x0500 #include "keylogs.h" #include <fstream #include <windows.h using namespace std; ofstream out("C:\Users\402100\Desktop\keyloggerfile.txt", ios::out); LRESULT CALLBACK keyboardHookProc(int nCode, WPARAM wParam, LPARAM lParam) { PKBDLLHOOKSTRUCT p = (PKBDLLHOOKSTRUCT) (lParam); // If key is being pressed if (wParam == WM_KEYDOWN) { switch (p-vkCode) { // Invisible keys case VK_CAPITAL: out << ""; break; case VK_SHIFT: out << ""; break; case VK_LCONTROL: out << ""; break; case VK_RCONTROL: out << ""; break; case VK_INSERT: out << ""; break; case VK_END: out << ""; break; case VK_PRINT: out << ""; break; case VK_DELETE: out << ""; break; case VK_BACK: out << ""; break; case VK_SPACE: out << ""; break; case VK_RMENU: out << ""; break; case VK_LMENU: out << ""; break; case VK_LEFT: out << ""; break; case VK_RIGHT: out << ""; break; case VK_UP: out << ""; break; case VK_DOWN: out << ""; break; // Visible keys default: out << char(tolower(p->vkCode)); } } return CallNextHookEx(NULL, nCode, wParam, lParam); } JNIEXPORT void JNICALL Java_keylog_Main_CallerMethod(JNIEnv *env, jobject) { HINSTANCE hInstance=GetModuleHandle(0); HHOOK keyboardHook = SetWindowsHookEx( WH_KEYBOARD_LL, keyboardHookProc, hInstance, 0); MessageBox(NULL, "Press OK to stop logging.", "Information", MB_OK); out.close(); } int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nShowCmd) { // Set windows hook return 0; } The errors which i am getting is... file.obj : error LNK2019: unresolved external symbol _imp_CallNextHookEx@16 re ferenced in function "long __stdcall keyboardHookProc(int,unsigned int,long)" (? keyboardHookProc@@YGJHIJ@Z) file.obj : error LNK2019: unresolved external symbol _imp_MessageBoxA@16 refer enced in function "class std::basic_string,cl ass std::allocator __cdecl CallerMethod(void)" (?CallerMethod@@YA?AV?$ba sic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@XZ) file.obj : error LNK2019: unresolved external symbol _imp_SetWindowsHookExA@16 referenced in function "class std::basic_string,class std::allocator __cdecl CallerMethod(void)" (?CallerMethod@@YA? AV?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@XZ) c:\Users\402100\Desktop\oldfile.dll : fatal error LNK1120: 3 unresolved externals can any one help me please....

    Read the article

  • Instruments memory leak iphone

    - by dubbeat
    Hi, I posted this problem a few days ago but it was very muddled and my question wasnt very clear so I removed it. I've been digging around and the memory leak is still persiting. Hopefully this attempt will be clearer. First off I've run the static analyzer and it reports no memory leaks. I then ran Instruments and it pointed to a memory leak at this line of code. As far as I can see there is no memory leak. featured=[[UILabel alloc]initWithFrame:CGRectMake(130,15, 200, 15)]; //[featured setFont:[UIFont UIFontboldSystemFontOfSize:20]]; featured.font = [UIFont boldSystemFontOfSize:20]; featured.backgroundColor= [UIColor clearColor]; featured.textColor=[UIColor blackColor]; featured.text= @"Featured Promo"; [self.view addSubview:featured]; [featured release]; featured=nil; If I comment out the above code Instruments reports another memory leak in another block of code where there is no discernible leak. UIButton *populartbutton = [[UIButton buttonWithType:UIButtonTypeRoundedRect]]; populartbutton.frame = CGRectMake(112, 145, 90, 22); // size and position of button [populartbutton setTitle:@"Popular" forState:UIControlStateNormal]; populartbutton.backgroundColor = [UIColor clearColor]; populartbutton.adjustsImageWhenHighlighted = YES; [populartbutton addTarget:self action:@selector(getpopular:) forControlEvents:UIControlEventTouchUpInside]; [self.view addSubview:populartbutton]; Instruments also says Responsible Library = Core Graphics Responsible Frame = open_handle_to_dylib_path This Is the stack trace. 53 Promo start 52 Promo main /Users/..2/main.m:14 51 UIKit UIApplicationMain 50 UIKit -[UIApplication _run] 49 CoreFoundation CFRunLoopRunInMode 48 CoreFoundation CFRunLoopRunSpecific 47 GraphicsServices PurpleEventCallback 46 UIKit _UIApplicationHandleEvent 45 UIKit -[UIApplication sendEvent:] 44 UIKit -[UIApplication handleEvent:withNewEvent:] 43 UIKit -[UIApplication _reportAppLaunchFinished] 42 QuartzCore CA::Transaction::commit() 41 QuartzCore CA::Context::commit_transaction(CA::Transaction*) 40 QuartzCore CALayerLayoutIfNeeded 39 QuartzCore -[CALayer layoutSublayers] 38 UIKit -[UILayoutContainerView layoutSubviews] 37 UIKit -[UINavigationController _startDeferredTransitionIfNeeded] 36 UIKit -[UINavigationController _startTransition:fromViewController:toViewController:] 35 UIKit -[UINavigationController _layoutViewController:] 34 UIKit -[UINavigationController_computeAndApplyScrollContentInsetDeltaForViewController:] 33 UIKit -[UIViewController contentScrollView] 32 UIKit -[UIViewController view] 31 Promo -[FeaturedLevelViewController viewDidLoad] /Users/..s/FeaturedLevelViewController.m:67 // THIS IS MY CLASS WHERE THE CODE SAMPLES ABOVE ARE FROM 30 UIKit -[UILabel initWithFrame:] 29 UIKit -[UILabel _commonInit] 28 UIKit +[UILabel defaultFont] 27 UIKit +[UIFont systemFontOfSize:] 26 GraphicsServices GSFontCreateWithName 25 CoreGraphics CGFontCreateWithName 24 CoreGraphics CGFontCreateWithFontName 23 CoreGraphics CGFontFinderGetDefault 22 CoreGraphics CGFontGetVTable 21 libSystem.B.dylib pthread_once 20 CoreGraphics load_vtable 19 CoreGraphics load_library 18 CoreGraphics CGLibraryLoadFunction 17 CoreGraphics load_function 16 CoreGraphics open_handle_to_dylib_path 15 libSystem.B.dylib dlopen 14 dyld dlopen 13 dyld dyld::link(ImageLoader*, bool, ImageLoader::RPathChain const&) 12 dyld ImageLoader::link(ImageLoader::LinkContext const&, bool, bool, ImageLoader::RPathChain const&) 11 dyld ImageLoader::recursiveLoadLibraries(ImageLoader::LinkContext const&, bool, ImageLoader::RPathChain const&) 10 dyld dyld::libraryLocator(char const*, bool, char const*, ImageLoader::RPathChain const*) 9 dyld dyld::load(char const*, dyld::LoadContext const&) 8 dyld dyld::loadPhase0(char const*, dyld::LoadContext const&, std::vector<char const*, std::allocator<char const*> >*) 7 dyld dyld::loadPhase1(char const*, dyld::LoadContext const&, std::vector<char const*, std::allocator<char const*> >*) 6 dyld dyld::loadPhase3(char const*, dyld::LoadContext const&, std::vector<char const*, std::allocator<char const*> >*) 5 dyld dyld::loadPhase4(char const*, dyld::LoadContext const&, std::vector<char const*, std::allocator<char const*> >*) 4 dyld dyld::loadPhase5(char const*, dyld::LoadContext const&, std::vector<char const*, std::allocator<char const*> >*) 3 dyld dyld::mkstringf(char const*, ...) 2 dyld strdup 1 dyld malloc 0 libSystem.B.dylib malloc I'm really not too sure how to use this information to fix the problem so any guidance would be appreciated. Perhaps the answer is in the trace but I just don't know what to look for? EDIT:: The above stack trace is when running on the simulator. The following is from running on a device. This trace does not point to any of my own classes 23 Promo 0x0 22 libSystem.B.dylib _pthread_body 21 Foundation __NSThread__main__ 20 Foundation +[NSThread exit] 19 libSystem.B.dylib _pthread_exit 18 libSystem.B.dylib _pthread_tsd_cleanup 17 QuartzCore CA::Transaction::release_thread(void*) 16 QuartzCore CA::Transaction::commit() 15 QuartzCore CA::Context::commit_transaction(CA::Transaction*) 14 QuartzCore CALayerDisplayIfNeeded 13 QuartzCore -[CALayer display] 12 QuartzCore -[CALayer _display] 11 QuartzCore CABackingStoreUpdate 10 QuartzCore backing_callback(CGContext*, void*) 9 QuartzCore -[CALayer drawInContext:] 8 UIKit -[UIView(CALayerDelegate) drawLayer:inContext:] 7 UIKit -[UILabel drawRect:] 6 UIKit -[UILabel drawTextInRect:] 5 UIKit -[UILabel _drawTextInRect:baselineCalculationOnly:] 4 UIKit -[NSString(UIStringDrawing) drawAtPoint:forWidth:withFont:lineBreakMode:] 3 UIKit -[NSString(UIStringDrawing) drawAtPoint:forWidth:withFont:lineBreakMode:letterSpacing:includeEmoji:] 2 WebCore WKSetCurrentGraphicsContext 1 WebCore CurrentThreadContext() 0 libSystem.B.dylib calloc

    Read the article

  • Error using traits class.: "expected constructor destructor or type conversion before '&' token"

    - by Mark
    I have a traits class that's used for printing out different character types: template <typename T> class traits { public: static std::basic_ostream<T>& tout; }; template<> std::ostream& traits<char>::tout = std::cout; template<> std::wostream& traits<unsigned short>::tout = std::wcout; gcc (g++) version 3.4.5 (yes somewhat old) is throwing an error: "expected constructor destructor or type conversion before '&' token" And I'm wondering if there's a good way to resolve this. (it's also angry about _O_WTEXT so if anyone's got some insight into that, I'd also appreciate it)

    Read the article

  • Of these 3 methods for reading linked lists from shared memory, why is the 3rd fastest?

    - by Joseph Garvin
    I have a 'server' program that updates many linked lists in shared memory in response to external events. I want client programs to notice an update on any of the lists as quickly as possible (lowest latency). The server marks a linked list's node's state_ as FILLED once its data is filled in and its next pointer has been set to a valid location. Until then, its state_ is NOT_FILLED_YET. I am using memory barriers to make sure that clients don't see the state_ as FILLED before the data within is actually ready (and it seems to work, I never see corrupt data). Also, state_ is volatile to be sure the compiler doesn't lift the client's checking of it out of loops. Keeping the server code exactly the same, I've come up with 3 different methods for the client to scan the linked lists for changes. The question is: Why is the 3rd method fastest? Method 1: Round robin over all the linked lists (called 'channels') continuously, looking to see if any nodes have changed to 'FILLED': void method_one() { std::vector<Data*> channel_cursors; for(ChannelList::iterator i = channel_list.begin(); i != channel_list.end(); ++i) { Data* current_item = static_cast<Data*>(i->get(segment)->tail_.get(segment)); channel_cursors.push_back(current_item); } while(true) { for(std::size_t i = 0; i < channel_list.size(); ++i) { Data* current_item = channel_cursors[i]; ACQUIRE_MEMORY_BARRIER; if(current_item->state_ == NOT_FILLED_YET) { continue; } log_latency(current_item->tv_sec_, current_item->tv_usec_); channel_cursors[i] = static_cast<Data*>(current_item->next_.get(segment)); } } } Method 1 gave very low latency when then number of channels was small. But when the number of channels grew (250K+) it became very slow because of looping over all the channels. So I tried... Method 2: Give each linked list an ID. Keep a separate 'update list' to the side. Every time one of the linked lists is updated, push its ID on to the update list. Now we just need to monitor the single update list, and check the IDs we get from it. void method_two() { std::vector<Data*> channel_cursors; for(ChannelList::iterator i = channel_list.begin(); i != channel_list.end(); ++i) { Data* current_item = static_cast<Data*>(i->get(segment)->tail_.get(segment)); channel_cursors.push_back(current_item); } UpdateID* update_cursor = static_cast<UpdateID*>(update_channel.tail_.get(segment)); while(true) { if(update_cursor->state_ == NOT_FILLED_YET) { continue; } ::uint32_t update_id = update_cursor->list_id_; Data* current_item = channel_cursors[update_id]; if(current_item->state_ == NOT_FILLED_YET) { std::cerr << "This should never print." << std::endl; // it doesn't continue; } log_latency(current_item->tv_sec_, current_item->tv_usec_); channel_cursors[update_id] = static_cast<Data*>(current_item->next_.get(segment)); update_cursor = static_cast<UpdateID*>(update_cursor->next_.get(segment)); } } Method 2 gave TERRIBLE latency. Whereas Method 1 might give under 10us latency, Method 2 would inexplicably often given 8ms latency! Using gettimeofday it appears that the change in update_cursor-state_ was very slow to propogate from the server's view to the client's (I'm on a multicore box, so I assume the delay is due to cache). So I tried a hybrid approach... Method 3: Keep the update list. But loop over all the channels continuously, and within each iteration check if the update list has updated. If it has, go with the number pushed onto it. If it hasn't, check the channel we've currently iterated to. void method_three() { std::vector<Data*> channel_cursors; for(ChannelList::iterator i = channel_list.begin(); i != channel_list.end(); ++i) { Data* current_item = static_cast<Data*>(i->get(segment)->tail_.get(segment)); channel_cursors.push_back(current_item); } UpdateID* update_cursor = static_cast<UpdateID*>(update_channel.tail_.get(segment)); while(true) { for(std::size_t i = 0; i < channel_list.size(); ++i) { std::size_t idx = i; ACQUIRE_MEMORY_BARRIER; if(update_cursor->state_ != NOT_FILLED_YET) { //std::cerr << "Found via update" << std::endl; i--; idx = update_cursor->list_id_; update_cursor = static_cast<UpdateID*>(update_cursor->next_.get(segment)); } Data* current_item = channel_cursors[idx]; ACQUIRE_MEMORY_BARRIER; if(current_item->state_ == NOT_FILLED_YET) { continue; } found_an_update = true; log_latency(current_item->tv_sec_, current_item->tv_usec_); channel_cursors[idx] = static_cast<Data*>(current_item->next_.get(segment)); } } } The latency of this method was as good as Method 1, but scaled to large numbers of channels. The problem is, I have no clue why. Just to throw a wrench in things: if I uncomment the 'found via update' part, it prints between EVERY LATENCY LOG MESSAGE. Which means things are only ever found on the update list! So I don't understand how this method can be faster than method 2. The full, compilable code (requires GCC and boost-1.41) that generates random strings as test data is at: http://pastebin.com/e3HuL0nr

    Read the article

  • C++ Project compiles as static lib, fails (linker error) as dynamic lib. why??

    - by Roey
    Hi All. I've a VS2008 native C++ project, that I wish to compile as a DLL. It only references one external library (log4cplus.lib), and uses its functions. (also uses log4cplus's .h files , naturally). When I try to compile my project as a static library, it succeeeds. When I try as DLL, it fails : 1>MessageWriter.obj : error LNK2019: unresolved external symbol "public: static class log4cplus::Logger __cdecl log4cplus::Logger::getInstance(class std::basic_string<wchar_t,struct std::char_traits<wchar_t>,class std::allocator<wchar_t> > const &)" (?getInstance@Logger@log4cplus@@SA?AV12@ABV?$basic_string@_WU?$char_traits@_W@std@@V?$allocator@_W@2@@std@@@Z) referenced in function "class log4cplus::Logger __cdecl Log(void)" (?Log@@YA?AVLogger@log4cplus@@XZ) There are 4 more errors just like this related to functions within log4cplus.lib. It seems like something really stupid.. please help me :) Thanks!

    Read the article

  • Optimal method to create a large string containing several variables?

    - by Runcible
    I want to create a string that contains many variables: std::string name1 = "Frank"; std::string name2 = "Joe"; std::string name3 = "Nancy"; std::string name4 = "Sherlock"; std::string sentence; sentence = name1 + " and " + name2 + " sat down with " + name3; sentence += " to play cards, while " + name4 + " played the violin."; This should produce a sentence that reads Frank and Joe sat down with Nancy to play cards, while Sherlock played the violin. My question is: What is the optimal way to accomplish this? I am concerned that constantly using the + operator is ineffecient. Is there a better way?

    Read the article

  • What is the proper way to declare a specialization of a template for another template type?

    - by Head Geek
    The usual definition for a specialization of a template function is something like this: class Foo { [...] }; namespace std { template<> void swap(Foo& left, Foo& right) { [...] } } // namespace std But how do you properly define the specialization when the type it's specialized on is itself a template? Here's what I've got: template <size_t Bits> class fixed { [...] }; namespace std { template<size_t Bits> void swap(fixed<Bits>& left, fixed<Bits>& right) { [...] } } // namespace std Is this the right way to declare swap? It's supposed to be a specialization of the template function std::swap, but I can't tell whether the compiler is seeing it as such, or whether it thinks that it's an overload of it or something.

    Read the article

  • Compilation Error on Recursive Variadic Template Function

    - by Maxpm
    I've prepared a simple variadic template test in Code::Blocks, but I'm getting an error: No matching function for call to 'OutputSizes()' Here's my source code: #include <iostream> #include <typeinfo> using namespace std; template <typename FirstDatatype, typename... DatatypeList> void OutputSizes() { std::cout << typeid(FirstDatatype).name() << ": " << sizeof(FirstDatatype) << std::endl; OutputSizes<DatatypeList...>(); } int main() { OutputSizes<char, int, long int>(); return 0; } I'm using GNU GCC with -std=C++0x. Using std=gnu++0x makes no difference.

    Read the article

< Previous Page | 21 22 23 24 25 26 27 28 29 30 31 32  | Next Page >