Search Results

Search found 7065 results on 283 pages for 'cpu sockets'.

Page 252/283 | < Previous Page | 248 249 250 251 252 253 254 255 256 257 258 259  | Next Page >

  • How the number of indexes built on a table can impact performances?

    - by Davide Mauri
    We all know that putting too many indexes (I’m talking of non-clustered index only, of course) on table may produce performance problems due to the overhead that each index bring to all insert/update/delete operations on that table. But how much? I mean, we all agree – I think – that, generally speaking, having many indexes on a table is “bad”. But how bad it can be? How much the performance will degrade? And on a concurrent system how much this situation can also hurts SELECT performances? If SQL Server take more time to update a row on a table due to the amount of indexes it also has to update, this also means that locks will be held for more time, slowing down the perceived performance of all queries involved. I was quite curious to measure this, also because when teaching it’s by far more impressive and effective to show to attended a chart with the measured impact, so that they can really “feel” what it means! To do the tests, I’ve create a script that creates a table (that has a clustered index on the primary key which is an identity column) , loads 1000 rows into the table (inserting 1000 row using only one insert, instead of issuing 1000 insert of one row, in order to minimize the overhead needed to handle the transaction, that would have otherwise ), and measures the time taken to do it. The process is then repeated 16 times, each time adding a new index on the table, using columns from table in a round-robin fashion. Test are done against different row sizes, so that it’s possible to check if performance changes depending on row size. The result are interesting, although expected. This is the chart showing how much time it takes to insert 1000 on a table that has from 0 to 16 non-clustered indexes. Each test has been run 20 times in order to have an average value. The value has been cleaned from outliers value due to unpredictable performance fluctuations due to machine activity. The test shows that in a  table with a row size of 80 bytes, 1000 rows can be inserted in 9,05 msec if no indexes are present on the table, and the value grows up to 88 (!!!) msec when you have 16 indexes on it This means a impact on performance of 975%. That’s *huge*! Now, what happens if we have a bigger row size? Say that we have a table with a row size of 1520 byte. Here’s the data, from 0 to 16 indexes on that table: In this case we need near 22 msec to insert 1000 in a table with no indexes, but we need more that 500msec if the table has 16 active indexes! Now we’re talking of a 2410% impact on performance! Now we can have a tangible idea of what’s the impact of having (too?) many indexes on a table and also how the size of a row also impact performances. That’s why the golden rule of OLTP databases “few indexes, but good” is so true! (And in fact last week I saw a database with tables with 1700bytes row size and 23 (!!!) indexes on them!) This also means that a too heavy denormalization is really not a good idea (we’re always talking about OLTP systems, keep it in mind), since the performance get worse with the increase of the row size. So, be careful out there, and keep in mind the “equilibrium” is the key world of a database professional: equilibrium between read and write performance, between normalization and denormalization, between to few and too may indexes. PS Tests are done on a VMWare Workstation 7 VM with 2 CPU and 4 GB of Memory. Host machine is a Dell Precsioni M6500 with i7 Extreme X920 Quad-Core HT 2.0Ghz and 16Gb of RAM. Database is stored on a SSD Intel X-25E Drive, Simple Recovery Model, running on SQL Server 2008 R2. If you also want to to tests on your own, you can download the test script here: Open TestIndexPerformance.sql

    Read the article

  • VirtualBox 3.2 is released! A Red Letter Day?

    - by Fat Bloke
    Big news today! A new release of VirtualBox packed full of innovation and improvements. Over the next few weeks we'll take a closer look at some of these new features in a lot more depth, but today we'll whet your appetite with the headline descriptions. To start with, we should point out that this is the first Oracle-branded version which makes today a real Red-letter day ;-)  Oracle VM VirtualBox 3.2 Version 3.2 moves VirtualBox forward in 3 main areas ( handily, all beginning with "P" ) : performance, power and supported guest operating system platforms.  Let's take a look: Performance New Latest Intel hardware support - Harnessing the latest in chip-level support for virtualization, VirtualBox 3.2 supports new Intel Core i5 and i7 processor and Intel Xeon processor 5600 Series support for Unrestricted Guest Execution bringing faster boot times for everything from Windows to Solaris guests; New Large Page support - Reducing the size and overhead of key system resources, Large Page support delivers increased performance by enabling faster lookups and shorter table creation times. New In-hypervisor Networking - Significant optimization of the networking subsystem has reduced context switching between guests and host, increasing network throughput by up to 25%. New New Storage I/O subsystem - VirtualBox 3.2 offers a completely re-worked virtual disk subsystem which utilizes asynchronous I/O to achieve high-performance whilst maintaining high data integrity; New Remote Video Acceleration - The unique built-in VirtualBox Remote Display Protocol (VRDP), which is primarily used in virtual desktop infrastructure deployments, has been enhanced to deliver video acceleration. This delivers a rich user experience coupled with reduced computational expense, which is vital when servers are running hundreds of virtual machines; Power New Page Fusion - Traditional Page Sharing techniques have suffered from long and expensive cache construction as pages are scrutinized as candidates for de-duplication. Taking a smarter approach, VirtualBox Page Fusion uses intelligence in the guest virtual machine to determine much more rapidly and accurately those pages which can be eliminated thereby increasing the capacity or vm density of the system; New Memory Ballooning- Ballooning provides another method to increase vm density by allowing the memory of one guest to be recouped and made available to others; New Multiple Virtual Monitors - VirtualBox 3.2 now supports multi-headed virtual machines with up to 8 virtual monitors attached to a guest. Each virtual monitor can be a host window, or be mapped to the hosts physical monitors; New Hot-plug CPU's - Modern operating systems such Windows Server 2008 x64 Data Center Edition or the latest Linux server platforms allow CPUs to be dynamically inserted into a system to provide incremental computing power while the system is running. Version 3.2 introduces support for Hot-plug vCPUs, allowing VirtualBox virtual machines to be given more power, with zero-downtime of the guest; New Virtual SAS Controller - VirtualBox 3.2 now offers a virtual SAS controller, enabling it to run the most demanding of high-end guests; New Online Snapshot Merging - Snapshots are powerful but can eat up disk space and need to be pruned from time to time. Historically, machines have needed to be turned off to delete or merge snapshots but with VirtualBox 3.2 this operation can be done whilst the machines are running. This allows sophisticated system management with minimal interruption of operations; New OVF Enhancements - VirtualBox has supported the OVF standard for virtual machine portability for some time. Now with 3.2, VirtualBox specific configuration data is also stored in the standard allowing richer virtual machine definitions without compromising portability; New Guest Automation - The Guest Automation APIs allow host-based logic to drive operations in the guest; Platforms New USB Keyboard and Mouse - Support more guests that require USB input devices; New Oracle Enterprise Linux 5.5 - Support for the latest version of Oracle's flagship Linux platform; New Ubuntu 10.04 ("Lucid Lynx") - Support for both the desktop and server version of the popular Ubuntu Linux distribution; And as a man once said, "just one more thing" ... New Mac OS X (experimental) - On Apple hardware only, support for creating virtual machines run Mac OS X. All in all this is a pretty powerful release packed full of innovation and speedups. So what are you waiting for?  -FB 

    Read the article

  • Very slow KVM in Ubuntu 12.04

    - by Guy Fawkes
    I use Ubuntu 12.04 64-bit and KVM, my CPU is Core i5 3.3 GHz and I have 8 GB of DDR3 RAM. I run Windows 7 in KVM and it's extremely slow. My co-worker use Debian on the same PC configuration and can run Windows 7 extremely fast! Where can be my problem? sudo cat /etc/libvirt/qemu/windows.xml <!-- WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY TO BE OVERWRITTEN AND LOST. Changes to this xml configuration should be made using: virsh edit windows or other application using the libvirt API. --> <domain type='kvm'> <name>windows</name> <uuid>5c685175-baea-0ca6-591f-8269d923ffb8</uuid> <memory>2097152</memory> <currentMemory>2097152</currentMemory> <vcpu>1</vcpu> <os> <type arch='x86_64' machine='pc-1.0'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset='localtime'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/bin/kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='raw'/> <source file='/var/lib/libvirt/images/windows.img'/> <target dev='hda' bus='ide'/> <address type='drive' controller='0' bus='0' unit='0'/> </disk> <controller type='ide' index='0'> <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/> </controller> <interface type='network'> <mac address='52:54:00:94:63:91'/> <source network='default'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/> </interface> <serial type='pty'> <target port='0'/> </serial> <console type='pty'> <target type='serial' port='0'/> </console> <input type='tablet' bus='usb'/> <input type='mouse' bus='ps2'/> <graphics type='vnc' port='-1' autoport='yes'/> <sound model='ich6'> <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/> </sound> <video> <model type='vga' vram='262144' heads='1'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/> </video> <memballoon model='virtio'> <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/> </memballoon> </devices> </domain>

    Read the article

  • Simple OpenGL program major slow down at high resolution

    - by Grieverheart
    I have created a small OpenGL 3.3 (Core) program using freeglut. The whole geometry is two boxes and one plane with some textures. I can move around like in an FPS and that's it. The problem is I face a big slow down of fps when I make my window large (i.e. above 1920x1080). I have monitors GPU usage when in full-screen and it shows GPU load of nearly 100% and Memory Controller load of ~85%. When at 600x600, these numbers are at about 45%, my CPU is also at full load. I use deferred rendering at the moment but even when forward rendering, the slow down was nearly as severe. I can't imagine my GPU is not powerful enough for something this simple when I play many games at 1080p (I have a GeForce GT 120M btw). Below are my shaders, First Pass #VS #version 330 core uniform mat4 ModelViewMatrix; uniform mat3 NormalMatrix; uniform mat4 MVPMatrix; uniform float scale; layout(location = 0) in vec3 in_Position; layout(location = 1) in vec3 in_Normal; layout(location = 2) in vec2 in_TexCoord; smooth out vec3 pass_Normal; smooth out vec3 pass_Position; smooth out vec2 TexCoord; void main(void){ pass_Position = (ModelViewMatrix * vec4(scale * in_Position, 1.0)).xyz; pass_Normal = NormalMatrix * in_Normal; TexCoord = in_TexCoord; gl_Position = MVPMatrix * vec4(scale * in_Position, 1.0); } #FS #version 330 core uniform sampler2D inSampler; smooth in vec3 pass_Normal; smooth in vec3 pass_Position; smooth in vec2 TexCoord; layout(location = 0) out vec3 outPosition; layout(location = 1) out vec3 outDiffuse; layout(location = 2) out vec3 outNormal; void main(void){ outPosition = pass_Position; outDiffuse = texture(inSampler, TexCoord).xyz; outNormal = pass_Normal; } Second Pass #VS #version 330 core uniform float scale; layout(location = 0) in vec3 in_Position; void main(void){ gl_Position = mat4(1.0) * vec4(scale * in_Position, 1.0); } #FS #version 330 core struct Light{ vec3 direction; }; uniform ivec2 ScreenSize; uniform Light light; uniform sampler2D PositionMap; uniform sampler2D ColorMap; uniform sampler2D NormalMap; out vec4 out_Color; vec2 CalcTexCoord(void){ return gl_FragCoord.xy / ScreenSize; } vec4 CalcLight(vec3 position, vec3 normal){ vec4 DiffuseColor = vec4(0.0); vec4 SpecularColor = vec4(0.0); vec3 light_Direction = -normalize(light.direction); float diffuse = max(0.0, dot(normal, light_Direction)); if(diffuse 0.0){ DiffuseColor = diffuse * vec4(1.0); vec3 camera_Direction = normalize(-position); vec3 half_vector = normalize(camera_Direction + light_Direction); float specular = max(0.0, dot(normal, half_vector)); float fspecular = pow(specular, 128.0); SpecularColor = fspecular * vec4(1.0); } return DiffuseColor + SpecularColor + vec4(0.1); } void main(void){ vec2 TexCoord = CalcTexCoord(); vec3 Position = texture(PositionMap, TexCoord).xyz; vec3 Color = texture(ColorMap, TexCoord).xyz; vec3 Normal = normalize(texture(NormalMap, TexCoord).xyz); out_Color = vec4(Color, 1.0) * CalcLight(Position, Normal); } Is it normal for the GPU to be used that much under the described circumstances? Is it due to poor performance of freeglut? I understand that the problem could be specific to my code, but I can't paste the whole code here, if you need more info, please tell me.

    Read the article

  • iptables - quick safety eval & limit max conns over time

    - by Peter Hanneman
    Working on locking down a *nix server box with some fancy iptable(v1.4.4) rules. I'm approaching the matter with a "paranoid, everyone's out to get me" style, not necessarily because I expect the box to be a hacker magnet but rather just for the sake of learning iptables and *nix security more throughly. Everything is well commented - so if anyone sees something I missed please let me know! The *nat table's "--to-ports" point to the only ports with actively listening services. (aside from pings) Layer 2 apps listen exclusively on chmod'ed sockets bridged by one of the layer 1 daemons. Layers 3+ inherit from layer 2 in a similar fashion. The two lines giving me grief are commented out at the very bottom of the *filter rules. The first line runs fine but it's all or nothing. :) Many thanks, Peter H. *nat #Flush previous rules, chains and counters for the 'nat' table -F -X -Z #Redirect traffic to alternate internal ports -I PREROUTING --src 0/0 -p tcp --dport 80 -j REDIRECT --to-ports 8080 -I PREROUTING --src 0/0 -p tcp --dport 443 -j REDIRECT --to-ports 8443 -I PREROUTING --src 0/0 -p udp --dport 53 -j REDIRECT --to-ports 8053 -I PREROUTING --src 0/0 -p tcp --dport 9022 -j REDIRECT --to-ports 8022 COMMIT *filter #Flush previous settings, chains and counters for the 'filter' table -F -X -Z #Set default behavior for all connections and protocols -P INPUT DROP -P OUTPUT DROP -A FORWARD -j DROP #Only accept loopback traffic originating from the local NIC -A INPUT -i lo -j ACCEPT -A INPUT ! -i lo -d 127.0.0.0/8 -j DROP #Accept all outgoing non-fragmented traffic having a valid state -A OUTPUT ! -f -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT #Drop fragmented incoming packets (Not always malicious - acceptable for use now) -A INPUT -f -j DROP #Allow ping requests rate limited to one per second (burst ensures reliable results for high latency connections) -A INPUT -p icmp --icmp-type 8 -m limit --limit 1/sec --limit-burst 2 -j ACCEPT #Declaration of custom chains -N INSPECT_TCP_FLAGS -N INSPECT_STATE -N INSPECT #Drop incoming tcp connections with invalid tcp-flags -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL ALL -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL NONE -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ACK,FIN FIN -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ACK,PSH PSH -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ACK,URG URG -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL FIN,PSH,URG -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags FIN,RST FIN,RST -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags SYN,RST SYN,RST -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL SYN,RST,ACK,FIN,URG -j DROP #Accept incoming traffic having either an established or related state -A INSPECT_STATE -m state --state ESTABLISHED,RELATED -j ACCEPT #Drop new incoming tcp connections if they aren't SYN packets -A INSPECT_STATE -m state --state NEW -p tcp ! --syn -j DROP #Drop incoming traffic with invalid states -A INSPECT_STATE -m state --state INVALID -j DROP #INSPECT chain definition -A INSPECT -p tcp -j INSPECT_TCP_FLAGS -A INSPECT -j INSPECT_STATE #Route incoming traffic through the INSPECT chain -A INPUT -j INSPECT #Accept redirected HTTP traffic via HA reverse proxy -A INPUT -p tcp --dport 8080 -j ACCEPT #Accept redirected HTTPS traffic via STUNNEL SSH gateway (As well as tunneled HTTPS traffic destine for other services) -A INPUT -p tcp --dport 8443 -j ACCEPT #Accept redirected DNS traffic for NSD authoritative nameserver -A INPUT -p udp --dport 8053 -j ACCEPT #Accept redirected SSH traffic for OpenSSH server #Temp solution: -A INPUT -p tcp --dport 8022 -j ACCEPT #Ideal solution: #Limit new ssh connections to max 10 per 10 minutes while allowing an "unlimited" (or better reasonably limited?) number of established connections. #-A INPUT -p tcp --dport 8022 --state NEW,ESTABLISHED -m recent --set -j ACCEPT #-A INPUT -p tcp --dport 8022 --state NEW -m recent --update --seconds 600 --hitcount 11 -j DROP COMMIT *mangle #Flush previous rules, chains and counters in the 'mangle' table -F -X -Z COMMIT

    Read the article

  • Give a session on C++ AMP – here is how

    - by Daniel Moth
    Ever since presenting on C++ AMP at the AMD Fusion conference in June, then the Gamefest conference in August, and the BUILD conference in September, I've had numerous requests about my material from folks that want to re-deliver the same session. The C++ AMP session I put together has evolved over the 3 presentations to its final form that I used at BUILD, so that is the one I recommend you base yours on. Please get the slides and the recording from channel9 (I'll refer to slide numbers below). This is how I've been presenting the C++ AMP session: Context (slide 3, 04:18-08:18) Start with a demo, on my dual-GPU machine. I've been using the N-Body sample (for VS 11 Developer Preview). (slide 4) Use an nvidia slide that has additional examples of performance improvements that customers enjoy with heterogeneous computing. (slide 5) Talk a bit about the differences today between CPU and GPU hardware, leading to the fact that these will continue to co-exist and that GPUs are great for data parallel algorithms, but not much else today. One is a jack of all trades and the other is a number cruncher. (slide 6) Use the APU example from amd, as one indication that the hardware space is still in motion, emphasizing that the C++ AMP solution is a data parallel API, not a GPU API. It has a future proof design for hardware we have yet to see. (slide 7) Provide more meta-data, as blogged about when I first introduced C++ AMP. Code (slide 9-11) Introduce C++ AMP coding with a simplistic array-addition algorithm – the slides speak for themselves. (slide 12-13) index<N>, extent<N>, and grid<N>. (Slide 14-16) array<T,N>, array_view<T,N> and comparison between them. (Slide 17) parallel_for_each. (slide 18, 21) restrict. (slide 19-20) actual restrictions of restrict(direct3d) – the slides speak for themselves. (slide 22) bring it altogether with a matrix multiplication example. (slide 23-24) accelerator, and accelerator_view. (slide 26-29) Introduce tiling incl. tiled matrix multiplication [tiling probably deserves a whole session instead of 6 minutes!]. IDE (slide 34,37) Briefly touch on the concurrency visualizer. It supports GPU profiling, but enhancements specific to C++ AMP we hope will come at the Beta timeframe, which is when I'll be spending more time talking about it. (slide 35-36, 51:54-59:16) Demonstrate the GPU debugging experience in VS 11. Summary (slide 39) Re-iterate some of the points of slide 7, and add the point that the C++ AMP spec will be open for other compiler vendors to implement, even on other platforms (in fact, Microsoft is actively working on that). (slide 40) Links to content – see slide – including where all your questions should go: http://social.msdn.microsoft.com/Forums/en/parallelcppnative/threads.   "But I don't have time for a full blown session, I only need 2 (or just 1, or 3) C++ AMP slides to use in my session on related topic X" If all you want is a small number of slides, you can take some from the session above and customize them. But because I am so nice, I have created some slides for you, including talking points in the notes section. Download them here. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Syntax of passing lambda

    - by Astara
    Right now, I'm working on refactoring a program that calls its parts by polling to a more event-driven structure. I've created sched and task classes with the sced to become a base class of the current main loop. The tasks will be created for each meter so they can be called off of that instead of polling. Each of the events main calls are a type of meter that gather info and display it. When the program is coming up, all enabled meters get 'constructed' by a main-sub. In that sub, I want to store off the "this" pointer associated with the meter, as well as the common name for the "action routine. void MeterMaker::Meter_n_Task (Meter * newmeter,) { push(newmeter); // handle non-timed draw events Task t = new Task(now() + 0.5L); t.period={0,1U}; t.work_meter = newmeter; t.work = [&newmeter](){newmeter.checkevent();};<<--attempt at lambda t.flags = T_Repeat; t.enable_task(); _xos->sched_insert(t); } A sample call to it: Meter_n_Task(new CPUMeter(_xos, "CPU ")); 've made the scheduler a base class of the main routine (that handles the loop), and I've tried serveral variations to get the task class to be a base of the meter class, but keep running into roadblocks. It's alot like "whack-a-mole" -- pound in something to fix something one place, and then a new probl pops out elsewhere. Part of the problem, is that the sched.h file that is trying to hold the Task Q, includes the Task header file. The task file Wants to refer to the most "base", Meter class. The meter class pulls in the main class of the parent as it passes a copy of the parent to the children so they can access the draw routines in the parent. Two references in the task file are for the 'this' pointer of the meter and the meter's update sub (to be called via this). void *this_data= NULL; void (*this_func)() = NULL; Note -- I didn't really want to store these in the class, as I wanted to use a lamdba in that meter&task routine above to store a routine+context to be used to call the meter's action routine. Couldn't figure out the syntax. But am running into other syntax problems trying to store the pointers...such as g++: COMPILE lsched.cc In file included from meter.h:13:0, from ltask.h:17, from lsched.h:13, from lsched.cc:13: xosview.h:30:47: error: expected class-name before ‘{’ token class XOSView : public XWin, public Scheduler { Like above where it asks for a class, where the classname "Scheduler" is. !?!? Huh? That IS a class name. I keep going in circles with things that don't make sense... Ideally I'd get the lamba to work right in the Meter_n_Task routine at the top. I wanted to only store 1 pointer in the 'Task' class that was a pointer to my lambda that would have already captured the "this" value ... but couldn't get that syntax to work at all when I tried to start it into a var in the 'Task' class. This project, FWIW, is my teething project on the new C++... (of course it's simple!.. ;-))... I've made quite a bit of progress in other areas in the code, but this lambda syntax has me stumped...its at times like thse that I appreciate the ease of this type of operation in perl. Sigh. Not sure the best way to ask for help here, as this isn't a simple question. But thought I'd try!... ;-) Too bad I can't attach files to this Q.

    Read the article

  • SQL Server Optimizer Malfunction?

    - by Tony Davis
    There was a sharp intake of breath from the audience when Adam Machanic declared the SQL Server optimizer to be essentially "stuck in 1997". It was during his fascinating "Query Tuning Mastery: Manhandling Parallelism" session at the recent PASS SQL Summit. Paraphrasing somewhat, Adam (blog | @AdamMachanic) offered a convincing argument that the optimizer often delivers flawed plans based on assumptions that are no longer valid with today’s hardware. In 1997, when Microsoft engineers re-designed the database engine for SQL Server 7.0, SQL Server got its initial implementation of a cost-based optimizer. Up to SQL Server 2000, the developer often had to deploy a steady stream of hints in SQL statements to combat the occasionally wilful plan choices made by the optimizer. However, with each successive release, the optimizer has evolved and improved in its decision-making. It is still prone to the occasional stumble when we tackle difficult problems, join large numbers of tables, perform complex aggregations, and so on, but for most of us, most of the time, the optimizer purrs along efficiently in the background. Adam, however, challenged further any assumption that the current optimizer is competent at providing the most efficient plans for our more complex analytical queries, and in particular of offering up correctly parallelized plans. He painted a picture of a present where complex analytical queries have become ever more prevalent; where disk IO is ever faster so that reads from disk come into buffer cache faster than ever; where the improving RAM-to-data ratio means that we have a better chance of finding our data in cache. Most importantly, we have more CPUs at our disposal than ever before. To get these queries to perform, we not only need to have the right indexes, but also to be able to split the data up into subsets and spread its processing evenly across all these available CPUs. Improvements such as support for ColumnStore indexes are taking things in the right direction, but, unfortunately, deficiencies in the current Optimizer mean that SQL Server is yet to be able to exploit properly all those extra CPUs. Adam’s contention was that the current optimizer uses essentially the same costing model for many of its core operations as it did back in the days of SQL Server 7, based on assumptions that are no longer valid. One example he gave was a "slow disk" bias that may have been valid back in 1997 but certainly is not on modern disk systems. Essentially, the optimizer assesses the relative cost of serial versus parallel plans based on the assumption that there is no IO cost benefit from parallelization, only CPU. It assumes that a single request will saturate the IO channel, and so a query would not run any faster if we parallelized IO because the disk system simply wouldn’t be able to handle the extra pressure. As such, the optimizer often decides that a serial plan is lower cost, often in cases where a parallel plan would improve performance dramatically. It was challenging and thought provoking stuff, as were his techniques for driving parallelism through query logic based on subsets of rows that define the "grain" of the query. I highly recommend you catch the session if you missed it. I’m interested to hear though, when and how often people feel the force of the optimizer’s shortcomings. Barring mistakes, such as stale statistics, how often do you feel the Optimizer fails to find the plan you think it should, and what are the most common causes? Is it fighting to induce it toward parallelism? Combating unexpected plans, arising from table partitioning? Something altogether more prosaic? Cheers, Tony.

    Read the article

  • Type of computer for a developer on the road

    - by nabucosound
    Hi developers: I am planning to be traveling through eurasia and asia (russia, china, korea, japan, south east asia...) for a while and, although there are plenty of marvelous things to see and to do, I must keep on working :(. I am a python developer, dedicated mainly to web projects. I use django, sqlite3, browsers, and ocassionaly (only if I have no choice) I install postgres, mysql, apache or any other servers commonly used in the internets. I do my coding on vim, use ssh to connect, lftp to transfer files, IRC, grep/ack... So I spend most of my time in the terminal shells. But I also use IM or Skype to communicate with my clients and peers, as well as some other software (that after all is not mandatory for my day-to-day work). I currently work with a Macbook Pro (3 years old now) and so far I am very happy with the performance. But I don't want to carry it if I am going to be "on transit" for long time, it is simply huge and heavy for what I am planning to load in my rather small backpack (while traveling, less is more, you know). So here I am reading all kind of opinions about netbooks, because at first sight this is the kind of computer I thought I had to choose. I am going to use Linux for it, Microsoft is not my cup of tea and Mac is not available for them, unless I were to buy a Macbook air, something that I won't do because if I am robbed or rain/dust/truck loaders break it I would burst in tears. I am concerned about wifi performance and connectivity, I am going to use one of those linux distros/tools to hack/test on "open" networks (if you know what I mean) in case I am not in a place with real free wifi access and I find myself in an emergency. CPU speed should be acceptable, but since I don't plan to run Photoshop or expensive IDEs, I guess most of the time I won't be overloading the machine. Apart from this, maybe (surely) I am missing other features to consider. With that said (sorry about the length) here it comes my question, raised from a deep ignorance regarding the wars betweeb betbooks vs notebooks (I assume tablet PCs are not for programming yet): If I buy a netbook will I have to throw it away after 1 month on the road and buy a notebook? Or will I be OK? Thanks! Hector Update I have received great feedback so far! I would like to insist on the fact that I will be traveling through many different countries and scenarios. I am sure that while in Japan I will be more than fine with anything related to technology, connectivity, etc. But consider that I will be, for example, on a train through Russia (transsiberian) and will cross Mongolia as well. I will stay in friends' places sometimes, but most of the time I will have to work from hostel rooms, trains, buses, beaches (hey this last one doesn't sound too bad hehe!). I think some of your answers guys seem to focus on the geek part but loose the point of this "on the road" fact. I am very aware and agree that netbooks suck compared to notebooks, but what I am trying to do here is to find a balance and discover your experiences with netbooks to see first hand if a netbook will be a fail in the mid-long term of the trip for my purposes. So I have resumed the main concepts expressed here on this small list, in no particular order: keyboard/touchpad feel: I use vim so no need of moving mouse pointers that much, unless I am browsing the web, but intensive use of keyboard screen real state: again, terminal work for most of the time battery life: I think something very important weight/size: also very important looks not worth stealing it, don't give a shit if it is lost/stolen/broken: this may depend on kind of person, your economy, etc. Also to prevent losing work, I will upload EVERYTHING to the cloud whenever I'll have a chance. wifi: don't want to discover my wifi is one of those that cannot deal with half the routers on this planet or has poor connectivity. Thanks again for your answers and comments!

    Read the article

  • Cloud Computing Pricing - It's like a Hotel

    - by BuckWoody
    I normally don't go into the economics or pricing side of Distributed Computing, but I've had a few friends that have been surprised by a bill lately and I wanted to quickly address at least one aspect of it. Most folks are used to buying software and owning it outright - like buying a car. We pay a lot for the car, and then we use it whenever we want. We think of the "cloud" services as a taxi - we'll just pay for the ride we take an no more. But it's not quite like that. It's actually more like a hotel. When you subscribe to Azure using a free offering like the MSDN subscription, you don't have to pay anything for the service. But when you create an instance of a Web or Compute Role, Storage, that sort of thing, you can think of the idea of checking into a hotel room. You get the key, you pay for the room. For Azure, using bandwidth, CPU and so on is billed just like it states in the Azure Portal. so in effect there is a cost for the service and then a cost to use it, like water or power or any other utility. Where this bit some folks is that they created an instance, played around with it, and then left it running. No one was using it, no one was on - so they thought they wouldn't be charged. But they were. It wasn't much, but it was a surprise.They had the hotel room key, but they weren't in the room, so to speak. To add to their frustration, they had to talk to someone on the phone to cancel the account. I understand the frustration. Although we have all this spelled out in the sign up area, not everyone has the time to read through all that. I get that. So why not make this easier? As an explanation, we bill for that time because the instance is still running, and we have to tie up resources to be available the second you want them, and that costs money. As far as being able to cancel from the portal, that's also something that needs to be clearer. You may not be aware that you can spin up instances using code - and so cancelling from the Portal would allow you to do the same thing. Since a mistake in code could erase all of your instances and the account, we make you call to make sure you're you and you really want to take it down. Not a perfect system by any means, but we'll evolve this as time goes on. For now, I wanted to make sure you're aware of what you should do. By the way, you don't have to cancel your whole account not to be billed. Just delete the instance from the portal and you won't be charged. You don't have to call anyone for that. And just FYI - you can download the SDK for Azure and never even hit the online version at all for learning and playing around. No sign-up, no credit card, PO, nothing like that. In fact, that's how I demo Azure all the time. Everything runs right on your laptop in an emulated environment.  

    Read the article

  • Same SELECT used in an INSERT has different execution plan

    - by amacias
    A customer complained that a query and its INSERT counterpart had different execution plans, and of course, the INSERT was slower. First lets look at the SELECT : SELECT ua_tr_rundatetime,        ua_ch_treatmentcode,        ua_tr_treatmentcode,        ua_ch_cellid,        ua_tr_cellid FROM   (SELECT DISTINCT CH.treatmentcode AS UA_CH_TREATMENTCODE,                         CH.cellid        AS UA_CH_CELLID         FROM    CH,                 DL         WHERE  CH.contactdatetime > SYSDATE - 5                AND CH.treatmentcode = DL.treatmentcode) CH_CELLS,        (SELECT DISTINCT T.treatmentcode AS UA_TR_TREATMENTCODE,                         T.cellid        AS UA_TR_CELLID,                         T.rundatetime   AS UA_TR_RUNDATETIME         FROM    T,                 DL         WHERE  T.treatmentcode = DL.treatmentcode) TRT_CELLS WHERE  CH_CELLS.ua_ch_treatmentcode(+) = TRT_CELLS.ua_tr_treatmentcode;  The query has 2 DISTINCT subqueries.  The execution plan shows one with DISTICT Placement transformation applied and not the other. The view in Step 5 has the prefix VW_DTP which means DISTINCT Placement. -------------------------------------------------------------------- | Id  | Operation                    | Name            | Cost (%CPU) -------------------------------------------------------------------- |   0 | SELECT STATEMENT             |                 |   272K(100) |*  1 |  HASH JOIN OUTER             |                 |   272K  (1) |   2 |   VIEW                       |                 |  4408   (1) |   3 |    HASH UNIQUE               |                 |  4408   (1) |*  4 |     HASH JOIN                |                 |  4407   (1) |   5 |      VIEW                    | VW_DTP_48BAF62C |  1660   (2) |   6 |       HASH UNIQUE            |                 |  1660   (2) |   7 |        TABLE ACCESS FULL     | DL              |  1644   (1) |   8 |      TABLE ACCESS FULL       | T               |  2744   (1) |   9 |   VIEW                       |                 |   267K  (1) |  10 |    HASH UNIQUE               |                 |   267K  (1) |* 11 |     HASH JOIN                |                 |   267K  (1) |  12 |      PARTITION RANGE ITERATOR|                 |   266K  (1) |* 13 |       TABLE ACCESS FULL      | CH              |   266K  (1) |  14 |      TABLE ACCESS FULL       | DL              |  1644   (1) -------------------------------------------------------------------- Query Block Name / Object Alias (identified by operation id): -------------------------------------------------------------    1 - SEL$1    2 - SEL$AF418D5F / TRT_CELLS@SEL$1    3 - SEL$AF418D5F    5 - SEL$F6AECEDE / VW_DTP_48BAF62C@SEL$48BAF62C    6 - SEL$F6AECEDE    7 - SEL$F6AECEDE / DL@SEL$3    8 - SEL$AF418D5F / T@SEL$3    9 - SEL$2        / CH_CELLS@SEL$1   10 - SEL$2   13 - SEL$2        / CH@SEL$2   14 - SEL$2        / DL@SEL$2 Predicate Information (identified by operation id): ---------------------------------------------------    1 - access("CH_CELLS"."UA_CH_TREATMENTCODE"="TRT_CELLS"."UA_TR_TREATMENTCODE")    4 - access("T"."TREATMENTCODE"="ITEM_1")   11 - access("CH"."TREATMENTCODE"="DL"."TREATMENTCODE")   13 - filter("CH"."CONTACTDATETIME">SYSDATE@!-5) The outline shows PLACE_DISTINCT(@"SEL$3" "DL"@"SEL$3") indicating that the QB3 is the one that got the transformation. Outline Data -------------   /*+       BEGIN_OUTLINE_DATA       IGNORE_OPTIM_EMBEDDED_HINTS       OPTIMIZER_FEATURES_ENABLE('11.2.0.3')       DB_VERSION('11.2.0.3')       ALL_ROWS       OUTLINE_LEAF(@"SEL$2")       OUTLINE_LEAF(@"SEL$F6AECEDE")       OUTLINE_LEAF(@"SEL$AF418D5F") PLACE_DISTINCT(@"SEL$3" "DL"@"SEL$3")       OUTLINE_LEAF(@"SEL$1")       OUTLINE(@"SEL$48BAF62C")       OUTLINE(@"SEL$3")       NO_ACCESS(@"SEL$1" "TRT_CELLS"@"SEL$1")       NO_ACCESS(@"SEL$1" "CH_CELLS"@"SEL$1")       LEADING(@"SEL$1" "TRT_CELLS"@"SEL$1" "CH_CELLS"@"SEL$1")       USE_HASH(@"SEL$1" "CH_CELLS"@"SEL$1")       FULL(@"SEL$2" "CH"@"SEL$2")       FULL(@"SEL$2" "DL"@"SEL$2")       LEADING(@"SEL$2" "CH"@"SEL$2" "DL"@"SEL$2")       USE_HASH(@"SEL$2" "DL"@"SEL$2")       USE_HASH_AGGREGATION(@"SEL$2")       NO_ACCESS(@"SEL$AF418D5F" "VW_DTP_48BAF62C"@"SEL$48BAF62C")       FULL(@"SEL$AF418D5F" "T"@"SEL$3")       LEADING(@"SEL$AF418D5F" "VW_DTP_48BAF62C"@"SEL$48BAF62C" "T"@"SEL$3")       USE_HASH(@"SEL$AF418D5F" "T"@"SEL$3")       USE_HASH_AGGREGATION(@"SEL$AF418D5F")       FULL(@"SEL$F6AECEDE" "DL"@"SEL$3")       USE_HASH_AGGREGATION(@"SEL$F6AECEDE")       END_OUTLINE_DATA   */ The 10053 shows there is a comparative of cost with and without the transformation. This means the transformation belongs to Cost-Based Query Transformations (CBQT). In SEL$3 the optimization of the query block without the transformation is 6659.73 and with the transformation is 4408.41 so the transformation is kept. GBP/DP: Checking validity of GBP/DP for query block SEL$3 (#3) DP: Checking validity of distinct placement for query block SEL$3 (#3) DP: Using search type: linear DP: Considering distinct placement on query block SEL$3 (#3) DP: Starting iteration 1, state space = (5) : (0) DP: Original query DP: Costing query block. DP: Updated best state, Cost = 6659.73 DP: Starting iteration 2, state space = (5) : (1) DP: Using DP transformation in this iteration. DP: Transformed query DP: Costing query block. DP: Updated best state, Cost = 4408.41 DP: Doing DP on the original QB. DP: Doing DP on the preserved QB. In SEL$2 the cost without the transformation is less than with it so it is not kept. GBP/DP: Checking validity of GBP/DP for query block SEL$2 (#2) DP: Checking validity of distinct placement for query block SEL$2 (#2) DP: Using search type: linear DP: Considering distinct placement on query block SEL$2 (#2) DP: Starting iteration 1, state space = (3) : (0) DP: Original query DP: Costing query block. DP: Updated best state, Cost = 267936.93 DP: Starting iteration 2, state space = (3) : (1) DP: Using DP transformation in this iteration. DP: Transformed query DP: Costing query block. DP: Not update best state, Cost = 267951.66 To the same query an INSERT INTO is added and the result is a very different execution plan. INSERT  INTO cc               (ua_tr_rundatetime,                ua_ch_treatmentcode,                ua_tr_treatmentcode,                ua_ch_cellid,                ua_tr_cellid)SELECT ua_tr_rundatetime,       ua_ch_treatmentcode,       ua_tr_treatmentcode,       ua_ch_cellid,       ua_tr_cellidFROM   (SELECT DISTINCT CH.treatmentcode AS UA_CH_TREATMENTCODE,                        CH.cellid        AS UA_CH_CELLID        FROM    CH,                DL        WHERE  CH.contactdatetime > SYSDATE - 5               AND CH.treatmentcode = DL.treatmentcode) CH_CELLS,       (SELECT DISTINCT T.treatmentcode AS UA_TR_TREATMENTCODE,                        T.cellid        AS UA_TR_CELLID,                        T.rundatetime   AS UA_TR_RUNDATETIME        FROM    T,                DL        WHERE  T.treatmentcode = DL.treatmentcode) TRT_CELLSWHERE  CH_CELLS.ua_ch_treatmentcode(+) = TRT_CELLS.ua_tr_treatmentcode;----------------------------------------------------------| Id  | Operation                     | Name | Cost (%CPU)----------------------------------------------------------|   0 | INSERT STATEMENT              |      |   274K(100)|   1 |  LOAD TABLE CONVENTIONAL      |      |            |*  2 |   HASH JOIN OUTER             |      |   274K  (1)|   3 |    VIEW                       |      |  6660   (1)|   4 |     SORT UNIQUE               |      |  6660   (1)|*  5 |      HASH JOIN                |      |  6659   (1)|   6 |       TABLE ACCESS FULL       | DL   |  1644   (1)|   7 |       TABLE ACCESS FULL       | T    |  2744   (1)|   8 |    VIEW                       |      |   267K  (1)|   9 |     SORT UNIQUE               |      |   267K  (1)|* 10 |      HASH JOIN                |      |   267K  (1)|  11 |       PARTITION RANGE ITERATOR|      |   266K  (1)|* 12 |        TABLE ACCESS FULL      | CH   |   266K  (1)|  13 |       TABLE ACCESS FULL       | DL   |  1644   (1)----------------------------------------------------------Query Block Name / Object Alias (identified by operation id):-------------------------------------------------------------   1 - SEL$1   3 - SEL$3 / TRT_CELLS@SEL$1   4 - SEL$3   6 - SEL$3 / DL@SEL$3   7 - SEL$3 / T@SEL$3   8 - SEL$2 / CH_CELLS@SEL$1   9 - SEL$2  12 - SEL$2 / CH@SEL$2  13 - SEL$2 / DL@SEL$2Predicate Information (identified by operation id):---------------------------------------------------   2 - access("CH_CELLS"."UA_CH_TREATMENTCODE"="TRT_CELLS"."UA_TR_TREATMENTCODE")   5 - access("T"."TREATMENTCODE"="DL"."TREATMENTCODE")  10 - access("CH"."TREATMENTCODE"="DL"."TREATMENTCODE")  12 - filter("CH"."CONTACTDATETIME">SYSDATE@!-5)Outline Data-------------  /*+      BEGIN_OUTLINE_DATA      IGNORE_OPTIM_EMBEDDED_HINTS      OPTIMIZER_FEATURES_ENABLE('11.2.0.3')      DB_VERSION('11.2.0.3')      ALL_ROWS      OUTLINE_LEAF(@"SEL$2")      OUTLINE_LEAF(@"SEL$3")      OUTLINE_LEAF(@"SEL$1")      OUTLINE_LEAF(@"INS$1")      FULL(@"INS$1" "CC"@"INS$1")      NO_ACCESS(@"SEL$1" "TRT_CELLS"@"SEL$1")      NO_ACCESS(@"SEL$1" "CH_CELLS"@"SEL$1")      LEADING(@"SEL$1" "TRT_CELLS"@"SEL$1" "CH_CELLS"@"SEL$1")      USE_HASH(@"SEL$1" "CH_CELLS"@"SEL$1")      FULL(@"SEL$2" "CH"@"SEL$2")      FULL(@"SEL$2" "DL"@"SEL$2")      LEADING(@"SEL$2" "CH"@"SEL$2" "DL"@"SEL$2")      USE_HASH(@"SEL$2" "DL"@"SEL$2")      USE_HASH_AGGREGATION(@"SEL$2")      FULL(@"SEL$3" "DL"@"SEL$3")      FULL(@"SEL$3" "T"@"SEL$3")      LEADING(@"SEL$3" "DL"@"SEL$3" "T"@"SEL$3")      USE_HASH(@"SEL$3" "T"@"SEL$3")      USE_HASH_AGGREGATION(@"SEL$3")      END_OUTLINE_DATA  */ There is no DISTINCT Placement view and no hint.The 10053 trace shows a new legend "DP: Bypassed: Not SELECT"implying that this is a transformation that it is possible only for SELECTs. GBP/DP: Checking validity of GBP/DP for query block SEL$3 (#4) DP: Checking validity of distinct placement for query block SEL$3 (#4) DP: Bypassed: Not SELECT. GBP/DP: Checking validity of GBP/DP for query block SEL$2 (#3) DP: Checking validity of distinct placement for query block SEL$2 (#3) DP: Bypassed: Not SELECT. In 12.1 (and hopefully in 11.2.0.4 when released) the restriction on applying CBQT to some DMLs and DDLs (like CTAS) is lifted.This is documented in BugTag Note:10013899.8 Allow CBQT for some DML / DDLAnd interestingly enough, it is possible to have a one-off patch in 11.2.0.3. SQL> select DESCRIPTION,OPTIMIZER_FEATURE_ENABLE,IS_DEFAULT     2  from v$system_fix_control where BUGNO='10013899'; DESCRIPTION ---------------------------------------------------------------- OPTIMIZER_FEATURE_ENABLE  IS_DEFAULT ------------------------- ---------- enable some transformations for DDL and DML statements 11.2.0.4                           1

    Read the article

  • AI to move custom-shaped spaceships (shape affecting movement behaviour)

    - by kaoD
    I'm designing a networked turn based 3D-6DOF space fleet combat strategy game which relies heavily on ship customization. Let me explain the game a bit, since you need to know a bit about it to set the question. What I aim for is the ability to create your own fleet of ships with custom shapes and attached modules (propellers, tractor beams...) which would give advantages and disadvantages to each ship, so you have lots of different fleet distributions. E.g., long ship with two propellers at the side would let the ship spin around that plane easily, bigger ships would move slowly unless you place lots of propellers at the back (therefore spending more "construction" points and energy when moving, and it will only move fast towards that direction.) I plan to balance all the game around this feature. The game would revolve around two phases: orders and combat phase. During the orders phase, you command the different ships. When all players finish the order phase, the combat phase begins and the ship orders get resolved in real-time for some time, then the action pauses and there's a new orders phase. The problem comes when I think about player input. To move a ship, you need to turn on or off different propellers if you want to steer, travel forward, brake, rotate in place... These propellers don't have to work at their whole power, so you can achieve more movement combinations with less propellers. I think this approach is a bit boring. The player doesn't want to fiddle with motors or anything, you just want to MOVE and KILL. The way I intend the player to give orders to these ships is by a destination and a rotation, and then the AI would calculate the correct propeller power to achive that movement and rotation. Propulsion doesn't have to be the same throught the entire turn calculation (after the orders have been given) so it would be cool if the ships reacted as they move, adjusting the power of the propellers for their needs dynamically, but it may be too hard to implement and it's not really needed for the game to work. In both cases, how would that AI decide which propellers to activate for the best (or at least not worst) trajectory to be achieved? I though about some approaches: Learning AI: The ship types would learn about their movement by trial and error, adjusting their behaviour with more uses, and finally becoming "smart". I don't want to get involved THAT far in AI coding, and I think it can be frustrating for the player (even if you can let it learn without playing.) Pre-calculated timestep movement: Upon ship creation, ALL possible movements are calculated for each propeller configuration and power for a given delta-time. Memory intensive, ugly, bad. Pre-calculated trajectories: The same as above but not for each delta-time but the whole trajectory, which would then be fitted as much as possible. Requires a fixed propeller configuration for the whole combat phase and is still memory intensive, ugly and bad. Continuous brute forcing: The AI continously checks ALL possible propeller configurations throughout the entire combat phase, precalculates a few time steps and decides which is the best one based on that. Con: what's good now might not be that good later, and it's too CPU intensive, ugly, and bad too. Single brute forcing: Same as above, but only brute forcing at the beginning of the simulation, so it needs constant propeller configuration throughout the entire combat phase. Coninuous angle check: This is not a full movement method, but maybe a way to discard "stupid" propeller configurations. Given the current propeller's normal vector and the final one, you can approximate the power needed for the propeller based on the angle. You must do this continuously throughout the whole combat phase. I figured this one out recently so I didn't put in too much thought. A priori, it has the "what's good now might not be that good later" drawback too, and it doesn't care about the other propellers which may act together to make a better propelling configuration. I'm really stuck here. Any ideas?

    Read the article

  • Best approach to depth streaming via existing codec

    - by Kevin
    I'm working on a development system (and game) intended for games set mostly in static third-person views. We produce our scenery by CG and photographic techniques. Our background art is rendered off-line by a production-grade renderer. To allow the runtime imagery to properly interact with the background art, I wrote a program to convert from depth output by Mental Ray into a texture, and a pixel shader to draw a quad such that the Z data comes from the texture. This technique is working out very well, but now we've decided that some of the camera angle changes between scenes should be animated. The animation itself is straightforward to produce from our CG models. We intend to encode it to some HD video codec such as H.264. The problem is that in order to maintain our runtime imagery on the screen, the depth buffer will need to be loaded for each video frame. Due to the bandwidth, the video's depth data will need to be compressed efficiently. I've looked into methods for performing temporal compression of depth info and found an interesting research paper here: http://web4.cs.ucl.ac.uk/staff/j.kautz/publications/depth-streaming.pdf The method establishes a mapping between 16-bit depth values and YCbCr values. The mapping is tuned to the properties of existing video codecs in order to maximize precision of the decoded depths after the YCbCr has undergone video compression. It allows an existing, unmodified video codec to be used on the backend. I'm looking at how to pull this off with the least possible work. (This design change was unplanned.) Our game engine itself is native C++, presently for Win32 and DirectX, although we've worked hard to keep platform dependence segregated because we intend other ports. We don't have motion video facilities in the engine yet but will ultimately need that anyway for cinematics. I was planning on using some off-the-shelf motion video solution we can plug into our engine, and haven't chosen one yet. This new added requirement makes selecting one harder since, among other things, we'll now need to bypass colourspace conversion on one of the streams, and also will need to be playing two streams simultaneously in lockstep, on top of in some cases audio on one of them (for the cinematics). I'm also wondering if it's possible (or even useful) to do the conversion from YCbCr to depth in a pixel shader, or if it's better to just do it in CPU and separately load the resulting depth values into a locked tex. The conversion unfortunately does involve branching logic per-pixel. (There are more naive mappings that don't need branching, but they produce inferior results.) It could be reduced to a table lookup but the table would be 32MB. Programming is second-nature to me but I'm not that experienced with pix shaders and have zero knowledge of off-the-shelf video solutions. I'd therefore be interested in advice from others who may have dealt more with depth streaming, pixel shaders, and/or off-the-shelf codecs, regarding how feasible the proposed application is and what off-the-shelf video systems out there would best get along with this usage case.

    Read the article

  • How to fix: Ubuntu 12.04 reboots after loading with elilo

    - by Casey
    I have an HP p6-2120 with CPU: AMD A6-3620 APU with Radeon Graphics RAM: 6GB BIOS: HO2_710.ROM v7.10 [AMI v7.10 4/19/2012] Disk: SATA1 (/dev/sda) - 1 TB (windows) Disk: SATA2 (/dev/sdb) - 1 TB partitioned using "parted -a optimal /dev/sdb" as follows: .. 1049KB 201MB FAT32 boot flag set .. 201MB 60GB ext2 (/) .. 68GB 78GB linux-swap(v1) (swap) .. 78GB 790GB ext4 (/home) .. - rest is "free" space reserved for other purposes (eventually) ubuntu: 12.04.1 LTS [specifically: Release 12.04 (precise) 64-bit] kernel: linux 3.2.0-29-generic I created a bootable EFI USB from the ISO (64-bit) which I downloaded. I can run and install from the USB without any problems. The BIOS is an EFI bios that appears to be capable of booting in either EFI or Legacy mode. Initially, I did the "standard" install with NOTHING on disk2, and let the installer configure everything. The net result of this was that when I started the computer and forced it into "boot" menu mode, it DOES NOT recognize SATA2 as an EFI drive, and when I attempt to "legacy" boot from it, I get the message "ERROR: No Boot Disk has been detected." The "standard" install created one large partition that consumed the entire disk. At that point, I manually partitioned the disk (using sudo parted -a optimal /dev/sdb) as described above. I selected the "other" install, and changed the /dev/sdb1 to "bios_grub", /dev/sdb2 as "/" (ext4), /dev/sdb3 as swap, and /dev/sdb4 as "/home". [Note: fearing that possibly elilo did not recognize ext4, I switched /dev/sdb2 to ext2 and re-insalled] The net result was that the install appeared to trash the /dev/sdb1 partition so that it was NOT readable by anything. I re-formated /dev/sdb1 as FAT32 and set the boot flag. I repeated the install ignoring the messages about no bios_grub partition. After several attempts to get GRUB2 to work, I switched to elilo. I downloaded the most recent version and copied it (elilo-3.14-ia64.efi) to /dev/sdb1/efi/boot/bootx64.efi. (The BIOS boot loader did not recognize it either as elilo-3.14.ia64.efi or as elilo.efi. Based on the advice in one of the web-pages I found, I renamed it to bootx64.efi. This worked.) In that same directory (/efi/boot), I copied the file pointed to the link in /dev/sdb2/vmlinuz to /efi/boot/vmlinuz, and the file pointed to the link in /dev/sdb2/initrd.img to /efi/boot/initrd.img. I created an elilo.conf file as follows: timeout=5000 prompt default=linux-boot image=vmlinuz label=linux-boot read-only initrd=initrd.img root=/dev/sdb2 The /efi/boot directory contains 4 files: bootx64.efi elilo.conf vmlinuz initrd.img When I power-cycle the computer and force the boot menu, drive2 shows up as an EFI bootable drive. When I select it, I get the elilo prompt. Pressing , it appears to load the kernal (I have tried it with verbose=5, and there is a long string of messages with the final one a command line to load the kernel and a series of several dots that fly by) then the screen goes blank, and it reboots the computer. [Note: I have also tried substituting the UUID as found in the /etc/fstab of the installed system for the root directory. This had no effect.] This is a brief synopsis of several nights of fiddling with this. I would deeply appreciate any help you can give.

    Read the article

  • Java Mission Control for SE Embedded 8

    - by kshimizu-Oracle
    ????????????Java???·????????????Java Mission Control????Java SE 8 Embedded???????????Java????????????????Java Mission Control?????????JVM?Java????????? CPU?????????? ???????? ?????????? ???????UI???????????????? ????????????????????????????????????????????????????????????(Java Mission Control????????????????????????????????) 1. Java Mission Control??????? Java?????????????? JMX?????(MBean????) ? Java SE Embedded 8?Compact 3?Full JRE?????(???Minimal?VM??????) ????·???? ? Java SE Embedded 8?Full JRE??????(???Minimal?VM??????) ? ???????Java ME 8??????????????? 2. ???????JVM?????     2.1. JMX?????(MBeans???)????? >java -Dcom.sun.management.jmxremote=true               -Dcom.sun.management.jmxremote.port=7091                # ????????              -Dcom.sun.management.jmxremote.authenticate=false   # ????              -Dcom.sun.management.jmxremote.ssl=false                  # SSL??              -jar appliation.jar ? ??????????????????????JVM??????????????????? "-Djava.rmi.server.hostname=192.168.0.20"                     # ?????????IP????/???? ???????????(http://docs.oracle.com/javase/7/docs/technotes/guides/management/faq.html)?5???????????????????????     2.2. ????·????????? JVM????????????????????? "-XX:+UnlockCommercialFeatures -XX:+FlightRecorder" 3. Java Mission Control?????? JDK????????jmc??????????? >"JDK_HOME"/bin/jmc 4. Java Mission Control??JVM??????  Java Mission Control?????????????????????????????????????? - ????????????IP????·??????????????????JVM????????????????????? - ??????????(????·?????)?????????? - ??????????OK??? ????????????????????????????????????????????????????????????Java?????Java Mission Control???????? ??URL) http://www.oracle.com/technetwork/jp/java/javaseproducts/mission-control/index.html http://www.oracle.com/technetwork/jp/java/javaseproducts-old/mission-control/java-mission-control-wp-2008279-ja.pdf http://www.oracle.com/technetwork/java/embedded/resources/tech/java-flight-rec-on-java-se-emb-8-2158734.html

    Read the article

  • About the K computer

    - by nospam(at)example.com (Joerg Moellenkamp)
    Okay ? after getting yet another mail because of the new #1 on the Top500 list, I want to add some comments from my side: Yes, the system is using SPARC processor. And that is great news for a SPARC fan like me. It is using the SPARC VIIIfx processor from Fujitsu clocked at 2 GHz. No, it isn't the only one. Most people are saying there are two in the Top500 list using SPARC (#77 JAXA and #1 K) but in fact there are three. The Tianhe-1 (#2 on the Top500 list) super computer contains 2048 Galaxy "FT-1000" 1 GHz 8-core processors. Don't know it? The FeiTeng-1000 ? this proc is a 8 core, 8 threads per core, 1 ghz processor made in China. And it's SPARC based. By the way ? this sounds really familiar to me ? perhaps the people just took the opensourced UltraSPARC-T2 design, because some of the parameters sound just to similar. However it looks like that Tianhe-1 is using the SPARCs as input nodes and not as compute notes. No, I don't see it as the next M-series processor. Simple reason: You can't create SMP systems out of them ? it simply hasn't the functionality to do so. Even when there are multiple CPUs on a single board, they are not connected like an SMP/NUMA machine to a shared memory machine ? they are connected with the cluster interconnect (in this case the Tofu interconnect) and work like a large cluster. Yes, it has a lot of oomph in Linpack ? however I assume a lot came from the extensions to the SPARCv9 standard. No, Linpack has no relevance for any commercial workload ? Linpack is such a special load, that even some HPC people are arguing that it isn't really a good benchmark for HPC. It's embarrassingly parallel, it can work with relatively small interconnects compared to the interconnects in SMP systems (however we get in spheres SMP interconnects where a few years ago). Amdahl isn't hitting that hard when running Linpack. Yes, it's a good move to use SPARC. At some time in the last 10 years, there was an interesting twist in perception: SPARC was considered as proprietary architecture and x86 was the open architecture. However it's vice versa ? try to create a x86 clone and you have a lot of intellectual property problems, create a SPARC clone and you have to spend 100 bucks or so to get the specification from the SPARC Foundation and develop your own SPARC processor. Fujitsu is doing this for a long time now. So they had their own processor, their own know-how. So why was SPARC a good choice? Well ? essentially Fujitsu can do what they want with their core as it is their core, for example adding the extensions to the SPARCv9 chipset ? getting Intel to create extensions to x86 to help you with your product is a little bit harder. So Fujitsu could do they needed to do with their processor in order to create such a supercomputer. No, the K is really using no FPGA or GPU as accelerators. The K is really using the CPU at doing this job. Yes, it has a significantly enhanced FPU capable to execute 8 instructions in parallel. No, it doesn't run Solaris. Yes, it uses Linux. No, it doesn't hurt me ... as my colleague Roland Rambau (he knows a lot about HPC) said once to me ... it doesn't matter which OS is staying out of the way of the workload in HPC.

    Read the article

  • Profiling Silverlight Applications after installing Visual Studio 2010 Service Pack 1

    - by mbcrump
    Introduction Now that the dust has settled and everyone has downloaded and installed Visual Studio 2010 Service Pack 1, its time to talk about a new feature included that will help Silverlight Developers profile their applications. Let’s take a look at what the official documentation says about it: Performance Wizard for Silverlight – taken from VS2010 SP1 KB. Visual Studio 2010 SP1 enables you to tune the Silverlight application performance by profiling the code. A traditional code profiler cannot tune the rendering performance for Silverlight applications. Many higher-level profilers are added to Visual Studio 2010 SP1 so that you can better determine which parts of the application consume time. So, how do you do it? After you finish installing VS2010 SP1, make sure it took by going to Help –> About. You should see SP1Rel under Visual Studio 2010 as shown below. Now, that we have verified you are on the most current release, let’s load up a Silverlight Application. I’m going to take my hobby Silverlight project that I created a month or so ago. The reason that I’m picking this project is that I didn’t focus so much on performance as it was just built for fun and to see what I could do with Silverlight. I believe this makes the perfect application to profile.  After the project is loaded, click on Analyze then Launch Performance Wizard. Go ahead and click on CPU Sampling (recommended). You will notice that it ask which application to target. By Default, it will select the .Web project in an Silverlight Application. Go ahead and leave the default Web Project checked. We are going to leave the client as Internet Explorer. Now, go ahead and click finish. Now your Silverlight Application will launch. While your application is running, you will see the following inside of Visual Studio 2010. Here is where you will need to attach your Silverlight Application to the web application that is current being profiled. Simply click on the  Attach/Detach button below and find your application to attach to the profiler. In my case, I am using IE8 and could find it by the title. After you close your browser, you will notice it generated a report: These files will end with a .VSP If you click on the .VSP you will it generated the following report: We could turn off “Just My Code” but it may pick up things that we didn’t want to profile as shown below: One other feature to note is that you may want to export the data to a CSV or XML. You can do that by looking at the toolbar and clicking the button highlighted below. Conclusion The profiler for Silverlight is a great addition to an already great product. So before you ship a Silverlight Application run it through the profile and see what comes up. Since its included and free I can’t see a reason not to do this. Thanks again for reading and I hope you subscribe to my blog or follow me on Twitter for more Silverlight/WP7 fun.  Subscribe to my feed

    Read the article

  • libvirt upgrade caused vms to not see drives (boot media not found)

    - by bias
    I upgraded to Ubuntu 12.04.1 and now libvirt (via open nebula) successfully runs vms but they aren't finding the 2 drives (specifically, the boot drive). One is "hd" the other is "cdrom". The machine boots but fails and displays something like "boot media not found hd" (this was in a vnc terminal and I didn't copy the output anywhere so that's not the verbatim message). I tried constructing a new disk using the new version of qemu (via vmbuilder) and this new machine has the same problem as the old machine. In case it matters (I can't see why it would) I'm using open nebula to manage the machines. There's nothing relevant in any of the logs: syslog, libvirtd, oned. Which is to say nothing interesting/anomalous is reported when the machine is brought up. Versions libvirt 0.9.8-2ubuntu17.4 qemu-kvm 1.0+noroms-0ubuntu14.3 The libvirt xml config portions (relavent) <os> <type arch='x86_64' machine='pc-1.0'>hvm</type> <boot dev='hd'/> </os> ... <devices> <emulator>/usr/bin/kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='qcow2'/> <source file='/var/lib/one//203/images/disk.0'/> <target dev='sda' bus='scsi'/> <alias name='scsi0-0-0'/> <address type='drive' controller='0' bus='0' unit='0'/> </disk> <disk type='file' device='cdrom'> <driver name='qemu' type='raw'/> <source file='/var/lib/one//203/images/disk.1'/> <target dev='sdc' bus='scsi'/> <readonly/> <alias name='scsi0-0-2'/> <address type='drive' controller='0' bus='0' unit='2'/> </disk> <controller type='scsi' index='0'> <alias name='scsi0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/> </controller> <memballoon model='virtio'> <alias name='balloon0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/> </memballoon> ... </devices> The libvirt/qemu log contains 2012-11-25 22:19:24.328+0000: starting up LC_ALL=C PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin QEMU_AUDIO_DRV=none /usr/bin/kvm -S -M pc-1.0 -enable-kvm -m 256 -smp 1,sockets=1,cores=1,threads=1 -name one-204 -uuid 4be6c276-19e8-bdc2-e9c9-9ca5352f2be3 -nodefconfig -nodefaults -chardev socket,id=charmonitor,path=/var/lib/libvirt/qemu/one-204.monitor,server,nowait -mon chardev=charmonitor,id=monitor,mode=control -rtc base=utc -no-shutdown -device lsi,id=scsi0,bus=pci.0,addr=0x5 -drive file=/var/lib/one//204/images/disk.0,if=none,id=drive-scsi0-0-0,format=qcow2 -device scsi-disk,bus=scsi0.0,scsi-id=0,drive=drive-scsi0-0-0,id=scsi0-0-0,bootindex=1 -drive file=/var/lib/one//204/images/disk.1,if=none,media=cdrom,id=drive-scsi0-0-2,readonly=on,format=raw -device scsi-disk,bus=scsi0.0,scsi-id=2,drive=drive-scsi0-0-2,id=scsi0-0-2 -netdev tap,fd=18,id=hostnet0 -device rtl8139,netdev=hostnet0,id=net0,mac=02:00:c0:a8:00:68,bus=pci.0,addr=0x3 -netdev tap,fd=19,id=hostnet1 -device rtl8139,netdev=hostnet1,id=net1,mac=02:00:ad:f0:1b:94,bus=pci.0,addr=0x4 -usb -vnc 0.0.0.0:204 -vga cirrus -device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x6 kvm: -device rtl8139,netdev=hostnet0,id=net0,mac=02:00:c0:a8:00:68,bus=pci.0,addr=0x3: pci_add_option_rom: failed to find romfile "pxe-rtl8139.rom" kvm: -device rtl8139,netdev=hostnet1,id=net1,mac=02:00:ad:f0:1b:94,bus=pci.0,addr=0x4: pci_add_option_rom: failed to find romfile "pxe-rtl8139.rom"

    Read the article

  • How do I get 5.1 surround sound working on an Acer Aspire 5738ZG?

    - by kbargais_LV
    I got a problem with sound. I tried everything but no results. :( I got 3 sound ports. my daemon: # This file is part of PulseAudio. # # PulseAudio is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # PulseAudio is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with PulseAudio; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 # USA. ## Configuration file for the PulseAudio daemon. See pulse-daemon.conf(5) for ## more information. Default values are commented out. Use either ; or # for ## commenting. ; daemonize = no ; fail = yes ; allow-module-loading = yes ; allow-exit = yes ; use-pid-file = yes ; system-instance = no ; local-server-type = user ; enable-shm = yes ; shm-size-bytes = 0 # setting this 0 will use the system-default, usually 64 MiB ; lock-memory = no ; cpu-limit = no ; high-priority = yes ; nice-level = -11 ; realtime-scheduling = yes ; realtime-priority = 5 ; exit-idle-time = 20 ; scache-idle-time = 20 ; dl-search-path = (depends on architecture) ; load-default-script-file = yes ; default-script-file = /etc/pulse/default.pa ; log-target = auto ; log-level = notice ; log-meta = no ; log-time = no ; log-backtrace = 0 resample-method = speex-float-1 ; enable-remixing = yes ; enable-lfe-remixing = no flat-volumes = no ; rlimit-fsize = -1 ; rlimit-data = -1 ; rlimit-stack = -1 ; rlimit-core = -1 ; rlimit-as = -1 ; rlimit-rss = -1 ; rlimit-nproc = -1 ; rlimit-nofile = 256 ; rlimit-memlock = -1 ; rlimit-locks = -1 ; rlimit-sigpending = -1 ; rlimit-msgqueue = -1 ; rlimit-nice = 31 ; rlimit-rtprio = 9 ; rlimit-rttime = 1000000 ; default-sample-format = s16le ; default-sample-rate = 44100 ; default-sample-channels = 6 ; default-channel-map = front-left,front-right default-fragments = 8 default-fragment-size-msec = 10 ; enable-deferred-volume = yes ; deferred-volume-safety-margin-usec = 8000 ; deferred-volume-extra-delay-usec = 0

    Read the article

  • PHP-FPM stops responding and dies [migrated]

    - by user12361
    I'm running Drupal 6 with Nginx 1.5.1 and PHP-FPM (PHP 5.3.26) on a 1GB single core VPS with 3GB of swap space on SSD storage. I just switched from shared hosting to this unmanaged VPS because my site was getting too heavy, so I'm still learning the ropes. I have moderately high traffic, I don't really monitor it closely but Google Adsense usually record close to 30K page views/day. I usually have 50 to 80 authenticated users logged in and a few hundred more anonymous users hitting the Boost static HTML cache at any given moment. The problem I'm having is that PHP-FPM frequently stops responding, resulting in Nginx 502 or 504 errors. I swear I have read every page on the internet about this issue, which seems fairly common, and I've tried endless combinations of configurations, and I can't find a good solution. After restarting Nginx and PHP-FPM, the site runs really fast for a while, and then without warning it simply stops responding. I get a white screen while the browser waits on the server, and after about 30 seconds to a minute it throws an Nginx 502 or 504 error. Sometimes it runs well for 2 minutes, sometimes 5 minutes, sometimes 5 hours, but it always ends up hanging. When I find the server in this state, there is still plenty of free memory (500MB or more) and no major CPU usage, the control and worker PHP-FPM processes are still present, and the server is still pingable and usable via SSH. A reload of PHP-FPM via the init script revives it again. The hangups don't seem to correspond to the amount of traffic, because I observed this behavior consistently when I was testing this configuration on a development VPS with no traffic at all. I've been constantly tweaking the settings, but I can't definitively eliminate the problem. I set Nginx workers to just 1. In the PHP-FPM config I have tried all three of the process managers. "Dynamic" is definitely the least reliable, consistently hanging up after only a few minutes. "Static" also has been unreliable and unpredictable. The least buggy has been "ondemand", but even that is failing me, sometimes after as much as 12 to 24 hours. But I can't leave the server unattended because PHP-FPM dies and never comes back on its own. I tried adjusting the pm.max_children value from as low as 3 to as high as 50, doesn't make a lot of difference, but I currently have it at 10. Same thing for the spare servers values. I also have set pm.max_requests anywhere from 30 to unlimited, and it doesn't seem to make a difference. According to the logs, the PHP-FPM processes are not exiting with SIGSEGV or SIGBUS, but rather with SIGTERM. I get a lot of lines like: WARNING: [pool www] child 3739, script '/var/www/drupal6/index.php' (request: "GET /index.php") execution timed out (38.739494 sec), terminating and: WARNING: [pool www] child 3738 exited on signal 15 (SIGTERM) after 50.004380 seconds from start I actually found several articles that recommend doing a graceful reload of PHP-FPM via cron every few minutes or hours to circumvent this issue. So that's what I did, "/etc/init.d/php-fpm reload" every 5 minutes. So far, it's keeping the lights on. But it feels like a dreadful hack. Is PHP-FPM really that unreliable? Is there anything else I can do? Thanks a lot!

    Read the article

  • Fun tips with Analytics

    - by user12620172
    If you read this blog, I am assuming you are at least familiar with the Analytic functions in the ZFSSA. They are basically amazing, very powerful and deep. However, you may not be aware of some great, hidden functions inside the Analytic screen. Once you open a metric, the toolbar looks like this: Now, I’m not going over every tool, as we have done that before, and you can hover your mouse over them and they will tell you what they do. But…. Check this out. Open a metric (CPU Percent Utilization works fine), and click on the “Hour” button, which is the 2nd clock icon. That’s easy, you are now looking at the last hour of data. Now, hold down your ‘Shift’ key, and click it again. Now you are looking at 2 hours of data. Hold down Shift and click it again, and you are looking at 3 hours of data. Are you catching on yet? You can do this with not only the ‘Hour’ button, but also with the ‘Minute’, ‘Day’, ‘Week’, and the ‘Month’ buttons. Very cool. It also works with the ‘Show Minimum’ and ‘Show Maximum’ buttons, allowing you to go to the next iteration of either of those. One last button you can Shift-click is the handy ‘Drill’ button. This button usually drills down on one specific aspect of your metric. If you Shift-click it, it will display a “Rainbow Highlight” of the current metric. This works best if this metric has many ‘Range Average’ items in the left-hand window. Give it a shot. Also, one will sometimes click on a certain second of data in the graph, like this:  In this case, I clicked 4:57 and 21 seconds, and the 'Range Average' on the left went away, and was replaced by the time stamp. It seems at this point to some people that you are now stuck, and can not get back to an average for the whole chart. However, you can actually click on the actual time stamp of "4:57:21" right above the chart. Even though your mouse does not change into the typical browser finger that most links look like, you can click it, and it will change your range back to the full metric. Another trick you may like is to save a certain view or look of a group of graphs. Most of you know you can save a worksheet, but did you know you could Sync them, Pause them, and then Save it? This will save the paused state, allowing you to view it forever the way you see it now.  Heatmaps. Heatmaps are cool, and look like this:  Some metrics use them and some don't. If you have one, and wish to zoom it vertically, try this. Open a heatmap metric like my example above (I believe every metric that deals with latency will show as a heatmap). Select one or two of the ranges on the left. Click the "Change Outlier Elimination" button. Click it again and check out what it does.  Enjoy. Perhaps my next blog entry will be the best Analytic metrics to keep your eyes on, and how you can use the Alerts feature to watch them for you. Steve 

    Read the article

  • Consolidation in a Database Cloud

    - by B R Clouse
    Consolidation of multiple databases onto a shared infrastructure is the next step after Standardization.  The potential consolidation density is a function of the extent to which the infrastructure is shared.  The three models provide increasing degrees of sharing: Server: each database is deployed in a dedicated VM. Hardware is shared, but most of the software infrastructure is not. Standardization is often applied incompletely since operating environments can be moved as-is onto the shared platform. The potential for VM sprawl is an additional downside. Database: multiple database instances are deployed on a shared software / hardware infrastructure. This model is very efficient and easily implemented with the features in the Oracle Database and supporting products. Many customers have moved to this model and achieved significant, measurable benefits. Schema: multiple schemas are deployed within a single database instance. The most efficient model, it places constraints on the environment. Usually this model will be implemented only by customers deploying their own applications.  (Note that a single deployment can combine Database and Schema consolidations.) Customer value: lower costs, better system utilization In this phase of the maturity model, under-utilized hardware can be used to host more workloads, or retired and those workloads migrated to consolidation platforms. Customers benefit from higher utilization of the hardware resources, resulting in reduced data center floor space, and lower power and cooling costs. And, the OpEx savings from Standardization are multiplied, since there are fewer physical components (both hardware and software) to manage. Customer value: higher productivity The OpEx benefits from Standardization are compounded since not only are there fewer types of things to manage, now there are fewer entities to manage. In this phase, customers discover that their IT staff has time to move away from "day-to-day" tasks and start investing in higher value activities. Database users benefit from consolidating onto shared infrastructures by relieving themselves of the requirement to maintain their own dedicated servers. Also, if the shared infrastructure offers capabilities such as High Availability / Disaster Recovery, which are often beyond the budget and skillset of a standalone database environment, then moving to the consolidation platform can provide access to those capabilities, resulting in less downtime. Capabilities / Characteristics In this phase, customers will typically deploy fixed-size clusters and consolidate on a cluster until that cluster is deemed "full," at which point a new cluster is built. Customers will define one or a few cluster architectures that are used wherever possible; occasionally there may be deployments which must be handled as exceptions. The "full" policy may be based on number of databases deployed on the cluster, or observed peak workload, etc. IT will own the provisioning of new databases on a cluster, making the decision of when and where to place new workloads. Resources may be managed dynamically, e.g., as a priority workload increases, it may be given more CPU and memory to handle the spike. Users will be charged at a fixed, relatively coarse level; or in some cases, no charging will be applied. Activities / Tasks Oracle offers several tools to plan a successful consolidation. Real Application Testing (RAT) has a feature to help plan and validate database consolidations. Enterprise Manager 12c's Cloud Management Pack for Database includes a planning module. Looking ahead, customers should start planning for the Services phase by defining the Service Catalog that will be made available for database services.

    Read the article

  • Syntax of passing lambda causing hair loss (pulling out)

    - by Astara
    Right now, I'm working on refactoring a program that calls its parts by polling to a more event-driven structure. I've created sched and task classes with the sced to become a base class of the current main loop. The tasks will be created for each meter so they can be called off of that instead of polling. Each of the events main calls are a type of meter that gather info and display it. When the program is coming up, all enabled meters get 'constructed' by a main-sub. In that sub, I want to store off the "this" pointer associated with the meter, as well as the common name for the "action routine. void MeterMaker::Meter_n_Task (Meter * newmeter,) { push(newmeter); // handle non-timed draw events Task t = new Task(now() + 0.5L); t.period={0,1U}; t.work_meter = newmeter; t.work = [&newmeter](){newmeter.checkevent();};<<--attempt at lambda t.flags = T_Repeat; t.enable_task(); _xos->sched_insert(t); } A sample call to it: Meter_n_Task(new CPUMeter(_xos, "CPU ")); 've made the scheduler a base class of the main routine (that handles the loop), and I've tried serveral variations to get the task class to be a base of the meter class, but keep running into roadblocks. It's alot like "whack-a-mole" -- pound in something to fix something one place, and then a new probl pops out elsewhere. Part of the problem, is that the sched.h file that is trying to hold the Task Q, includes the Task header file. The task file Wants to refer to the most "base", Meter class. The meter class pulls in the main class of the parent as it passes a copy of the parent to the children so they can access the draw routines in the parent. Two references in the task file are for the 'this' pointer of the meter and the meter's update sub (to be called via this). void *this_data= NULL; void (*this_func)() = NULL; Note -- I didn't really want to store these in the class, as I wanted to use a lamdba in that meter&task routine above to store a routine+context to be used to call the meter's action routine. Couldn't figure out the syntax. But am running into other syntax problems trying to store the pointers...such as g++: COMPILE lsched.cc In file included from meter.h:13:0, from ltask.h:17, from lsched.h:13, from lsched.cc:13: xosview.h:30:47: error: expected class-name before ‘{’ token class XOSView : public XWin, public Scheduler { Like above where it asks for a class, where the classname "Scheduler" is. !?!? Huh? That IS a class name. I keep going in circles with things that don't make sense... Ideally I'd get the lamba to work right in the Meter_n_Task routine at the top. I wanted to only store 1 pointer in the 'Task' class that was a pointer to my lambda that would have already captured the "this" value ... but couldn't get that syntax to work at all when I tried to start it into a var in the 'Task' class. This project, FWIW, is my teething project on the new C++... (of course it's simple!.. ;-))... I've made quite a bit of progress in other areas in the code, but this lambda syntax has me stumped...its at times like thse that I appreciate the ease of this type of operation in perl. Sigh. Not sure the best way to ask for help here, as this isn't a simple question. But thought I'd try!... ;-) Too bad I can't attach files to this Q.

    Read the article

  • MySQL Server 5.6 defaults changes

    - by user12626240
    We're improving the MySQL Server defaults, as announced by Tomas Ulin at MySQL Connect. Here's what we're changing:  Setting  Old  New  Notes back_log  50  50 + ( max_connections / 5 ) capped at 900 binlog_checksum  off  CRC32  New variable in 5.6 binlog_row_event_max_size  1k  8k flush_time  1800  Windows changes from 1800 to 0  Was already 0 on other platforms host_cache_size  128  128 + 1 for each of the first 500 max_connections + 1 for every 20 max_connections over 500, capped at 2000  New variable in 5.6 innodb_autoextend_increment  8  64  Now affects *.ibd files. 64 is 64 megabytes innodb_buffer_pool_instances  0  8. On 32 bit Windows only, if innodb_buffer_pool_size is greater than 1300M, default is innodb_buffer_pool_size / 128M innodb_concurrency_tickets  500  5000 innodb_file_per_table  off  on innodb_log_file_size  5M  48M  InnoDB will always change size to match my.cnf value. Also see innodb_log_compressed_pages and binlog_row_image innodb_old_blocks_time 0  1000 1 second innodb_open_files  300  300; if innodb_file_per_table is ON, higher of table_open_cache or 300 innodb_purge_batch_size  20  300 innodb_purge_threads  0  1 innodb_stats_on_metadata  on  off join_buffer_size 128k  256k max_allowed_packet  1M  4M max_connect_errors  10  100 open_files_limit  0  5000  See note 1 query_cache_size  0  1M query_cache_type  on/1  off/0 sort_buffer_size  2M  256k sql_mode  none  NO_ENGINE_SUBSTITUTION  See later post about default my.cnf for STRICT_TRANS_TABLES sync_master_info  0  10000  Recommend: master_info_repository=table sync_relay_log  0  10000 sync_relay_log_info  0  10000  Recommend: relay_log_info_repository=table. Also see Replication Relay and Status Logs table_definition_cache  400  400 + table_open_cache / 2, capped at 2000 table_open_cache  400  2000   Also see table_open_cache_instances thread_cache_size  0  8 + max_connections/100, capped at 100 Note 1: In 5.5 there was already a rule to make open_files_limit 10 + max_connections + table_cache_size * 2 if that was higher than the user-specified value. Now uses the higher of that and (5000 or what you specify). We are also adding a new default my.cnf file and guided instructions on the key settings to adjust. More on this in a later post. We're also providing a page with suggestions for settings to improve backwards compatibility. The old example files like my-huge.cnf are obsolete. Some of the improvements are present from 5.6.6 and the rest are coming. These are ideas, and until they are in an official GA release, they are subject to change. As part of this work I reviewed every old server setting plus many hundreds of emails of feedback and testing results from inside and outside Oracle's MySQL Support team and the many excellent blog entries and comments from others over the years, including from many MySQL Gurus out there, like Baron, Sheeri, Ronald, Schlomi, Giuseppe and Mark Callaghan. With these changes we're trying to make it easier to set up the server by adjusting only a few settings that will cause others to be set. This happens only at server startup and only applies to variables where you haven't set a value. You'll see a similar approach used for the Performance Schema. The Gurus don't need this but for many newcomers the defaults will be very useful. Possibly the most unusual change is the way we vary the setting for innodb_buffer_pool_instances for 32-bit Windows. This is because we've found that DLLs with specified load addresses often fragment the limited four gigabyte 32-bit address space and make it impossible to allocate more than about 1300 megabytes of contiguous address space for the InnoDB buffer pool. The smaller requests for many pools are more likely to succeed. If you change the value of innodb_log_file_size in my.cnf you will see a message like this in the error log file at the next restart, instead of the old error message: [Warning] InnoDB: Resizing redo log from 2*64 to 5*128 pages, LSN=5735153 One of the biggest challenges for the defaults is the millions of installations on a huge range of systems, from point of sale terminals and routers though shared hosting or end user systems and on to major servers with lots of CPU cores, hundreds of gigabytes of RAM and terabytes of fast disk space. Our past defaults were for the smaller systems and these change that to larger shared hosting or shared end user systems, still with a bias towards the smaller end. There is a bias in favour of OLTP workloads, so reporting systems may need more changes. Where there is a conflict between the best settings for benchmarks and normal use, we've favoured production, not benchmarks. We're very interested in your feedback, comments and suggestions.

    Read the article

  • Profiling Startup Of VS2012 &ndash; JustTrace Profiler

    - by Alois Kraus
    JustTrace is made by Telerik which is mainly known for its collection of UI controls. The current version (2012.3.1127.0) does include a performance and memory profiler which does cost 614€ and is currently with a special offer for 306€ on sale. It does include one year of free upgrades. The uneven € numbers are calculated from the 799€ and 50% dicsount price. The UI is already in Metro style and simple to use. Multi process, attach, method recording filter are not supported. It looks like JustTrace is like Ants a Just My Code profiler. For stuff where you do not have the pdbs or you want to dig deeper into the BCL code you will not get far. After getting the profile data you get in the All Methods grid a plain list with hit count and own time. The method list for all methods is also suspiciously short which is a clear sign that you will not get far during the analysis of foreign code. But at least there is also a memory profiler included. For this I have to choose in the first window for Profiling Type “Memory Profiler” to check the memory consumption of VS.  There are some interesting number to see but I do really miss from YourKit the thread stack window. How am I supposed to get a clue when much memory is allocated and the CPU consumption is high in which places I should look? The Snapshot summary gives a rough overview which is ok for a first impression. Next is Assemblies? This gives you a list of all loaded assemblies. Not terribly useful.   The By Type view gives you exactly what it is supposed to do. You have to keep in mind that this list is filtered by the types you did check in the Assemblies list. The By Type instance list does only show types from assemblies which do not originate from Microsoft. By default mscorlib and System are not checked. That is the reason why for the first time my By Type window looked like The idea behind this feature is to show only your instances because you are ultimately responsible for the overall memory consumption. I am not sure if I do like this feature because by default it does hide too much. I do want to see at least how many strings and arrays are allocated. A simple namespace filter would also do it in my opinion. Now you can examine all string instances and look who in the object graph does keep a reference on them. That is nice but YourKit has the big plus that you can also look into the string contents.  I am also not sure how in the graph cycles are visualized and what will happen if you have thousands of objects referencing you. That's pretty much it about JustTrace. It can help the average developer to pinpoint performance and memory issues by just looking at his own code and instances. Showing them more will not help them because the sheer amount of information will overwhelm them. And you need to have a pretty good understanding how the GC and the CLR does work. When you have a performance issue at a customer machine it is sometimes very helpful to be able a bring a profiler onto the machine (no pdbs, …) and to get a full snapshot of all processes which are in the problematic use case involved. For these more advanced use cased JustTrace is certainly the wrong tool. Next: SpeedTrace

    Read the article

< Previous Page | 248 249 250 251 252 253 254 255 256 257 258 259  | Next Page >