Search Results

Search found 66916 results on 2677 pages for 'real time strategy'.

Page 258/2677 | < Previous Page | 254 255 256 257 258 259 260 261 262 263 264 265  | Next Page >

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • How to Set Up Your Enterprise Social Organization?

    - by Richard Lefebvre
    By Mike Stiles on Dec 04, 2012 The rush for business organizations to establish, grow, and adopt social was driven out of necessity and inevitability. The result, however, was a sudden, booming social presence creating touch points with customers, partners and influencers, but without any corporate social organization or structure in place to effectively manage it. Even today, many business leaders remain uncertain as to how to corral this social media thing so that it makes sense for their enterprise. Imagine their panic when they hear one of the most beneficial approaches to corporate use of social involves giving up at least some hierarchical control and empowering employees to publicly engage customers. And beyond that, they should also be empowered, regardless of their corporate status, to engage and collaborate internally, spurring “off the grid” innovation. An HBR blog points out that traditionally, enterprise organizations function from the top down, and employees work end-to-end, structured around business processes. But the social enterprise opens up structures that up to now have not exactly been embraced by turf-protecting executives and managers. The blog asks, “What if leaders could create a future where customers, associates and suppliers are no longer seen as objects in the system but as valued sources of innovation, ideas and energy?” What if indeed? The social enterprise activates internal resources without the usual obsession with position. It is the dawn of mass collaboration. That does not, however, mean this mass collaboration has to lead to uncontrolled chaos. In an extended interview with Oracle, Altimeter Group analyst Jeremiah Owyang and Oracle SVP Reggie Bradford paint a complete picture of today’s social enterprise, including internal organizational structures Altimeter Group has seen emerge. One sign of a mature social enterprise is the establishing of a social Center of Excellence (CoE), which serves as a hub for high-level social strategy, training and education, research, measurement and accountability, and vendor selection. This CoE is led by a corporate Social Strategist, most likely from a Marketing or Corporate Communications background. Reporting to them are the Community Managers, the front lines of customer interaction and engagement; business unit liaisons that coordinate the enterprise; and social media campaign/product managers, social analysts, and developers. With content rising as the defining factor for social success, Altimeter also sees a Content Strategist position emerging. Across the enterprise, Altimeter has seen 5 organizational patterns. Watching the video will give you the pros and cons of each. Decentralized - Anyone can do anything at any time on any social channel. Centralized – One central groups controls all social communication for the company. Hub and Spoke – A centralized group, but business units can operate their own social under the hub’s guidance and execution. Most enterprises are using this model. Dandelion – Each business unit develops their own social strategy & staff, has its own ability to deploy, and its own ability to engage under the central policies of the CoE. Honeycomb – Every employee can do social, but as opposed to the decentralized model, it’s coordinated and monitored on one platform. The average enterprise has a whopping 178 social accounts, nearly ¼ of which are usually semi-idle and need to be scrapped. The last thing any C-suite needs is to cope with fragmented technologies, solutions and platforms. It’s neither scalable nor strategic. The prepared, effective social enterprise has a technology partner that can quickly and holistically integrate emerging platforms and technologies, such that whatever internal social command structure you’ve set up can continue efficiently executing strategy without skipping a beat. @mikestiles

    Read the article

  • Vitality of Product Information Management Showcased at OpenWorld 2012

    - by Mala Narasimharajan
     By Sachin Patel Can you hear the countdown clock ticking!! OpenWorld 2012 is almost here and as I write this Oracle is buzzing with fresh new ideas and solutions that will be showcased this year. What an exciting time for all of us to be in midst of a digital revolution. Whether it is Apple fans clamoring to find every new feature that has been added to the iPhone 5 or a startup launching a new digital thermostat (has anyone looked at the new one from Nest ), product information is a vital for companies to grow and compete in this cut-throat market. Customer today struggle to aggregate and enrich this product data from the myriad of systems they have in place to run their businesses and operations. Having a product information strategy is paramount to align your sales channels and operations with the most accurate and upto date product data. We have a number of sessions this year at OpenWorld where you can gain more insight into how Oracle’s next generation of Fusion Applications, in this case Fusion Product Hub can provide you with a solution to streamline and get control of your Product Master Data. Enabling Trusted Enterprise Product Data with Oracle Fusion Product HubTuesday, October 2nd 11:45 am, Moscone West 2022 Join me Sachin Patel, Director of Product Strategy and Milan Bhatia, VP of Development as we discuss how you can enable trusted product master data in your enterprise. In this session we plan to cover the challenges companies face today in mastering product data. The discussion will also include how Fusion Product Hub brings new and innovative features to empower your product data owners to create a holistic and rich product definition that can be leveraged across your enterprise. We will also be joined by Pawel Fidelus from Fideltronik an Early Adopter for Fusion Product Hub who will showcase their plans to implement Fusion Product Hub and the value it will bring to Fideltronik Multichannel Fulfillment Excellence in Direct-to-Consumer Market Thursday, October 4th, 12:45 am, Moscone West 2024 Do you have multiple order capture systems? Do you have difficulty in fulfilling orders for your customers across various channels and suppliers? Mark Carson, Director, Fusion DOO and Brad Kerr, Director, AGSS will be showcasing the Fusion Distributed Order Orchestration solution and how companies can orchestrate orders from multiple order capture systems and route them to the appropriate fulfillment system. Sachin Patel, Director Product Strategy for Product MDM will highlight the business pain points in consolidating and commercializing data from a Multi Channel Commerce point of view and how Fusion Product Hub helps in allowing you to provide a single source of truth to drive a singular and rich customer experience. Oracle Fusion Supply Chain Management: Customer Adoption and Experiences                                                Wednesday, October 3rd 10:15 am, Moscone West 2003 This is a great session to attend to learn about how Fusion Supply Chain Management and Fusion Product Hub Early Adopters, including Boeing and Fideltronik are leveraging Fusion Applications to improve their Supply Chain operations. Have a great OpenWorld and see you soon!!

    Read the article

  • InSync12 and Australia Visits: UX is Global, Regional, Everywhere!

    - by ultan o'broin
    I attended the Australian Oracle User Group (AUSOUG) and Quest International User Group's InSync12 event in Melbourne, Australia: the user group conference for Oracle products in the ANZ region. I demoed Oracle Fusion Applications and then presented how Oracle crafted the world class Fusion Apps user experience (UX). I explained about the Oracle user experience design pattern strategy of uptake for all apps, not just Fusion, and what our UX pattern externalization strategy means for customers, partners, and ADF developers. A great conference, lots of energy, the InSync12 highlights for me were Oracle's Senior Vice President Cliff Godwin’s fast-moving Oracle E-Business Suite (EBS) roadshow with the killer Oracle Endeca user experience uptake, and Oracle ADF product outreachmeister Chris Muir’s (@chriscmuir) session on Oracle ADF Mobile solution and his hands-on mobile app development showing how existing ADF/JDev skills can build a secure, code once-deploy-to-many-device hybrid app solution in minutes. Cliff Godwin shows off the Oracle Endeca integration with Oracle E-Business Suite. Chris Muir talked the talk and then walked the walked with Oracle ADF Mobile. Applications UX was mixing it up with the crowd at InSync12 too, showing off cool mobile UX solutions, gathering data for future innovations, and engaging with EBS, JD Edwards, and PeopleSoft apps customers and partners. User conferences such as InSync12 are an important part of our Oracle Applications UX user-centered design process, giving real apps users the opportunity to make real inputs and a way for us to watch and to listen to their needs and wants and get views on current and emerging UX too. Eric Stilan (@icondaddy) of Applications UX uses an iPad to gather feedback on the latest UX designs from conference attendees. While in Melbourne, I also visited impressive Oracle partner, Callista for a major ADF and UX pow-wow, and was the er, star of a very proactive event hosted by another partner Park Lane Information Technology (coordinated by Bambi Price (@bambiprice) of ODTUG) where I explained what UX is about, and how partner and customers can engage, participate and deploy that Applications UX scientific insight to advantage for their entire business. I also paired up with Oracle Australia in Sydney to visit key customers while there, and back at Oracle in Melbourne I spoke with sales consultants and account managers about regional opportunities and UX strategy, and came away with an understanding of what makes the Oracle market tick in Australia. Mobile worker solution development and user experience is hot news in Australia, and this was a great opportunity to team up with Chris Muir and show how the alignment of the twin stars of UX design patterns and ADF technology enables developers to make great-looking, usable apps that really sparkle. Our UX design patterns--or functional (UI) patterns, to use the developer world language--means that developers now have not only a great tool set to build apps on Oracle ADF/FMW but proven, tested usability solutions to solve common problems they can apply in the IDE too. In all, a whirlwind UX visit, packed with events and delivery opportunities, and all too short a time in the wonderful city of Melbourne. I need to get back there soon! For those who need a reminder, there's a website explaining how to get involved with, and participate in, Applications User Experience (including the Oracle Usability Advisory Board) events and programs. Thank you to AUSOUG, Quest, InSync, Callista, Park Lane IT, everyone at Oracle Australia, Chris Muir, and all the other people who came together to make this a productive visit. Stay tuned for more UX developments and engagements in the region on the Oracle VoX blog and Usable Apps website too!

    Read the article

  • Tech Ed/BI Conference 2010: A Recovering Industry in a Recovering City

    - by andrewbrust
    I tried writing a post for this blog last night, while at the this year’s Microsoft Tech Ed and Business Intelligence conferences, in New Orleans. But I literally fell asleep while writing it.  That’s probably a sign that my readers might have done the same while reading it. Why the writer’s block? This was a very good show for me, but I think I was having trouble figuring out exactly why.  Now that I’m on the flight home, I’m starting to piece it together. One reason, for sure, was that I’ve spent years in both the developer and the BI worlds, and a show that combined the two was really enjoyable for me.  Typically, the subject matter, the attendees, the Microsoft execs and managers, and even the social circles have been separate.  This year’s Tech Ed facilitated a fusion of each of these previously segregated groups.  That was good for me as a speaker; for example, I facilitated a Birds of a Feather session on PowerPivot (Microsoft’s new self-service BI offering) which was well-attended, and by a large number of non-BI pros.  The fusion was good for me as an attendee too, as Microsoft BI, in the form of a new Pivot Viewer control, made it into the Day 1 keynote, demoed by Microsoft’s key BI champion, Amir Netz.  And it was good for me socially, as I was able to meet with peers in both camps, and at one location. Speaking of meeting with industry colleagues, I did a lot of that at this show.  Probably for the first time ever, I carefully scheduled and conducted a series of meetings with friends and business acquaintances in the developer tools, data visualization, utilities, publishing and training areas of the Microsoft ecosystem.  Beside the time efficiencies in conducting so many meetings, I discovered another benefit. I got a real handle on the tech industry’s economic health. The news here is good.  First of all, 2010 has been a great year for just about everyone I spoke to.  The mood is positive, energy is high, and people are working really hard.  This is, of course, refreshing to see, and it’s a huge relief.  Add to that the fact that this year’s Tech Ed was about 2.5 times larger in headcount than last year’s (based on numbers from unofficial, but reliable, sources), and the economic prognosis seems excellent.  But there’s more to it than that. Here’s the thing: everyone I talked to seems to be working, and succeeding, at changing their business models to adapt to changes in the industry.  Whether it’s the Internet’s impact on publishing and training, the increased importance of the developer audience in South Asia, the shift of affordable developer and business talent to unfamiliar locales abroad, or even lapses in Microsoft’s performance in the market, partner companies aren’t just rolling with the punches; they’re welcoming the changes and working them to their advantage.  No one seemed downtrodden, or even fatigued.  Even for businesses who have seen core revenue streams become commoditized, everyone seems to be changing their market strategy and winning.  Even Microsoft, of whom I have been critical recently, showed signs of successful hard work and playbook change, in the maturing of their cloud strategy, their commitment to it and their excitement around it.  And the embedded, managed, self-service BI strategy that Microsoft has been touting looks like it’s already being embraced by customers, even though PowerPivot, and other new Microsoft BI products, were released only recently. The collective optimism I have witnessed, and that I have felt, tells me good things about this industry and the economy.  The stock market had huge mood swings during my stay, and that may yet subdue the industry recovery I have seen this week.  Nonetheless, I am convinced that a strong foundation of hard work, innovative thinking and, if I may,  true renaissance is underlying this industry’s success. That kind of strength will generate a strong recovery, I am certain, whether now or once we’re past another round of choppy weather in the broader economy.  The fundamentals are good.

    Read the article

  • Creating a branch for every Sprint

    - by Martin Hinshelwood
    There are a lot of developers using version control these days, but a feature of version control called branching is very poorly understood and remains unused by most developers in favour of Labels. Most developers think that branching is hard and complicated. Its not! What is hard and complicated is a bad branching strategy. Just like a bad software architecture a bad branch architecture, or one that is not adhered to can prove fatal to a project. We I was at Aggreko we had a fairly successful Feature branching strategy (although the developers hated it) that meant that we could have multiple feature teams working at the same time without impacting each other. Now, this had to be carefully orchestrated as it was a Business Intelligence team and many of the BI artefacts do not lend themselves to merging. Today at SSW I am working on a Scrum team delivering a product that will be used by many hundreds of developers. SSW SQL Deploy takes much of the pain out of upgrading production databases when you are not using the Database projects in Visual Studio. With Scrum each Scrum Team works for a fixed period of time on a single sprint. You can have one or more Scrum Teams involved in delivering a product, but all the work must be merged and tested, ready to be shown to the Product Owner at the the Sprint Review meeting at the end of the current Sprint. So, what does this mean for a branching strategy? We have been using a “Main” (sometimes called “Trunk”) line and doing a branch for each sprint. It’s like Feature Branching, but with only ONE feature in operation at any one time, so no conflicts Figure: DEV folder containing the Development branches.   I know that some folks advocate applying a Label at the start of each Sprint and then rolling back if you need to, but I have always preferred the security of a branch. Like: being able to create a release from Main that has Sprint3 code even while Sprint4 is being worked on. being sure I can always create a stable build on request. Being able to guarantee a version (labels are not auditable) Be able to abandon the sprint without having to delete the code (rare I know, but would be a mess if it happened) Being able to see the flow of change sets through to a safe release It helps you find invalid dependencies when merging to Main as there may be some file that is in everyone’s Sprint branch, but never got checked in. (We had this at the merge of Sprint2) If you are always operating in this way as a standard it makes it easier to then add more scrum teams in the future. Muscle memory of this way of working. Don’t Like: Additional DB space for the branches Baseless merging between sprint branches when changes are directly ported Note: I do not think we will ever attempt this! Maybe a bit tougher to see the history between sprint branches since the changes go up through Main and down to another sprint branch Note: What you would have to do is see which Sprint the changes were made in and then check the history he same file in that Sprint. A little bit of added complexity that you would have to do anyway with multiple teams. Over time, you can end up with a lot of old unused sprint branches. Perhaps destroy with /keephistory can help in this case. Note: We ALWAYS delete the Sprint branch after it has been merged into Main. That is the theory anyway, and as you can see from the images Sprint2 has already been deleted. Why take the chance of having a problem rolling back or wanting to keep some of the code, when you can just abandon a branch and start a new one? It just seems easier and less painful to use a branch to me! What do you think?   Technorati Tags: TFS,TFS2010,Software Development,ALM,Branching

    Read the article

  • How to convert my backup.cmd into something I can run in Linux?

    - by blade19899
    Back in the day when i was using windows(and a noob at everything IT) i liked batch scripting so much that i wrote a lot of them and one i am pretty proud of that is my backup.cmd(see below). I am pretty basic with the linux bash sudo/apt-get/sl/ls/locate/updatedb/etc... I don't really know the full power of the terminal. If you see the code below can i get it to work under (Ubuntu)linux :) by rewriting some of the windows code with the linux equivalent (btw:this works under xp/vista/7 | dutch/english) @echo off title back it up :home cls echo ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ» echo º º echo º typ A/B for the options º echo º º echo ÌÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ͹ echo º º echo º "A"=backup options º echo º º echo º "B"=HARDDISK Options º echo º º echo º º echo ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍŒ set /p selection=Choose: Goto %selection% :A cls echo ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ» echo º º echo º typ 1 to start that backup º echo º º echo ÌÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ͹ echo º º echo º "A"=backup options º echo º È1=Documents,Pictures,Music,Videos,Downloads º echo º º echo º "B"=HARDDISK Options º echo º º echo ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍŒ set /p selection=Choose: Goto %selection% :B cls echo ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ» echo º º echo º typ HD to start the disk check º echo º º echo ÌÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ͹ echo º º echo º "A"=backup options º echo º º echo º "B"=HARDDISK Options º echo º ÈHD=find and repair bad sectors º echo º º echo ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍŒ set /p selection=Choose: Goto %selection% :1 cls if exist "%userprofile%\desktop" (set desk=desktop) else (set desk=Bureaublad) if exist "%userprofile%\documents" (set docs=documents) else (set docs=mijn documenten) if exist "%userprofile%\pictures" (set pics=pictures) else (echo cant find %userprofile%\pictures) if exist "%userprofile%\music" (set mus=music) else (echo cant find %userprofile%\music) if exist "%userprofile%\Videos" (set vids=videos) else (echo cant find %userprofile%\videos) if exist "%userprofile%\Downloads" (set down=downloads) else (echo cant find %userprofile%\Downloads) cls echo. examples (D:\) (D:\Backup) (D:\Backup\18-4-2011) echo. echo. if there is no "D:\backup" folder then the folder will be created echo. set drive= set /p drive=storage: echo start>>backup.log echo Name:%username%>>backup.log echo Date:%date%>>backup.log echo Time:%time%>>backup.log echo ========================================%docs%===========================================>>backup.log echo %docs% echo Source:"%userprofile%\%docs%" echo Destination:"%drive%\%username%\%docs%" echo %time%>>backup.log xcopy "%userprofile%\%docs%" "%drive%\%username%\%docs%" /E /I>>Backup.log echo 20%% cls echo ========================================"%pics%"=========================================>>backup.log echo "%pics%" echo Source:"%userprofile%\%pics%" echo Destination:"%drive%\%username%\%pics%" echo %time%>>backup.log xcopy "%userprofile%\%pics%" "%drive%\%username%\%pics%" /E /I>>Backup.log echo 40%% cls echo ========================================"%mus%"=========================================>>backup.log echo "%mus%" echo Source:"%userprofile%\%mus%" echo Destination:"%drive%\%username%\%mus%" echo %time%>>backup.log xcopy "%userprofile%\%mus%" "%drive%\%username%\%mus%" /E /I>>Backup.log echo 60%% cls echo ========================================"%vids%"========================================>>backup.log echo %vids% echo Source:"%userprofile%\%vids%" echo Destination:"%drive%\%username%\%vids%" echo %time%>>backup.log xcopy "%userprofile%\%vids%" "%drive%\%username%\%vids%" /E /I>>Backup.log echo 80%% cls echo ========================================"%down%"========================================>>backup.log echo "%down%" echo Source:"%userprofile%\%down%" echo Destination:"%drive%\%username%\%down%" echo %time%>>backup.log xcopy "%userprofile%\%down%" "%drive%\%username%\%down%" /E /I>>Backup.log echo end>>backup.log echo %username% %date% %time%>>backup.log echo 100%% cls echo backup Compleet copy "backup.log" "%drive%\%username%" del "backup.log" pushd "%drive%\%username%" echo close backup.log to continue with backup script "backup.log" echo press any key to retun to the main menu pause>nul goto :home :HD echo finds and repairs bad sectors echo typ in harddisk letter (C: D: E:) set HD= set /p HD=Hard Disk: chkdsk %HD% /F /R /X pause goto :home

    Read the article

  • First Day of Data Integration Track at Oracle OpenWorld 2012

    - by Irem Radzik
    OpenWorld started full speed for us today with a great set of sessions in the Data Integration track. After the exciting keynote session on Oracle Database 12c in the morning; Brad Adelberg, VP of Development for Data Integration products, presented Oracle’s data integration product strategy. His session highlighted the new requirements for data integration to achieve pervasive and continuous access to trusted data. The new requirements and product focus areas presented in this session are: Provide access to any data at any source On premise or on cloud Enable zero downtime operations and maximum performance Leverage real-time data for accurate business insights And ensure high quality data is used across the enterprise During the session Brad walked over how Oracle’s data integration products, Oracle Data Integrator, Oracle GoldenGate, Oracle Enterprise Data Quality, and Oracle Data Service Integrator, deliver on these requirements and how recent product releases build on this strategy. Soon after Brad’s session we heard from a panel of Oracle GoldenGate customers, St. Jude Medical, Equifax, and Bank of America, how they achieved zero downtime operations using Oracle GoldenGate. The panel presented different use cases of GoldenGate, from Active-Active replication to offloading reporting. Especially St. Jude Medical’s implementation, which involves the alert management system for patients that use their pacemakers, reminded me in some cases downtime of mission-critical systems can be a matter of life or death. It is very comforting to hear that GoldenGate delivers highly-reliable continuous availability for life-saving medical systems. In the afternoon, Nick Wagner from the Product Management team and I followed the customer panel with the review of Oracle GoldenGate 11gR2’s New Features.  Many questions we received from audience were about GoldenGate’s new Integrated Capture for Oracle Database and the enhanced Conflict Management features, as well as how GoldenGate compares to Oracle Streams. In addition to giving details on GoldenGate’s unique capability to capture changed data with a direct integration to the Oracle DBMS engine, we reminded the audience that enhancements to Oracle GoldenGate will continue, while Streams will be primarily maintained. Last but not least, Tim Garrod and Ryan Fonnett from Raymond James presented a unified real-time data integration solution using Oracle Data Integrator and GoldenGate for their operational data store (ODS). The ODS supports application services across the enterprise and providing timely data is a critical requirement. In this solution, Oracle GoldenGate does the log-based change data capture for Oracle Data Integrator’s near real-time data integration between heterogeneous systems. As Raymond James’ ODS supports mission-critical services for their advisors, the project team had to set up this integration environment to be highly available. During the session, Ryan and Tim explained how they use ODI to enable automated process execution and “always-on” integration processes. Their presentation included 2 demonstrations that focused on CDC patterns deployed with ODI and the automated multi-instance execution and monitoring. We are very grateful to Tim and Ryan for their very-well prepared presentation at OpenWorld this year. Day 2 (Tuesday) will be also a busy day in our track. In addition to the Fusion Middleware Innovation Awards ceremony at 11:45am at Moscone West 3001, we have the following DI sessions Real-World Operational Reporting Customer Panel 11:45am Moscone West- 3005 Oracle Data Integrator Product Update and Future Strategy 1:15pm Moscone West- 3005 High-volume OLTP with Oracle GoldenGate: Best Practices from Comcast 1:15pm Moscone West- 3005 Everything You need to Know about Monitoring Oracle GoldenGate 5pm Moscone West-3005 If you are at OpenWorld please join us in these sessions. For a full review of data integration track at OpenWorld please see our Focus-On document.

    Read the article

  • WPF: Timers

    - by Ilya Verbitskiy
    I believe, once your WPF application will need to execute something periodically, and today I would like to discuss how to do that. There are two possible solutions. You can use classical System.Threading.Timer class or System.Windows.Threading.DispatcherTimer class, which is the part of WPF. I have created an application to show you how to use the API.     Let’s take a look how you can implement timer using System.Threading.Timer class. First of all, it has to be initialized.   1: private Timer timer; 2:   3: public MainWindow() 4: { 5: // Form initialization code 6: 7: timer = new Timer(OnTimer, null, Timeout.InfiniteTimeSpan, Timeout.InfiniteTimeSpan); 8: }   Timer’s constructor accepts four parameters. The first one is the callback method which is executed when timer ticks. I will show it to you soon. The second parameter is a state which is passed to the callback. It is null because there is nothing to pass this time. The third parameter is the amount of time to delay before the callback parameter invokes its methods. I use System.Threading.Timeout helper class to represent infinite timeout which simply means the timer is not going to start at the moment. And the final fourth parameter represents the time interval between invocations of the methods referenced by callback. Infinite timeout timespan means the callback method will be executed just once. Well, the timer has been created. Let’s take a look how you can start the timer.   1: private void StartTimer(object sender, RoutedEventArgs e) 2: { 3: timer.Change(TimeSpan.Zero, new TimeSpan(0, 0, 1)); 4:   5: // Disable the start buttons and enable the reset button. 6: }   The timer is started by calling its Change method. It accepts two arguments: the amount of time to delay before the invoking the callback method and the time interval between invocations of the callback. TimeSpan.Zero means we start the timer immediately and TimeSpan(0, 0, 1) tells the timer to tick every second. There is one method hasn’t been shown yet. This is the callback method OnTimer which does a simple task: it shows current time in the center of the screen. Unfortunately you cannot simple write something like this:   1: clock.Content = DateTime.Now.ToString("hh:mm:ss");   The reason is Timer runs callback method on a separate thread, and it is not possible to access GUI controls from a non-GUI thread. You can avoid the problem using System.Windows.Threading.Dispatcher class.   1: private void OnTimer(object state) 2: { 3: Dispatcher.Invoke(() => ShowTime()); 4: } 5:   6: private void ShowTime() 7: { 8: clock.Content = DateTime.Now.ToString("hh:mm:ss"); 9: }   You can build similar application using System.Windows.Threading.DispatcherTimer class. The class represents a timer which is integrated into the Dispatcher queue. It means that your callback method is executed on GUI thread and you can write a code which updates your GUI components directly.   1: private DispatcherTimer dispatcherTimer; 2:   3: public MainWindow() 4: { 5: // Form initialization code 6:   7: dispatcherTimer = new DispatcherTimer { Interval = new TimeSpan(0, 0, 1) }; 8: dispatcherTimer.Tick += OnDispatcherTimer; 9: } Dispatcher timer has nicer and cleaner API. All you need is to specify tick interval and Tick event handler. The you just call Start method to start the timer.   private void StartDispatcher(object sender, RoutedEventArgs e) { dispatcherTimer.Start(); // Disable the start buttons and enable the reset button. } And, since the Tick event handler is executed on GUI thread, the code which sets the actual time is straightforward.   1: private void OnDispatcherTimer(object sender, EventArgs e) 2: { 3: ShowTime(); 4: } We’re almost done. Let’s take a look how to stop the timers. It is easy with the Dispatcher Timer.   1: dispatcherTimer.Stop(); And slightly more complicated with the Timer. You should use Change method again.   1: timer.Change(Timeout.InfiniteTimeSpan, Timeout.InfiniteTimeSpan); What is the best way to add timer into an application? The Dispatcher Timer has simple interface, but its advantages are disadvantages at the same time. You should not use it if your Tick event handler executes time-consuming operations. It freezes your window which it is executing the event handler method. You should think about using System.Threading.Timer in this case. The code is available on GitHub.

    Read the article

  • How to store a shmup level?

    - by pek
    I am developing a 2D shmup (i.e. Aero Fighters) and I was wondering what are the various ways to store a level. Assuming that enemies are defined in their own xml file, how would you define when an enemy spawns in the level? Would it be based on time? Updates? Distance? Currently I do this based on "level time" (the amount of time the level is running - pausing doesn't update the time). Here is an example (the serialization was done by XNA): <?xml version="1.0" encoding="utf-8"?> <XnaContent xmlns:level="pekalicious.xanor.XanorContentShared.content.level"> <Asset Type="level:Level"> <Enemies> <Enemy> <EnemyType>data/enemies/smallenemy</EnemyType> <SpawnTime>PT0S</SpawnTime> <NumberOfSpawns>60</NumberOfSpawns> <SpawnOffset>PT0.2S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/secondenemy</EnemyType> <SpawnTime>PT0S</SpawnTime> <NumberOfSpawns>10</NumberOfSpawns> <SpawnOffset>PT0.5S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/secondenemy</EnemyType> <SpawnTime>PT20S</SpawnTime> <NumberOfSpawns>10</NumberOfSpawns> <SpawnOffset>PT0.5S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/boss1</EnemyType> <SpawnTime>PT30S</SpawnTime> <NumberOfSpawns>1</NumberOfSpawns> <SpawnOffset>PT0S</SpawnOffset> </Enemy> </Enemies> </Asset> </XnaContent> Each Enemy element is basically a wave of specific enemy types. The type is defined in EnemyType while SpawnTime is the "level time" this wave should appear. NumberOfSpawns and SpawnOffset is the number of enemies that will show up and the time it takes between each spawn respectively. This could be a good idea or there could be better ones out there. I'm not sure. I would like to see some opinions and ideas. I have two problems with this: spawning an enemy correctly and creating a level editor. The level editor thing is an entirely different problem (which I will probably post in the future :P). As for spawning correctly, the problem lies in the fact that I have a variable update time and so I need to make sure I don't miss an enemy spawn because the spawn offset is too small, or because the update took a little more time. I kinda fixed it for the most part, but it seems to me that the problem is with how I store the level. So, any ideas? Comments? Thank you in advance.

    Read the article

  • Exclusive Webcast Series Explains How Project Success Drives Business Success

    - by Melissa Centurio Lopes
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} In the wake of the global financial crisis, organizations throughout the world are redoubling their efforts to enhance financial discipline, achieve operational excellence, and mitigate risk. How can they address all these areas with one comprehensive strategy? With enterprise project portfolio management solutions that provide greater transparency and visibility across all projects and portfolios, says Guy Barlow, Oracle director of industry strategy. In the following interview and in an exclusive, three-part webcast series, Barlow examines today’s new management realities and explains how organizations can succeed in this environment. Q: Financial discipline has always been important, what’s different today? A: A number of organizations are showing that by fiscally aligning projects with the business goals of their organizations, they can shave off hundreds of thousands if not millions of dollars in inefficiency and waste. For example, one Oracle customer, the Columbus Regional Airport Authority, reduced its unbudgeted costs from US$24.4 million to US$3.5 million, for an 88 percent improvement. Q: How do organizations achieve results like this? A: First, they need to have the vision to see project management as part of a broad and critical element in their overall enterprise strategy. That means using a single solution, such as Oracle‘s Primavera, to manage multiple projects across multiple functions within a company. So someone in corporate mergers and acquisitions as well as a capital projects team can standardize on the same technology. By doing so they all gain greater efficiency in planning and execution—because the technology can be configured for their specific roles and needs—and the IT organization really benefits from lower maintenance. Second, enterprises must give executive leaders—CFOs, COOs, and CEOs—visibility across the entire business to easily see what projects are on track and which ones are falling behind. In fact, once executives see the power of enterprise project portfolio management, uptake is very quick across the organization. Read the full interview here.

    Read the article

  • JDeveloper 11g R1 (11.1.1.4.0) - New Features on ADF Desktop Integration Explained

    - by juan.ruiz
    One of the areas that introduced many new features on the latest release (11.1.1.4.0)  of JDeveloper 11g R1 is ADF Desktop integration - in this article I’ll provide an overview of these new features. New ADF Desktop Integration Ribbon in Excel - After installing the ADF desktop integration add-in and depending on the mode in which you open the desktop integration workbook, the ADF Desktop integration ribbon for design time and runtime are displayed as a separate tab within Excel. In previous version the ADF Desktop integration environment used to be placed inside the add-ins tab. Above you can see both, design time ribbon as well as runtime ribbon. On the design time ribbon you can manage the workbook and worksheet properties, worksheet component properties, diagnostics, execution and publication of the workbook. The runtime version of the ribbon is totally customizable and represents what it used to be the runtime menu on the spreadsheet, in this ribbon you can include all the operations and actions that could be executed by the end user while working with the spreadsheet data. Diagnostics - A very important aspect for developers is how to debug or verify the interactions of the client with the server, for that ADF desktop integration has provided since day one a series of diagnostics tools. In this release the diagnostics tools are more visible and are really easy to configure. You can access the client console while testing the workbook, or you can simple dump all the messages to a log file – having the ability of setting the output level for both. Security - There are a number of enhancements on security but the one with more impact for developers is tha security now is optional when using ADF Desktop Integration. Until this version every time that you wanted to work with ADFdi it was a must that the application was previously secured. In this release security is optional which means that if you have previously defined security on your application, then you must secure the ADFdi servlet as explained in one of my previous (ADD LINK) posts. In the other hand, if but the time that you start working with ADFdi you have not defined security, you can test and publish your workbooks without adding security. Support for Continuous Integration - In this release we have added tooling for continuous integration building. in the ADF desktop integration space, the concept translates to adding functionality that developers can use to publish ADFdi workbooks as part of their entire application build. For that purpose, we have a publish tool that can be easily invoke from an ANT task such that all the design time workbooks are re-published into the latest version of the application building process. Key Column - At runtime, on any worksheet containing editable tables you will notice a new additional column called the key column. The purpose of this column is to make the end user aware that all rows on the table need to be selected at the time of sorting. The users cannot alter the value of this column. From the developers points of view there are no steps required in order to have the key column included into the worksheets. Installation and Creation of New Workbooks - Both use cases can be executed now directly from JDeveloper. As part of the Tools menu options the developer can install the ADF desktop integration designer. Also, creating new workbooks that previously was done through that convert tool shipped with JDeveloper is now automatic done from the New Gallery. Creating a new ADFdi workbook adds metadata information information to the Excel workbook so you can work in design time. Other Enhancements Support for Excel 2010 and the ADF components ready-only enabled don’t allow to change its value – the cell in Excel is automatically protected, this could cause confusion among customers of previous releases.

    Read the article

  • Oracle OpenWorld Update: Oracle GoldenGate Customer Panels

    - by Doug Reid
    0 false 18 pt 18 pt 0 0 false false false /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} We are two weeks out from the start of Oracle OpenWorld 2012. The Data Integration team has a solid line-up of product and customer sessions for you to attend this year, plus five hands-on labs, and numerous demonstration pods in Moscone South. On Monday we kick the track off with Brad Adelberg’s Future Strategy, Direction and Roadmap for Oracle’s Data Integration Platform at 10:45AM in Moscone West 3005. Over the rest of the week we have a number of deep dive sessions that build out the themes that Brad discusses in his keynote, but the two that I would like to highlight today are our Oracle GoldenGate customer panels. The first customer panel is on Zero Downtime Operations and is on Monday at 1:45 in Moscone West 3005. The theme of this session is how to reduce downtime for critical must-succeed systems. Here’s a rundown of the session: Bank of America, TALX, and St. Jude Medical all have users communities that expect systems to be available around the clock. In this customer panel session, Bank of America discusses how it will be leveraging Oracle GoldenGate. St. Jude Medical shares how it is using Oracle GoldenGate to achieve a zero-downtime migration for a 5 TB Oracle online transaction processing (OLTP) 24/7 mission-critical database. TALX discusses how Equifax Workforce Information Services used Oracle GoldenGate to move from processing online transactions in a single site to processing concurrently from two geographically disparate data centers, providing a highly available solution with significant burst capacity. On Tuesday at 11:45 in Moscone West 3005 we switch gears and host a customer panel on Operational Reporting. The theme of this customer panel is all around reporting and how Oracle GoldenGate raises the bar on reporting by enabling real-time access to real-time data. Here’s a rundown of the session: Turk Telekom and Comcast are half a world away from each other, but these two powerhouse companies have both drastically improved performance and access to real-time data by using Oracle GoldenGate. During this panel discussion, Turk Telekom will explain its evaluation and implementation of Oracle GoldenGate, how the business has experienced significant improvements in the core database and reporting platform, and how it plans to expand its usage into its SOA architecture and its architecture based on Oracle’s Siebel platform. Comcast will explain its implementation of Oracle GoldenGate and how it moves data in real time from its mission-critical HP NonStop database to a Teradata data warehouse. Join us at our sessions to learn what other customers are doing with our products or stop by our demo pods in Moscone south and meet the product management and development teams.

    Read the article

  • Oracle Data Integration 12c: Perspectives of Industry Experts, Customers and Partners

    - by Irem Radzik
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 As you may have seen from our recent blog posts on Oracle Data Integrator 12c and Oracle GoldenGate 12c, we are very excited to share with you the great new features the 12c release brings to Oracle’s data integration solutions. And, fortunately we are not alone in this sentiment. Since the press announcement October 17th, which incorporates our customers' and experts' testimonials, we have seen positive comments in leading technology publications and social media as well. Here are some examples: In CIO and PCWorld you can find Joab Jackson’s article, Oracle Data Integrator 12c ready for real-time analysis, where wrote about the tight integration between Oracle Data Integrator and Oracle GoldenGate . He noted “Heeding the call from enterprise customers who clamor for more immediacy in their data-driven reports, Oracle has updated its data-integration software portfolio so that it can more rapidly deliver data to data warehouses and analysis applications.” Integration Developer News’ Vance McCarthy wrote the article Oracle Ships ‘Future Proofs’ Integration Tools for Traditional, Cloud, Big Data, Real-Time Projects and mentioned that “Oracle Data Integrator 12c and Oracle GoldenGate 12c sport a wide range of improvements to let devs more easily deliver data integration for cloud, analytics, big data and other new projects that leverage multiple datasets for business.“ InformationWeek’s Doug Henschen gave a great overview to several key features including the new flow-based UI in Oracle Data Integrator. Doug said “Oracle Data Integrator 12c introduces a complete makeover of the job-building experience, while real-time oriented GoldenGate 12c introduces performance gains “. In Database Trends and Applications’ article Oracle Strengthens Data Integration with Release of Oracle Data Integrator 12c and Oracle GoldenGate 12c highlighted the productivity aspect of the new solution with his remarks: “tight integration between Oracle Data Integrator 12c and Oracle GoldenGate 12c enables developers to leverage Oracle GoldenGate’s low overhead, real-time change data capture completely within the Oracle Data Integrator Studio without additional training”. We are also thrilled about what our customers and partners have to say about our products and the new release. And we are equally excited to share those perspectives with you in our upcoming launch video webcast on November 12th. SolarWorld Industries America’s Senior Database Manager, Russ Toyama will join our executives in our studio in Redwood Shores to discuss GoldenGate’s core benefits and the new release, while Surren Partharb, CTO of Strategic Technology Services for BT, and Mark Rittman, CTO of Rittman Mead, will provide their comments via the interviews conducted in the UK. This interactive panel discussion in the video webcast will unveil the new release with the expertise of our development executives and the great insight from our customers and partners. In addition, our product experts will be available online to answer chat questions. This is really a great opportunity to learn how Oracle's data integration offering has changed the integration and replication technology space with the new release, and established itself as the new leader. If you have not registered for this free event yet, you can do so via this link. We will run the live event at 8am PT/4pm GMT, followed by a replay of the event with live chat for Q&A  at 10am PT/6pm GMT. The replay will be available on-demand for those who register but cannot attend either session on November 12th. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif"; mso-fareast-font-family:"Times New Roman";}

    Read the article

  • Today's Links (6/30/2011)

    - by Bob Rhubart
    James Gosling Says He Doesn't Care About Java But here's the rest of the story: "What I really care about is the Java Virtual Machine as a concept," says Gosling, "because that is the thing that ties it all together; it's the thing that makes Java the language possible; it's the thing that makes things work on all kinds of different platforms; and it makes all kinds of languages able to coexist." Virtual Developer Day: SOA Accelerate Your Development with Oracle SOA Suite. Learn how in this FREE on-line workshop with Hands-on labs July 12th 9 am to 1:30 PM PST" July 12th 9 am to 1:30 PM PST Podcast: Toronto Architect Day Panel Discussion Part 3 (of 4) is now available, in which the panel (including Oracle ACE Director Cary Millsap and InfoQ editor and co-founder Floyd Marinescu) discusses public vs private cloud as the best strategy for small businesses and start-ups. WebLogic Weekly for June 27th, 2011 | James Bayer Bayer shares the latest resources for those with WebLogic on the brain. Griffiths Waite at Oracle Open World | Mark Simpson Oracle ACE Director Mark Simpson share information on the presentations he's scheduled to give at Oracle OpenWorld San Francisco 2011. Kscope Solid Service Bus Implementations Peter Paul van de Beek's Kscope11 presentation "is aimed at supporting architects and especially developers to choose the right integration infrastructure for a job." Migration To Java EE 6 With Spring 3 - ...Could Become "Interesting" | Adam Bien "Put simply, big data implies datasets so large they can't normally be processed using a standard transactional database," says David Dorf. "The term 'noSQL' is often used in this context as well." Book Review: "Designing With the Mind In Mind" | Abhinav Agarwal According to Abhinav Agarwal, Jeff Johnson's new book is about "the theory of how the mind perceives information, of how humans understand what they read, and how our eyes are attuned to paying attention to not just what's happening in front of us but also at the periphery of our vision." BPM 11g Advanced Workshop | Martien van den Akker Martien van den Akker shares his thoughts on both the workshop he recently attended and on the Oracle BPM 11g product. Fusion Applications - What You Need To Know: Product Families | Floyd Teter "Fusion Applications are organized into seven groups of related products called Product Families," observes Oracle ACE Director Floyd Teter. "While the product features are organized according to the Business Process Model and can cross the boundaries of product families, the product family groupings are an easy way to wrap your mind around Fusion Apps." Grid Control: Refreshing Weblogic Domains | Dave Best Dave Best shares tips for avoiding problems when using grid control to centrally manage/monitor your environment. Webcast: Oracle to Announce Datanomic Integration Plans The combination of Datanomic technology and the previous acquisition of Silver Creek Systems will deliver a complete, integrated and best-of-breed solution for Data Quality. Learn about Oracle’s strategy and product plans and how the new products acquired from Datanomic will impact your organization. July 19, 2011, 8:00am PT / 11:00am ET. Speakers include Michael Weingartner (Vice President, Product Development, Oracle), Martin Boyd (Senior Director, Product Strategy, Oracle), and Dain Hansen (Director, Product Marketing, Fusion Middleware, Oracle).

    Read the article

  • Oracle OpenWorld Update: Demo Pods and Hands-on Labs

    - by Doug Reid
    0 false 18 pt 18 pt 0 0 false false false /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} Less than one week away until the start of Oracle OpenWorld 2012 and the Data Integration Solutions team is ready to go!  We have an exciting line up for you this year which we have summarized for you in the Oracle OpenWorld Focus on Data Integration Solutions document. In past posts we have discussed session themes and our customer panel, but today I would like to summarize our Hands-on Labs and Demo Pods that we have available for attendees. For Oracle GoldenGate Hands-On Labs we have two labs that we are running this year. Deep Dive into Oracle GoldenGate Thursday October 4th at 11:15AM in the Marriott Marquis Salon 1/2 Oracle GoldenGate provides real-time log-based change data capture and delivery between heterogeneous systems. It enables cost-effective, low-impact, real-time data integration and continuous availability solutions. This session covers Oracle GoldenGate 11g’s internal product architecture and includes a hands-on lab that covers configuration examples for target database instantiation and real-time change data capture and delivery. The participants will configure Oracle GoldenGate to instantiate a secondary database that can be used for disaster recovery or a reporting instance. Come learn how easy it is to use and how this can be a very valuable and easy technology solution for your organization. Introduction to Oracle GoldenGate Veridata Wednesday October 3rd 10:15AM in the Marriott Marquis Sales 1/2 Oracle GoldenGate Veridata compares one set of data with another and identifies data that is out of synchronization. In this hands-on lab, you will be introduced to the key features of this product. Using the Oracle GoldenGate Veridata Web client, you will have the opportunity to configure comparison objects and rules, initiate a comparison, review the status and output of a comparison, and review out-of-sync data. As a bonus this year, we have recorded the labs and made them available on youtube.com/oraclegoldengate. These will be available the day of the labs. Our demo pods are an opportunity for attendees to see our products but more so to meet the product management and development teams. I would like to point out that we have two Oracle GoldenGate 11gR2 demo pods, one in the database camp and the other in the middleware camp. The one in the middleware camp will be focused on all platforms while the one in the database camp will have a focus on the Oracle platform. The other two I would like to point out are the Monitoring Oracle GoldenGate and the Oracle Enterprise Manager demo pods; both of these pods will focus on methods to monitor GoldenGate but the OEM demo pod will have a specific focus on the Oracle GoldenGate Management Pack plug-in for OEM. Below is a list of our demo pods and their locations. Monitoring Oracle GoldenGate for End-to-End Visibility Moscone South, Right - S-241 Oracle Data Integrator and Oracle GoldenGate for Oracle Applications Moscone South, Right - S-240 Oracle GoldenGate 11gR2 New Features Moscone South, Right - S-239 Oracle GoldenGate 11gR2: Real-Time, Transactional Database Replication     Moscone South, Left - S-027 Oracle GoldenGate Veridata and Adapters Moscone South, Right - S-242 Oracle Enterprise Manager Moscone South, Left - S-040 Keep tuned to our blog during the show for news and highlights from the Data Integration Solutions team. See you there.

    Read the article

  • Cutting Subscriber Churn with Media Intelligence

    - by Oracle M&E
    There's lots of talk in media and entertainment companies about using "big data".  But it's often hard to see through the hype and understand how big data brings benefits in the real world.  How about being able to predict with 92% accuracy which subscribers intend to cancel their subscription - and put in place a renewal strategy to dramatically reduce that churn?  That's what Belgian media company De Persgroep has achieved with Oracle's Media Intelligence solution.  "One of the areas in which we're able to achieve beautiful results using big data is the churn prediction," De Persgroep's CIO Luc Verbist explains in a new Oracle video.  "Based on all the data that we collect on websites and all your behavior, payment behavior and so on, we're able to make a prediction model, which, with an accuracy of 92 percent, is able to predict that you probably won't renew your newspaper, anymore. So our approach to renewal is completely different to the people in that segment than towards the other people. And this has brought us a lot of value and a lot of customers who didn't stop their newspaper where else they would have done so." De Persgroep is using Oracle's Big Data Appliance, along with software from Oracle partner NGDATA to build up a detailed "DNA profile" of each individual customer, based on every interaction, in real time.  This means that any change in behavior - a drop in content consumption, a late subscription payment, a negative social media comment - is captured.  Applying advanced data modeling techniques automatically converts those raw interactions into data with real business meaning - like that customer's risk of churning. The very same data profile - comprising hundreds if individual dimensions - can simultaneously drive targeted marketing campaigns - informing audience about new content that's most relevant and encouraging them to subscribe.  It can power content recommendations and personalization right in the content sites and apps. And it can link directly into digital advertising networks via platforms like Oracle's BlueKai data management platform (DMP), to drive increased advertising CPMs. Using Oracle's Media Intelligence solution enables this across De Persgroep's business - comprising eight newspapers and 25 magazines published in Belgium and The Netherlands, and digital properties including websites with 6m daily unique visitors, along with TV and radio stations. "The company strategy is in fact a customer-centric strategy, so we want to get a 360-view about our customers, about our prospects. And the big data project helped us to achieve that goal," says Verbist. Using Oracle's Big Data Appliance to underpin the solution created huge savings.   "The selection of the Big Data Appliance was quite easy.  It was very quick to install, very easy to install, as well. And it was far cheaper than building our own Hadoop cluster. So it was in fact a non-brainer," Verbist explains. Applying Media Intelligence approach has yielded incredible results for De Persgroep, including: Improved products - with a new understanding of how readers are consuming print and digital content across the day Improved customer segmentation - driving a 6X improvement in customer prospecting and acquisition when contacting a specific segment Having the project up and running in three months And that has led to competitive benefits for De Persgroep, as Luc Verbist explains: "one of the results we saw since we started using big data is that we're able to increase the gap between we as the market leader, and the second [by] more than 20 percent."

    Read the article

  • Sun Ray Hardware Last Order Dates & Extension of Premier Support for Desktop Virtualization Software

    - by Adam Hawley
    In light of the recent announcement  to end new feature development for Oracle Virtual Desktop Infrastructure Software (VDI), Oracle Sun Ray Software (SRS), Oracle Virtual Desktop Client (OVDC) Software, and Oracle Sun Ray Client hardware (3, 3i, and 3 Plus), there have been questions and concerns regarding what this means in terms of customers with new or existing deployments.  The following updates clarify some of these commonly asked questions. Extension of Premier Support for Software Though there will be no new feature additions to these products, customers will have access to maintenance update releases for Oracle Virtual Desktop Infrastructure and Sun Ray Software, including Oracle Virtual Desktop Client and Sun Ray Operating Software (SROS) until Premier Support Ends.  To ensure that customer investments for these products are protected, Oracle  Premier Support for these products has been extended by 3 years to following dates: Sun Ray Software - November 2017 Oracle Virtual Desktop Infrastructure - March 2017 Note that OVDC support is also extended to the above dates since OVDC is licensed by default as part the SRS and VDI products.   As a reminder, this only affects the products listed above.  Oracle Secure Global Desktop and Oracle VM VirtualBox will continue to be enhanced with new features from time-to-time and, as a result, they are not affected by the changes detailed in this message. The extension of support means that customers under a support contract will still be able to file service requests through Oracle Support, and Oracle will continue to provide the utmost level of support to our customers as expected,  until the published Premier Support end date.  Following the end of Premier Support, Sustaining Support remains an 'indefinite' period of time.   Sun Ray 3 Series Clients - Last Order Dates For Sun Ray Client hardware, customers can continue to purchase Sun Ray Client devices until the following last order dates: Product Marketing Part Number Last Order Date Last Ship Date Sun Ray 3 Plus TC3-P0Z-00, TC3-PTZ-00 (TAA) September 13, 2013 February 28, 2014 Sun Ray 3 Client TC3-00Z-00 February 28, 2014 August 31, 2014 Sun Ray 3i Client TC3-I0Z-00 February 28, 2014 August 31, 2014 Payflex Smart Cards X1403A-N, X1404A-N February 28, 2014 August 31, 2014 Note the difference in the Last Order Date for the Sun Ray 3 Plus (September 13, 2013) compared to the other products that have a Last Order Date of February 28, 2014. The rapidly approaching date for Sun Ray 3 Plus is due to a supplier phasing-out production of a key component of the 3 Plus.   Given September 13 is unfortunately quite soon, we strongly encourage you to place your last time buy as soon as possible to maximize Oracle's ability fulfill your order. Keep in mind you can schedule shipments to be delivered as late as the end of February 2014, but the last day to order is September 13, 2013. Customers wishing to purchase other models - Sun Ray 3 Clients and/or Sun Ray 3i Clients - have additional time (until February 28, 2014) to assess their needs and to allow fulfillment of last time orders.  Please note that availability of supply cannot be absolutely guaranteed up to the last order dates and we strongly recommend placing last time buys as early as possible.  Warranty replacements for Sun Ray Client hardware for customers covered by Oracle Hardware Systems Support contracts will be available beyond last order dates, per Oracle's policy found on Oracle.com here.  Per that policy, Oracle intends to provide replacement hardware for up to 5 years beyond the last ship date, but hardware may not be available beyond the 5 year period after the last ship date for reasons beyond Oracle's control. In any case, by design, Sun Ray Clients have an extremely long lifespan  and mean time between failures (MTBF) - much longer than PCs, and over the years we have continued to see first- and second generations of Sun Rays still in daily use.  This is no different for the Sun Ray 3, 3i, and 3 Plus.   Because of this, and in addition to Oracle's continued support for SRS, VDI, and SROS, Sun Ray and Oracle VDI deployments can continue to expand and exist as a viable solution for some time in the future. Continued Availability of Product Licenses and Support Oracle will continue to offer all existing software licenses, and software and hardware support including: Product licenses and Premier Support for Sun Ray Software and Oracle Virtual Desktop Infrastructure Premier Support for Operating Systems (for Sun Ray Operating Software maintenance upgrades/support)  Premier Support for Systems (for Sun Ray Operating Software maintenance upgrades/support and hardware warranty) Support renewals For More Information For more information, please refer to the following documents for specific dates and policies associated with the support of these products: Document 1478170.1 - Oracle Desktop Virtualization Software and Hardware Lifetime Support Schedule Document 1450710.1 - Sun Ray Client Hardware Lifetime schedule Document 1568808.1 - Document Support Policies for Discontinued Oracle Virtual Desktop Infrastructure, Sun Ray Software and Hardware and Oracle Virtual Desktop Client Development For Sales Orders and Questions Please contact your Oracle Sales Representative or Saurabh Vijay ([email protected])

    Read the article

  • Don't Forget To Enjoy Life

    - by Justin
    I have a pretty clear stance on posting personal information in my blogs. I tend to avoid it almost instinctively. Part of that is because I am a somewhat private person. And the other is because I know how easy it is for personal information to be gathered and collected from sources such as blogs. So, this has remained a tech only blog for me. I've only posted topics mostly related to issues I have encountered at work. In a way this blog is a 'bookmark' for me. If I post something here and run into the issue again it allows me to refer back to a convenient place where the 'fix' is documented in a way that I understand. But today, I am posting something that speaks to everyone. Something PERSONAL. Honestly, I expect this entry to receive zero views. But if nothing else, I can come back to this blog one day when I'm having a bad day or something and run across this post. And I will be reminded... DON'T FORGET TO ENJOY LIFE. Say this to yourself out loud, right now. People, we can get caught up in some rather mundane details as we trek through life. It's so easy to lose track of what really matters that it should be no surprise to find yourself reading something like this and thinking to yourself 'Yeah. You are right, man. Some of this crap I'm clinging on to right now is so small in the grand scheme of things'. I have no reservation, no shame, in saying that I am more often than not caught up in the ever evolving world of 'shit that does not matter'. When you work in technology, you are surrounded by deadlines, upgrades, new versions, support 'end of life', etc. And by time you get done with your 8 hours you go home and put in a few more because you are STILL CAUGHT UP in the things you dealt with at work all day. DO YOURSELF A FAVOR. DO YOUR FAMILY AND FRIEND A FAVOR. When you are done for the day, and you drive home, get those work-related things out of your head before you pull into the driveway. If you are still thinking on them when you park the car, leave the engine running, close your eyes and take a deep breath. If you believe in God, pray. If you don't then meditate for a second with the INTENTION of letting go of the day and becoming the 'real you'. You may have forgotten who the real you is so I'll remind you.... THE REAL YOU IS THAT GUY OR GAL THAT LAUGHS, LOVES, AND LIVES. Be the real you as often as possible. If you can't do it during your 9 - 5, do it at home. YOUR RELATIONSHIPS AND YOUR PERSONAL HAPPINESS DEPEND ON IT. I am going to make you a promise right now. If you do what I've just said, your days will be longer and your joy will be exponential. I can't explain why I know this to be true. But I do know it. And if you are there reading this right now, you know it is true too. We both know it is true because it COMES FROM WITHIN EVERY MAN, WOMAN and CHILD. We are born into love and happiness. Lets not fade away into the darkness so easily found in this world. Lets keep the flame burning. The flame of passion. Passion for LIFE. Peace be with you.

    Read the article

  • WebLogic Server Performance and Tuning: Part II - Thread Management

    - by Gokhan Gungor
    WebLogic Server, like any other java application server, provides resources so that your applications use them to provide services. Unfortunately none of these resources are unlimited and they must be managed carefully. One of these resources is threads which are pooled to provide better throughput and performance along with the fast response time and to avoid deadlocks. Threads are execution points that WebLogic Server delivers its power and execute work. Managing threads is very important because it may affect the overall performance of the entire system. In previous releases of WebLogic Server 9.0 we had multiple execute queues and user defined thread pools. There were different queues for different type of work which had fixed number of execute threads.  Tuning of this thread pools and finding the proper number of threads was time consuming which required many trials. WebLogic Server 9.0 and the following releases use a single thread pool and a single priority-based execute queue. All type of work is executed in this single thread pool. Its size (thread count) is automatically decreased or increased (self-tuned). The new “self-tuning” system simplifies getting the proper number of threads and utilizing them.Work manager allows your applications to run concurrently in multiple threads. Work manager is a mechanism that allows you to manage and utilize threads and create rules/guidelines to follow when assigning requests to threads. We can set a scheduling guideline or priority a request with a work manager and then associate this work manager with one or more applications. At run-time, WebLogic Server uses these guidelines to assign pending work/requests to execution threads. The position of a request in the execute queue is determined by its priority. There is a default work manager that is provided. The default work manager should be sufficient for most applications. However there can be cases you want to change this default configuration. Your application(s) may be providing services that need mixture of fast response time and long running processes like batch updates. However wrong configuration of work managers can lead a performance penalty while expecting improvement.We can define/configure work managers at;•    Domain Level: config.xml•    Application Level: weblogic-application.xml •    Component Level: weblogic-ejb-jar.xml or weblogic.xml(For a specific web application use weblogic.xml)We can use the following predefined rules/constraints to manage the work;•    Fair Share Request Class: Specifies the average thread-use time required to process requests. The default is 50.•    Response Time Request Class: Specifies a response time goal in milliseconds.•    Context Request Class: Assigns request classes to requests based on context information.•    Min Threads Constraint: Limits the number of concurrent threads executing requests.•    Max Threads Constraint: Guarantees the number of threads the server will allocate to requests.•    Capacity Constraint: Causes the server to reject requests only when it has reached its capacity. Let’s create a work manager for our application for a long running work.Go to WebLogic console and select Environment | Work Managers from the domain structure tree. Click New button and select Work manager and click next. Enter the name for the work manager and click next. Then select the managed server instances(s) or clusters from available targets (the one that your long running application is deployed) and finish. Click on MyWorkManager, and open the Configuration tab and check Ignore Stuck Threads and save. This will prevent WebLogic to tread long running processes (that is taking more than a specified time) as stuck and enable to finish the process.

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 6

    - by MarkPearl
    Learning Outcomes Discuss the physical characteristics of magnetic disks Describe how data is organized and accessed on a magnetic disk Discuss the parameters that play a role in the performance of magnetic disks Describe different optical memory devices Magnetic Disk The way data is stored on and retried from magnetic disks Data is recorded on and later retrieved form the disk via a conducting coil named the head (in many systems there are two heads) The writ mechanism exploits the fact that electricity flowing through a coil produces a magnetic field. Electric pulses are sent to the write head, and the resulting magnetic patterns are recorded on the surface below with different patterns for positive and negative currents The physical characteristics of a magnetic disk   Summarize from book   The factors that play a role in the performance of a disk Seek time – the time it takes to position the head at the track Rotational delay / latency – the time it takes for the beginning of the sector to reach the head Access time – the sum of the seek time and rotational delay Transfer time – the time it takes to transfer data RAID The rate of improvement in secondary storage performance has been considerably less than the rate for processors and main memory. Thus secondary storage has become a bit of a bottleneck. RAID works on the concept that if one disk can be pushed so far, additional gains in performance are to be had by using multiple parallel components. Points to note about RAID… RAID is a set of physical disk drives viewed by the operating system as a single logical drive Data is distributed across the physical drives of an array in a scheme known as striping Redundant disk capacity is used to store parity information, which guarantees data recoverability in case of a disk failure (not supported by RAID 0 or RAID 1) Interesting to note that the increase in the number of drives, increases the probability of failure. To compensate for this decreased reliability RAID makes use of stored parity information that enables the recovery of data lost due to a disk failure.   The RAID scheme consists of 7 levels…   Category Level Description Disks Required Data Availability Large I/O Data Transfer Capacity Small I/O Request Rate Striping 0 Non Redundant N Lower than single disk Very high Very high for both read and write Mirroring 1 Mirrored 2N Higher than RAID 2 – 5 but lower than RAID 6 Higher than single disk Up to twice that of a signle disk for read Parallel Access 2 Redundant via Hamming Code N + m Much higher than single disk Highest of all listed alternatives Approximately twice that of a single disk Parallel Access 3 Bit interleaved parity N + 1 Much higher than single disk Highest of all listed alternatives Approximately twice that of a single disk Independent Access 4 Block interleaved parity N + 1 Much higher than single disk Similar to RAID 0 for read, significantly lower than single disk for write Similar to RAID 0 for read, significantly lower than single disk for write Independent Access 5 Block interleaved parity N + 1 Much higher than single disk Similar to RAID 0 for read, lower than single disk for write Similar to RAID 0 for read, generally  lower than single disk for write Independent Access 6 Block interleaved parity N + 2 Highest of all listed alternatives Similar to RAID 0 for read; lower than RAID 5 for write Similar to RAID 0 for read, significantly lower than RAID 5  for write   Read page 215 – 221 for detailed explanation on RAID levels Optical Memory There are a variety of optical-disk systems available. Read through the table on page 222 – 223 Some of the devices include… CD CD-ROM CD-R CD-RW DVD DVD-R DVD-RW Blue-Ray DVD Magnetic Tape Most modern systems use serial recording – data is lade out as a sequence of bits along each track. The typical recording used in serial is referred to as serpentine recording. In this technique when data is being recorded, the first set of bits is recorded along the whole length of the tape. When the end of the tape is reached the heads are repostioned to record a new track, and the tape is again recorded on its whole length, this time in the opposite direction. That process continued back and forth until the tape is full. To increase speed, the read-write head is capable of reading and writing a number of adjacent tracks simultaneously. Data is still recorded serially along individual tracks, but blocks in sequence are stored on adjacent tracks as suggested. A tape drive is a sequential access device. Magnetic tape was the first kind of secondary memory. It is still widely used as the lowest-cost, slowest speed member of the memory hierarchy.

    Read the article

  • An Actionable Common Approach to Federal Enterprise Architecture

    - by TedMcLaughlan
    The recent “Common Approach to Federal Enterprise Architecture” (US Executive Office of the President, May 2 2012) is extremely timely and well-organized guidance for the Federal IT investment and deployment community, as useful for Federal Departments and Agencies as it is for their stakeholders and integration partners. The guidance not only helps IT Program Planners and Managers, but also informs and prepares constituents who may be the beneficiaries or otherwise impacted by the investment. The FEA Common Approach extends from and builds on the rapidly-maturing Federal Enterprise Architecture Framework (FEAF) and its associated artifacts and standards, already included to a large degree in the annual Federal Portfolio and Investment Management processes – for example the OMB’s Exhibit 300 (i.e. Business Case justification for IT investments).A very interesting element of this Approach includes the very necessary guidance for actually using an Enterprise Architecture (EA) and/or its collateral – good guidance for any organization charged with maintaining a broad portfolio of IT investments. The associated FEA Reference Models (i.e. the BRM, DRM, TRM, etc.) are very helpful frameworks for organizing, understanding, communicating and standardizing across agencies with respect to vocabularies, architecture patterns and technology standards. Determining when, how and to what level of detail to include these reference models in the typically long-running Federal IT acquisition cycles wasn’t always clear, however, particularly during the first interactions of a Program’s technical and functional leadership with the Mission owners and investment planners. This typically occurs as an agency begins the process of describing its strategy and business case for allocation of new Federal funding, reacting to things like new legislation or policy, real or anticipated mission challenges, or straightforward ROI opportunities (for example the introduction of new technologies that deliver significant cost-savings).The early artifacts (i.e. Resource Allocation Plans, Acquisition Plans, Exhibit 300’s or other Business Case materials, etc.) of the intersection between Mission owners, IT and Program Managers are far easier to understand and discuss, when the overlay of an evolved, actionable Enterprise Architecture (such as the FEA) is applied.  “Actionable” is the key word – too many Public Service entity EA’s (including the FEA) have for too long been used simply as a very highly-abstracted standards reference, duly maintained and nominally-enforced by an Enterprise or System Architect’s office. Refreshing elements of this recent FEA Common Approach include one of the first Federally-documented acknowledgements of the “Solution Architect” (the “Problem-Solving” role). This role collaborates with the Enterprise, System and Business Architecture communities primarily on completing actual “EA Roadmap” documents. These are roadmaps grounded in real cost, technical and functional details that are fully aligned with both contextual expectations (for example the new “Digital Government Strategy” and its required roadmap deliverables - and the rapidly increasing complexities of today’s more portable and transparent IT solutions.  We also expect some very critical synergies to develop in early IT investment cycles between this new breed of “Federal Enterprise Solution Architect” and the first waves of the newly-formal “Federal IT Program Manager” roles operating under more standardized “critical competency” expectations (including EA), likely already to be seriously influencing the quality annual CPIC (Capital Planning and Investment Control) processes.  Our Oracle Enterprise Strategy Team (EST) and associated Oracle Enterprise Architecture (OEA) practices are already engaged in promoting and leveraging the visibility of Enterprise Architecture as a key contributor to early IT investment validation, and we look forward in particular to seeing the real, citizen-centric benefits of this FEA Common Approach in particular surface across the entire Public Service CPIC domain - Federal, State, Local, Tribal and otherwise. Read more Enterprise Architecture blog posts for additional EA insight!

    Read the article

  • Musings on the launch of SQL Monitor

    - by Phil Factor
    For several years, I was responsible for the smooth running of a large number of enterprise database servers. We ran a network monitoring tool that was primitive by today’s standards but which performed the useful function of polling every system, including all the Servers in my charge. It ran a configurable script for each service that you needed to monitor that was merely required to return one of a number of integer values. These integer values represented the pain level of the service, from 10 (“hurtin’ real bad”) to 1 (“Things is great”). Not only could you program the visual appearance of each server on the network diagram according to the value of the integer, but you could even opt to run a sound file. Very soon, we had a large TFT Screen, high on the wall of the server room, with every server represented by an icon, and a speaker next to it that would give out a series of grunts, groans, snores, shrieks and funeral marches, depending on the problem. One glance at the display, and you could dive in with iSQL/QA/SSMS and check what was going on with your favourite diagnostic tools. If you saw a server icon burst into flames on the screen or droop like a jelly, you dropped your mug of coffee to do it.  It was real fun, but I remember it more for the huge difference it made to have that real-time visibility into how your servers are performing. The management soon stopped making jokes about the real reason we wanted the TFT screen. (It rendered DVDs beautifully they said; particularly flesh-tints). If you are instantly alerted when things start to go wrong, then there was a good chance you could fix it before being alerted to the problem by the users of the system.  There is a world of difference between this sort of tool, one that gives whoever is ‘on watch’ in the server room the first warning of a potential problem on one of any number of servers, and the breed of tool that attempts to provide some sort of prosthetic DBA Brain. I like to get the early warning, to get the right information to help to diagnose a problem: No auto-fix, but just the information. I prefer to leave the task of ascertaining the exact cause of a problem to my own routines, custom code, intuition and forensic instincts. A simulated aircraft cockpit doesn’t do anything for me, especially before I know where I should be flying.  Time has moved on, and that TFT screen is now, with SQL Monitor, an iPad or any other mobile or static device that can support a browser. Rather than trying to reproduce the conceptual topology of the servers, it lists them in their groups so as to give a display that scales with the increasing number of databases you monitor.  It gives the history of the major events and trends for the servers. It gives the icons and colours that you can spot out of the corner of your eye, but goes on to give you just enough information in drill-down to give you a much clearer idea of where to look with your DBA tools and routines. It doesn't swamp you with information.  Whereas a few server and database-level problems are pretty easily fixed, others depend on judgement and experience to sort out.  Although the idea of an application that automates the bulk of a DBA’s skills is attractive to many, I can’t see it happening soon. SQL Server’s complexity increases faster than the panaceas can be created. In the meantime, I believe that the best way of helping  DBAs  is to make the monitoring process as simple and effective as possible,  and provide the right sort of detail and ‘evidence’ to allow them to decide on the fix. In the end, it is still down to the skill of the DBA.

    Read the article

  • OpenWorld: Our (Road) Maps are Looking Good!

    - by Tony Berk
    Wow, only one (or two) days down at Oracle OpenWorld! Are you on overload yet? I'm still trying to figure out how to be in 3 sessions at the same time... I guess everyone needs to prioritize! There was a lot to see in Monday's sessions, especially some great forward-looking roadmap sessions. In case you aren't here or you decided to go to other sessions, this is my quick summary of what I could capture from a couple of the roadmaps: In the Fusion CRM Strategy and Roadmap session, Anthony Lye provided an overview of the Fusion CRM strategy including the key design principles of 3 E's: Easy, Effective and Efficient. After an overview of how Oracle has deployed Fusion CRM internally to 25,000 users worldwide, Anthony discussed the features coming in the next release, the releases in the next 12 months and beyond. I can't detail too much since you haven't read Oracle's Safe Harbor statement, but check out Fusion Tap and look for new features and added functionality for sales prediction, marketing, social and integration with a number of the key Customer Experience products.  In the Oracle RightNow CX Cloud Service Vision and Roadmap session, Chris Hamilton presented the focus areas for the RightNow product. As a result of the large increase in development resources after the acquisition, the RightNow CX team is planning a lot of enhancements to the functionality, infrastructure and integrations. As a key piece of the Oracle Customer Experience (CX) strategy, RightNow will be integrated with Oracle Social Network, Oracle Commerce (ATG and Endeca), Oracle Knowledge, Oracle Policy Automation and, of course, further integration with Fusion Sales and Marketing. Look forward to seeing more on the Virtual Assistant, Smart Interaction Hub and Mobility. In addition to the roadmaps, I was looking forward to hearing from Oracle CRM customers. So, I sat in on two great Siebel customer panels: The Maximizing User Adoption Rates for Siebel Sales and Siebel Partner Relationship Management panel consisted of speakers from CSL Behring, McKesson and Intuit. It was great to get an overview of implementations for both B2B and B2C companies. It was great hearing that all of these companies have more than 1,000 sales users (Intuit has 4,000) and how the 360 degree view of the customer in Siebel is helping these customers improve their customers' experience (CX). They are all great examples of centralized implementations which have standardized processes across the globe and across business units.  Waste Management, Farmers Insurance and the US Citizenship & Immigration Services presented in the Driving Great Customer Experiences with Siebel Service Applications session. Talk about serving large customer bases! Is it possible that Farmers with only 10 million households is the smallest of these 3? All of them provided great examples of how they are improving the customer experience (CX) including 60-70% improvements in efficiency or reducing the number of applications the customer service reps (CSRs) need to use from 10 to 1 (Waste Management) and context aware call transfers to avoid the caller explaining their issue 3 times (USCIS). So that's my wrap up of only 4 sessions from Monday. In between sessions, I stopped by the Oracle DEMOgrounds and CRM Pavilion to visit with a group of great partners and see the products and partner integrations in action. Don't miss a recap of Mark Hurd's Keynote. I can't believe there were another 40+ sessions covering CRM, Fusion, Cloud, etc. that I missed today! Anyone else see any great sessions?

    Read the article

  • I am trying to create an windows application watcher? [migrated]

    - by Broken_Code
    I recently started coding in c #(in may this year) and well I find it best to learn by working with code. this application http://www.c-sharpcorner.com/UploadFile/satisharveti/ActiveApplicationWatcher01252007024921AM/ActiveApplicationWatcher.aspx. I am trying to recreate it however mine will be saving the information into an sql database(new at this as well). I am having some coding problems though as it does not do what I expect it to do. THis is the main code I am using. private void GetTotalTimer() { DateTime now = DateTime.Now; IntPtr hwnd = APIFunc.getforegroundWindow(); Int32 pid = APIFunc.GetWindowProcessID(hwnd); Process p = Process.GetProcessById(pid); appName = p.ProcessName; const int nChars = 256; int handle = 0; StringBuilder Buff = new StringBuilder(nChars); handle = GetForegroundWindow(); appltitle = APIFunc.ActiveApplTitle().Trim().Replace("\0", ""); //if (GetWindowText(handle, Buff, nChars) > 0) //{ // string strbuff = Buff.ToString(); // StrWindow = strbuff; #region insert statement try { if (Conn.State == ConnectionState.Closed) { Conn.Open(); } if (Conn.State == ConnectionState.Open) { SqlCommand com = new SqlCommand("Select top 1 [Window Title] From TimerLogs ORDER BY [Time of Event] DESC", Conn); SqlDataReader reader = com.ExecuteReader(); startTime = DateTime.Now; string time = now.ToString(); if (!reader.HasRows) { reader.Close(); cmd = new SqlCommand("insert into [TimerLogs] values(@time,@appName,@appltitle,@Elapsed_Time,@userName)", Conn); cmd.Parameters.AddWithValue("@time", time); cmd.Parameters.AddWithValue("@appName", appName); cmd.Parameters.AddWithValue("@appltitle", appltitle); cmd.Parameters.AddWithValue("@Elapsed_Time", blank.ToString()); cmd.Parameters.AddWithValue("@userName", userName); cmd.ExecuteNonQuery(); Conn.Close(); } else if(reader.HasRows) { reader.Read(); if (appltitle != reader.ToString()) { reader.Close(); endTime = DateTime.Now; appduration = endTime.Subtract(startTime); cmd = new SqlCommand("insert into [TimerLogs] values (@time,@appName,@appltitle,@Elapsed_Time,@userName)", Conn); cmd.Parameters.AddWithValue("@time", time); cmd.Parameters.AddWithValue("@appName", appName); cmd.Parameters.AddWithValue("@appltitle", appltitle); cmd.Parameters.AddWithValue("@Elapsed_Time", appduration.ToString()); cmd.Parameters.AddWithValue("@userName", userName); cmd.ExecuteNonQuery(); reader.Close(); Conn.Close(); } } } } catch (Exception) { } //} #endregion ActivityTimer.Start(); Processing = "Working"; } Unfortunately this is the result. it is not saving the data as I expect it to. What am i doing wrong I had thought that with the sql reader it would first check for a value and only save if they do not match however it is saving whether there is a match or not.

    Read the article

< Previous Page | 254 255 256 257 258 259 260 261 262 263 264 265  | Next Page >