Search Results

Search found 650 results on 26 pages for 'caller'.

Page 26/26 | < Previous Page | 22 23 24 25 26 

  • Windows Phone 7 development: reading RSS feeds

    - by DigiMortal
    One limitation on Windows Phone 7 is related to System.Net namespace classes. There is no convenient way to read data from web. There is no WebClient class. There is no GetResponse() method – we have to do it all asynchronously because compact framework has limited set of classes we can use in our applications to communicate with internet. In this posting I will show you how to read RSS-feeds on Windows Phone 7. NB! This is my draft code and it may contain some design flaws and some questionable solutions. This code is intended to use as test-drive for Windows Phone 7 CTP developer tools and I don’t suppose you are going to use this code in production environment. Current state of my RSS-reader Currently my RSS-reader for Windows Phone 7 is very simple, primitive and uses almost all defaults that come out-of-box with Windows Phone 7 CTP developer tools. My first goal before going on with nicer user interface design was making RSS-reading work because instead of convenient classes from .NET Framework we have to use very limited classes from .NET Framework CE. This is why I took the reading of RSS-feeds as my first task. There are currently more things to solve regarding user-interface. As I am pretty new to all this Silverlight stuff I am not very sure if I can modify default controls easily or should I write my own controls that have better look and that work faster. The image on right shows you how my RSS-reader looks like right now. Upper side of screen is filled with list that shows headlines from this blog. The bottom part of screen is used to show description of selected posting. You can click on the image to see it in original size. In my next posting I will show you some improvements of my RSS-reader user interface that make it look nicer. But currently it is nice enough to make sure that RSS-feeds are read correctly. FeedItem class As this is most straight-forward part of the following code I will show you RSS-feed items class first. I think we have to stop on it because it is simple one. public class FeedItem {     public string Title { get; set; }     public string Description { get; set; }     public DateTime PublishDate { get; set; }     public List<string> Categories { get; set; }     public string Link { get; set; }       public FeedItem()     {         Categories = new List<string>();     } } RssClient RssClient takes feed URL and when asked it loads all items from feed and gives them back to caller through ItemsReceived event. Why it works this way? Because we can make responses only using asynchronous methods. I will show you in next section how to use this class. Although the code here is not very good but it works like expected. I will refactor this code later because it needs some more efforts and investigating. But let’s hope I find excellent solution. :) public class RssClient {     private readonly string _rssUrl;       public delegate void ItemsReceivedDelegate(RssClient client, IList<FeedItem> items);     public event ItemsReceivedDelegate ItemsReceived;       public RssClient(string rssUrl)     {         _rssUrl = rssUrl;     }       public void LoadItems()     {         var request = (HttpWebRequest)WebRequest.Create(_rssUrl);         var result = (IAsyncResult)request.BeginGetResponse(ResponseCallback, request);     }       void ResponseCallback(IAsyncResult result)     {         var request = (HttpWebRequest)result.AsyncState;         var response = request.EndGetResponse(result);           var stream = response.GetResponseStream();         var reader = XmlReader.Create(stream);         var items = new List<FeedItem>(50);           FeedItem item = null;         var pointerMoved = false;           while (!reader.EOF)         {             if (pointerMoved)             {                 pointerMoved = false;             }             else             {                 if (!reader.Read())                     break;             }               var nodeName = reader.Name;             var nodeType = reader.NodeType;               if (nodeName == "item")             {                 if (nodeType == XmlNodeType.Element)                     item = new FeedItem();                 else if (nodeType == XmlNodeType.EndElement)                     if (item != null)                     {                         items.Add(item);                         item = null;                     }                   continue;             }               if (nodeType != XmlNodeType.Element)                 continue;               if (item == null)                 continue;               reader.MoveToContent();             var nodeValue = reader.ReadElementContentAsString();             // we just moved internal pointer             pointerMoved = true;               if (nodeName == "title")                 item.Title = nodeValue;             else if (nodeName == "description")                 item.Description =  Regex.Replace(nodeValue,@"<(.|\n)*?>",string.Empty);             else if (nodeName == "feedburner:origLink")                 item.Link = nodeValue;             else if (nodeName == "pubDate")             {                 if (!string.IsNullOrEmpty(nodeValue))                     item.PublishDate = DateTime.Parse(nodeValue);             }             else if (nodeName == "category")                 item.Categories.Add(nodeValue);         }           if (ItemsReceived != null)             ItemsReceived(this, items);     } } This method is pretty long but it works. Now let’s try to use it in Windows Phone 7 application. Using RssClient And this is the fragment of code behing the main page of my application start screen. You can see how RssClient is initialized and how items are bound to list that shows them. public MainPage() {     InitializeComponent();       SupportedOrientations = SupportedPageOrientation.Portrait | SupportedPageOrientation.Landscape;     listBox1.Width = Width;       var rssClient = new RssClient("http://feedproxy.google.com/gunnarpeipman");     rssClient.ItemsReceived += new RssClient.ItemsReceivedDelegate(rssClient_ItemsReceived);     rssClient.LoadItems(); }   void rssClient_ItemsReceived(RssClient client, IList<FeedItem> items) {     Dispatcher.BeginInvoke(delegate()     {         listBox1.ItemsSource = items;     });            } Conclusion As you can see it was not very hard task to read RSS-feed and populate list with feed entries. Although we are not able to use more powerful classes that are part of full version on .NET Framework we can still live with limited set of classes that .NET Framework CE provides.

    Read the article

  • Windows Vista/Win7 Privilege Problem: SeDebugPrivilege & OpenProcess

    - by KevenK
    Everything I've been able to find about escalating to the appropriate privileges for my needs has agreed with my current methods, but the problem exists. I'm hoping maybe someone has some Windows Vista/Win7 internals experience that might shine some light where there is only darkness. I'm sure this will get long, but please bare with me. Context: I'm working on an app that requires accessing the memory of other processes on the current machine. This, obviously, requires administrator rights. It also requires SeDebugPrivilege, which I believe myself to be acquiring correctly, although I question if more privileges aren't necessary and thus the cause of my problems. Code has so far worked successfully on all versions of Windows XP, and on my test Vista32 and Win7x64 environments. Process: Program will Always be run with Administrator Rights. This can be assumed throughout this post. Escalating the current process's Access Token to include SeDebugPrivilege rights. Using EnumProcesses to create a list of current PIDs on the system Opening a handle using OpenProcess with PROCESS_ALL_ACCESS access rights Using ReadProcessMemory to read the memory of the other process. Problem: Everything has been working fine during development and my personal testing (including Windows XP 32 & 64, Windows Vista 32, and Windows 7 x64). However, during a test deployment onto both Windows Vista(32-bit) and Windows 7(64-bit) machines of a colleague, there seems to be a privilege/rights problem with OpenProcess failing with a generic Access Denied error. This occurs both when running as a limited User (as would be expected) and also when run explicitly as Administrator (Right-click Run as Administrator and when run from an Administrator level command prompt). However, this problem has been unreproducible for myself in my test environment. I have witnessed the problem first hand, so I trust that the problem exists. The only difference that I can discern between the actual environment and my test environment is that the actual error is occurring when using a Domain Administrator account at the UAC prompt, whereas my tests (which work with no errors) use a local administrator account at the UAC prompt. It appears that although the credentials being used allow UAC to 'run as administrator', the process is still not obtaining the correct rights to be able to OpenProcess on another process. I am not familiar enough with the internals of Vista/Win7 to know what this might be, and I am hoping someone has an idea of what could be the cause. The Kicker: The person who has reported this error, and who's environment can regularly reproduce this bug, has a small application named along the lines of RunWithDebugEnabled which is a small bootstrap program which appears to escalate its own privileges and then launch the executable passed to it (thus inheriting the escalated privileges). When run with this program, using the same Domain Administrator credentials at UAC prompt, the program works correctly and is able to successfully call OpenProcess and operates as intended. So this is definitely a problem with acquiring the correct privileges, and it is known that the Domain Administrator account is an administrator account that should be able to access the correct rights. (Obviously obtaining this source code would be great, but I wouldn't be here if that were possible). Notes: As noted, the errors reported by the failed OpenProcess attempts are Access Denied. According to MSDN documentation of OpenProcess: If the caller has enabled the SeDebugPrivilege privilege, the requested access is granted regardless of the contents of the security descriptor. This leads me to believe that perhaps there is a problem under these conditions either with (1) Obtaining SeDebugPrivileges or (2) Requiring other privileges which have not been mentioned in any MSDN documentation, and which might differ between a Domain Administrator account and a Local Administrator account Sample Code: void sample() { ///////////////////////////////////////////////////////// // Note: Enabling SeDebugPrivilege adapted from sample // MSDN @ http://msdn.microsoft.com/en-us/library/aa446619%28VS.85%29.aspx // Enable SeDebugPrivilege HANDLE hToken = NULL; TOKEN_PRIVILEGES tokenPriv; LUID luidDebug; if(OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES, &hToken) != FALSE) { if(LookupPrivilegeValue(NULL, SE_DEBUG_NAME, &luidDebug) != FALSE) { tokenPriv.PrivilegeCount = 1; tokenPriv.Privileges[0].Luid = luidDebug; tokenPriv.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; if(AdjustTokenPrivileges(hToken, FALSE, &tokenPriv, 0, NULL, NULL) != FALSE) { // Always successful, even in the cases which lead to OpenProcess failure cout << "SUCCESSFULLY CHANGED TOKEN PRIVILEGES" << endl; } else { cout << "FAILED TO CHANGE TOKEN PRIVILEGES, CODE: " << GetLastError() << endl; } } } CloseHandle(hToken); // Enable SeDebugPrivilege ///////////////////////////////////////////////////////// vector<DWORD> pidList = getPIDs(); // Method that simply enumerates all current process IDs ///////////////////////////////////////////////////////// // Attempt to open processes for(int i = 0; i < pidList.size(); ++i) { HANDLE hProcess = NULL; hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pidList[i]); if(hProcess == NULL) { // Error is occurring here under the given conditions cout << "Error opening process PID(" << pidList[i] << "): " << GetLastError() << endl; } CloseHandle(hProcess); } // Attempt to open processes ///////////////////////////////////////////////////////// } Thanks! If anyone has some insight into what possible permissions/privileges/rights/etc that I may be missing to correctly open another process (Assuming the executable has been properly "Run as Administrator"ed) on Windows Vista and Windows 7 under the above conditions, it would be most greatly appreciated. I wouldn't be here if I weren't absolutely stumped, but I'm hopeful that once again the experience and knowledge of the group shines bright. I thank you for taking the time to read this wall of text. The good intentions alone are appreciated, thanks for being the type of person that makes SO so useful to all!

    Read the article

  • WCF: SecurityNegotiationException when using client

    - by bradhe
    So I've been trying to set up certificate authentication for my clients and services. The eventual goal is to partition data based on the certificate a client connects with (i.e. the certificate becomes their credentials in to the greater system and their data is partitioned based on these credentials). I have been able to set it up successfully on both the client and the server side. I have created a certificate and a private key, installed them on my computer, and set up my server such that 1) it has a certificate-based service credential and 2) if a client connects without providing a certificate-based credential an exception is thrown. What I then did was create a simple client and add a certificate credential to the configuration and try to call a simple operation on the service. It looks like the client connects OK, and it looks like the certificate is accepted by the server, but I do get this: SecurityNegotiationException: "The caller was not authenticated by the service." That seems rather ambiguous to me. Note that I am using wsHttpBinding, which supposedly defaults to Windows auth for transport security...but all of these processes are being run as my user account as I'm running in my debug environment. Here is my server configuration: <system.serviceModel> <bindings> <wsHttpBinding> <binding name="MyServiceBinding"> <security mode="Message"> <transport clientCredentialType="None"/> <message clientCredentialType="Certificate"/> </security> </binding> </wsHttpBinding> </bindings> <services> <service behaviorConfiguration="MyServiceBehavior" name="MyService"> <endpoint binding="wsHttpBinding" bindingConfiguration="MyServiceBinding" contract="IMyContract"/> <endpoint binding="mexHttpBinding" address="mex" contract="IMetadataExchange"> <identity> <dns value="localhost"/> </identity> </endpoint> </service> </services> <behaviors> <serviceBehaviors> <behavior name="MyServiceBehavior"> <serviceMetadata httpGetEnabled="true" policyVersion="Policy15" /> <serviceDebug includeExceptionDetailInFaults="false" /> <serviceCredentials> <serviceCertificate storeLocation="CurrentUser" storeName="My" x509FindType="FindBySubjectName" findValue="tmp123"/> </serviceCredentials> </behavior> </serviceBehaviors> </behaviors> <serviceHostingEnvironment multipleSiteBindingsEnabled="true" /> </system.serviceModel> Here is my client config -- note that I'm using the same cert for the client that I use on the service: <system.serviceModel> <bindings> <wsHttpBinding> <binding name="WSHttpBinding_IMyService" closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384"/> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false"/> <security mode="Message"> <!--<transport clientCredentialType="Windows" proxyCredentialType="None" realm=""/>--> <message clientCredentialType="Certificate" negotiateServiceCredential="true" algorithmSuite="Default"/> </security> </binding> </wsHttpBinding> </bindings> <client> <endpoint address="http://localhost:50120/UserServices.svc" binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_IMyService" behaviorConfiguration="IMyService_Behavior" contract="UserServices.IUserServices" name="WSHttpBinding_IMyService"> <identity> <certificate encodedValue="Some RSA stuff"/> </identity> </endpoint> </client> <behaviors> <endpointBehaviors> <behavior name="IMyService_Behavior"> <clientCredentials> <clientCertificate storeLocation="CurrentUser" storeName="My" x509FindType="FindBySubjectName" findValue="tmp123"/> </clientCredentials> </behavior> </endpointBehaviors> </behaviors> </system.serviceModel> Can anyone please help provide some insight as to what might be up here? Thanks,

    Read the article

  • SQL CLR Assembly Error 80131051 when late binding to a registered C# COM .dll

    - by Shanubus
    I must have hit an unusual one, because I can't find any reference to this specific failing anywhere... Scenario: I have a legacy SQL function used to transform(encrypt) data. This function is called from within many stored procedures used by multiple applications. I say this, because the obvious answer of 'just call it from your code' is not really an option (or at least one I'd prefer not explore). The legacy function used sp_OA with an ActiveX dll on SQL2000 to perform its work. The new function is targeted at SQL2008 x64. I am ditching the sp_OA call in favor of CLR assembly; and am getting rid of the ActiveX dll and using a COM+ .dll (3rd party) to perform the same work. This 3rd party COM+ is required to be used based on spec given to me, so can't get rid of this piece either. Problem: After multiple attempts at getting this to work I have eliminated the following approaches 1) Create a Sql Assembly to call the local COM+ directly -- Can't do this as it requires a reference to System.EnterpriseServices. Including this requires that a whole slew of unsupported assemblies be registered which I don't want. The COM+ requires it's methods to be accessed via an Interface, so my attempts at late binding to it directly have not been successful (late binding would allow me to drop the unsupported references). 2) Create a Sql Assembly which references a C# class library that then calls the COM+. -- Same issue as #1; since the referenced dll uses System.EnterpriseServices and will be added as a dependency when referenced in the Sql Assembly, again trying to load all the unsupported libraries 3) Create a Sql Assembly which late binds to an ActiveX COM dll that calls the COM+. -- Worked in my dev environment, but can't go to x64 in production with ActiveX dll's written in VB6 (not to mention I hate backtracking anyway)... again failure... I am now onto an approach that is almost working, with of course one last hangup. I now have -a Sql Assembly that late binds to a C# COM dll, eliminating the need for including System.EnterpriseServices and eliminating the need to reference the C# COM in the SqlAssembly itself. The C# COM does reference System.EnterpriseServices to call the COM+, but since I am late binding to it from the SqlAssembly, I bypass the need for Sql to actually load them as referenced assemblies. Works in debugger.. Works on my dev box when the SqlAssembly dll is referenced in a test console app and called directly Installs to Sql2008 just fine Executing the actual UDF works, but returns no data due to a failure reporting from the late bound dll! So the SqlAssembly is instanciated just fine. It actually fails on it's late binding to the C# COM, which is working from a test console app on the same machine. It appears to be a difference in behavior based on whether called from within the SQL UDF or not. Since it is working on the same box from my console app, I am assuming it's on the SQL side. My steps to install were. --Install the COM+ dll and ensure it can be called successfully (as from with in the console app) --Register the C# COM dll (which calls the COM+) and get it to the GAC (again proofed to be working from console app) --Create my Assymetric Key CREATE ASYMMETRIC KEY SqlCryptoKey FROM EXECUTABLE FILE = 'D:\SqlEx.dll' CREATE LOGIN SqlExLogin FROM ASYMMETRIC KEY SqlExKey GRANT UNSAFE ASSEMBLY TO SqlExLogin GO --Add the assembly CREATE ASSEMBLY SqlEx FROM 'D:\SqlEx.dll' WITH PERMISSION_SET = UNSAFE; GO --Create the function CREATE FUNCTION dbo.f_SqlEx( @clearText [nvarchar](512) ) RETURNS nvarchar(512) WITH EXECUTE AS CALLER AS EXTERNAL NAME SqlEx.[SqlEx.SqlEx].Ex GO With all that done, I can now call my function SELECT dbo.f_SqlEx('test') But get this error in the event log... Retrieving the COM class factory for component with CLSID {F69D6320-5884-323F-936A-7657946604BE} failed due to the following error: 80131051. I can't really provide direct code examples, due to internal security implications; but all the code itself seems to work, I am suspecting perms or something of the like... I just find it odd that I can't find any reference to error 80131051. If someone out there believe some 'indirect' code samples will help, I will be happy to provide. Any assistance is appreciated.

    Read the article

  • Testing Entity Framework applications, pt. 3: NDbUnit

    - by Thomas Weller
    This is the third of a three part series that deals with the issue of faking test data in the context of a legacy app that was built with Microsoft's Entity Framework (EF) on top of an MS SQL Server database – a scenario that can be found very often. Please read the first part for a description of the sample application, a discussion of some general aspects of unit testing in a database context, and of some more specific aspects of the here discussed EF/MSSQL combination. Lately, I wondered how you would ‘mock’ the data layer of a legacy application, when this data layer is made up of an MS Entity Framework (EF) model in combination with a MS SQL Server database. Originally, this question came up in the context of how you could enable higher-level integration tests (automated UI tests, to be exact) for a legacy application that uses this EF/MSSQL combo as its data store mechanism – a not so uncommon scenario. The question sparked my interest, and I decided to dive into it somewhat deeper. What I've found out is, in short, that it's not very easy and straightforward to do it – but it can be done. The two strategies that are best suited to fit the bill involve using either the (commercial) Typemock Isolator tool or the (free) NDbUnit framework. The use of Typemock was discussed in the previous post, this post now will present the NDbUnit approach... NDbUnit is an Apache 2.0-licensed open-source project, and like so many other Nxxx tools and frameworks, it is basically a C#/.NET port of the corresponding Java version (DbUnit namely). In short, it helps you in flexibly managing the state of a database in that it lets you easily perform basic operations (like e.g. Insert, Delete, Refresh, DeleteAll)  against your database and, most notably, lets you feed it with data from external xml files. Let's have a look at how things can be done with the help of this framework. Preparing the test data Compared to Typemock, using NDbUnit implies a totally different approach to meet our testing needs.  So the here described testing scenario requires an instance of an SQL Server database in operation, and it also means that the Entity Framework model that sits on top of this database is completely unaffected. First things first: For its interactions with the database, NDbUnit relies on a .NET Dataset xsd file. See Step 1 of their Quick Start Guide for a description of how to create one. With this prerequisite in place then, the test fixture's setup code could look something like this: [TestFixture, TestsOn(typeof(PersonRepository))] [Metadata("NDbUnit Quickstart URL",           "http://code.google.com/p/ndbunit/wiki/QuickStartGuide")] [Description("Uses the NDbUnit library to provide test data to a local database.")] public class PersonRepositoryFixture {     #region Constants     private const string XmlSchema = @"..\..\TestData\School.xsd";     #endregion // Constants     #region Fields     private SchoolEntities _schoolContext;     private PersonRepository _personRepository;     private INDbUnitTest _database;     #endregion // Fields     #region Setup/TearDown     [FixtureSetUp]     public void FixtureSetUp()     {         var connectionString = ConfigurationManager.ConnectionStrings["School_Test"].ConnectionString;         _database = new SqlDbUnitTest(connectionString);         _database.ReadXmlSchema(XmlSchema);         var entityConnectionStringBuilder = new EntityConnectionStringBuilder         {             Metadata = "res://*/School.csdl|res://*/School.ssdl|res://*/School.msl",             Provider = "System.Data.SqlClient",             ProviderConnectionString = connectionString         };         _schoolContext = new SchoolEntities(entityConnectionStringBuilder.ConnectionString);         _personRepository = new PersonRepository(this._schoolContext);     }     [FixtureTearDown]     public void FixtureTearDown()     {         _database.PerformDbOperation(DbOperationFlag.DeleteAll);         _schoolContext.Dispose();     }     ...  As you can see, there is slightly more fixture setup code involved if your tests are using NDbUnit to provide the test data: Because we're dealing with a physical database instance here, we first need to pick up the test-specific connection string from the test assemblies' App.config, then initialize an NDbUnit helper object with this connection along with the provided xsd file, and also set up the SchoolEntities and the PersonRepository instances accordingly. The _database field (an instance of the INdUnitTest interface) will be our single access point to the underlying database: We use it to perform all the required operations against the data store. To have a flexible mechanism to easily insert data into the database, we can write a helper method like this: private void InsertTestData(params string[] dataFileNames) {     _database.PerformDbOperation(DbOperationFlag.DeleteAll);     if (dataFileNames == null)     {         return;     }     try     {         foreach (string fileName in dataFileNames)         {             if (!File.Exists(fileName))             {                 throw new FileNotFoundException(Path.GetFullPath(fileName));             }             _database.ReadXml(fileName);             _database.PerformDbOperation(DbOperationFlag.InsertIdentity);         }     }     catch     {         _database.PerformDbOperation(DbOperationFlag.DeleteAll);         throw;     } } This lets us easily insert test data from xml files, in any number and in a  controlled order (which is important because we eventually must fulfill referential constraints, or we must account for some other stuff that imposes a specific ordering on data insertion). Again, as with Typemock, I won't go into API details here. - Unfortunately, there isn't too much documentation for NDbUnit anyway, other than the already mentioned Quick Start Guide (and the source code itself, of course) - a not so uncommon problem with smaller Open Source Projects. Last not least, we need to provide the required test data in xml form. A snippet for data from the People table might look like this, for example: <?xml version="1.0" encoding="utf-8" ?> <School xmlns="http://tempuri.org/School.xsd">   <Person>     <PersonID>1</PersonID>     <LastName>Abercrombie</LastName>     <FirstName>Kim</FirstName>     <HireDate>1995-03-11T00:00:00</HireDate>   </Person>   <Person>     <PersonID>2</PersonID>     <LastName>Barzdukas</LastName>     <FirstName>Gytis</FirstName>     <EnrollmentDate>2005-09-01T00:00:00</EnrollmentDate>   </Person>   <Person>     ... You can also have data from various tables in one single xml file, if that's appropriate for you (but beware of the already mentioned ordering issues). It's true that your test assembly may end up with dozens of such xml files, each containing quite a big amount of text data. But because the files are of very low complexity, and with the help of a little bit of Copy/Paste and Excel magic, this appears to be well manageable. Executing some basic tests Here are some of the possible tests that can be written with the above preparations in place: private const string People = @"..\..\TestData\School.People.xml"; ... [Test, MultipleAsserts, TestsOn("PersonRepository.GetNameList")] public void GetNameList_ListOrdering_ReturnsTheExpectedFullNames() {     InsertTestData(People);     List<string> names =         _personRepository.GetNameList(NameOrdering.List);     Assert.Count(34, names);     Assert.AreEqual("Abercrombie, Kim", names.First());     Assert.AreEqual("Zheng, Roger", names.Last()); } [Test, MultipleAsserts, TestsOn("PersonRepository.GetNameList")] [DependsOn("RemovePerson_CalledOnce_DecreasesCountByOne")] public void GetNameList_NormalOrdering_ReturnsTheExpectedFullNames() {     InsertTestData(People);     List<string> names =         _personRepository.GetNameList(NameOrdering.Normal);     Assert.Count(34, names);     Assert.AreEqual("Alexandra Walker", names.First());     Assert.AreEqual("Yan Li", names.Last()); } [Test, TestsOn("PersonRepository.AddPerson")] public void AddPerson_CalledOnce_IncreasesCountByOne() {     InsertTestData(People);     int count = _personRepository.Count;     _personRepository.AddPerson(new Person { FirstName = "Thomas", LastName = "Weller" });     Assert.AreEqual(count + 1, _personRepository.Count); } [Test, TestsOn("PersonRepository.RemovePerson")] public void RemovePerson_CalledOnce_DecreasesCountByOne() {     InsertTestData(People);     int count = _personRepository.Count;     _personRepository.RemovePerson(new Person { PersonID = 33 });     Assert.AreEqual(count - 1, _personRepository.Count); } Not much difference here compared to the corresponding Typemock versions, except that we had to do a bit more preparational work (and also it was harder to get the required knowledge). But this picture changes quite dramatically if we look at some more demanding test cases: Ok, and what if things are becoming somewhat more complex? Tests like the above ones represent the 'easy' scenarios. They may account for the biggest portion of real-world use cases of the application, and they are important to make sure that it is generally sound. But usually, all these nasty little bugs originate from the more complex parts of our code, or they occur when something goes wrong. So, for a testing strategy to be of real practical use, it is especially important to see how easy or difficult it is to mimick a scenario which represents a more complex or exceptional case. The following test, for example, deals with the case that there is some sort of invalid input from the caller: [Test, MultipleAsserts, TestsOn("PersonRepository.GetCourseMembers")] [Row(null, typeof(ArgumentNullException))] [Row("", typeof(ArgumentException))] [Row("NotExistingCourse", typeof(ArgumentException))] public void GetCourseMembers_WithGivenVariousInvalidValues_Throws(string courseTitle, Type expectedInnerExceptionType) {     var exception = Assert.Throws<RepositoryException>(() =>                                 _personRepository.GetCourseMembers(courseTitle));     Assert.IsInstanceOfType(expectedInnerExceptionType, exception.InnerException); } Apparently, this test doesn't need an 'Arrange' part at all (see here for the same test with the Typemock tool). It acts just like any other client code, and all the required business logic comes from the database itself. This doesn't always necessarily mean that there is less complexity, but only that the complexity happens in a different part of your test resources (in the xml files namely, where you sometimes have to spend a lot of effort for carefully preparing the required test data). Another example, which relies on an underlying 1-n relationship, might be this: [Test, MultipleAsserts, TestsOn("PersonRepository.GetCourseMembers")] public void GetCourseMembers_WhenGivenAnExistingCourse_ReturnsListOfStudents() {     InsertTestData(People, Course, Department, StudentGrade);     List<Person> persons = _personRepository.GetCourseMembers("Macroeconomics");     Assert.Count(4, persons);     Assert.ForAll(         persons,         @p => new[] { 10, 11, 12, 14 }.Contains(@p.PersonID),         "Person has none of the expected IDs."); } If you compare this test to its corresponding Typemock version, you immediately see that the test itself is much simpler, easier to read, and thus much more intention-revealing. The complexity here lies hidden behind the call to the InsertTestData() helper method and the content of the used xml files with the test data. And also note that you might have to provide additional data which are not even directly relevant to your test, but are required only to fulfill some integrity needs of the underlying database. Conclusion The first thing to notice when comparing the NDbUnit approach to its Typemock counterpart obviously deals with performance: Of course, NDbUnit is much slower than Typemock. Technically,  it doesn't even make sense to compare the two tools. But practically, it may well play a role and could or could not be an issue, depending on how much tests you have of this kind, how often you run them, and what role they play in your development cycle. Also, because the dataset from the required xsd file must fully match the database schema (even in parts that otherwise wouldn't be relevant to you), it can be quite cumbersome to be in a team where different people are working with the database in parallel. My personal experience is – as already said in the first part – that Typemock gives you a better development experience in a 'dynamic' scenario (when you're working in some kind of TDD-style, you're oftentimes executing the tests from your dev box, and your database schema changes frequently), whereas the NDbUnit approach is a good and solid solution in more 'static' development scenarios (when you need to execute the tests less frequently or only on a separate build server, and/or the underlying database schema can be kept relatively stable), for example some variations of higher-level integration or User-Acceptance tests. But in any case, opening Entity Framework based applications for testing requires a fair amount of resources, planning, and preparational work – it's definitely not the kind of stuff that you would call 'easy to test'. Hopefully, future versions of EF will take testing concerns into account. Otherwise, I don't see too much of a future for the framework in the long run, even though it's quite popular at the moment... The sample solution A sample solution (VS 2010) with the code from this article series is available via my Bitbucket account from here (Bitbucket is a hosting site for Mercurial repositories. The repositories may also be accessed with the Git and Subversion SCMs - consult the documentation for details. In addition, it is possible to download the solution simply as a zipped archive – via the 'get source' button on the very right.). The solution contains some more tests against the PersonRepository class, which are not shown here. Also, it contains database scripts to create and fill the School sample database. To compile and run, the solution expects the Gallio/MbUnit framework to be installed (which is free and can be downloaded from here), the NDbUnit framework (which is also free and can be downloaded from here), and the Typemock Isolator tool (a fully functional 30day-trial is available here). Moreover, you will need an instance of the Microsoft SQL Server DBMS, and you will have to adapt the connection strings in the test projects App.config files accordingly.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • CodePlex Daily Summary for Friday, January 21, 2011

    CodePlex Daily Summary for Friday, January 21, 2011Popular ReleasesTweetSharp: TweetSharp v2.0.0.0 - Preview 9: Documentation for this release may be found at http://tweetsharp.codeplex.com/wikipage?title=UserGuide&referringTitle=Documentation. Note: This code is currently preview quality. Preview 9 ChangesAdded support for lists and suggested users Fixes based on user feedback Third Party Library VersionsHammock v1.1.6: http://hammock.codeplex.com Json.NET 4.0 Release 1: http://json.codeplex.comjqGrid ASP.Net MVC Control: Version 1.2.0.0: jqGrid 3.8 support jquery 1.4 support New and exciting features Many bugfixes Complete separation from the jquery, & jqgrid codeMediaScout: MediaScout 3.0 Preview 4: Update ReleaseCoding4Fun Tools: Coding4Fun.Phone.Toolkit v1: Coding4Fun.Phone.Toolkit v1MFCMAPI: January 2011 Release: Build: 6.0.0.1024 Full release notes at SGriffin's blog. If you just want to run the tool, get the executable. If you want to debug it, get the symbol file and the source. The 64 bit build will only work on a machine with Outlook 2010 64 bit installed. All other machines should use the 32 bit build, regardless of the operating system. Facebook BadgeAutoLoL: AutoLoL v1.5.4: Added champion: Renekton Removed automatic file association Fix: The recent files combobox didn't always open a file when an item was selected Fix: Removing a recently opened file caused an errorRazorEngine: RazorEngine v2.0: IMPORTANT RazorEngine v2 is a complete rewrite of the templating framework. Because of this, there are no guarantees that code written around v1.2 will run without modification. The v2 framework is cleaner and refined. Please check the forthcoming codeplex site updates which will detail the new functionality. Features in v2: ASP.NET Medium Trust Support Custom Template Activation with Dependency Injection Support Subtemplating using the new @Include method. Known issues: @Include doe...DotNetNuke® Community Edition: 05.06.01: Major Highlights Fixed issue to remove preCondition checks when upgrading to .Net 4.0 Fixed issue where some valid domains were failing email validation checks. Fixed issue where editing Host menu page settings assigns the page to a Portal. Fixed issue which caused XHTML validation problems in 5.6.0 Fixed issue where an aspx page in any subfolder was inaccessible. Fixed issue where Config.Touch method signature had an unintentional breaking change in 5.6.0 Fixed issue which caused...MiniTwitter: 1.65: MiniTwitter 1.65 ???? ?? List ????? in-reply-to ???????? ????????????????????????? ?? OAuth ????????????????????????????ASP.net Ribbon: Version 2.1: Tadaaa... So Version 2.1 brings a lot of things... Have a look at the homepage to see what's new. Also, I wanted to (really) improve the Designer. I wanted to add great things... but... it took to much time. And as some of you were waiting for fixes, I decided just to fix bugs and add some features. So have a look at the demo app to see new features. Thanks ! (You can expect some realeses if bugs are not fixed correctly... 2.2, 2.3, 2.4....)iTracker Asp.Net Starter Kit: Version 3.0.0: This is the inital release of the version 3.0.0 Visual Studio 2010 (.Net 4.0) remake of the ITracker application. I connsider this a working, stable application but since there are still some features missing to make it "complete" I'm leaving it listed as a "beta" release. I am hoping to make it feature complete for v3.1.0 but anything is possible.ASP.NET MVC Project Awesome, jQuery Ajax helpers (controls): 1.6.1: A rich set of helpers (controls) that you can use to build highly responsive and interactive Ajax-enabled Web applications. These helpers include Autocomplete, AjaxDropdown, Lookup, Confirm Dialog, Popup Form, Popup and Pager changes: RenderView controller extension works for razor also live demo switched to razorBloodSim: BloodSim - 1.3.3.1: - Priority update to resolve a bug that was causing Boss damage to ignore Blood Shields entirelyRawr: Rawr 4.0.16 Beta: Rawr is now web-based. The link to use Rawr4 is: http://elitistjerks.com/rawr.phpThis is the Cataclysm Beta Release. More details can be found at the following link http://rawr.codeplex.com/Thread/View.aspx?ThreadId=237262 As of this release, you can now also begin using the new Downloadable WPF version of Rawr!This is a pre-alpha release of the WPF version, there are likely to be a lot of issues. If you have a problem, please follow the Posting Guidelines and put it into the Issue Tracker. W...MvcContrib: an Outer Curve Foundation project: MVC 3 - 3.0.51.0: Please see the Change Log for a complete list of changes. MVC BootCamp Description of the releases: MvcContrib.Release.zip MvcContrib.dll MvcContrib.TestHelper.dll MvcContrib.Extras.Release.zip T4MVC. The extra view engines / controller factories and other functionality which is in the project. This file includes the main MvcContrib assembly. Samples are included in the release. You do not need MvcContrib if you download the Extras.Yahoo! UI Library: YUI Compressor for .Net: Version 1.5.0.0 - Jalthi: Updated solution to VS2010. New: Work Item #4450 - Optional MSBuild task parameter :: Do not error if no files were found. Fixed: Work Item #5028 - Output file encoding is the same as the optional MSBuild task encoding argument. Fixed: Work Item #5824 - MSBuilds where slow, after the first build due to the Current Thread being forced to en-gb, on none en-gb systems. Changed: Work Item #6873 - Project license changed from MS-PL to GPLv2. New: Added all the unit tests from the Java YU...N2 CMS: 2.1.1: N2 is a lightweight CMS framework for ASP.NET. It helps you build great web sites that anyone can update. 2.1.1 Maintenance release List of changes 2.1 Major Changes Support for auto-implemented properties ({get;set;}, based on contribution by And Poulsen) File manager improvements (multiple file upload, resize images to fit) New image gallery Infinite scroll paging on news Content templates First time with N2? Try the demo site Download one of the template packs (above) and open...VidCoder: 0.8.1: Adds ability to choose an arbitrary range (in seconds or frames) to encode. Adds ability to override the title number in the output file name when enqueing multiple titles. Updated presets: Added iPhone 4, Apple TV 2, fixed some existing presets that should have had weightp=0 or trellis=0 on them. Added {parent} option to auto-name format. Use {parent:2} to refer to a folder 2 levels above the input file. Added {title:2} option to auto-name format. Adds leading zeroes to reach the sp...Microsoft SQL Server Product Samples: Database: AdventureWorks2008R2 without filestream: This download contains a version of the AdventureWorks2008R2 OLTP database without FILESTREAM properties. You do not need to have filestream enabled to attach this database. No additional schema or data changes have been made. To install the version of AdventureWorks2008R2 that includes filestream, use the SR1 installer available here. Prerequisites: Microsoft SQL Server 2008 R2 must be installed. Full-Text Search must be enabled. Installing the AdventureWorks2008R2 OLTP database: 1. Cl...ASP.NET: ASP.NET MVC 3 Application Upgrader: This standalone application upgrades ASP.NET MVC 2 applications to ASP.NET MVC 3. It works for both ASP.NET MVC 3 RC 2 and RTM. The tool only supports Visual Studio 2010 solutions and MVC 2 projects targeting .NET 4. It will not work with VS 2008 solutions, MVC 1 projects, or projects targeting .NET 3.5. Those projects will first have to be upgraded using Visual Studio 2010 and/or retargeted for .NET 4. The tool will: Create a backup of your entire solution Update all Web Applications and ...New ProjectsAppCore: Setup application to create core components and services for .NET applications. The goal of AppCore is to provide a developer friendly installation that will let a dev choose an application type, dependency injection framework, testing and mocking framework, object relational mAsp.Net Performance: Asp.Net Performance?????????Asp.Net?????????????,?????????????????,??????????,???????????,???Issue Tracker????.BizTalk Context Adder Pipeline Component (BRE): BizTalk Context Property Adder pipeline component, which utilize BizTalk Rule Engine configuration.BKM: BKM is a software system to convert Arabic sign language to speech using computer vision technique developed by ROSHAR team as graduation project from computer science department supervised by Dr.Mohammad AnsariBlackJack: BlackJack is a Littel Game like 17+4. It's developed in VB.NET and WPF4. It is a Training Application from me to learn VB.NET and WPF4. C# RushHour Puzzle: RushHour Project uses the A* algorithm to solve instances of the Rush Hour puzzle. This involved implementing a graph-search version of A*, along with three heuristics, and testing the implementation on several Rush Hour puzzlesCoding4Fun Tools: This is a set of tools to make people's lifes easier. First up: Windows Phone 7 SilverlightEBP: Enterprise Basis Platform. Include Application Management, User Management, File Management, Permission, Workflow, Forms, Reporting, SSO, Real-Time Message, etc. It's developed in C#, based on .NET Framework 4.0.ETL with Talend for Aras Innovator PLM: This project is answering a lot of request about Aras Innovator on starting to use this PLM solution in a Pilot Project. The Aras migration tool is more advanced but reserved to subscribers. Using the Open Source ETL Talend Open Suite we will help to migrate any data to Aras.hg5build17501: hg5build17501Manager: The Multifunctional manager: -Friends -Contacts -Numbers -Websites -Credit cards/bank accounts -Passwords -Accounts (games/websites/forums) -Books -Magazines -Discs -MoremelodyMe - Unlimited Music Streaming: melodyMe is an application that allows music lovers to take their Music Library with them without needing to copy the music and install other software. This application uses internet sources to try and find tracks from servers on the web. It's developed in C#.Mint: Mint is a framework enabling fast and flexible modular programming in .NET Framework.navPic@Zure: navPic@Zure is simple photo sharing portal. This is project is purely aimed to create an end to end application to understand and get the hands dirty on Cloud technologies like Windows Azure, SQL Auzre, App Fabric etc...NHibernate 3.0 SQL Logger: NH3SQLLogger is a lightweight NHibernate 3 SQL Logger, with SQL Formatting, Caller methods loggings and Syntax highlighting.openPMU SynchroPhasor Sensor Project: openPMU is a Phasor Measurement Unit (PMU) sensor used to measure SynchroPhasors. The openPMU project's goal is to provide an open source PMU sensor that can be used for experimentation and, research. The openPMU sensor is developed for compatibility with the openPDC project.Orchard Typekit Module: A Typekit module for Orchard.PL_Fahrradverleih: PL_FahrradVerleih PMS ProjektSharePoint 2010 Social Connector: Project in draft.SimuMill3C: This is a 3C milling simulation software with error detection and G-Code generationSmart Skelta Web Logger: Smart Skelta Web logger is an alternative and web based solution for Skelta Logger Console.Since its web based application, many users can able to access simultaneously.It supports filtering the log items based on repository,workflow,etc. and user can navigate to old log entries.TeamWebSite: Sample code for the Team Web Site Application built with ASP.NET 4, Code First EF 4 and SQL CE 4.TextTemplate: A text templating class library for .NET 3.5 and 4.0 written in C#.tfs 2010 work item RSS Feed: tfs 2010 work item RSS Feed you can see work item assigned to you or to your subordinates and updates on work items you have createdTIMESHARE: N/AVB CPCC Class: I will be posting my projects for my class hererWindows Phone 7 Bing Maps CloudMade TileSource Sample: This project is designed to be a sample of how you can use Custom map tiles provided by CloudMade.com in the Bing Maps Windows Phone 7 Control. This give you the benefit of using one of the many thousands of pre created map styles at CloudMade.com or creating your own map styleZicuer: Test zicuer site??? ???: ????????? ???????

    Read the article

  • CodePlex Daily Summary for Wednesday, March 09, 2011

    CodePlex Daily Summary for Wednesday, March 09, 2011Popular ReleasesDirectQ: Release 1.8.7 (RC2): More fixes and improvements. Note for multiplayer - you may need to set r_waterwarp to 0 or 2 before connecting to a server, otherwise you will get a "Mod_PointInLeaf: bad model" error and not be able to connect. You can set it back to 1 after you connect, of course. This only came to light after releasing, and will be fixed in the next one.Microsoft All-In-One Code Framework: Visual Studio 2008 Code Samples 2011-03-09: Code samples for Visual Studio 2008myCollections: Version 1.3: New in version 1.3 : Added Editor management for Books Added Amazon API for Books Us, Fr, De Added Amazon Us, Fr, De for Movies Added The MovieDB for Fr and De Added Author for Books Added Editor and Platform for Games Added Amazon Us, De for Games Added Studio for XXX Added Background for XXX Bug fixing with Softonic API Bug fixing with IMDB UI improvement Removed GraceNote Added Amazon Us,Fr, De for Series Added TVDB Fr and De for Series Added Tracks for Musi...Facebook Graph Toolkit: Facebook Graph Toolkit 1.1: Version 1.1 (8 Mar 2011)new Dialog class for redirecting users to Facebook dialogs new Async publishing methods new Check for Extended Permissions option fixed bug: inappropiate condition of redirecting to login in Api class fixed bug: IframeRedirect method not workingpatterns & practices : Composite Services: Composite Services Guidance - CTP2: This is the second CTP of the p&p Composite Service Guidance.Python Tools for Visual Studio: 1.0 Beta 1: Beta 1You can't install IronPython Tools for Visual Studio side-by-side with Python Tools for Visual Studio. A race condition sometimes causes local MPI debugging to miss breakpoints. When MPI jobs on a cluster fail they don’t get cleaned up correctly, which can cause debugging to stall because the associated MPI job is stuck in the queue. The "Threads" view has a race condition which can cause it not to display properly at times. VS2010 shortcuts that are pinned to the taskbar are so...DotNetAge -a lightweight Mvc jQuery CMS: DotNetAge 2: What is new in DotNetAge 2.0 ? Completely update DJME to DJME2, enhance user experience ,more beautiful and more interactively visit DJME project home to lean more about DJME http://www.dotnetage.com/sites/home/djme.html A new widget engine has came! Faster and easiler. Runtime performance enhanced. SEO enhanced. UI Designer enhanced. A new web resources explorer. Page manager enhanced. BlogML supports added that allows you import/export your blog data to/from dotnetage publishi...Kooboo CMS: Kooboo CMS 3.0 Beta: Files in this downloadkooboo_CMS.zip: The kooboo application files Content_DBProvider.zip: Additional content database implementation of MSSQL,SQLCE, RavenDB and MongoDB. Default is XML based database. To use them, copy the related dlls into web root bin folder and remove old content provider dlls. Content provider has the name like "Kooboo.CMS.Content.Persistence.SQLServer.dll" View_Engines.zip: Supports of Razor, webform and NVelocity view engine. Copy the dlls into web root bin folder t...ASP.NET MVC Project Awesome, jQuery Ajax helpers (controls): 1.7.2: A rich set of helpers (controls) that you can use to build highly responsive and interactive Ajax-enabled Web applications. These helpers include Autocomplete, AjaxDropdown, Lookup, Confirm Dialog, Popup Form, Popup and Pager added fullscreen for the popup and popupformIronPython: 2.7 Release Candidate 2: On behalf of the IronPython team, I am pleased to announce IronPython 2.7 Release Candidate 2. The releases contains a few minor bug fixes, including a working webbrowser module. Please see the release notes for 61395 for what was fixed in previous releases.LINQ to Twitter: LINQ to Twitter Beta v2.0.20: Mono 2.8, Silverlight, OAuth, 100% Twitter API coverage, streaming, extensibility via Raw Queries, and added documentation.IIS Tuner: IIS Tuner 1.0: IIS and ASP.NET performance optimization toolMinemapper: Minemapper v0.1.6: Once again supports biomes, thanks to an updated Minecraft Biome Extractor, which added support for the new Minecraft beta v1.3 map format. Updated mcmap to support new biome format.Sandcastle Help File Builder: SHFB v1.9.3.0 Release: This release supports the Sandcastle June 2010 Release (v2.6.10621.1). It includes full support for generating, installing, and removing MS Help Viewer files. This new release is compiled under .NET 4.0, supports Visual Studio 2010 solutions and projects as documentation sources, and adds support for projects targeting the Silverlight Framework. This release uses the Sandcastle Guided Installation package used by Sandcastle Styles. Download and extract to a folder and then run SandcastleI...AutoLoL: AutoLoL v1.6.4: It is now possible to run the clicker anyway when it can't detect the Masteries Window Fixed a critical bug in the open file dialog Removed the resize button Some UI changes 3D camera movement is now more intuitive (Trackball rotation) When an error occurs on the clicker it will attempt to focus AutoLoLYAF.NET (aka Yet Another Forum.NET): v1.9.5.5 RTW: YAF v1.9.5.5 RTM (Date: 3/4/2011 Rev: 4742) Official Discussion Thread here: http://forum.yetanotherforum.net/yaf_postsm47149_v1-9-5-5-RTW--Date-3-4-2011-Rev-4742.aspx Changes in v1.9.5.5 Rev. #4661 - Added "Copy" function to forum administration -- Now instead of having to manually re-enter all the access masks, etc, you can just duplicate an existing forum and modify after the fact. Rev. #4642 - New Setting to Enable/Disable Last Unread posts links Rev. #4641 - Added Arabic Language t...Snippet Designer: Snippet Designer 1.3.1: Snippet Designer 1.3.1 for Visual Studio 2010This is a bug fix release. Change logFixed bug where Snippet Designer would fail if you had the most recent Productivity Power Tools installed Fixed bug where "Export as Snippet" was failing in non-english locales Fixed bug where opening a new .snippet file would fail in non-english localesChiave File Encryption: Chiave 1.0: Final Relase for Chave 1.0 Stable: Application for file encryption and decryption using 512 Bit rijndael encyrption algorithm with simple to use UI. Its written in C# and compiled in .Net version 3.5. It incorporates features of Windows 7 like Jumplists, Taskbar progress and Aero Glass. Now with added support to Windows XP! Change Log from 0.9.2 to 1.0: ==================== Added: > Added Icon Overlay for Windows 7 Taskbar Icon. >Added Thumbnail Toolbar buttons to make the navigation easier...Chirpy - VS Add In For Handling Js, Css, DotLess, and T4 Files: Margogype Chirpy (ver 2.0): Chirpy loves Americans. Chirpy hates Americanos.ASP.NET: Sprite and Image Optimization Preview 3: The ASP.NET Sprite and Image Optimization framework is designed to decrease the amount of time required to request and display a page from a web server by performing a variety of optimizations on the page’s images. This is the third preview of the feature and works with ASP.NET Web Forms 4, ASP.NET MVC 3, and ASP.NET Web Pages (Razor) projects. The binaries are also available via NuGet: AspNetSprites-Core AspNetSprites-WebFormsControl AspNetSprites-MvcAndRazorHelper It includes the foll...New ProjectsA-Inventory: Inventory Management System * Purchase Orders * Sales Orders * Multiple warehouses * Stock Transfers * Financial Transaction Tracking * ReportsAsync Execution Lib: This library simplifies the process of executing code on a different thread and separating the caller from the actual command logic. To do this messages are put into an execution module and the library automatically calls the target message handlers.Bing Wallpaper Downloader: Downloads wallpapers from Bing and displays them as the desktop wallpaper. Based on UI and concepts of Bing4Free.CloudBox: This is a custom storage controller for DropBox. It lets you create multiple DropBox accounts an will then treat them as one large storage. Controller2: Projeto para desenvolvimento de Sistema para o Projeto Integrador do Curso de Análise e Desenvolvimento de Sistemas do CesumarCurso_Virtual_FPSEP: En este proyecto se esta elaborando el sistema para el manejo de un curso virtual que se tiene pensado impartir en la CFE, este curso se esta desarrollando bajo el mando del Ingeniero Earl Amazurrutia Carson y esta dirigido para el personal de protecciones.DBSJ: testEveTools: EveTools is a set of classes to aid in the development of programs that access the EVE Online API. It is written with a very event-driven model; all normally blocking, non-compute-bound workloads will instead run asynchronously, freeing up your program to do as it pleases!GeoIp: .Net MaxMind GeoIP client libraryKieuHungProject: Doan Vien managmentMimoza: ?????? ??? ????? ?????????, ??????? ????? ???????????? ??? ?????? ????????? ???????????? ?? ?????? ??????...mmoss: Medical Marijuana Open Source System. To manage Point-of-sale, inventory, grow and compliance issues related to the sale of MMJNetCassa: .Net Cassandra client library.Neudesic Pulse SDK: The Neudesic Pulse SDK allows developers the ability to quickly and efficiently build solutions that interact with the Neudesic Pulse social framework APIs.Nuget Package Creation and Publishing Wizard: simplifies the creation and publishing of an nuget packagePetscareinlondon: This project is all about pets care.Pool based Batch Processing: A simple framework that allows pool based processing of batches. A new batch is picked up when pools are empty. The framework exposes simple events that allows user to process jobs at the back end (Windows Service).Project Nonnon: Keep-It-Simple Softwares for Win32 MinGW GCC 3.x C Language + Batch Files POSIX-based Base Layer Library Win32 Applications Easy2Compile Easy2Make Easy2Use Python Tools for Visual Studio: Python Tools for Visual Studio adds support for Intellisense, Debugging, Profiling, IPython (.11+), Cluster & Cloud Computing to Visual Studio. It supports both CPython (2.4-3.1) and IronPython (2.7). python_lib: like protobuf,parse xml definition of c++struct,and develop lots of usageRapidMEF: A collection of tools to help developers author and debug applications that use MEF.Reflective: Reflective adds lots of new extension methods related to reflection and Reflection.Emit, to make it easier to build code dynamically at runtime.Remote Desktop Organizer: This is a fun little application that lets you easily manage lots of different Remote Desktops. It allows the user to apply custom alias's and descriptions so that it is easy denote which desktop is which and allows for easy customization and managementSharePoint data population: SharePoint data populationSpriteEditor: Basic sprite editorStock3243254635254325435: 345234324324324324Time Management Application: Based upon Stephen Covey's 7 Habits of Highly Effective People, I was looking for a place to digitally record my time. When I could not find one I liked, I set out to build my own. This also covers several of the coding practices and patterns that I have been putting together.Tuned N: Tuned N is a Playlist.com based media application. Allows listening to playlists via desktop app and allows downloading of tracks in playlists.Winforms BetterBindingSource: A better windows forms (winforms) bindingsource control which enables you to add class based datasources without the hassle of adding datasource files and using the slow wizard to add data sources.WinShutdown: Just a small application to countdown the windows shutdown/restart. When you want the windows shutdown after some time or after some application finishes its work. Please if you have a better project for this purpouse or if you have an update for my code. Let me know.

    Read the article

  • How should I delete a child object from within a parent's slot? Possibly boost::asio specific.

    - by kaliatech
    I have written a network server class that maintains a std::set of network clients. The network clients emit a signal to the network server on disconnect (via boost::bind). When a network client disconnects, the client instance needs to be removed from the Set and eventually deleted. I would think this is a common pattern, but I am having problems that might, or might not, be specific to ASIO. I've tried to trim down to just the relevant code: /** NetworkServer.hpp **/ class NetworkServices : private boost::noncopyable { public: NetworkServices(void); ~NetworkServices(void); private: void run(); void onNetworkClientEvent(NetworkClientEvent&); private: std::set<boost::shared_ptr<const NetworkClient>> clients; }; /** NetworkClient.cpp **/ void NetworkServices::run() { running = true; boost::asio::io_service::work work(io_service); //keeps service running even if no operations // This creates just one thread for the boost::asio async network services boost::thread iot(boost::bind(&NetworkServices::run_io_service, this)); while (running) { boost::system::error_code err; try { tcp::socket* socket = new tcp::socket(io_service); acceptor->accept(*socket, err); if (!err) { NetworkClient* networkClient = new NetworkClient(io_service, boost::shared_ptr<tcp::socket>(socket)); networkClient->networkClientEventSignal.connect(boost::bind(&NetworkServices::onNetworkClientEvent, this, _1)); clients.insert(boost::shared_ptr<NetworkClient>(networkClient)); networkClient->init(); //kicks off 1st asynch_read call } } // etc... } } void NetworkServices::onNetworkClientEvent(NetworkClientEvent& evt) { switch(evt.getType()) { case NetworkClientEvent::CLIENT_ERROR : { boost::shared_ptr<const NetworkClient> clientPtr = evt.getClient().getSharedPtr(); // ------ THIS IS THE MAGIC LINE ----- // If I keep this, the io_service hangs. If I comment it out, // everything works fine (but I never delete the disconnected NetworkClient). // If actually deleted the client here I might expect problems because it is the caller // of this method via boost::signal and bind. However, The clientPtr is a shared ptr, and a // reference is being kept in the client itself while signaling, so // I would the object is not going to be deleted from the heap here. That seems to be the case. // Never-the-less, this line makes all the difference, most likely because it controls whether or not the NetworkClient ever gets deleted. clients.erase(clientPtr); //I should probably put this socket clean-up in NetworkClient destructor. Regardless by doing this, // I would expect the ASIO socket stuff to be adequately cleaned-up after this. tcp::socket& socket = clientPtr->getSocket(); try { socket.shutdown(boost::asio::socket_base::shutdown_both); socket.close(); } catch(...) { CommServerContext::error("Error while shutting down and closing socket."); } break; } default : { break; } } } /** NetworkClient.hpp **/ class NetworkClient : public boost::enable_shared_from_this<NetworkClient>, Client { NetworkClient(boost::asio::io_service& io_service, boost::shared_ptr<tcp::socket> socket); virtual ~NetworkClient(void); inline boost::shared_ptr<const NetworkClient> getSharedPtr() const { return shared_from_this(); }; boost::signal <void (NetworkClientEvent&)> networkClientEventSignal; void onAsyncReadHeader(const boost::system::error_code& error, size_t bytes_transferred); }; /** NetworkClient.cpp - onAsyncReadHeader method called from io_service.run() thread as result of an async_read operation. Error condition usually result of an unexpected client disconnect.**/ void NetworkClient::onAsyncReadHeader( const boost::system::error_code& error, size_t bytes_transferred) { if (error) { //Make sure this instance doesn't get deleted from parent/slot deferencing //Alternatively, somehow schedule for future delete? boost::shared_ptr<const NetworkClient> clientPtr = getSharedPtr(); //Signal to service that this client is disconnecting NetworkClientEvent evt(*this, NetworkClientEvent::CLIENT_ERROR); networkClientEventSignal(evt); networkClientEventSignal.disconnect_all_slots(); return; } I believe it's not safe to delete the client from within the slot handler because the function return would be ... undefined? (Interestingly, it doesn't seem to blow up on me though.) So I've used boost:shared_ptr along with shared_from_this to make sure the client doesn't get deleted until all slots have been signaled. It doesn't seem to really matter though. I believe this question is not specific to ASIO, but the problem manifests in a peculiar way when using ASIO. I have one thread executing io_service.run(). All ASIO read/write operations are performed asynchronously. Everything works fine with multiple clients connecting/disconnecting UNLESS I delete my client object from the Set per the code above. If I delete my client object, the io_service seemingly deadlocks internally and no further asynchronous operations are performed unless I start another thread. I have try/catches around the io_service.run() call and have not been able to detect any errors. Questions: Are there best practices for deleting child objects, that are also signal emitters, from within parent slots? Any ideas as to why the io_service is hanging when I delete my network client object?

    Read the article

  • Adapting non-iterable containers to be iterated via custom templatized iterator

    - by DAldridge
    I have some classes, which for various reasons out of scope of this discussion, I cannot modify (irrelevant implementation details omitted): class Foo { /* ... irrelevant public interface ... */ }; class Bar { public: Foo& get_foo(size_t index) { /* whatever */ } size_t size_foo() { /* whatever */ } }; (There are many similar 'Foo' and 'Bar' classes I'm dealing with, and it's all generated code from elsewhere and stuff I don't want to subclass, etc.) [Edit: clarification - although there are many similar 'Foo' and 'Bar' classes, it is guaranteed that each "outer" class will have the getter and size methods. Only the getter method name and return type will differ for each "outer", based on whatever it's "inner" contained type is. So, if I have Baz which contains Quux instances, there will be Quux& Baz::get_quux(size_t index), and size_t Baz::size_quux().] Given the design of the Bar class, you cannot easily use it in STL algorithms (e.g. for_each, find_if, etc.), and must do imperative loops rather than taking a functional approach (reasons why I prefer the latter is also out of scope for this discussion): Bar b; size_t numFoo = b.size_foo(); for (int fooIdx = 0; fooIdx < numFoo; ++fooIdx) { Foo& f = b.get_foo(fooIdx); /* ... do stuff with 'f' ... */ } So... I've never created a custom iterator, and after reading various questions/answers on S.O. about iterator_traits and the like, I came up with this (currently half-baked) "solution": First, the custom iterator mechanism (NOTE: all uses of 'function' and 'bind' are from std::tr1 in MSVC9): // Iterator mechanism... template <typename TOuter, typename TInner> class ContainerIterator : public std::iterator<std::input_iterator_tag, TInner> { public: typedef function<TInner& (size_t)> func_type; ContainerIterator(const ContainerIterator& other) : mFunc(other.mFunc), mIndex(other.mIndex) {} ContainerIterator& operator++() { ++mIndex; return *this; } bool operator==(const ContainerIterator& other) { return ((mFunc.target<TOuter>() == other.mFunc.target<TOuter>()) && (mIndex == other.mIndex)); } bool operator!=(const ContainerIterator& other) { return !(*this == other); } TInner& operator*() { return mFunc(mIndex); } private: template<typename TOuter, typename TInner> friend class ContainerProxy; ContainerIterator(func_type func, size_t index = 0) : mFunc(func), mIndex(index) {} function<TInner& (size_t)> mFunc; size_t mIndex; }; Next, the mechanism by which I get valid iterators representing begin and end of the inner container: // Proxy(?) to the outer class instance, providing a way to get begin() and end() // iterators to the inner contained instances... template <typename TOuter, typename TInner> class ContainerProxy { public: typedef function<TInner& (size_t)> access_func_type; typedef function<size_t ()> size_func_type; typedef ContainerIterator<TOuter, TInner> iter_type; ContainerProxy(access_func_type accessFunc, size_func_type sizeFunc) : mAccessFunc(accessFunc), mSizeFunc(sizeFunc) {} iter_type begin() const { size_t numItems = mSizeFunc(); if (0 == numItems) return end(); else return ContainerIterator<TOuter, TInner>(mAccessFunc, 0); } iter_type end() const { size_t numItems = mSizeFunc(); return ContainerIterator<TOuter, TInner>(mAccessFunc, numItems); } private: access_func_type mAccessFunc; size_func_type mSizeFunc; }; I can use these classes in the following manner: // Sample function object for taking action on an LMX inner class instance yielded // by iteration... template <typename TInner> class SomeTInnerFunctor { public: void operator()(const TInner& inner) { /* ... whatever ... */ } }; // Example of iterating over an outer class instance's inner container... Bar b; /* assume populated which contained items ... */ ContainerProxy<Bar, Foo> bProxy( bind(&Bar::get_foo, b, _1), bind(&Bar::size_foo, b)); for_each(bProxy.begin(), bProxy.end(), SomeTInnerFunctor<Foo>()); Empirically, this solution functions correctly (minus any copy/paste or typos I may have introduced when editing the above for brevity). So, finally, the actual question: I don't like requiring the use of bind() and _1 placeholders, etcetera by the caller. All they really care about is: outer type, inner type, outer type's method to fetch inner instances, outer type's method to fetch count inner instances. Is there any way to "hide" the bind in the body of the template classes somehow? I've been unable to find a way to separately supply template parameters for the types and inner methods separately... Thanks! David

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Building applications with WPF, MVVM and Prism(aka CAG)

    - by skjagini
    In this article I am going to walk through an application using WPF and Prism (aka composite application guidance, CAG) which simulates engaging a taxi (cab).  The rules are simple, the app would have3 screens A login screen to authenticate the user An information screen. A screen to engage the cab and roam around and calculating the total fare Metered Rate of Fare The meter is required to be engaged when a cab is occupied by anyone $3.00 upon entry $0.35 for each additional unit The unit fare is: one-fifth of a mile, when the cab is traveling at 6 miles an hour or more; or 60 seconds when not in motion or traveling at less than 12 miles per hour. Night surcharge of $.50 after 8:00 PM & before 6:00 AM Peak hour Weekday Surcharge of $1.00 Monday - Friday after 4:00 PM & before 8:00 PM New York State Tax Surcharge of $.50 per ride. Example: Friday (2010-10-08) 5:30pm Start at Lexington Ave & E 57th St End at Irving Pl & E 15th St Start = $3.00 Travels 2 miles at less than 6 mph for 15 minutes = $3.50 Travels at more than 12 mph for 5 minutes = $1.75 Peak hour Weekday Surcharge = $1.00 (ride started at 5:30 pm) New York State Tax Surcharge = $0.50 Before we dive into the app, I would like to give brief description about the framework.  If you want to jump on to the source code, scroll all the way to the end of the post. MVVM MVVM pattern is in no way related to the usage of PRISM in your application and should be considered if you are using WPF irrespective of PRISM or not. Lets say you are not familiar with MVVM, your typical UI would involve adding some UI controls like text boxes, a button, double clicking on the button,  generating event handler, calling a method from business layer and updating the user interface, it works most of the time for developing small scale applications. The problem with this approach is that there is some amount of code specific to business logic wrapped in UI specific code which is hard to unit test it, mock it and MVVM helps to solve the exact problem. MVVM stands for Model(M) – View(V) – ViewModel(VM),  based on the interactions with in the three parties it should be called VVMM,  MVVM sounds more like MVC (Model-View-Controller) so the name. Why it should be called VVMM: View – View Model - Model WPF allows to create user interfaces using XAML and MVVM takes it to the next level by allowing complete separation of user interface and business logic. In WPF each view will have a property, DataContext when set to an instance of a class (which happens to be your view model) provides the data the view is interested in, i.e., view interacts with view model and at the same time view model interacts with view through DataContext. Sujith, if view and view model are interacting directly with each other how does MVVM is helping me separation of concerns? Well, the catch is DataContext is of type Object, since it is of type object view doesn’t know exact type of view model allowing views and views models to be loosely coupled. View models aggregate data from models (data access layer, services, etc) and make it available for views through properties, methods etc, i.e., View Models interact with Models. PRISM Prism is provided by Microsoft Patterns and Practices team and it can be downloaded from codeplex for source code,  samples and documentation on msdn.  The name composite implies, to compose user interface from different modules (views) without direct dependencies on each other, again allowing  loosely coupled development. Well Sujith, I can already do that with user controls, why shall I learn another framework?  That’s correct, you can decouple using user controls, but you still have to manage some amount of coupling, like how to do you communicate between the controls, how do you subscribe/unsubscribe, loading/unloading views dynamically. Prism is not a replacement for user controls, provides the following features which greatly help in designing the composite applications. Dependency Injection (DI)/ Inversion of Control (IoC) Modules Regions Event Aggregator  Commands Simply put, MVVM helps building a single view and Prism helps building an application using the views There are other open source alternatives to Prism, like MVVMLight, Cinch, take a look at them as well. Lets dig into the source code.  1. Solution The solution is made of the following projects Framework: Holds the common functionality in building applications using WPF and Prism TaxiClient: Start up project, boot strapping and app styling TaxiCommon: Helps with the business logic TaxiModules: Holds the meat of the application with views and view models TaxiTests: To test the application 2. DI / IoC Dependency Injection (DI) as the name implies refers to injecting dependencies and Inversion of Control (IoC) means the calling code has no direct control on the dependencies, opposite of normal way of programming where dependencies are passed by caller, i.e inversion; aside from some differences in terminology the concept is same in both the cases. The idea behind DI/IoC pattern is to reduce the amount of direct coupling between different components of the application, the higher the dependency the more tightly coupled the application resulting in code which is hard to modify, unit test and mock.  Initializing Dependency Injection through BootStrapper TaxiClient is the starting project of the solution and App (App.xaml)  is the starting class that gets called when you run the application. From the App’s OnStartup method we will invoke BootStrapper.   namespace TaxiClient { /// <summary> /// Interaction logic for App.xaml /// </summary> public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { base.OnStartup(e);   (new BootStrapper()).Run(); } } } BootStrapper is your contact point for initializing the application including dependency injection, creating Shell and other frameworks. We are going to use Unity for DI and there are lot of open source DI frameworks like Spring.Net, StructureMap etc with different feature set  and you can choose a framework based on your preferences. Note that Prism comes with in built support for Unity, for example we are deriving from UnityBootStrapper in our case and for any other DI framework you have to extend the Prism appropriately   namespace TaxiClient { public class BootStrapper: UnityBootstrapper { protected override IModuleCatalog CreateModuleCatalog() { return new ConfigurationModuleCatalog(); } protected override DependencyObject CreateShell() { Framework.FrameworkBootStrapper.Run(Container, Application.Current.Dispatcher);   Shell shell = new Shell(); shell.ResizeMode = ResizeMode.NoResize; shell.Show();   return shell; } } } Lets take a look into  FrameworkBootStrapper to check out how to register with unity container. namespace Framework { public class FrameworkBootStrapper { public static void Run(IUnityContainer container, Dispatcher dispatcher) { UIDispatcher uiDispatcher = new UIDispatcher(dispatcher); container.RegisterInstance<IDispatcherService>(uiDispatcher);   container.RegisterType<IInjectSingleViewService, InjectSingleViewService>( new ContainerControlledLifetimeManager());   . . . } } } In the above code we are registering two components with unity container. You shall observe that we are following two different approaches, RegisterInstance and RegisterType.  With RegisterInstance we are registering an existing instance and the same instance will be returned for every request made for IDispatcherService   and with RegisterType we are requesting unity container to create an instance for us when required, i.e., when I request for an instance for IInjectSingleViewService, unity will create/return an instance of InjectSingleViewService class and with RegisterType we can configure the life time of the instance being created. With ContaienrControllerLifetimeManager, the unity container caches the instance and reuses for any subsequent requests, without recreating a new instance. Lets take a look into FareViewModel.cs and it’s constructor. The constructor takes one parameter IEventAggregator and if you try to find all references in your solution for IEventAggregator, you will not find a single location where an instance of EventAggregator is passed directly to the constructor. The compiler still finds an instance and works fine because Prism is already configured when used with Unity container to return an instance of EventAggregator when requested for IEventAggregator and in this particular case it is called constructor injection. public class FareViewModel:ObservableBase, IDataErrorInfo { ... private IEventAggregator _eventAggregator;   public FareViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; InitializePropertyNames(); InitializeModel(); PropertyChanged += OnPropertyChanged; } ... 3. Shell Shells are very similar in operation to Master Pages in asp.net or MDI in Windows Forms. And shells contain regions which display the views, you can have as many regions as you wish in a given view. You can also nest regions. i.e, one region can load a view which in itself may contain other regions. We have to create a shell at the start of the application and are doing it by overriding CreateShell method from BootStrapper From the following Shell.xaml you shall notice that we have two content controls with Region names as ‘MenuRegion’ and ‘MainRegion’.  The idea here is that you can inject any user controls into the regions dynamically, i.e., a Menu User Control for MenuRegion and based on the user action you can load appropriate view into MainRegion.    <Window x:Class="TaxiClient.Shell" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Regions="clr-namespace:Microsoft.Practices.Prism.Regions;assembly=Microsoft.Practices.Prism" Title="Taxi" Height="370" Width="800"> <Grid Margin="2"> <ContentControl Regions:RegionManager.RegionName="MenuRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" />   <ContentControl Grid.Row="1" Regions:RegionManager.RegionName="MainRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" /> <!--<Border Grid.ColumnSpan="2" BorderThickness="2" CornerRadius="3" BorderBrush="LightBlue" />-->   </Grid> </Window> 4. Modules Prism provides the ability to build composite applications and modules play an important role in it. For example if you are building a Mortgage Loan Processor application with 3 components, i.e. customer’s credit history,  existing mortgages, new home/loan information; and consider that the customer’s credit history component involves gathering data about his/her address, background information, job details etc. The idea here using Prism modules is to separate the implementation of these 3 components into their own visual studio projects allowing to build components with no dependency on each other and independently. If we need to add another component to the application, the component can be developed by in house team or some other team in the organization by starting with a new Visual Studio project and adding to the solution at the run time with very little knowledge about the application. Prism modules are defined by implementing the IModule interface and each visual studio project to be considered as a module should implement the IModule interface.  From the BootStrapper.cs you shall observe that we are overriding the method by returning a ConfiguratingModuleCatalog which returns the modules that are registered for the application using the app.config file  and you can also add module using code. Lets take a look into configuration file.   <?xml version="1.0"?> <configuration> <configSections> <section name="modules" type="Microsoft.Practices.Prism.Modularity.ModulesConfigurationSection, Microsoft.Practices.Prism"/> </configSections> <modules> <module assemblyFile="TaxiModules.dll" moduleType="TaxiModules.ModuleInitializer, TaxiModules" moduleName="TaxiModules"/> </modules> </configuration> Here we are adding TaxiModules project to our solution and TaxiModules.ModuleInitializer implements IModule interface   5. Module Mapper With Prism modules you can dynamically add or remove modules from the regions, apart from that Prism also provides API to control adding/removing the views from a region within the same module. Taxi Information Screen: Engage the Taxi Screen: The sample application has two screens, ‘Taxi Information’ and ‘Engage the Taxi’ and they both reside in same module, TaxiModules. ‘Engage the Taxi’ is again made of two user controls, FareView on the left and TotalView on the right. We have created a Shell with two regions, MenuRegion and MainRegion with menu loaded into MenuRegion. We can create a wrapper user control called EngageTheTaxi made of FareView and TotalView and load either TaxiInfo or EngageTheTaxi into MainRegion based on the user action. Though it will work it tightly binds the user controls and for every combination of user controls, we need to create a dummy wrapper control to contain them. Instead we can apply the principles we learned so far from Shell/regions and introduce another template (LeftAndRightRegionView.xaml) made of two regions Region1 (left) and Region2 (right) and load  FareView and TotalView dynamically.  To help with loading of the views dynamically I have introduce an helper an interface, IInjectSingleViewService,  idea suggested by Mike Taulty, a must read blog for .Net developers. using System; using System.Collections.Generic; using System.ComponentModel;   namespace Framework.PresentationUtility.Navigation {   public interface IInjectSingleViewService : INotifyPropertyChanged { IEnumerable<CommandViewDefinition> Commands { get; } IEnumerable<ModuleViewDefinition> Modules { get; }   void RegisterViewForRegion(string commandName, string viewName, string regionName, Type viewType); void ClearViewFromRegion(string viewName, string regionName); void RegisterModule(string moduleName, IList<ModuleMapper> moduleMappers); } } The Interface declares three methods to work with views: RegisterViewForRegion: Registers a view with a particular region. You can register multiple views and their regions under one command.  When this particular command is invoked all the views registered under it will be loaded into their regions. ClearViewFromRegion: To unload a specific view from a region. RegisterModule: The idea is when a command is invoked you can load the UI with set of controls in their default position and based on the user interaction, you can load different contols in to different regions on the fly.  And it is supported ModuleViewDefinition and ModuleMappers as shown below. namespace Framework.PresentationUtility.Navigation { public class ModuleViewDefinition { public string ModuleName { get; set; } public IList<ModuleMapper> ModuleMappers; public ICommand Command { get; set; } }   public class ModuleMapper { public string ViewName { get; set; } public string RegionName { get; set; } public Type ViewType { get; set; } } } 6. Event Aggregator Prism event aggregator enables messaging between components as in Observable pattern, Notifier notifies the Observer which receives notification it is interested in. When it comes to Observable pattern, Observer has to unsubscribes for notifications when it no longer interested in notifications, which allows the Notifier to remove the Observer’s reference from it’s local cache. Though .Net has managed garbage collection it cannot remove inactive the instances referenced by an active instance resulting in memory leak, keeping the Observers in memory as long as Notifier stays in memory.  Developers have to be very careful to unsubscribe when necessary and it often gets overlooked, to overcome these problems Prism Event Aggregator uses weak references to cache the reference (Observer in this case)  and releases the reference (memory) once the instance goes out of scope. Using event aggregator is very simple, declare a generic type of CompositePresenationEvent by inheriting from it. using Microsoft.Practices.Prism.Events; using TaxiCommon.BAO;   namespace TaxiCommon.CompositeEvents { public class TaxiOnMoveEvent:CompositePresentationEvent<TaxiOnMove> { } }   TaxiOnMove.cs includes the properties which we want to exchange between the parties, FareView and TotalView. using System;   namespace TaxiCommon.BAO { public class TaxiOnMove { public TimeSpan MinutesAtTweleveMPH { get; set; } public double MilesAtSixMPH { get; set; } } }   Lets take a look into FareViewodel (Notifier) and how it raises the event.  Here we are raising the event by getting the event through GetEvent<..>() and publishing it with the payload private void OnAddMinutes(object obj) { TaxiOnMove payload = new TaxiOnMove(); if(MilesAtSixMPH != null) payload.MilesAtSixMPH = MilesAtSixMPH.Value; if(MinutesAtTweleveMPH != null) payload.MinutesAtTweleveMPH = new TimeSpan(0,0,MinutesAtTweleveMPH.Value,0);   _eventAggregator.GetEvent<TaxiOnMoveEvent>().Publish(payload); ResetMinutesAndMiles(); } And TotalViewModel(Observer) subscribes to notifications by getting the event through GetEvent<..>() namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { .... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; ... }   private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>() .Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>() .Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>() .Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   ... private void OnTaxiMove(TaxiOnMove taxiOnMove) { OnMoveFare fare = new OnMoveFare(taxiOnMove); Fares.Add(fare); SetTotalFare(new []{fare}); }   .... 7. MVVM through example In this section we are going to look into MVVM implementation through example.  I have all the modules declared in a single project, TaxiModules, again it is not necessary to have them into one project. Once the user logs into the application, will be greeted with the ‘Engage the Taxi’ screen which is made of two user controls, FareView.xaml and TotalView.Xaml. As you can see from the solution explorer, each of them have their own code behind files and  ViewModel classes, FareViewMode.cs, TotalViewModel.cs Lets take a look in to the FareView and how it interacts with FareViewModel using MVVM implementation. FareView.xaml acts as a view and FareViewMode.cs is it’s view model. The FareView code behind class   namespace TaxiModules.Views { /// <summary> /// Interaction logic for FareView.xaml /// </summary> public partial class FareView : UserControl { public FareView(FareViewModel viewModel) { InitializeComponent(); this.Loaded += (s, e) => { this.DataContext = viewModel; }; } } } The FareView is bound to FareViewModel through the data context  and you shall observe that DataContext is of type Object, i.e. the FareView doesn’t really know the type of ViewModel (FareViewModel). This helps separation of View and ViewModel as View and ViewModel are independent of each other, you can bind FareView to FareViewModel2 as well and the application compiles just fine. Lets take a look into FareView xaml file  <UserControl x:Class="TaxiModules.Views.FareView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Toolkit="clr-namespace:Microsoft.Windows.Controls;assembly=WPFToolkit" xmlns:Commands="clr-namespace:Microsoft.Practices.Prism.Commands;assembly=Microsoft.Practices.Prism"> <Grid Margin="10" > ....   <Border Style="{DynamicResource innerBorder}" Grid.Row="0" Grid.Column="0" Grid.RowSpan="11" Grid.ColumnSpan="2" Panel.ZIndex="1"/>   <Label Grid.Row="0" Content="Engage the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="1" Content="Select the State"/> <ComboBox Grid.Row="1" Grid.Column="1" ItemsSource="{Binding States}" Height="auto"> <ComboBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Name}"/> </DataTemplate> </ComboBox.ItemTemplate> <ComboBox.SelectedItem> <Binding Path="SelectedState" Mode="TwoWay"/> </ComboBox.SelectedItem> </ComboBox> <Label Grid.Row="2" Content="Select the Date of Entry"/> <Toolkit:DatePicker Grid.Row="2" Grid.Column="1" SelectedDate="{Binding DateOfEntry, ValidatesOnDataErrors=true}" /> <Label Grid.Row="3" Content="Enter time 24hr format"/> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding TimeOfEntry, TargetNullValue=''}"/> <Button Grid.Row="4" Grid.Column="1" Content="Start the Meter" Commands:Click.Command="{Binding StartMeterCommand}" />   <Label Grid.Row="5" Content="Run the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="6" Content="Number of Miles &lt;@6mph"/> <TextBox Grid.Row="6" Grid.Column="1" Text="{Binding MilesAtSixMPH, TargetNullValue='', ValidatesOnDataErrors=true}"/> <Label Grid.Row="7" Content="Number of Minutes @12mph"/> <TextBox Grid.Row="7" Grid.Column="1" Text="{Binding MinutesAtTweleveMPH, TargetNullValue=''}"/> <Button Grid.Row="8" Grid.Column="1" Content="Add Minutes and Miles " Commands:Click.Command="{Binding AddMinutesCommand}"/> <Label Grid.Row="9" Content="Other Operations" Style="{DynamicResource innerHeader}"/> <Button Grid.Row="10" Grid.Column="1" Content="Reset the Meter" Commands:Click.Command="{Binding ResetCommand}"/>   </Grid> </UserControl> The highlighted code from the above code shows data binding, for example ComboBox which displays list of states has it’s ItemsSource bound to States property, with DataTemplate bound to Name and SelectedItem  to SelectedState. You might be wondering what are all these properties and how it is able to bind to them.  The answer lies in data context, i.e., when you bound a control, WPF looks for data context on the root object (Grid in this case) and if it can’t find data context it will look into root’s root, i.e. FareView UserControl and it is bound to FareViewModel.  Each of those properties have be declared on the ViewModel for the View to bind correctly. To put simply, View is bound to ViewModel through data context of type object and every control that is bound on the View actually binds to the public property on the ViewModel. Lets look into the ViewModel code (the following code is not an exact copy of FareViewMode.cs, pasted relevant code for this section)   namespace TaxiModules.ViewModels { public class FareViewModel:ObservableBase, IDataErrorInfo { public List<USState> States { get { return USStates.StateList; } }   public USState SelectedState { get { return _selectedState; } set { _selectedState = value; RaisePropertyChanged(_selectedStatePropertyName); } }   public DateTime? DateOfEntry { get { return _dateOfEntry; } set { _dateOfEntry = value; RaisePropertyChanged(_dateOfEntryPropertyName); } }   public TimeSpan? TimeOfEntry { get { return _timeOfEntry; } set { _timeOfEntry = value; RaisePropertyChanged(_timeOfEntryPropertyName); } }   public double? MilesAtSixMPH { get { return _milesAtSixMPH; } set { _milesAtSixMPH = value; RaisePropertyChanged(_distanceAtSixMPHPropertyName); } }   public int? MinutesAtTweleveMPH { get { return _minutesAtTweleveMPH; } set { _minutesAtTweleveMPH = value; RaisePropertyChanged(_minutesAtTweleveMPHPropertyName); } }   public ICommand StartMeterCommand { get { if(_startMeterCommand == null) { _startMeterCommand = new DelegateCommand<object>(OnStartMeter, CanStartMeter); } return _startMeterCommand; } }   public ICommand AddMinutesCommand { get { if(_addMinutesCommand == null) { _addMinutesCommand = new DelegateCommand<object>(OnAddMinutes, CanAddMinutes); } return _addMinutesCommand; } }   public ICommand ResetCommand { get { if(_resetCommand == null) { _resetCommand = new DelegateCommand<object>(OnResetCommand); } return _resetCommand; } }   } private void OnStartMeter(object obj) { _eventAggregator.GetEvent<TaxiStartedEvent>().Publish( new TaxiStarted() { EngagedOn = DateOfEntry.Value.Date + TimeOfEntry.Value, EngagedState = SelectedState.Value });   _isMeterStarted = true; OnPropertyChanged(this,null); } And views communicate user actions like button clicks, tree view item selections, etc using commands. When user clicks on ‘Start the Meter’ button it invokes the method StartMeterCommand, which calls the method OnStartMeter which publishes the event to TotalViewModel using event aggregator  and TaxiStartedEvent. namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { ... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator;   InitializePropertyNames(); InitializeModel(); SubscribeToEvents(); }   public decimal? TotalFare { get { return _totalFare; } set { _totalFare = value; RaisePropertyChanged(_totalFarePropertyName); } } .... private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>().Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>().Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>().Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   private void OnTaxiStarted(TaxiStarted taxiStarted) { Fares.Add(new EntryFare()); Fares.Add(new StateTaxFare(taxiStarted)); Fares.Add(new NightSurchargeFare(taxiStarted)); Fares.Add(new PeakHourWeekdayFare(taxiStarted));   SetTotalFare(Fares); }   private void SetTotalFare(IEnumerable<IFare> fares) { TotalFare = (_totalFare ?? 0) + TaxiFareHelper.GetTotalFare(fares); } ....   } }   TotalViewModel subscribes to events, TaxiStartedEvent and rest. When TaxiStartedEvent gets invoked it calls the OnTaxiStarted method which sets the total fare which includes entry fee, state tax, nightly surcharge, peak hour weekday fare.   Note that TotalViewModel derives from ObservableBase which implements the method RaisePropertyChanged which we are invoking in Set of TotalFare property, i.e, once we update the TotalFare property it raises an the event that  allows the TotalFare text box to fetch the new value through the data context. ViewModel is communicating with View through data context and it has no knowledge about View, helping in loose coupling of ViewModel and View.   I have attached the source code (.Net 4.0, Prism 4.0, VS 2010) , download and play with it and don’t forget to leave your comments.  

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Design by Contract with Microsoft .Net Code Contract

    - by Fredrik N
    I have done some talks on different events and summits about Defensive Programming and Design by Contract, last time was at Cornerstone’s Developer Summit 2010. Next time will be at SweNug (Sweden .Net User Group). I decided to write a blog post about of some stuffs I was talking about. Users are a terrible thing! Protect your self from them ”Human users have a gift for doing the worst possible thing at the worst possible time.” – Michael T. Nygard, Release It! The kind of users Michael T. Nygard are talking about is the users of a system. We also have users that uses our code, the users I’m going to focus on is the users of our code. Me and you and another developers. “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” – Martin Fowler Good programmers also writes code that humans know how to use, good programmers also make sure software behave in a predictable manner despise inputs or user actions. Design by Contract   Design by Contract (DbC) is a way for us to make a contract between us (the code writer) and the users of our code. It’s about “If you give me this, I promise to give you this”. It’s not about business validations, that is something completely different that should be part of the domain model. DbC is to make sure the users of our code uses it in a correct way, and that we can rely on the contract and write code in a way where we know that the users will follow the contract. It will make it much easier for us to write code with a contract specified. Something like the following code is something we may see often: public void DoSomething(Object value) { value.DoIKnowThatICanDoThis(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Where “value” can be uses directly or passed to other methods and later be used. What some of us can easily forget here is that the “value” can be “null”. We will probably not passing a null value, but someone else that uses our code maybe will do it. I think most of you (including me) have passed “null” into a method because you don’t know if the argument need to be specified to a valid value etc. I bet most of you also have got the “Null reference exception”. Sometimes this “Null reference exception” can be hard and take time to fix, because we need to search among our code to see where the “null” value was passed in etc. Wouldn’t it be much better if we can as early as possible specify that the value can’t not be null, so the users of our code also know it when the users starts to use our code, and before run time execution of the code? This is where DbC comes into the picture. We can use DbC to specify what we need, and by doing so we can rely on the contract when we write our code. So the code above can actually use the DoIKnowThatICanDoThis() method on the value object without being worried that the “value” can be null. The contract between the users of the code and us writing the code, says that the “value” can’t be null.   Pre- and Postconditions   When working with DbC we are specifying pre- and postconditions.  Precondition is a condition that should be met before a query or command is executed. An example of a precondition is: “The Value argument of the method can’t be null”, and we make sure the “value” isn’t null before the method is called. Postcondition is a condition that should be met when a command or query is completed, a postcondition will make sure the result is correct. An example of a postconditon is “The method will return a list with at least 1 item”. Commands an Quires When using DbC, we need to know what a Command and a Query is, because some principles that can be good to follow are based on commands and queries. A Command is something that will not return anything, like the SQL’s CREATE, UPDATE and DELETE. There are two kinds of Commands when using DbC, the Creation commands (for example a Constructor), and Others. Others can for example be a Command to add a value to a list, remove or update a value etc. //Creation commands public Stack(int size) //Other commands public void Push(object value); public void Remove(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   A Query, is something that will return something, for example an Attribute, Property or a Function, like the SQL’s SELECT.   There are two kinds of Queries, the Basic Queries  (Quires that aren’t based on another queries), and the Derived Queries, queries that is based on another queries. Here is an example of queries of a Stack: //Basic Queries public int Count; public object this[int index] { get; } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To understand about some principles that are good to follow when using DbC, we need to know about the Commands and different Queries. The 6 Principles When working with DbC, it’s advisable to follow some principles to make it easier to define and use contracts. The following DbC principles are: Separate commands and queries. Separate basic queries from derived queries. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries. For each command, write a postcondition that specifies the value of every basic query. For every query and command, decide on a suitable precondition. Write invariants to define unchanging properties of objects. Before I will write about each of them I want you to now that I’m going to use .Net 4.0 Code Contract. I will in the rest of the post uses a simple Stack (Yes I know, .Net already have a Stack class) to give you the basic understanding about using DbC. A Stack is a data structure where the first item in, will be the first item out. Here is a basic implementation of a Stack where not contract is specified yet: public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } //Is related to Count and this[] Query public object Top() { return this[Count]; } //Creation commands public Stack(uint size) { Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { this[++Count] = value; } public void Remove() { this[Count] = null; Count--; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The Stack is implemented in a way to demonstrate the use of Code Contract in a simple way, the implementation may not look like how you would implement it, so don’t think this is the perfect Stack implementation, only used for demonstration.   Before I will go deeper into the principles I will simply mention how we can use the .Net Code Contract. I mention before about pre- and postcondition, is about “Require” something and to “Ensure” something. When using Code Contract, we will use a static class called “Contract” and is located in he “System.Diagnostics.Contracts” namespace. The contract must be specified at the top or our member statement block. To specify a precondition with Code Contract we uses the Contract.Requires method, and to specify a postcondition, we uses the Contract.Ensure method. Here is an example where both a pre- and postcondition are used: public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The contract above requires that the Count is greater than 0, if not we can’t get the item at the Top of a Stack. We also Ensures that the results (By using the Contract.Result method, we can specify a postcondition that will check if the value returned from a method is correct) of the Top query is equal to this[Count].   1. Separate Commands and Queries   When working with DbC, it’s important to separate Command and Quires. A method should either be a command that performs an Action, or returning information to the caller, not both. By asking a question the answer shouldn’t be changed. The following is an example of a Command and a Query of a Stack: public void Push(object value) public object Top() .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The Push is a command and will not return anything, just add a value to the Stack, the Top is a query to get the item at the top of the stack.   2. Separate basic queries from derived queries There are two different kinds of queries,  the basic queries that doesn’t rely on another queries, and derived queries that uses a basic query. The “Separate basic queries from derived queries” principle is about about that derived queries can be specified in terms of basic queries. So this principles is more about recognizing that a query is a derived query or a basic query. It will then make is much easier to follow the other principles. The following code shows a basic query and a derived query: //Basic Queries public uint Count; //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   We can see that IsEmpty will use the Count query, and that makes the IsEmpty a Derived query.   3. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries.   When the derived query is recognize we can follow the 3ed principle. For each derived query, we can create a postcondition that specifies what result our derived query will return in terms of one or more basic queries. Remember that DbC is about contracts between the users of the code and us writing the code. So we can’t use demand that the users will pass in a valid value, we must also ensure that we will give the users what the users wants, when the user is following our contract. The IsEmpty query of the Stack will use a Count query and that will make the IsEmpty a Derived query, so we should now write a postcondition that specified what results will be returned, in terms of using a basic query and in this case the Count query, //Basic Queries public uint Count; //Derived Queries public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } The Contract.Ensures is used to create a postcondition. The above code will make sure that the results of the IsEmpty (by using the Contract.Result to get the result of the IsEmpty method) is correct, that will say that the IsEmpty will be either true or false based on Count is equal to 0 or not. The postcondition are using a basic query, so the IsEmpty is now following the 3ed principle. We also have another Derived Query, the Top query, it will also need a postcondition and it uses all basic queries. The Result of the Top method must be the same value as the this[] query returns. //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count and this[] Query public object Top() { Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   4. For each command, write a postcondition that specifies the value of every basic query.   For each command we will create a postconditon that specifies the value of basic queries. If we look at the Stack implementation we will have three Commands, one Creation command, the Constructor, and two others commands, Push and Remove. Those commands need a postcondition and they should include basic query to follow the 4th principle. //Creation commands public Stack(uint size) { Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   As you can see the Create command will Ensures that Count will be 0 when the Stack is created, when a Stack is created there shouldn’t be any items in the stack. The Push command will take a value and put it into the Stack, when an item is pushed into the Stack, the Count need to be increased to know the number of items added to the Stack, and we must also make sure the item is really added to the Stack. The postconditon of the Push method will make sure the that old value of the Count (by using the Contract.OldValue we can get the value a Query has before the method is called)  plus 1 will be equal to the Count query, this is the way we can ensure that the Push will increase the Count with one. We also make sure the this[] query will now contain the item we pushed into the Stack. The Remove method must make sure the Count is decreased by one when the top item is removed from the Stack. The Commands is now following the 4th principle, where each command now have a postcondition that used the value of basic queries. Note: The principle says every basic Query, the Remove only used one Query the Count, it’s because this command can’t use the this[] query because an item is removed, so the only way to make sure an item is removed is to just use the Count query, so the Remove will still follow the principle.   5. For every query and command, decide on a suitable precondition.   We have now focused only on postcondition, now time for some preconditons. The 5th principle is about deciding a suitable preconditon for every query and command. If we starts to look at one of our basic queries (will not go through all Queries and commands here, just some of them) the this[] query, we can’t pass an index that is lower then 1 (.Net arrays and list are zero based, but not the stack in this blog post ;)) and the index can’t be lesser than the number of items in the stack. So here we will need a preconditon. public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Think about the Contract as an documentation about how to use the code in a correct way, so if the contract could be specified elsewhere (not part of the method body), we could simply write “return _array[index]” and there is no need to check if index is greater or lesser than Count, because that is specified in a “contract”. The implementation of Code Contract, requires that the contract is specified in the code. As a developer I would rather have this contract elsewhere (Like Spec#) or implemented in a way Eiffel uses it as part of the language. Now when we have looked at one Query, we can also look at one command, the Remove command (You can see the whole implementation of the Stack at the end of this blog post, where precondition is added to more queries and commands then what I’m going to show in this section). We can only Remove an item if the Count is greater than 0. So we can write a precondition that will require that Count must be greater than 0. public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   6. Write invariants to define unchanging properties of objects.   The last principle is about making sure the object are feeling great! This is done by using invariants. When using Code Contract we can specify invariants by adding a method with the attribute ContractInvariantMethod, the method must be private or public and can only contains calls to Contract.Invariant. To make sure the Stack feels great, the Stack must have 0 or more items, the Count can’t never be a negative value to make sure each command and queries can be used of the Stack. Here is our invariant for the Stack object: [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The ObjectInvariant method will be called every time after a Query or Commands is called. Here is the full example using Code Contract:   public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } set { Contract.Requires(index >= 1); Contract.Requires(index <= Count); _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } //Is related to Count and this[] Query public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } //Creation commands public Stack(uint size) { Contract.Requires(size > 0); Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Requires(value != null); Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Summary By using Design By Contract we can make sure the users are using our code in a correct way, and we must also make sure the users will get the expected results when they uses our code. This can be done by specifying contracts. To make it easy to use Design By Contract, some principles may be good to follow like the separation of commands an queries. With .Net 4.0 we can use the Code Contract feature to specify contracts.

    Read the article

  • InternalsVisibleTo attribute and security vulnerability

    - by Sergey Litvinov
    I found one issue with InternalsVisibleTo attribute usage. The idea of InternalsVisibleTo attribute to allow some other assemblies to use internal classes\methods of this assembly. To make it work you need sign your assemblies. So, if other assemblies isn't specified in main assembly and if they have incorrect public key, then they can't use Internal members. But the issue in Reflection Emit type generation. For example, we have CorpLibrary1 assembly and it has such class: public class TestApi { internal virtual void DoSomething() { Console.WriteLine("Base DoSomething"); } public void DoApiTest() { // some internal logic // ... // call internal method DoSomething(); } } This assembly is marked with such attribute to allow another CorpLibrary2 to make inheritor for that TestAPI and override behaviour of DoSomething method. [assembly: InternalsVisibleTo("CorpLibrary2, PublicKey=0024000004800000940000000602000000240000525341310004000001000100434D9C5E1F9055BF7970B0C106AAA447271ECE0F8FC56F6AF3A906353F0B848A8346DC13C42A6530B4ED2E6CB8A1E56278E664E61C0D633A6F58643A7B8448CB0B15E31218FB8FE17F63906D3BF7E20B9D1A9F7B1C8CD11877C0AF079D454C21F24D5A85A8765395E5CC5252F0BE85CFEB65896EC69FCC75201E09795AAA07D0")] The issue is that I'm able to override this internal DoSomething method and break class logic. My steps to do it: Generate new assembly in runtime via AssemblyBuilder Get AssemblyName from CorpLibrary1 and copy PublikKey to new assembly Generate new assembly that will inherit TestApi class As PublicKey and name of generated assembly is the same as in InternalsVisibleTo, then we can generate new DoSomething method that will override internal method in TestAPI assembly Then we have another assembly that isn't related to this CorpLibrary1 and can't use internal members. We have such test code in it: class Program { static void Main(string[] args) { var builder = new FakeBuilder(InjectBadCode, "DoSomething", true); TestApi fakeType = builder.CreateFake(); fakeType.DoApiTest(); // it will display: // Inject bad code // Base DoSomething Console.ReadLine(); } public static void InjectBadCode() { Console.WriteLine("Inject bad code"); } } And this FakeBuilder class has such code: /// /// Builder that will generate inheritor for specified assembly and will overload specified internal virtual method /// /// Target type public class FakeBuilder { private readonly Action _callback; private readonly Type _targetType; private readonly string _targetMethodName; private readonly string _slotName; private readonly bool _callBaseMethod; public FakeBuilder(Action callback, string targetMethodName, bool callBaseMethod) { int randomId = new Random((int)DateTime.Now.Ticks).Next(); _slotName = string.Format("FakeSlot_{0}", randomId); _callback = callback; _targetType = typeof(TFakeType); _targetMethodName = targetMethodName; _callBaseMethod = callBaseMethod; } public TFakeType CreateFake() { // as CorpLibrary1 can't use code from unreferences assemblies, we need to store this Action somewhere. // And Thread is not bad place for that. It's not the best place as it won't work in multithread application, but it's just a sample LocalDataStoreSlot slot = Thread.AllocateNamedDataSlot(_slotName); Thread.SetData(slot, _callback); // then we generate new assembly with the same nameand public key as target assembly trusts by InternalsVisibleTo attribute var newTypeName = _targetType.Name + "Fake"; var targetAssembly = Assembly.GetAssembly(_targetType); AssemblyName an = new AssemblyName(); an.Name = GetFakeAssemblyName(targetAssembly); // copying public key to new generated assembly var assemblyName = targetAssembly.GetName(); an.SetPublicKey(assemblyName.GetPublicKey()); an.SetPublicKeyToken(assemblyName.GetPublicKeyToken()); AssemblyBuilder assemblyBuilder = Thread.GetDomain().DefineDynamicAssembly(an, AssemblyBuilderAccess.RunAndSave); ModuleBuilder moduleBuilder = assemblyBuilder.DefineDynamicModule(assemblyBuilder.GetName().Name, true); // create inheritor for specified type TypeBuilder typeBuilder = moduleBuilder.DefineType(newTypeName, TypeAttributes.Public | TypeAttributes.Class, _targetType); // LambdaExpression.CompileToMethod can be used only with static methods, so we need to create another method that will call our Inject method // we can do the same via ILGenerator, but expression trees are more easy to use MethodInfo methodInfo = CreateMethodInfo(moduleBuilder); MethodBuilder methodBuilder = typeBuilder.DefineMethod(_targetMethodName, MethodAttributes.Public | MethodAttributes.Virtual); ILGenerator ilGenerator = methodBuilder.GetILGenerator(); // call our static method that will call inject method ilGenerator.EmitCall(OpCodes.Call, methodInfo, null); // in case if we need, then we put call to base method if (_callBaseMethod) { var baseMethodInfo = _targetType.GetMethod(_targetMethodName, BindingFlags.NonPublic | BindingFlags.Instance); // place this to stack ilGenerator.Emit(OpCodes.Ldarg_0); // call the base method ilGenerator.EmitCall(OpCodes.Call, baseMethodInfo, new Type[0]); // return ilGenerator.Emit(OpCodes.Ret); } // generate type, create it and return to caller Type cheatType = typeBuilder.CreateType(); object type = Activator.CreateInstance(cheatType); return (TFakeType)type; } /// /// Get name of assembly from InternalsVisibleTo AssemblyName /// private static string GetFakeAssemblyName(Assembly assembly) { var internalsVisibleAttr = assembly.GetCustomAttributes(typeof(InternalsVisibleToAttribute), true).FirstOrDefault() as InternalsVisibleToAttribute; if (internalsVisibleAttr == null) { throw new InvalidOperationException("Assembly hasn't InternalVisibleTo attribute"); } var ind = internalsVisibleAttr.AssemblyName.IndexOf(","); var name = internalsVisibleAttr.AssemblyName.Substring(0, ind); return name; } /// /// Generate such code: /// ((Action)Thread.GetData(Thread.GetNamedDataSlot(_slotName))).Invoke(); /// private LambdaExpression MakeStaticExpressionMethod() { var allocateMethod = typeof(Thread).GetMethod("GetNamedDataSlot", BindingFlags.Static | BindingFlags.Public); var getDataMethod = typeof(Thread).GetMethod("GetData", BindingFlags.Static | BindingFlags.Public); var call = Expression.Call(allocateMethod, Expression.Constant(_slotName)); var getCall = Expression.Call(getDataMethod, call); var convCall = Expression.Convert(getCall, typeof(Action)); var invokExpr = Expression.Invoke(convCall); var lambda = Expression.Lambda(invokExpr); return lambda; } /// /// Generate static class with one static function that will execute Action from Thread NamedDataSlot /// private MethodInfo CreateMethodInfo(ModuleBuilder moduleBuilder) { var methodName = "_StaticTestMethod_" + _slotName; var className = "_StaticClass_" + _slotName; TypeBuilder typeBuilder = moduleBuilder.DefineType(className, TypeAttributes.Public | TypeAttributes.Class); MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, MethodAttributes.Static | MethodAttributes.Public); LambdaExpression expression = MakeStaticExpressionMethod(); expression.CompileToMethod(methodBuilder); var type = typeBuilder.CreateType(); return type.GetMethod(methodName, BindingFlags.Static | BindingFlags.Public); } } remarks about sample: as we need to execute code from another assembly, CorpLibrary1 hasn't access to it, so we need to store this delegate somewhere. Just for testing I stored it in Thread NamedDataSlot. It won't work in multithreaded applications, but it's just a sample. I know that we use Reflection to get private\internal members of any class, but within reflection we can't override them. But this issue is allows anyone to override internal class\method if that assembly has InternalsVisibleTo attribute. I tested it on .Net 3.5\4 and it works for both of them. How does it possible to just copy PublicKey without private key and use it in runtime? The whole sample can be found there - https://github.com/sergey-litvinov/Tests_InternalsVisibleTo UPDATE1: That test code in Program and FakeBuilder classes hasn't access to key.sn file and that library isn't signed, so it hasn't public key at all. It just copying it from CorpLibrary1 by using Reflection.Emit

    Read the article

  • Android Remote Service Keeps Restarting

    - by user244190
    Ok so I've built an app that uses a remote service to do some real time GPS tracking. I am using the below code to start and bind to the service. The remote service uses aidl, sets up a notification icon, runs the GPS and locationListener. In onLocationChanged, a handler sends data back to the caller via the callback. Pretty much straight out of the examples and resources online. I want to allow the service to continue running even if the app closes. When the app is restarted, I want the app to again bind to the service (using the existing service if running) and again receive data from the tracker. I currently have the app mode set to singleTask and cannot use singleinstance due to another issue. My problem is that quit often even after the app and service are shut down either from the app itself, or from AdvancedTaskKiller, or a Forceclose, the service will restart and initialize the GPS. touching on the notification will open the app. I again stop the tracking which removes the notification and turns off the GPS Close the app, and again after a few seconds the service restarts. The only way to stop it is to power off the phone. What can I do to stop this from happening. Does it have to do with the mode of operation? START_NOT_STICKY or START_REDELIVER_INTENT? Or do I need to use stopSelf()? My understanding is that if the service is not running when I use bindService() that the service will be created...so do I really need to use start/stopService also? I thought I would need to use it if I want the service to run even after the app is closed. That is why i do not unbind/stop the service in onDestroy(). Is this correct? I've not seen any other info an this, so I,m not sure where to look. Please Help! Thanks Patrick //Remote Service Startup try{ startService(); }catch (Exception e) { Toast.makeText(ctx, e.getMessage().toString(), Toast.LENGTH_SHORT).show(); } } try{ bindService(); }catch (Exception e) { Toast.makeText(ctx, e.getMessage().toString(), Toast.LENGTH_SHORT).show(); } //Remote service shutdown try { unbindService(); }catch(Exception e) { Toast.makeText(ctx, e.getMessage().toString(), Toast.LENGTH_SHORT).show(); } try{ stopService(); }catch(Exception e) { Toast.makeText(ctx, e.getMessage().toString(), Toast.LENGTH_SHORT).show(); } private void startService() { if( myAdapter.trackServiceStarted() ) { if(SETTING_DEBUG_MODE) Toast.makeText(this, "Service already started", Toast.LENGTH_SHORT).show(); started = true; if(!myAdapter.trackDataExists()) insertTrackData(); updateServiceStatus(); } else { startService( new Intent ( "com.codebase.TRACKING_SERVICE" ) ); Log.d( "startService()", "startService()" ); started = true; updateServiceStatus(); } } private void stopService() { stopService( new Intent ( "com.codebase.TRACKING_SERVICE" ) ); Log.d( "stopService()", "stopService()" ); started = false; updateServiceStatus(); } private void bindService() { bindService(new Intent(ITrackingService.class.getName()), mConnection, Context.BIND_AUTO_CREATE); bindService(new Intent(ITrackingSecondary.class.getName()), mTrackingSecondaryConnection, Context.BIND_AUTO_CREATE); started = true; } private void unbindService() { try { mTrackingService.unregisterCallback(mCallback); } catch (RemoteException e) { // There is nothing special we need to do if the service // has crashed. e.getMessage(); } try { unbindService(mTrackingSecondaryConnection); unbindService(mConnection); } catch (Exception e) { // There is nothing special we need to do if the service // has crashed. e.getMessage(); } started = false; } private ServiceConnection mConnection = new ServiceConnection() { public void onServiceConnected(ComponentName className, IBinder service) { // This is called when the connection with the service has been // established, giving us the service object we can use to // interact with the service. We are communicating with our // service through an IDL interface, so get a client-side // representation of that from the raw service object. mTrackingService = ITrackingService.Stub.asInterface(service); // We want to monitor the service for as long as we are // connected to it. try { mTrackingService.registerCallback(mCallback); } catch (RemoteException e) { // In this case the service has crashed before we could even // do anything with it; we can count on soon being // disconnected (and then reconnected if it can be restarted) // so there is no need to do anything here. } } public void onServiceDisconnected(ComponentName className) { // This is called when the connection with the service has been // unexpectedly disconnected -- that is, its process crashed. mTrackingService = null; } }; private ServiceConnection mTrackingSecondaryConnection = new ServiceConnection() { public void onServiceConnected(ComponentName className, IBinder service) { // Connecting to a secondary interface is the same as any // other interface. mTrackingSecondaryService = ITrackingSecondary.Stub.asInterface(service); try{ mTrackingSecondaryService.setTimePrecision(SETTING_TIME_PRECISION); mTrackingSecondaryService.setDistancePrecision(SETTING_DISTANCE_PRECISION); } catch (RemoteException e) { // In this case the service has crashed before we could even // do anything with it; we can count on soon being // disconnected (and then reconnected if it can be restarted) // so there is no need to do anything here. } } public void onServiceDisconnected(ComponentName className) { mTrackingSecondaryService = null; } }; //TrackService onDestry() public void onDestroy() { try{ if(lm != null) { lm.removeUpdates(this); } if(mNotificationManager != null) { mNotificationManager.cancel(R.string.local_service_started); } Toast.makeText(this, "Service stopped", Toast.LENGTH_SHORT).show(); }catch (Exception e){ Toast.makeText(this, e.getMessage(), Toast.LENGTH_SHORT).show(); } // Unregister all callbacks. mCallbacks.kill(); // Remove the next pending message to increment the counter, stopping // the increment loop. mHandler.removeMessages(REPORT_MSG); super.onDestroy(); } ServiceConnectionLeaked: I'm seeing a lot of these: 04-21 09:25:23.347: ERROR/ActivityThread(3246): Activity com.codebase.GPSTest has leaked ServiceConnection com.codebase.GPSTest$6@4482d428 that was originally bound here 04-21 09:25:23.347: ERROR/ActivityThread(3246): android.app.ServiceConnectionLeaked: Activity com.codebase.GPSTest has leaked ServiceConnection com.codebase.GPSTest$6@4482d428 that was originally bound here 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread$PackageInfo$ServiceDispatcher.<init>(ActivityThread.java:977) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread$PackageInfo.getServiceDispatcher(ActivityThread.java:872) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ApplicationContext.bindService(ApplicationContext.java:796) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.content.ContextWrapper.bindService(ContextWrapper.java:337) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at com.codebase.GPSTest.bindService(GPSTest.java:2206) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at com.codebase.GPSTest.onStartStopClick(GPSTest.java:1589) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at com.codebase.GPSTest.onResume(GPSTest.java:1210) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.Instrumentation.callActivityOnResume(Instrumentation.java:1149) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.Activity.performResume(Activity.java:3763) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread.performResumeActivity(ActivityThread.java:2937) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread.handleResumeActivity(ActivityThread.java:2965) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2516) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread.handleRelaunchActivity(ActivityThread.java:3625) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread.access$2300(ActivityThread.java:119) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1867) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.os.Handler.dispatchMessage(Handler.java:99) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.os.Looper.loop(Looper.java:123) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread.main(ActivityThread.java:4363) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at java.lang.reflect.Method.invokeNative(Native Method) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at java.lang.reflect.Method.invoke(Method.java:521) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:860) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:618) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at dalvik.system.NativeStart.main(Native Method) And These: Is this ok, or do I need to make sure i deactivate/close 04-21 09:58:55.487: INFO/dalvikvm(3440): Uncaught exception thrown by finalizer (will be discarded): 04-21 09:58:55.487: INFO/dalvikvm(3440): Ljava/lang/IllegalStateException;: Finalizing cursor android.database.sqlite.SQLiteCursor@447ef258 on gps_data that has not been deactivated or closed 04-21 09:58:55.487: INFO/dalvikvm(3440): at android.database.sqlite.SQLiteCursor.finalize(SQLiteCursor.java:596) 04-21 09:58:55.487: INFO/dalvikvm(3440): at dalvik.system.NativeStart.run(Native Method)

    Read the article

  • "Exception has been thrown by the target of an invocation" Running Tests - VS2008 SP1

    - by omatrot
    I'm using Visual Studio 2008 Team Suite and I'm unable to run tests and display the Test/Windows/Test Result Window. The result is a dialog box with the following content : "Exception has been thrown by the target of an invocation". Team Explorer has been installed after Visual Studio 2008 SP1. So I have re-apllied the service pack. Searching the web I found that this error is pretty common but unfortunately, the proposed solutions does not work for me. The problem was never analysed so I decided to give it a try : I reproduced the problem on a computer, attached the process with windbg and start with the basic investigations. Following are the first results : 0:000>!dumpstack OS Thread Id: 0xdb0 (0) Current frame: USER32!NtUserWaitMessage+0x15 ChildEBP RetAddr Caller,Callee 003fec94 75a32674 USER32!DialogBox2+0x222, calling USER32!NtUserWaitMessage 003fecd0 75a3288a USER32!InternalDialogBox+0xe5, calling USER32!DialogBox2 003fecfc 75a6f8d0 USER32!SoftModalMessageBox+0x757, calling USER32!InternalDialogBox 003fed3c 6eb61996 mscorwks!Thread::ReverseLeaveRuntime+0x95, calling mscorwks!_EH_epilog3 003fedb0 75a6fbac USER32!MessageBoxWorker+0x269, calling USER32!SoftModalMessageBox 003fede0 6ea559c3 mscorwks!SetupThreadNoThrow+0x19a, calling mscorwks!_EH_epilog3_catch_GS 003fee24 6eb61d8a mscorwks!HasIllegalReentrancy+0xac, calling mscorwks!_EH_epilog3 003fee30 6ea89796 mscorwks!SimpleComCallWrapper::Release+0x2e, calling mscorwks!CompareExchangeMP 003fee38 6ea0da05 mscorwks!CLRException::HandlerState::CleanupTry+0x16, calling mscorwks!GetCurrentSEHRecord 003fee44 6ea0c9c0 mscorwks!Thread::EnablePreemptiveGC+0xf, calling mscorwks!Thread::CatchAtSafePoint 003fee4c 6ea8a241 mscorwks!Unknown_Release_Internal+0x24d, calling mscorwks!GCHolder<1,0,0>::Pop 003fee50 6ea0c86c mscorwks!_EH_epilog3_catch_GS+0xa, calling mscorwks!__security_check_cookie 003fee54 6ea8a24c mscorwks!Unknown_Release_Internal+0x258, calling mscorwks!_EH_epilog3_catch_GS 003fee7c 75a16941 USER32!UserCallWinProcCheckWow+0x13d, calling ntdll!RtlDeactivateActivationContextUnsafeFast 003feed8 7082119e msenv!ATL::CComCritSecLock<ATL::CComCriticalSection>::Lock+0xd, calling ntdll!RtlEnterCriticalSection 003fef08 75a6fe5b USER32!MessageBoxIndirectW+0x2e, calling USER32!MessageBoxWorker 003fef7c 70a1e367 msenv!MessageBoxPVoidW+0xda 003fefd4 70a1db60 msenv!VBDialogCover2+0x11b 003ff01c 70a1e4c0 msenv!VBMessageBox2W+0xf0, calling msenv!VBDialogCover2 003ff044 7087246b msenv!main_GetAppNameW+0xa, calling msenv!GetAppNameInternal 003ff04c 70a1e4f2 msenv!VBMessageBox3W+0x1c, calling msenv!VBMessageBox2W 003ff064 70a1d6d7 msenv!_IdMsgShow+0x362, calling msenv!VBMessageBox3W 003ff0cc 70951841 msenv!TaskDialogCallback+0x7e0, calling msenv!_IdMsgShow 003ff118 6eb20da4 mscorwks!Unknown_QueryInterface+0x230, calling mscorwks!_EH_epilog3_catch_GS 003ff14c 6eb20c43 mscorwks!Unknown_QueryInterface_Internal+0x3d8, calling mscorwks!_EH_epilog3_catch_GS 003ff168 02006ec4 02006ec4, calling 0247a1e8 003ff16c 6ea0c86c mscorwks!_EH_epilog3_catch_GS+0xa, calling mscorwks!__security_check_cookie 003ff198 6eb20562 mscorwks!COMToCLRWorker+0xb34, calling mscorwks!_EH_epilog3_catch_GS 003ff19c 0247a235 0247a235, calling mscorwks!COMToCLRWorker 003ff1c4 7083249f msenv!CVSCommandTarget::ExecCmd+0x937 003ff1e4 7086d5c8 msenv!VsReportErrorInfo+0x11, calling msenv!TaskDialogCallback+0xd8 003ff1f8 7093e65b msenv!CVSCommandTarget::ExecCmd+0x945, calling msenv!VsReportErrorInfo 003ff25c 7081f53a msenv!ATL::CComPtr<IVsLanguageInfo>::~CComPtr<IVsLanguageInfo>+0x24, calling msenv!_EH_epilog3 003ff260 70b18d72 msenv!LogCommand+0x4c, calling msenv!ATL::CComPtr<IVsCodePageSelection>::~CComPtr<IVsCodePageSelection> 003ff264 70b18d77 msenv!LogCommand+0x51, calling msenv!_EH_epilog3 003ff280 70a4fd0e msenv!CMsoButtonUser::FClick+0x1d1, calling msenv!CVSCommandTarget::ExecCmd 003ff2f4 70823a87 msenv!CTLSITE::QueryInterface+0x16 003ff31c 70cb7d4d msenv!TBCB::FNotifyFocus+0x204 003ff35c 70ce5fda msenv!TB::NotifyControl+0x101 003ff3bc 709910f6 msenv!TB::FRequestFocus+0x4ed, calling msenv!TB::NotifyControl 003ff414 708254ba msenv!CMsoButtonUser::FEnabled+0x3d, calling msenv!GetQueryStatusFlags 003ff428 7086222a msenv!TBC::FAutoEnabled+0x24 003ff43c 7098e1eb msenv!TB::LProcessInputMsg+0xdb4 003ff458 6bec1c49 (MethodDesc 0x6bcd7f54 +0x89 System.Windows.Forms.Form.DefWndProc(System.Windows.Forms.Message ByRef)), calling 6be3b738 003ff50c 70823ab0 msenv!FPtbFromSite+0x16 003ff520 70991c43 msenv!TB::PtbParent+0x25, calling msenv!FPtbFromSite 003ff52c 708dda49 msenv!TBWndProc+0x2da 003ff588 0203d770 0203d770, calling 0247a1e8 003ff598 70822a70 msenv!CPaneFrame::Release+0x118, calling msenv!_EH_epilog3 003ff5b0 75a16238 USER32!InternalCallWinProc+0x23 003ff5dc 75a168ea USER32!UserCallWinProcCheckWow+0x109, calling USER32!InternalCallWinProc 003ff620 75a16899 USER32!UserCallWinProcCheckWow+0x6a, calling ntdll!RtlActivateActivationContextUnsafeFast 003ff654 75a17d31 USER32!DispatchMessageWorker+0x3bc, calling USER32!UserCallWinProcCheckWow 003ff688 70847f2b msenv!CMsoComponent::FPreTranslateMessage+0x72, calling msenv!MainFTranslateMessage 003ff6b4 75a17dfa USER32!DispatchMessageW+0xf, calling USER32!DispatchMessageWorker 003ff6c4 70831553 msenv!EnvironmentMsgLoop+0x1ea, calling USER32!DispatchMessageW 003ff6f8 708eb9bd msenv!CMsoCMHandler::FPushMessageLoop+0x86, calling msenv!EnvironmentMsgLoop 003ff724 708eb94d msenv!SCM::FPushMessageLoop+0xb7 003ff74c 708eb8e9 msenv!SCM_MsoCompMgr::FPushMessageLoop+0x28, calling msenv!SCM::FPushMessageLoop 003ff768 708eb8b8 msenv!CMsoComponent::PushMsgLoop+0x28 003ff788 708ebe4e msenv!VStudioMainLogged+0x482, calling msenv!CMsoComponent::PushMsgLoop 003ff7ac 70882afe msenv!CVsActivityLogSingleton::Instance+0xdf, calling msenv!_EH_epilog3 003ff7d8 70882afe msenv!CVsActivityLogSingleton::Instance+0xdf, calling msenv!_EH_epilog3 003ff7dc 707e4e31 msenv!VActivityLogStartupEntries+0x42 003ff7f4 7081f63b msenv!ATL::CComPtr<IClassFactory>::~CComPtr<IClassFactory>+0x24, calling msenv!_EH_epilog3 003ff7f8 708b250f msenv!ATL::CComQIPtr<IUnknown,&IID_IUnknown>::~CComQIPtr<IUnknown,&IID_IUnknown>+0x1d, calling msenv!_EH_epilog3 003ff820 708e7561 msenv!VStudioMain+0xc1, calling msenv!VStudioMainLogged 003ff84c 2f32aabc devenv!util_CallVsMain+0xff 003ff878 2f3278f2 devenv!CDevEnvAppId::Run+0x11fd, calling devenv!util_CallVsMain 003ff97c 77533b23 ntdll!RtlpAllocateHeap+0xe73, calling ntdll!_SEH_epilog4 003ff9f0 77536cd7 ntdll!RtlpLowFragHeapAllocFromContext+0x882, calling ntdll!RtlpSubSegmentInitialize 003ffa10 7753609f ntdll!RtlNtStatusToDosError+0x3b, calling ntdll!RtlNtStatusToDosErrorNoTeb 003ffa14 775360a4 ntdll!RtlNtStatusToDosError+0x40, calling ntdll!_SEH_epilog4 003ffa40 775360a4 ntdll!RtlNtStatusToDosError+0x40, calling ntdll!_SEH_epilog4 003ffa44 75bd2736 kernel32!LocalBaseRegOpenKey+0x159, calling ntdll!RtlNtStatusToDosError 003ffa48 75bd2762 kernel32!LocalBaseRegOpenKey+0x22a, calling kernel32!_SEH_epilog4 003ffac4 75bd2762 kernel32!LocalBaseRegOpenKey+0x22a, calling kernel32!_SEH_epilog4 003ffac8 75bd28c9 kernel32!RegOpenKeyExInternalW+0x130, calling kernel32!LocalBaseRegOpenKey 003ffad8 75bd28de kernel32!RegOpenKeyExInternalW+0x211 003ffae0 75bd28e5 kernel32!RegOpenKeyExInternalW+0x21d, calling kernel32!_SEH_epilog4 003ffb04 6f282e2b MSVCR90!_unlock+0x15, calling ntdll!RtlLeaveCriticalSection 003ffb14 75bd2642 kernel32!BaseRegCloseKeyInternal+0x41, calling ntdll!NtClose 003ffb28 75bd25d0 kernel32!RegCloseKey+0xd4, calling kernel32!_SEH_epilog4 003ffb5c 75bd25d0 kernel32!RegCloseKey+0xd4, calling kernel32!_SEH_epilog4 003ffb60 2f321ea4 devenv!DwInitSyncObjects+0x340 003ffb90 2f327bf4 devenv!WinMain+0x74, calling devenv!CDevEnvAppId::Run 003ffbac 2f327c68 devenv!License::GetPID+0x258, calling devenv!WinMain 003ffc3c 75bd3677 kernel32!BaseThreadInitThunk+0xe 003ffc48 77539d72 ntdll!__RtlUserThreadStart+0x70 003ffc88 77539d45 ntdll!_RtlUserThreadStart+0x1b, calling ntdll!__RtlUserThreadStart 0:000> !pe -nested Exception object: 050aae9c Exception type: System.Reflection.TargetInvocationException Message: Exception has been thrown by the target of an invocation. InnerException: System.NullReferenceException, use !PrintException 050aac64 to see more StackTrace (generated): SP IP Function 003FEC2C 6D2700F7 mscorlib_ni!System.RuntimeType.CreateInstanceSlow(Boolean, Boolean)+0x57 003FEC5C 6D270067 mscorlib_ni!System.RuntimeType.CreateInstanceImpl(Boolean, Boolean, Boolean)+0xe7 003FEC94 6D270264 mscorlib_ni!System.Activator.CreateInstance(System.Type, Boolean)+0x44 003FECA4 6AD02DAF Microsoft_VisualStudio_Shell_9_0_ni!Microsoft.VisualStudio.Shell.Package.CreateToolWindow(System.Type, Int32, Microsoft.VisualStudio.Shell.ProvideToolWindowAttribute)+0x67 003FED30 6AD0311B Microsoft_VisualStudio_Shell_9_0_ni!Microsoft.VisualStudio.Shell.Package.CreateToolWindow(System.Type, Int32)+0xb7 003FED58 6AD02D12 Microsoft_VisualStudio_Shell_9_0_ni!Microsoft.VisualStudio.Shell.Package.FindToolWindow(System.Type, Int32, Boolean, Microsoft.VisualStudio.Shell.ProvideToolWindowAttribute)+0x7a 003FED88 6AD02D39 Microsoft_VisualStudio_Shell_9_0_ni!Microsoft.VisualStudio.Shell.Package.FindToolWindow(System.Type, Int32, Boolean)+0x11 003FED94 02585E30 Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage.InitToolWindowVariable[[System.__Canon, mscorlib]](System.__Canon ByRef, System.String, Boolean)+0x58 003FEDD0 02585DBE Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage.InitToolWindowVariable[[System.__Canon, mscorlib]](System.__Canon ByRef, System.String)+0x36 003FEDE4 02585D32 Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage.ShowToolWindow[[System.__Canon, mscorlib]](System.__Canon ByRef, System.String, Boolean)+0x3a 003FEE00 02585AB4 Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage.OpenTestResultsToolWindow()+0x2c 003FEE10 02585A6E Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage.OnMenuViewTestResults(System.Object, System.EventArgs)+0x6 003FEE18 6CD4F993 System_ni!System.ComponentModel.Design.MenuCommand.Invoke()+0x43 003FEE40 6CD4F9D4 System_ni!System.ComponentModel.Design.MenuCommand.Invoke(System.Object)+0x8 003FEE48 6AD000FA Microsoft_VisualStudio_Shell_9_0_ni!Microsoft.VisualStudio.Shell.OleMenuCommandService.Microsoft.VisualStudio.OLE.Interop.IOleCommandTarget.Exec(System.Guid ByRef, UInt32, UInt32, IntPtr, IntPtr)+0x11a 003FEEA0 6AD03FB8 Microsoft_VisualStudio_Shell_9_0_ni!Microsoft.VisualStudio.Shell.Package.Microsoft.VisualStudio.OLE.Interop.IOleCommandTarget.Exec(System.Guid ByRef, UInt32, UInt32, IntPtr, IntPtr)+0x44 StackTraceString: <none> HResult: 80131604 0:000> !PrintException 050aac64 Exception object: 050aac64 Exception type: System.NullReferenceException Message: Object reference not set to an instance of an object. InnerException: <none> StackTrace (generated): SP IP Function 003FE660 078E60BE Microsoft_VisualStudio_TeamSystem_Integration!Microsoft.VisualStudio.TeamSystem.Integration.TcmResultsPublishManager..ctor(Microsoft.VisualStudio.TeamSystem.Integration.ResultsPublishManager)+0xc6 003FE674 078E5C91 Microsoft_VisualStudio_TeamSystem_Integration!Microsoft.VisualStudio.TeamSystem.Integration.ResultsPublishManager..ctor(Microsoft.VisualStudio.TeamSystem.Integration.TeamFoundationHostHelper)+0x59 003FE684 078E2FA0 Microsoft_VisualStudio_TeamSystem_Integration!Microsoft.VisualStudio.TeamSystem.Integration.VsetServerHelper..ctor(System.IServiceProvider)+0x50 003FE6A4 078E2E90 Microsoft_VisualStudio_TeamSystem_Common!Microsoft.VisualStudio.TeamSystem.Integration.Client.VsetHelper.InitializeThrow(System.IServiceProvider)+0x20 003FE6B8 078E2E2A Microsoft_VisualStudio_TeamSystem_Common!Microsoft.VisualStudio.TeamSystem.Integration.Client.VsetHelper.InitializeHelper(System.IServiceProvider)+0x22 003FE6E0 078E2DEC Microsoft_VisualStudio_TeamSystem_Common!Microsoft.VisualStudio.TeamSystem.Integration.Client.VsetHelper.CreateVsetHelper(System.IServiceProvider)+0x1c 003FE6F0 078E2DAC Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage.get_VsetHelper()+0x14 003FE6F8 02586BBE Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.ResultsToolWindow..ctor()+0x9f6 003FE798 02585F8A Microsoft_VisualStudio_QualityTools_TestCaseManagement!Microsoft.VisualStudio.TestTools.TestCaseManagement.ResultToolWindowHost..ctor()+0x1a StackTraceString: <none> HResult: 80004003 In order to be able to continue the analysis, we need to get the parameters to see what is going on. I also tried to run devenv.exe with the /log switch. No error in the log after reproducing the problem. Finally, If Team Explorer is removed from the system, the problem goes away. Any help appreciated. TIA. Olivier.

    Read the article

  • Log call information whenever there is a call.

    - by linuxdoniv
    Hi, I have written the android application and I want the application to send the call information whenever there is an incoming call and it ends. This way I would be sending all calls to the server irrespective of size of the call log. Here is the code public class PhoneInfo extends BroadcastReceiver { private int incoming_call = 0; private Cursor c; Context context; public void onReceive(Context con, Intent intent) { c = con.getContentResolver().query( android.provider.CallLog.Calls.CONTENT_URI, null, null, null, android.provider.CallLog.Calls.DATE+ " DESC"); context = con; IncomingCallListener phoneListener=new IncomingCallListener(); TelephonyManager telephony = (TelephonyManager) con.getSystemService(Context.TELEPHONY_SERVICE); telephony.listen(phoneListener,PhoneStateListener.LISTEN_CALL_STATE); } public class IncomingCallListener extends PhoneStateListener { public void onCallStateChanged(int state,String incomingNumber){ switch(state){ case TelephonyManager.CALL_STATE_IDLE: if(incoming_call == 1){ CollectSendCallInfo(); incoming_call = 0; } break; case TelephonyManager.CALL_STATE_OFFHOOK: break; case TelephonyManager.CALL_STATE_RINGING: incoming_call = 1; break; } } } private void CollectSendCallInfo() { int numberColumn = c.getColumnIndex( android.provider.CallLog.Calls.NUMBER); int dateColumn = c.getColumnIndex( android.provider.CallLog.Calls.DATE); int typeColumn = c.getColumnIndex( android.provider.CallLog.Calls.TYPE); int durationColumn=c.getColumnIndex( android.provider.CallLog.Calls.DURATION); ArrayList<String> callList = new ArrayList<String>(); try{ boolean moveToFirst=c.moveToFirst(); } catch(Exception e) { ; // could not move to the first row. return; } int row_count = c.getCount(); int loop_index = 0; int is_latest_call_read = 0; String callerPhonenumber = c.getString(numberColumn); int callDate = c.getInt(dateColumn); int callType = c.getInt(typeColumn); int duration=c.getInt(durationColumn); while((loop_index <row_count) && (is_latest_call_read != 1)){ switch(callType){ case android.provider.CallLog.Calls.INCOMING_TYPE: is_latest_call_read = 1; break; case android.provider.CallLog.Calls.MISSED_TYPE: break; case android.provider.CallLog.Calls.OUTGOING_TYPE: break; } loop_index++; c.moveToNext(); } SendCallInfo(callerPhonenumber, Integer.toString(duration), Integer.toString(callDate)); } private void SendCallInfo(String callerPhonenumber, String callDuration, String callDate) { JSONObject j = new JSONObject(); try { j.put("Caller", callerPhonenumber); j.put("Duration", callDuration); j.put("CallDate", callDate); } catch (JSONException e) { Toast.makeText(context, "Json object failure!", Toast.LENGTH_LONG).show(); } String url = "http://xxxxxx.xxx.xx/xxxx/xxx.php"; Map<String, String> kvPairs = new HashMap<String, String>(); kvPairs.put("phonecall", j.toString()); HttpResponse re; try { re = doPost(url, kvPairs); String temp; try { temp = EntityUtils.toString(re.getEntity()); if (temp.compareTo("SUCCESS") == 0) { ; } else ; } catch (ParseException e1) { Toast.makeText(context, "Parse Exception in response!", Toast.LENGTH_LONG) .show(); e1.printStackTrace(); } catch (IOException e1) { Toast.makeText(context, "Io exception in response!", Toast.LENGTH_LONG).show(); e1.printStackTrace(); } } catch (ClientProtocolException e1) { Toast.makeText(context, "Client Protocol Exception!", Toast.LENGTH_LONG).show(); e1.printStackTrace(); } catch (IOException e1) { Toast.makeText(context, "Client Protocol Io exception!", Toast.LENGTH_LONG).show(); e1.printStackTrace(); } } and here is the manifest file <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"></uses-permission> <uses-permission android:name="android.permission.INTERNET"></uses-permission> <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"></uses-permission> <uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS"></uses-permission> <uses-permission android:name="android.permission.INSTALL_LOCATION_PROVIDER"></uses-permission> <uses-permission android:name="android.permission.SET_DEBUG_APP"></uses-permission> <uses-permission android:name="android.permission.RECEIVE_SMS"></uses-permission> <uses-permission android:name="android.permission.READ_PHONE_STATE"></uses-permission> <uses-permission android:name="android.permission.READ_SMS"></uses-permission> <application android:icon="@drawable/icon" android:label="@string/app_name"> <activity android:name=".Friend" android:label="@string/app_name"> <intent-filter> <action android:name="android.intent.action.MAIN" /> <category android:name="android.intent.category.LAUNCHER" /> </intent-filter> </activity> <activity android:name=".LoginInfo" android:label="@string/app_name"> <intent-filter> <action android:name="android.intent.action.DEFAULT" /> </intent-filter> </activity> <service android:exported="true" android:enabled="true" android:name=".GeoUpdateService" > </service> <receiver android:name=".SmsInfo" > <intent-filter> <action android:name= "android.provider.Telephony.SMS_RECEIVED" /> </intent-filter> </receiver> <receiver android:name=".PhoneInfo" > <intent-filter> <action android:name="android.intent.action.PHONE_STATE"></action> </intent-filter> </receiver> </application> The application just crashes when there is an incoming call.. i have been able to log the information about incoming SMS, but this call info logging is failing. Thanks for any help.

    Read the article

  • Log call information whenever there is a phone call.

    - by linuxdoniv
    Hi, I have written the android application and I want the application to send the call information whenever there is an incoming call and it ends. This way I would be sending all calls to the server irrespective of size of the call log. Here is the code public class PhoneInfo extends BroadcastReceiver { private int incoming_call = 0; private Cursor c; Context context; public void onReceive(Context con, Intent intent) { c = con.getContentResolver().query( android.provider.CallLog.Calls.CONTENT_URI, null, null, null, android.provider.CallLog.Calls.DATE+ " DESC"); context = con; IncomingCallListener phoneListener=new IncomingCallListener(); TelephonyManager telephony = (TelephonyManager) con.getSystemService(Context.TELEPHONY_SERVICE); telephony.listen(phoneListener,PhoneStateListener.LISTEN_CALL_STATE); } public class IncomingCallListener extends PhoneStateListener { public void onCallStateChanged(int state,String incomingNumber){ switch(state){ case TelephonyManager.CALL_STATE_IDLE: if(incoming_call == 1){ CollectSendCallInfo(); incoming_call = 0; } break; case TelephonyManager.CALL_STATE_OFFHOOK: break; case TelephonyManager.CALL_STATE_RINGING: incoming_call = 1; break; } } } private void CollectSendCallInfo() { int numberColumn = c.getColumnIndex( android.provider.CallLog.Calls.NUMBER); int dateColumn = c.getColumnIndex( android.provider.CallLog.Calls.DATE); int typeColumn = c.getColumnIndex( android.provider.CallLog.Calls.TYPE); int durationColumn=c.getColumnIndex( android.provider.CallLog.Calls.DURATION); ArrayList<String> callList = new ArrayList<String>(); try{ boolean moveToFirst=c.moveToFirst(); } catch(Exception e) { ; // could not move to the first row. return; } int row_count = c.getCount(); int loop_index = 0; int is_latest_call_read = 0; String callerPhonenumber = c.getString(numberColumn); int callDate = c.getInt(dateColumn); int callType = c.getInt(typeColumn); int duration=c.getInt(durationColumn); while((loop_index <row_count) && (is_latest_call_read != 1)){ switch(callType){ case android.provider.CallLog.Calls.INCOMING_TYPE: is_latest_call_read = 1; break; case android.provider.CallLog.Calls.MISSED_TYPE: break; case android.provider.CallLog.Calls.OUTGOING_TYPE: break; } loop_index++; c.moveToNext(); } SendCallInfo(callerPhonenumber, Integer.toString(duration), Integer.toString(callDate)); } private void SendCallInfo(String callerPhonenumber, String callDuration, String callDate) { JSONObject j = new JSONObject(); try { j.put("Caller", callerPhonenumber); j.put("Duration", callDuration); j.put("CallDate", callDate); } catch (JSONException e) { Toast.makeText(context, "Json object failure!", Toast.LENGTH_LONG).show(); } String url = "http://xxxxxx.xxx.xx/xxxx/xxx.php"; Map<String, String> kvPairs = new HashMap<String, String>(); kvPairs.put("phonecall", j.toString()); HttpResponse re; try { re = doPost(url, kvPairs); String temp; try { temp = EntityUtils.toString(re.getEntity()); if (temp.compareTo("SUCCESS") == 0) { ; } else ; } catch (ParseException e1) { Toast.makeText(context, "Parse Exception in response!", Toast.LENGTH_LONG) .show(); e1.printStackTrace(); } catch (IOException e1) { Toast.makeText(context, "Io exception in response!", Toast.LENGTH_LONG).show(); e1.printStackTrace(); } } catch (ClientProtocolException e1) { Toast.makeText(context, "Client Protocol Exception!", Toast.LENGTH_LONG).show(); e1.printStackTrace(); } catch (IOException e1) { Toast.makeText(context, "Client Protocol Io exception!", Toast.LENGTH_LONG).show(); e1.printStackTrace(); } } and here is the manifest file <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"></uses-permission> <uses-permission android:name="android.permission.INTERNET"></uses-permission> <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"></uses-permission> <uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS"></uses-permission> <uses-permission android:name="android.permission.INSTALL_LOCATION_PROVIDER"></uses-permission> <uses-permission android:name="android.permission.SET_DEBUG_APP"></uses-permission> <uses-permission android:name="android.permission.RECEIVE_SMS"></uses-permission> <uses-permission android:name="android.permission.READ_PHONE_STATE"></uses-permission> <uses-permission android:name="android.permission.READ_SMS"></uses-permission> <application android:icon="@drawable/icon" android:label="@string/app_name"> <activity android:name=".Friend" android:label="@string/app_name"> <intent-filter> <action android:name="android.intent.action.MAIN" /> <category android:name="android.intent.category.LAUNCHER" /> </intent-filter> </activity> <activity android:name=".LoginInfo" android:label="@string/app_name"> <intent-filter> <action android:name="android.intent.action.DEFAULT" /> </intent-filter> </activity> <service android:exported="true" android:enabled="true" android:name=".GeoUpdateService" > </service> <receiver android:name=".SmsInfo" > <intent-filter> <action android:name= "android.provider.Telephony.SMS_RECEIVED" /> </intent-filter> </receiver> <receiver android:name=".PhoneInfo" > <intent-filter> <action android:name="android.intent.action.PHONE_STATE"></action> </intent-filter> </receiver> </application> The application just crashes when there is an incoming call.. i have been able to log the information about incoming SMS, but this call info logging is failing. Thanks for any help.

    Read the article

  • Implementing a robust async stream reader for a console

    - by Jon
    I recently provided an answer to this question: C# - Realtime console output redirection. As often happens, explaining stuff (here "stuff" was how I tackled a similar problem) leads you to greater understanding and/or, as is the case here, "oops" moments. I realized that my solution, as implemented, has a bug. The bug has little practical importance, but it has an extremely large importance to me as a developer: I can't rest easy knowing that my code has the potential to blow up. Squashing the bug is the purpose of this question. I apologize for the long intro, so let's get dirty. I wanted to build a class that allows me to receive input from a Stream in an event-based manner. The stream, in my scenario, is guaranteed to be a FileStream and there is also an associated StreamReader already present to leverage. The public interface of the class is this: public class MyStreamManager { public event EventHandler<ConsoleOutputReadEventArgs> StandardOutputRead; public void StartSendingEvents(); public void StopSendingEvents(); } Obviously this specific scenario has to do with a console's standard output. StartSendingEvents and StopSendingEvents do what they advertise; for the purposes of this discussion, we can assume that events are always being sent without loss of generality. The class uses these two fields internally: protected readonly StringBuilder inputAccumulator = new StringBuilder(); protected readonly byte[] buffer = new byte[256]; The functionality of the class is implemented in the methods below. To get the ball rolling: public void StartSendingEvents(); { this.stopAutomation = false; this.BeginReadAsync(); } To read data out of the Stream without blocking, and also without requiring a carriage return char, BeginRead is called: protected void BeginReadAsync() { if (!this.stopAutomation) { this.StandardOutput.BaseStream.BeginRead( this.buffer, 0, this.buffer.Length, this.ReadHappened, null); } } The challenging part: BeginRead requires using a buffer. This means that when reading from the stream, it is possible that the bytes available to read ("incoming chunk") are larger than the buffer. Since we are only handing off data from the stream to a consumer, and that consumer may well have inside knowledge about the size and/or format of these chunks, I want to call event subscribers exactly once for each chunk. Otherwise the abstraction breaks down and the subscribers have to buffer the incoming data and reconstruct the chunks themselves using said knowledge. This is much less convenient to the calling code, and detracts from the usefulness of my class. Edit: There are comments below correctly stating that since the data is coming from a stream, there is absolutely nothing that the receiver can infer about the structure of the data unless it is fully prepared to parse it. What I am trying to do here is leverage the "flush the output" "structure" that the owner of the console imparts while writing on it. I am prepared to assume (better: allow my caller to have the option to assume) that the OS will pass me the data written between two flushes of the stream in exactly one piece. To this end, if the buffer is full after EndRead, we don't send its contents to subscribers immediately but instead append them to a StringBuilder. The contents of the StringBuilder are only sent back whenever there is no more to read from the stream (thus preserving the chunks). private void ReadHappened(IAsyncResult asyncResult) { var bytesRead = this.StandardOutput.BaseStream.EndRead(asyncResult); if (bytesRead == 0) { this.OnAutomationStopped(); return; } var input = this.StandardOutput.CurrentEncoding.GetString( this.buffer, 0, bytesRead); this.inputAccumulator.Append(input); if (bytesRead < this.buffer.Length) { this.OnInputRead(); // only send back if we 're sure we got it all } this.BeginReadAsync(); // continue "looping" with BeginRead } After any read which is not enough to fill the buffer, all accumulated data is sent to the subscribers: private void OnInputRead() { var handler = this.StandardOutputRead; if (handler == null) { return; } handler(this, new ConsoleOutputReadEventArgs(this.inputAccumulator.ToString())); this.inputAccumulator.Clear(); } (I know that as long as there are no subscribers the data gets accumulated forever. This is a deliberate decision). The good This scheme works almost perfectly: Async functionality without spawning any threads Very convenient to the calling code (just subscribe to an event) Maintains the "chunkiness" of the data; this allows the calling code to use inside knowledge of the data without doing any extra work Is almost agnostic to the buffer size (it will work correctly with any size buffer irrespective of the data being read) The bad That last almost is a very big one. Consider what happens when there is an incoming chunk with length exactly equal to the size of the buffer. The chunk will be read and buffered, but the event will not be triggered. This will be followed up by a BeginRead that expects to find more data belonging to the current chunk in order to send it back all in one piece, but... there will be no more data in the stream. In fact, as long as data is put into the stream in chunks with length exactly equal to the buffer size, the data will be buffered and the event will never be triggered. This scenario may be highly unlikely to occur in practice, especially since we can pick any number for the buffer size, but the problem is there. Solution? Unfortunately, after checking the available methods on FileStream and StreamReader, I can't find anything which lets me peek into the stream while also allowing async methods to be used on it. One "solution" would be to have a thread wait on a ManualResetEvent after the "buffer filled" condition is detected. If the event is not signaled (by the async callback) in a small amount of time, then more data from the stream will not be forthcoming and the data accumulated so far should be sent to subscribers. However, this introduces the need for another thread, requires thread synchronization, and is plain inelegant. Specifying a timeout for BeginRead would also suffice (call back into my code every now and then so I can check if there's data to be sent back; most of the time there will not be anything to do, so I expect the performance hit to be negligible). But it looks like timeouts are not supported in FileStream. Since I imagine that async calls with timeouts are an option in bare Win32, another approach might be to PInvoke the hell out of the problem. But this is also undesirable as it will introduce complexity and simply be a pain to code. Is there an elegant way to get around the problem? Thanks for being patient enough to read all of this.

    Read the article

  • Azure Diagnostics wrt Custom Logs and honoring scheduledTransferPeriod

    - by kjsteuer
    I have implemented my own TraceListener similar to http://blogs.technet.com/b/meamcs/archive/2013/05/23/diagnostics-of-cloud-services-custom-trace-listener.aspx . One thing I noticed is that that logs show up immediately in My Azure Table Storage. I wonder if this is expected with Custom Trace Listeners or because I am in a development environment. My diagnosics.wadcfg <?xml version="1.0" encoding="utf-8"?> <DiagnosticMonitorConfiguration configurationChangePollInterval="PT1M""overallQuotaInMB="4096" xmlns="http://schemas.microsoft.com/ServiceHosting/2010/10/DiagnosticsConfiguration"> <DiagnosticInfrastructureLogs scheduledTransferLogLevelFilter="Information" /> <Directories scheduledTransferPeriod="PT1M"> <IISLogs container="wad-iis-logfiles" /> <CrashDumps container="wad-crash-dumps" /> </Directories> <Logs bufferQuotaInMB="0" scheduledTransferPeriod="PT30M" scheduledTransferLogLevelFilter="Information" /> </DiagnosticMonitorConfiguration> I have changed my approach a bit. Now I am defining in the web config of my webrole. I notice when I set autoflush to true in the webconfig, every thing works but scheduledTransferPeriod is not honored because the flush method pushes to the table storage. I would like to have scheduleTransferPeriod trigger the flush or trigger flush after a certain number of log entries like the buffer is full. Then I can also flush on server shutdown. Is there any method or event on the CustomTraceListener where I can listen to the scheduleTransferPeriod? <system.diagnostics> <!--http://msdn.microsoft.com/en-us/library/sk36c28t(v=vs.110).aspx By default autoflush is false. By default useGlobalLock is true. While we try to be threadsafe, we keep this default for now. Later if we would like to increase performance we can remove this. see http://msdn.microsoft.com/en-us/library/system.diagnostics.trace.usegloballock(v=vs.110).aspx --> <trace> <listeners> <add name="TableTraceListener" type="Pos.Services.Implementation.TableTraceListener, Pos.Services.Implementation" /> <remove name="Default" /> </listeners> </trace> </system.diagnostics> I have modified the custom trace listener to the following: namespace Pos.Services.Implementation { class TableTraceListener : TraceListener { #region Fields //connection string for azure storage readonly string _connectionString; //Custom sql storage table for logs. //TODO put in config readonly string _diagnosticsTable; [ThreadStatic] static StringBuilder _messageBuffer; readonly object _initializationSection = new object(); bool _isInitialized; CloudTableClient _tableStorage; readonly object _traceLogAccess = new object(); readonly List<LogEntry> _traceLog = new List<LogEntry>(); #endregion #region Constructors public TableTraceListener() : base("TableTraceListener") { _connectionString = RoleEnvironment.GetConfigurationSettingValue("DiagConnection"); _diagnosticsTable = RoleEnvironment.GetConfigurationSettingValue("DiagTableName"); } #endregion #region Methods /// <summary> /// Flushes the entries to the storage table /// </summary> public override void Flush() { if (!_isInitialized) { lock (_initializationSection) { if (!_isInitialized) { Initialize(); } } } var context = _tableStorage.GetTableServiceContext(); context.MergeOption = MergeOption.AppendOnly; lock (_traceLogAccess) { _traceLog.ForEach(entry => context.AddObject(_diagnosticsTable, entry)); _traceLog.Clear(); } if (context.Entities.Count > 0) { context.BeginSaveChangesWithRetries(SaveChangesOptions.None, (ar) => context.EndSaveChangesWithRetries(ar), null); } } /// <summary> /// Creates the storage table object. This class does not need to be locked because the caller is locked. /// </summary> private void Initialize() { var account = CloudStorageAccount.Parse(_connectionString); _tableStorage = account.CreateCloudTableClient(); _tableStorage.GetTableReference(_diagnosticsTable).CreateIfNotExists(); _isInitialized = true; } public override bool IsThreadSafe { get { return true; } } #region Trace and Write Methods /// <summary> /// Writes the message to a string buffer /// </summary> /// <param name="message">the Message</param> public override void Write(string message) { if (_messageBuffer == null) _messageBuffer = new StringBuilder(); _messageBuffer.Append(message); } /// <summary> /// Writes the message with a line breaker to a string buffer /// </summary> /// <param name="message"></param> public override void WriteLine(string message) { if (_messageBuffer == null) _messageBuffer = new StringBuilder(); _messageBuffer.AppendLine(message); } /// <summary> /// Appends the trace information and message /// </summary> /// <param name="eventCache">the Event Cache</param> /// <param name="source">the Source</param> /// <param name="eventType">the Event Type</param> /// <param name="id">the Id</param> /// <param name="message">the Message</param> public override void TraceEvent(TraceEventCache eventCache, string source, TraceEventType eventType, int id, string message) { base.TraceEvent(eventCache, source, eventType, id, message); AppendEntry(id, eventType, eventCache); } /// <summary> /// Adds the trace information to a collection of LogEntry objects /// </summary> /// <param name="id">the Id</param> /// <param name="eventType">the Event Type</param> /// <param name="eventCache">the EventCache</param> private void AppendEntry(int id, TraceEventType eventType, TraceEventCache eventCache) { if (_messageBuffer == null) _messageBuffer = new StringBuilder(); var message = _messageBuffer.ToString(); _messageBuffer.Length = 0; if (message.EndsWith(Environment.NewLine)) message = message.Substring(0, message.Length - Environment.NewLine.Length); if (message.Length == 0) return; var entry = new LogEntry() { PartitionKey = string.Format("{0:D10}", eventCache.Timestamp >> 30), RowKey = string.Format("{0:D19}", eventCache.Timestamp), EventTickCount = eventCache.Timestamp, Level = (int)eventType, EventId = id, Pid = eventCache.ProcessId, Tid = eventCache.ThreadId, Message = message }; lock (_traceLogAccess) _traceLog.Add(entry); } #endregion #endregion } }

    Read the article

  • Java: Cannot find a method's symbol even though that method is declared later in the class. The remaining code is looking for a class.

    - by Midimistro
    This is an assignment that we use strings in Java to analyze a phone number. The error I am having is anything below tester=invalidCharacters(c); does not compile because every line past tester=invalidCharacters(c); is looking for a symbol or the class. In get invalidResults, all I am trying to do is evaluate a given string for non-alphabetical characters such as *,(,^,&,%,@,#,), and so on. What to answer: Why is it producing an error, what will work, and is there an easier method WITHOUT using regex. Here is the link to the assignment: http://cis.csuohio.edu/~hwang/teaching/cis260/assignments/assignment9.html public class PhoneNumber { private int areacode; private int number; private int ext; /////Constructors///// //Third Constructor (given one string arg) "xxx-xxxxxxx" where first three are numbers and the remaining (7) are numbers or letters public PhoneNumber(String newNumber){ //Note: Set default ext to 0 ext=0; ////Declare Temporary Storage and other variables//// //for the first three numbers String areaCodeString; //for the remaining seven characters String newNumberString; //For use in testing the second half of the string boolean containsLetters; boolean containsInvalid; /////Separate the two parts of string///// //Get the area code part of the string areaCodeString=newNumber.substring(0,2); //Convert the string and set it to the area code areacode=Integer.parseInt(areaCodeString); //Skip the "-" and Get the remaining part of the string newNumberString=newNumber.substring(4); //Create an array of characters from newNumberString to reuse in later methods for int length=newNumberString.length(); char [] myCharacters= new char [length]; int i; for (i=0;i<length;i++){ myCharacters [i]=newNumberString.charAt(i); } //Test if newNumberString contains letters & converting them into numbers String reNewNumber=""; //Test for invalid characters containsInvalid=getInvalidResults(newNumberString,length); if (containsInvalid==false){ containsLetters=getCharResults(newNumberString,length); if (containsLetters==true){ for (i=0;i<length;i++){ myCharacters [i]=(char)convertLetNum((myCharacters [i])); reNewNumber=reNewNumber+myCharacters[i]; } } } if (containsInvalid==false){ number=Integer.parseInt(reNewNumber); } else{ System.out.println("Error!"+"\t"+newNumber+" contains illegal characters. This number will be ignored and skipped."); } } //////Primary Methods/Behaviors/////// //Compare this phone number with the one passed by the caller public boolean equals(PhoneNumber pn){ boolean equal; String concat=(areacode+"-"+number); String pN=pn.toString(); if (concat==pN){ equal=true; } else{ equal=false; } return equal; } //Convert the stored number to a certain string depending on extension public String toString(){ String returned; if(ext==0){ returned=(areacode+"-"+number); } else{ returned=(areacode+"-"+number+" ext "+ext); } return returned; } //////Secondary Methods/////// //Method for testing if the second part of the string contains any letters public static boolean getCharResults(String newNumString,int getLength){ //Recreate a character array int i; char [] myCharacters= new char [getLength]; for (i=0;i<getLength;i++){ myCharacters [i]=newNumString.charAt(i); } boolean doesContainLetter=false; int j; for (j=0;j<getLength;j++){ if ((Character.isDigit(myCharacters[j])==true)){ doesContainLetter=false; } else{ doesContainLetter=true; return doesContainLetter; } } return doesContainLetter; } //Method for testing if the second part of the string contains any letters public static boolean getInvalidResults(String newNumString,int getLength){ boolean doesContainInvalid=false; int i; char c; boolean tester; char [] invalidCharacters= new char [getLength]; for (i=0;i<getLength;i++){ invalidCharacters [i]=newNumString.charAt(i); c=invalidCharacters [i]; tester=invalidCharacters(c); if(tester==true)){ doesContainInvalid=false; } else{ doesContainInvalid=true; return doesContainInvalid; } } return doesContainInvalid; } //Method for evaluating string for invalid characters public boolean invalidCharacters(char letter){ boolean returnNum=false; switch (letter){ case 'A': return returnNum; case 'B': return returnNum; case 'C': return returnNum; case 'D': return returnNum; case 'E': return returnNum; case 'F': return returnNum; case 'G': return returnNum; case 'H': return returnNum; case 'I': return returnNum; case 'J': return returnNum; case 'K': return returnNum; case 'L': return returnNum; case 'M': return returnNum; case 'N': return returnNum; case 'O': return returnNum; case 'P': return returnNum; case 'Q': return returnNum; case 'R': return returnNum; case 'S': return returnNum; case 'T': return returnNum; case 'U': return returnNum; case 'V': return returnNum; case 'W': return returnNum; case 'X': return returnNum; case 'Y': return returnNum; case 'Z': return returnNum; default: return true; } } //Method for converting letters to numbers public int convertLetNum(char letter){ int returnNum; switch (letter){ case 'A': returnNum=2;return returnNum; case 'B': returnNum=2;return returnNum; case 'C': returnNum=2;return returnNum; case 'D': returnNum=3;return returnNum; case 'E': returnNum=3;return returnNum; case 'F': returnNum=3;return returnNum; case 'G': returnNum=4;return returnNum; case 'H': returnNum=4;return returnNum; case 'I': returnNum=4;return returnNum; case 'J': returnNum=5;return returnNum; case 'K': returnNum=5;return returnNum; case 'L': returnNum=5;return returnNum; case 'M': returnNum=6;return returnNum; case 'N': returnNum=6;return returnNum; case 'O': returnNum=6;return returnNum; case 'P': returnNum=7;return returnNum; case 'Q': returnNum=7;return returnNum; case 'R': returnNum=7;return returnNum; case 'S': returnNum=7;return returnNum; case 'T': returnNum=8;return returnNum; case 'U': returnNum=8;return returnNum; case 'V': returnNum=8;return returnNum; case 'W': returnNum=9;return returnNum; case 'X': returnNum=9;return returnNum; case 'Y': returnNum=9;return returnNum; case 'Z': returnNum=9;return returnNum; default: return 0; } } } Note: Please Do not use this program to cheat in your own class. To ensure of this, I will take this question down if it has not been answered by the end of 2013, if I no longer need an explanation for it, or if the term for the class has ended.

    Read the article

  • Query on simple C++ threadpool implementation

    - by ticketman
    Stackoverflow has been a tremendous help to me and I'd to give something back to the community. I have been implementing a simple threadpool using the tinythread C++ portable thread library, using what I have learnt from Stackoverflow. I am new to thread programming, so not that comfortable with mutexes, etc. I have a question best asked after presenting the code (which runs quite well under Linux): // ThreadPool.h class ThreadPool { public: ThreadPool(); ~ThreadPool(); // Creates a pool of threads and gets them ready to be used void CreateThreads(int numOfThreads); // Assigns a job to a thread in the pool, but doesn't start the job // Each SubmitJob call will use up one thread of the pool. // This operation can only be undone by calling StartJobs and // then waiting for the jobs to complete. On completion, // new jobs may be submitted. void SubmitJob( void (*workFunc)(void *), void *workData ); // Begins execution of all the jobs in the pool. void StartJobs(); // Waits until all jobs have completed. // The wait will block the caller. // On completion, new jobs may be submitted. void WaitForJobsToComplete(); private: enum typeOfWorkEnum { e_work, e_quit }; class ThreadData { public: bool ready; // thread has been created and is ready for work bool haveWorkToDo; typeOfWorkEnum typeOfWork; // Pointer to the work function each thread has to call. void (*workFunc)(void *); // Pointer to work data void *workData; ThreadData() : ready(false), haveWorkToDo(false) { }; }; struct ThreadArgStruct { ThreadPool *threadPoolInstance; int threadId; }; // Data for each thread ThreadData *m_ThreadData; ThreadPool(ThreadPool const&); // copy ctor hidden ThreadPool& operator=(ThreadPool const&); // assign op. hidden // Static function that provides the function pointer that a thread can call // By including the ThreadPool instance in the void * parameter, // we can use it to access other data and methods in the ThreadPool instance. static void ThreadFuncWrapper(void *arg) { ThreadArgStruct *threadArg = static_cast<ThreadArgStruct *>(arg); threadArg->threadPoolInstance->ThreadFunc(threadArg->threadId); } // The function each thread calls void ThreadFunc( int threadId ); // Called by the thread pool destructor void DestroyThreadPool(); // Total number of threads available // (fixed on creation of thread pool) int m_numOfThreads; int m_NumOfThreadsDoingWork; int m_NumOfThreadsGivenJobs; // List of threads std::vector<tthread::thread *> m_ThreadList; // Condition variable to signal each thread has been created and executing tthread::mutex m_ThreadReady_mutex; tthread::condition_variable m_ThreadReady_condvar; // Condition variable to signal each thread to start work tthread::mutex m_WorkToDo_mutex; tthread::condition_variable m_WorkToDo_condvar; // Condition variable to signal the main thread that // all threads in the pool have completed their work tthread::mutex m_WorkCompleted_mutex; tthread::condition_variable m_WorkCompleted_condvar; }; cpp file: // // ThreadPool.cpp // #include "ThreadPool.h" // This is the thread function for each thread. // All threads remain in this function until // they are asked to quit, which only happens // when terminating the thread pool. void ThreadPool::ThreadFunc( int threadId ) { ThreadData *myThreadData = &m_ThreadData[threadId]; std::cout << "Hello world: Thread " << threadId << std::endl; // Signal that this thread is ready m_ThreadReady_mutex.lock(); myThreadData->ready = true; m_ThreadReady_condvar.notify_one(); // notify the main thread m_ThreadReady_mutex.unlock(); while(true) { //tthread::lock_guard<tthread::mutex> guard(m); m_WorkToDo_mutex.lock(); while(!myThreadData->haveWorkToDo) // check for work to do m_WorkToDo_condvar.wait(m_WorkToDo_mutex); // if no work, wait here myThreadData->haveWorkToDo = false; // need to do this before unlocking the mutex m_WorkToDo_mutex.unlock(); // Do the work switch(myThreadData->typeOfWork) { case e_work: std::cout << "Thread " << threadId << ": Woken with work to do\n"; // Do work myThreadData->workFunc(myThreadData->workData); std::cout << "#Thread " << threadId << ": Work is completed\n"; break; case e_quit: std::cout << "Thread " << threadId << ": Asked to quit\n"; return; // ends the thread } // Now to signal the main thread that my work is completed m_WorkCompleted_mutex.lock(); m_NumOfThreadsDoingWork--; // Unsure if this 'if' would make the program more efficient // if(NumOfThreadsDoingWork == 0) m_WorkCompleted_condvar.notify_one(); // notify the main thread m_WorkCompleted_mutex.unlock(); } } ThreadPool::ThreadPool() { m_numOfThreads = 0; m_NumOfThreadsDoingWork = 0; m_NumOfThreadsGivenJobs = 0; } ThreadPool::~ThreadPool() { if(m_numOfThreads) { DestroyThreadPool(); delete [] m_ThreadData; } } void ThreadPool::CreateThreads(int numOfThreads) { // Check a thread pool has already been created if(m_numOfThreads > 0) return; m_NumOfThreadsGivenJobs = 0; m_NumOfThreadsDoingWork = 0; m_numOfThreads = numOfThreads; m_ThreadData = new ThreadData[m_numOfThreads]; ThreadArgStruct threadArg; for(int i=0; i<m_numOfThreads; ++i) { threadArg.threadId = i; threadArg.threadPoolInstance = this; // Creates the thread and save in a list so we can destroy it later m_ThreadList.push_back( new tthread::thread( ThreadFuncWrapper, (void *)&threadArg ) ); // It takes a little time for a thread to get established. // Best wait until it gets established before creating the next thread. m_ThreadReady_mutex.lock(); while(!m_ThreadData[i].ready) // Check if thread is ready m_ThreadReady_condvar.wait(m_ThreadReady_mutex); // If not, wait here m_ThreadReady_mutex.unlock(); } } // Adds a job to the batch, but doesn't start the job void ThreadPool::SubmitJob(void (*workFunc)(void *), void *workData) { // Check that the thread pool has been created if(!m_numOfThreads) return; if(m_NumOfThreadsGivenJobs >= m_numOfThreads) return; m_ThreadData[m_NumOfThreadsGivenJobs].workFunc = workFunc; m_ThreadData[m_NumOfThreadsGivenJobs].workData = workData; std::cout << "Submitted job " << m_NumOfThreadsGivenJobs << std::endl; m_NumOfThreadsGivenJobs++; } void ThreadPool::StartJobs() { // Check that the thread pool has been created // and some jobs have been assigned if(!m_numOfThreads || !m_NumOfThreadsGivenJobs) return; // Set 'haveworkToDo' flag for all threads m_WorkToDo_mutex.lock(); for(int i=0; i<m_NumOfThreadsGivenJobs; ++i) m_ThreadData[i].haveWorkToDo = true; m_NumOfThreadsDoingWork = m_NumOfThreadsGivenJobs; // Reset this counter so we can resubmit jobs later m_NumOfThreadsGivenJobs = 0; // Notify all threads they have work to do m_WorkToDo_condvar.notify_all(); m_WorkToDo_mutex.unlock(); } void ThreadPool::WaitForJobsToComplete() { // Check that a thread pool has been created if(!m_numOfThreads) return; m_WorkCompleted_mutex.lock(); while(m_NumOfThreadsDoingWork > 0) // Check if all threads have completed their work m_WorkCompleted_condvar.wait(m_WorkCompleted_mutex); // If not, wait here m_WorkCompleted_mutex.unlock(); } void ThreadPool::DestroyThreadPool() { std::cout << "Ask threads to quit\n"; m_WorkToDo_mutex.lock(); for(int i=0; i<m_numOfThreads; ++i) { m_ThreadData[i].haveWorkToDo = true; m_ThreadData[i].typeOfWork = e_quit; } m_WorkToDo_condvar.notify_all(); m_WorkToDo_mutex.unlock(); // As each thread terminates, catch them here for(int i=0; i<m_numOfThreads; ++i) { tthread::thread *t = m_ThreadList[i]; // Wait for thread to complete t->join(); } m_numOfThreads = 0; } Example of usage: (this calculates pi-squared/6) struct CalculationDataStruct { int inputVal; double outputVal; }; void LongCalculation( void *theSums ) { CalculationDataStruct *sums = (CalculationDataStruct *)theSums; int terms = sums->inputVal; double sum; for(int i=1; i<terms; i++) sum += 1.0/( double(i)*double(i) ); sums->outputVal = sum; } int main(int argc, char** argv) { int numThreads = 10; // Create pool ThreadPool threadPool; threadPool.CreateThreads(numThreads); // Create thread workspace CalculationDataStruct sums[numThreads]; // Set up jobs for(int i=0; i<numThreads; i++) { sums[i].inputVal = 3000*(i+1); threadPool.SubmitJob(LongCalculation, &sums[i]); } // Run the jobs threadPool.StartJobs(); threadPool.WaitForJobsToComplete(); // Print results for(int i=0; i<numThreads; i++) std::cout << "Sum of " << sums[i].inputVal << " terms is " << sums[i].outputVal << std::endl; return 0; } Question: In the ThreadPool::ThreadFunc method, would better performance be obtained if the following if statement if(NumOfThreadsDoingWork == 0) was included? Also, I'd be grateful of criticisms and ways to improve the code. At the same time, I hope the code is of use to others.

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

< Previous Page | 22 23 24 25 26