Search Results

Search found 1774 results on 71 pages for 'parallel'.

Page 26/71 | < Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >

  • Innovative SPARC: Lighting a Fire Under Oracle's New Hardware Business

    - by Paulo Folgado
    "There's a certain level of things you can do with commercially available parts," says Oracle Executive Vice President Mike Splain. But, he notes, you can do so much more if you design the parts yourself. Mike Splain,EVP, OracleYou can, for example, design cryptographic accelerators into your microprocessors so customers can run their networks fully encrypted if they choose.Of course, it helps if you've already built multiple processing "cores" into those chips so they can handle all that encrypting and decrypting while still getting their other work done.System on a ChipAs the leader of Oracle Microelectronics, Mike knows how implementing clever innovations in silicon can give systems a real competitive advantage.The SPARC microprocessors that his team designed at Sun pioneered the concept of multiple cores several years ago, and the UltraSPARC T2 processor--the industry's first "system on a chip"--packs up to eight cores per chip, each running as many as eight threads at once. That's the most cores and threads of any general-purpose processor. Looking back, Mike points out that the real value of large enterprise-class servers was their ability to run a lot of very large applications in parallel."The beauty of our CMT [chip multi-threading] machines is you can get that same kind of parallel-processing capability at a much lower cost and in a much smaller footprint," he says.The Whole StackWhat has Mike excited these days is that suddenly the opportunity to innovate is much bigger as part of Oracle."In my group, we used to look up the software stack and say, 'We can do any innovation we want, provided the only thing we have to change is what's in the Solaris operating system'--or maybe Java," he says. "If we wanted to change things beyond that, we'd have to go outside the walls of Sun and we'd have to convince the vendors: 'You have to align with us, you have to test with us, you have to build for us, and then you'll reap the benefits.' Now we get access to the entire stack. We can look all the way through the stack and say, 'Okay, what would make the database go faster? What would make the middleware go faster?'"Changing the WorldMike and his microelectronics team also like the fact that Oracle is not just any software company. We're #1 in database, middleware, business intelligence, and more."We're like all the other engineers from Sun; we believe we can change the world, if we can just figure out how to get people to pay attention to us," he says. "Now there's a mechanism at Oracle--much more so than we ever had at Sun."He notes, too, that every innovation in SPARC has involved some combination of hardware and softwareoptimization."Take our cryptography framework, for example. Sure, we can accelerate rapidly, but the Solaris OS has to provide the right set of interfaces that applications can tap into," Mike says. "Same thing with our multicore architecture. We have to have software that can utilize all those threads and run in parallel." His engineers, he points out, have never been interested in producing chips that sell as mere components."Our chips are always designed to go into systems and be combined with various pieces of software," he says. "Our job is to enable the creation of systems."

    Read the article

  • The Evolution Of C#

    - by Paulo Morgado
    The first release of C# (C# 1.0) was all about building a new language for managed code that appealed, mostly, to C++ and Java programmers. The second release (C# 2.0) was mostly about adding what wasn’t time to built into the 1.0 release. The main feature for this release was Generics. The third release (C# 3.0) was all about reducing the impedance mismatch between general purpose programming languages and databases. To achieve this goal, several functional programming features were added to the language and LINQ was born. Going forward, new trends are showing up in the industry and modern programming languages need to be more: Declarative With imperative languages, although having the eye on the what, programs need to focus on the how. This leads to over specification of the solution to the problem in hand, making next to impossible to the execution engine to be smart about the execution of the program and optimize it to run it more efficiently (given the hardware available, for example). Declarative languages, on the other hand, focus only on the what and leave the how to the execution engine. LINQ made C# more declarative by using higher level constructs like orderby and group by that give the execution engine a much better chance of optimizing the execution (by parallelizing it, for example). Concurrent Concurrency is hard and needs to be thought about and it’s very hard to shoehorn it into a programming language. Parallel.For (from the parallel extensions) looks like a parallel for because enough expressiveness has been built into C# 3.0 to allow this without having to commit to specific language syntax. Dynamic There was been lots of debate on which ones are the better programming languages: static or dynamic. The fact is that both have good qualities and users of both types of languages want to have it all. All these trends require a paradigm switch. C# is, in many ways, already a multi-paradigm language. It’s still very object oriented (class oriented as some might say) but it can be argued that C# 3.0 has become a functional programming language because it has all the cornerstones of what a functional programming language needs. Moving forward, will have even more. Besides the influence of these trends, there was a decision of co-evolution of the C# and Visual Basic programming languages. Since its inception, there was been some effort to position C# and Visual Basic against each other and to try to explain what should be done with each language or what kind of programmers use one or the other. Each language should be chosen based on the past experience and familiarity of the developer/team/project/company and not by particular features. In the past, every time a feature was added to one language, the users of the other wanted that feature too. Going forward, when a feature is added to one language, the other will work hard to add the same feature. This doesn’t mean that XML literals will be added to C# (because almost the same can be achieved with LINQ To XML), but Visual Basic will have auto-implemented properties. Most of these features require or are built on top of features of the .NET Framework and, the focus for C# 4.0 was on dynamic programming. Not just dynamic types but being able to talk with anything that isn’t a .NET class. Also introduced in C# 4.0 is co-variance and contra-variance for generic interfaces and delegates. Stay tuned for more on the new C# 4.0 features.

    Read the article

  • Oracle TimesTen In-Memory Database Performance on SPARC T4-2

    - by Brian
    The Oracle TimesTen In-Memory Database is optimized to run on Oracle's SPARC T4 processor platforms running Oracle Solaris 11 providing unsurpassed scalability, performance, upgradability, protection of investment and return on investment. The following demonstrate the value of combining Oracle TimesTen In-Memory Database with SPARC T4 servers and Oracle Solaris 11: On a Mobile Call Processing test, the 2-socket SPARC T4-2 server outperforms: Oracle's SPARC Enterprise M4000 server (4 x 2.66 GHz SPARC64 VII+) by 34%. Oracle's SPARC T3-4 (4 x 1.65 GHz SPARC T3) by 2.7x, or 5.4x per processor. Utilizing the TimesTen Performance Throughput Benchmark (TPTBM), the SPARC T4-2 server protects investments with: 2.1x the overall performance of a 4-socket SPARC Enterprise M4000 server in read-only mode and 1.5x the performance in update-only testing. This is 4.2x more performance per processor than the SPARC64 VII+ 2.66 GHz based system. 10x more performance per processor than the SPARC T2+ 1.4 GHz server. 1.6x better performance per processor than the SPARC T3 1.65 GHz based server. In replication testing, the two socket SPARC T4-2 server is over 3x faster than the performance of a four socket SPARC Enterprise T5440 server in both asynchronous replication environment and the highly available 2-Safe replication. This testing emphasizes parallel replication between systems. Performance Landscape Mobile Call Processing Test Performance System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 218,400 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 162,900 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 80,400 TimesTen Performance Throughput Benchmark (TPTBM) Read-Only System Processor Sockets/Cores/Threads Tps SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 7.9M SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 6.5M M4000 SPARC64 VII+, 2.66 GHz 4 16 32 3.1M T5440 SPARC T2+, 1.4 GHz 4 32 256 3.1M TimesTen Performance Throughput Benchmark (TPTBM) Update-Only System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 547,800 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 363,800 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 240,500 TimesTen Replication Tests System Processor Sockets/Cores/Threads Asynchronous 2-Safe SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 38,024 13,701 SPARC T5440 SPARC T2+, 1.4 GHz 4 32 256 11,621 4,615 Configuration Summary Hardware Configurations: SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 4 x 300 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head SPARC T3-4 server 4 x SPARC T3 processors, 1.6 GHz 512 GB memory 1 x 8 Gbs FC Qlogic HBA 8 x 146 GB internal disks 1 x Sun Fire X4275 server configured as COMSTAR head SPARC Enterprise M4000 server 4 x SPARC64 VII+ processors, 2.66 GHz 128 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 2 x 146 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head Software Configuration: Oracle Solaris 11 11/11 Oracle TimesTen 11.2.2.4 Benchmark Descriptions TimesTen Performance Throughput BenchMark (TPTBM) is shipped with TimesTen and measures the total throughput of the system. The workload can test read-only, update-only, delete and insert operations as required. Mobile Call Processing is a customer-based workload for processing calls made by mobile phone subscribers. The workload has a mixture of read-only, update, and insert-only transactions. The peak throughput performance is measured from multiple concurrent processes executing the transactions until a peak performance is reached via saturation of the available resources. Parallel Replication tests using both asynchronous and 2-Safe replication methods. For asynchronous replication, transactions are processed in batches to maximize the throughput capabilities of the replication server and network. In 2-Safe replication, also known as no data-loss or high availability, transactions are replicated between servers immediately emphasizing low latency. For both environments, performance is measured in the number of parallel replication servers and the maximum transactions-per-second for all concurrent processes. See Also SPARC T4-2 Server oracle.com OTN Oracle TimesTen In-Memory Database oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 6

    - by MarkPearl
    Learning Outcomes Discuss the physical characteristics of magnetic disks Describe how data is organized and accessed on a magnetic disk Discuss the parameters that play a role in the performance of magnetic disks Describe different optical memory devices Magnetic Disk The way data is stored on and retried from magnetic disks Data is recorded on and later retrieved form the disk via a conducting coil named the head (in many systems there are two heads) The writ mechanism exploits the fact that electricity flowing through a coil produces a magnetic field. Electric pulses are sent to the write head, and the resulting magnetic patterns are recorded on the surface below with different patterns for positive and negative currents The physical characteristics of a magnetic disk   Summarize from book   The factors that play a role in the performance of a disk Seek time – the time it takes to position the head at the track Rotational delay / latency – the time it takes for the beginning of the sector to reach the head Access time – the sum of the seek time and rotational delay Transfer time – the time it takes to transfer data RAID The rate of improvement in secondary storage performance has been considerably less than the rate for processors and main memory. Thus secondary storage has become a bit of a bottleneck. RAID works on the concept that if one disk can be pushed so far, additional gains in performance are to be had by using multiple parallel components. Points to note about RAID… RAID is a set of physical disk drives viewed by the operating system as a single logical drive Data is distributed across the physical drives of an array in a scheme known as striping Redundant disk capacity is used to store parity information, which guarantees data recoverability in case of a disk failure (not supported by RAID 0 or RAID 1) Interesting to note that the increase in the number of drives, increases the probability of failure. To compensate for this decreased reliability RAID makes use of stored parity information that enables the recovery of data lost due to a disk failure.   The RAID scheme consists of 7 levels…   Category Level Description Disks Required Data Availability Large I/O Data Transfer Capacity Small I/O Request Rate Striping 0 Non Redundant N Lower than single disk Very high Very high for both read and write Mirroring 1 Mirrored 2N Higher than RAID 2 – 5 but lower than RAID 6 Higher than single disk Up to twice that of a signle disk for read Parallel Access 2 Redundant via Hamming Code N + m Much higher than single disk Highest of all listed alternatives Approximately twice that of a single disk Parallel Access 3 Bit interleaved parity N + 1 Much higher than single disk Highest of all listed alternatives Approximately twice that of a single disk Independent Access 4 Block interleaved parity N + 1 Much higher than single disk Similar to RAID 0 for read, significantly lower than single disk for write Similar to RAID 0 for read, significantly lower than single disk for write Independent Access 5 Block interleaved parity N + 1 Much higher than single disk Similar to RAID 0 for read, lower than single disk for write Similar to RAID 0 for read, generally  lower than single disk for write Independent Access 6 Block interleaved parity N + 2 Highest of all listed alternatives Similar to RAID 0 for read; lower than RAID 5 for write Similar to RAID 0 for read, significantly lower than RAID 5  for write   Read page 215 – 221 for detailed explanation on RAID levels Optical Memory There are a variety of optical-disk systems available. Read through the table on page 222 – 223 Some of the devices include… CD CD-ROM CD-R CD-RW DVD DVD-R DVD-RW Blue-Ray DVD Magnetic Tape Most modern systems use serial recording – data is lade out as a sequence of bits along each track. The typical recording used in serial is referred to as serpentine recording. In this technique when data is being recorded, the first set of bits is recorded along the whole length of the tape. When the end of the tape is reached the heads are repostioned to record a new track, and the tape is again recorded on its whole length, this time in the opposite direction. That process continued back and forth until the tape is full. To increase speed, the read-write head is capable of reading and writing a number of adjacent tracks simultaneously. Data is still recorded serially along individual tracks, but blocks in sequence are stored on adjacent tracks as suggested. A tape drive is a sequential access device. Magnetic tape was the first kind of secondary memory. It is still widely used as the lowest-cost, slowest speed member of the memory hierarchy.

    Read the article

  • Working with Analytic Workflow Manager (AWM) - Part 8 Cube Metadata Analysis

    - by Mohan Ramanuja
    CUBE SIZEselect dbal.owner||'.'||substr(dbal.table_name,4) awname, sum(dbas.bytes)/1024/1024 as mb, dbas.tablespace_name from dba_lobs dbal, dba_segments dbas where dbal.column_name = 'AWLOB' and dbal.segment_name = dbas.segment_name group by dbal.owner, dbal.table_name, dbas.tablespace_name order by dbal.owner, dbal.table_name SESSION RESOURCES select vses.username||':'||vsst.sid username, vstt.name, max(vsst.value) valuefrom v$sesstat vsst, v$statname vstt, v$session vseswhere vstt.statistic# = vsst.statistic# and vsst.sid = vses.sid andVSES.USERNAME LIKE ('ATTRIBDW_OWN') ANDvstt.name in ('session pga memory', 'session pga memory max', 'session uga memory','session uga memory max', 'session cursor cache count', 'session cursor cache hits', 'session stored procedure space', 'opened cursors current', 'opened cursors cumulative') andvses.username is not null group by vsst.sid, vses.username, vstt.name order by vsst.sid, vses.username, vstt.name OLAP PGA USE select 'OLAP Pages Occupying: '|| round((((select sum(nvl(pool_size,1)) from v$aw_calc)) / (select value from v$pgastat where name = 'total PGA inuse')),2)*100||'%' info from dual union select 'Total PGA Inuse Size: '||value/1024||' KB' info from v$pgastat where name = 'total PGA inuse' union select 'Total OLAP Page Size: '|| round(sum(nvl(pool_size,1))/1024,0)||' KB' info from v$aw_calc order by info desc OLAP PGA USAGE PER USER select vs.username, vs.sid, round(pga_used_mem/1024/1024,2)||' MB' pga_used, round(pga_max_mem/1024/1024,2)||' MB' pga_max, round(pool_size/1024/1024,2)||' MB' olap_pp, round(100*(pool_hits-pool_misses)/pool_hits,2) || '%' olap_ratio from v$process vp, v$session vs, v$aw_calc va where session_id=vs.sid and addr = paddr CUBE LOADING SCRIPT REM The 'set define off' statement is needed only if running this script through SQLPlus.REM If you are using another tool to run this script, the line below may be commented out.set define offBEGIN  DBMS_CUBE.BUILD(    'VALIDATE  ATTRIBDW_OWN.CURRENCY USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.ACCOUNT USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.DATEDIM USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.CUSIP USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.ACCOUNTRETURN',    'CCCCC', -- refresh methodfalse, -- refresh after errors    0, -- parallelismtrue, -- atomic refreshtrue, -- automatic orderfalse); -- add dimensionsEND;/BEGIN  DBMS_CUBE.BUILD(    '  ATTRIBDW_OWN.CURRENCY USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.ACCOUNT USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.DATEDIM USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.CUSIP USING  (    LOAD NO SYNCH,    COMPILE SORT  ),  ATTRIBDW_OWN.ACCOUNTRETURN',    'CCCCC', -- refresh methodfalse, -- refresh after errors    0, -- parallelismtrue, -- atomic refreshtrue, -- automatic orderfalse); -- add dimensionsEND;/ VISUALIZATION OBJECT - AW$ATTRIBDW_OWN  CREATE TABLE "ATTRIBDW_OWN"."AW$ATTRIBDW_OWN"        (            "PS#"    NUMBER(10,0),            "GEN#"   NUMBER(10,0),            "EXTNUM" NUMBER(8,0),            "AWLOB" BLOB,            "OBJNAME"  VARCHAR2(256 BYTE),            "PARTNAME" VARCHAR2(256 BYTE)        )        PCTFREE 10 PCTUSED 40 INITRANS 4 MAXTRANS 255 STORAGE        (            BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT        )        TABLESPACE "ATTRIBDW_DATA" LOB        (            "AWLOB"        )        STORE AS SECUREFILE        (            TABLESPACE "ATTRIBDW_DATA" DISABLE STORAGE IN ROW CHUNK 8192 RETENTION MIN 1 CACHE NOCOMPRESS KEEP_DUPLICATES STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        )        PARTITION BY RANGE        (            "GEN#"        )        SUBPARTITION BY HASH        (            "PS#",            "EXTNUM"        )        SUBPARTITIONS 8        (            PARTITION "PTN1" VALUES LESS THAN (1) PCTFREE 10 PCTUSED 40 INITRANS 4 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" LOB ("AWLOB") STORE AS SECUREFILE ( TABLESPACE "ATTRIBDW_DATA" DISABLE STORAGE IN ROW CHUNK 8192 RETENTION MIN 1 CACHE READS LOGGING NOCOMPRESS KEEP_DUPLICATES STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)) ( SUBPARTITION "SYS_SUBP661" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP662" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP663" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP664" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP665" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION            "SYS_SUBP666" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP667" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP668" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" ) ,            PARTITION "PTNN" VALUES LESS THAN (MAXVALUE) PCTFREE 10 PCTUSED 40 INITRANS 4 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" LOB ("AWLOB") STORE AS SECUREFILE ( TABLESPACE "ATTRIBDW_DATA" DISABLE STORAGE IN ROW CHUNK 8192 RETENTION MIN 1 CACHE NOCOMPRESS KEEP_DUPLICATES STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)) ( SUBPARTITION "SYS_SUBP669" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP670" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP671" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP672" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP673" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION            "SYS_SUBP674" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP675" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_SUBP676" LOB ("AWLOB") STORE AS ( TABLESPACE "ATTRIBDW_DATA" ) TABLESPACE "ATTRIBDW_DATA" )        ) ;CREATE UNIQUE INDEX "ATTRIBDW_OWN"."ATTRIBDW_OWN_I$" ON "ATTRIBDW_OWN"."AW$ATTRIBDW_OWN"    (        "PS#", "GEN#", "EXTNUM"    )    PCTFREE 10 INITRANS 4 MAXTRANS 255 COMPUTE STATISTICS STORAGE    (        INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT    )    TABLESPACE "ATTRIBDW_DATA" ;CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000406980C00004$$" ON "ATTRIBDW_OWN"."AW$ATTRIBDW_OWN"    (        PCTFREE 10 INITRANS 1 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" LOCAL (PARTITION "SYS_IL_P711" PCTFREE 10 INITRANS 1 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) ( SUBPARTITION "SYS_IL_SUBP695" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP696" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP697" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP698" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP699" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP700" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP701" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP702" TABLESPACE "ATTRIBDW_DATA" ) , PARTITION "SYS_IL_P712" PCTFREE 10 INITRANS 1 MAXTRANS 255 STORAGE( BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) ( SUBPARTITION "SYS_IL_SUBP703" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP704" TABLESPACE        "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP705" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP706" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP707" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP708" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP709" TABLESPACE "ATTRIBDW_DATA" , SUBPARTITION "SYS_IL_SUBP710" TABLESPACE "ATTRIBDW_DATA" ) ) PARALLEL (DEGREE 0 INSTANCES 0) ; CUBE BUILD LOG  CREATE TABLE "ATTRIBDW_OWN"."CUBE_BUILD_LOG"        (            "BUILD_ID"          NUMBER,            "SLAVE_NUMBER"      NUMBER,            "STATUS"            VARCHAR2(10 BYTE),            "COMMAND"           VARCHAR2(25 BYTE),            "BUILD_OBJECT"      VARCHAR2(30 BYTE),            "BUILD_OBJECT_TYPE" VARCHAR2(10 BYTE),            "OUTPUT" CLOB,            "AW"            VARCHAR2(30 BYTE),            "OWNER"         VARCHAR2(30 BYTE),            "PARTITION"     VARCHAR2(50 BYTE),            "SCHEDULER_JOB" VARCHAR2(100 BYTE),            "TIME" TIMESTAMP (6)WITH TIME ZONE,        "BUILD_SCRIPT" CLOB,        "BUILD_TYPE"            VARCHAR2(22 BYTE),        "COMMAND_DEPTH"         NUMBER(2,0),        "BUILD_SUB_OBJECT"      VARCHAR2(30 BYTE),        "REFRESH_METHOD"        VARCHAR2(1 BYTE),        "SEQ_NUMBER"            NUMBER,        "COMMAND_NUMBER"        NUMBER,        "IN_BRANCH"             NUMBER(1,0),        "COMMAND_STATUS_NUMBER" NUMBER,        "BUILD_NAME"            VARCHAR2(100 BYTE)        )        SEGMENT CREATION IMMEDIATE PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING STORAGE        (            INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT        )        TABLESPACE "ATTRIBDW_DATA" LOB        (            "OUTPUT"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        )        LOB        (            "BUILD_SCRIPT"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        ) ;CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407294C00013$$" ON "ATTRIBDW_OWN"."CUBE_BUILD_LOG"    (        PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ;CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407294C00007$$" ON "ATTRIBDW_OWN"."CUBE_BUILD_LOG" ( PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ; CUBE DIMENSION COMPILE  CREATE TABLE "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"        (            "ID"               NUMBER,            "SEQ_NUMBER"       NUMBER,            "ERROR#"           NUMBER(8,0) NOT NULL ENABLE,            "ERROR_MESSAGE"    VARCHAR2(2000 BYTE),            "DIMENSION"        VARCHAR2(100 BYTE),            "DIMENSION_MEMBER" VARCHAR2(100 BYTE),            "MEMBER_ANCESTOR"  VARCHAR2(100 BYTE),            "HIERARCHY1"       VARCHAR2(100 BYTE),            "HIERARCHY2"       VARCHAR2(100 BYTE),            "ERROR_CONTEXT" CLOB        )        SEGMENT CREATION DEFERRED PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING TABLESPACE "ATTRIBDW_DATA" LOB        (            "ERROR_CONTEXT"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING        ) ;COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."ID"IS    'Current operation ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."SEQ_NUMBER"IS    'Cube build log sequence number';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."ERROR#"IS    'Error number being reported';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."ERROR_MESSAGE"IS    'Error text being reported';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."DIMENSION"IS    'Name of dimension being compiled';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."DIMENSION_MEMBER"IS    'Problem dimension member';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."MEMBER_ANCESTOR"IS    'Problem dimension member''s parent';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."HIERARCHY1"IS    'First hierarchy involved in error';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."HIERARCHY2"IS    'Second hierarchy involved in error';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"."ERROR_CONTEXT"IS    'Extra information for error';    COMMENT ON TABLE "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"IS    'Cube dimension compile log';CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407307C00010$$" ON "ATTRIBDW_OWN"."CUBE_DIMENSION_COMPILE"    (        PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE( INITIAL 1048576 NEXT 1048576 MAXEXTENTS 2147483645) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ; CUBE OPERATING LOG  CREATE TABLE "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"        (            "INST_ID"    NUMBER NOT NULL ENABLE,            "SID"        NUMBER NOT NULL ENABLE,            "SERIAL#"    NUMBER NOT NULL ENABLE,            "USER#"      NUMBER NOT NULL ENABLE,            "SQL_ID"     VARCHAR2(13 BYTE),            "JOB"        NUMBER,            "ID"         NUMBER,            "PARENT_ID"  NUMBER,            "SEQ_NUMBER" NUMBER,            "TIME" TIMESTAMP (6)WITH TIME ZONE NOT NULL ENABLE,        "LOG_LEVEL"    NUMBER(4,0) NOT NULL ENABLE,        "DEPTH"        NUMBER(4,0),        "OPERATION"    VARCHAR2(15 BYTE) NOT NULL ENABLE,        "SUBOPERATION" VARCHAR2(20 BYTE),        "STATUS"       VARCHAR2(10 BYTE) NOT NULL ENABLE,        "NAME"         VARCHAR2(20 BYTE) NOT NULL ENABLE,        "VALUE"        VARCHAR2(4000 BYTE),        "DETAILS" CLOB        )        SEGMENT CREATION IMMEDIATE PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING STORAGE        (            INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT        )        TABLESPACE "ATTRIBDW_DATA" LOB        (            "DETAILS"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        ) ;COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."INST_ID"IS    'Instance ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SID"IS    'Session ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SERIAL#"IS    'Session serial#';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."USER#"IS    'User ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SQL_ID"IS    'Executing SQL statement ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."JOB"IS    'Identifier of job';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."ID"IS    'Current operation ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."PARENT_ID"IS    'Parent operation ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SEQ_NUMBER"IS    'Cube build log sequence number';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."TIME"IS    'Time of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."LOG_LEVEL"IS    'Verbosity level of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."DEPTH"IS    'Nesting depth of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."OPERATION"IS    'Current operation';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."SUBOPERATION"IS    'Current suboperation';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."STATUS"IS    'Status of current operation';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."NAME"IS    'Name of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."VALUE"IS    'Value of record';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"."DETAILS"IS    'Extra information for record';    COMMENT ON TABLE "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"IS    'Cube operations log';CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407301C00018$$" ON "ATTRIBDW_OWN"."CUBE_OPERATIONS_LOG"    (        PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ; CUBE REJECTED RECORDS CREATE TABLE "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"        (            "ID"            NUMBER,            "SEQ_NUMBER"    NUMBER,            "ERROR#"        NUMBER(8,0) NOT NULL ENABLE,            "ERROR_MESSAGE" VARCHAR2(2000 BYTE),            "RECORD#"       NUMBER(38,0),            "SOURCE_ROW" ROWID,            "REJECTED_RECORD" CLOB        )        SEGMENT CREATION IMMEDIATE PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING STORAGE        (            INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT        )        TABLESPACE "ATTRIBDW_DATA" LOB        (            "REJECTED_RECORD"        )        STORE AS BASICFILE        (            TABLESPACE "ATTRIBDW_DATA" ENABLE STORAGE IN ROW CHUNK 8192 RETENTION NOCACHE LOGGING STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)        ) ;COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."ID"IS    'Current operation ID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."SEQ_NUMBER"IS    'Cube build log sequence number';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."ERROR#"IS    'Error number being reported';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."ERROR_MESSAGE"IS    'Error text being reported';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."RECORD#"IS    'Rejected record number';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."SOURCE_ROW"IS    'Rejected record''s ROWID';    COMMENT ON COLUMN "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"."REJECTED_RECORD"IS    'Rejected record copy';    COMMENT ON TABLE "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"IS    'Cube rejected records log';CREATE UNIQUE INDEX "ATTRIBDW_OWN"."SYS_IL0000407304C00007$$" ON "ATTRIBDW_OWN"."CUBE_REJECTED_RECORDS"    (        PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 1048576 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "ATTRIBDW_DATA" PARALLEL (DEGREE 0 INSTANCES 0) ;

    Read the article

  • Dependency Injection Introduction

    - by MarkPearl
    I recently was going over a great book called “Dependency Injection in .Net” by Mark Seeman. So far I have really enjoyed the book and would recommend anyone looking to get into DI to give it a read. Today I thought I would blog about the first example Mark gives in his book to illustrate some of the benefits that DI provides. The ones he lists are Late binding Extensibility Parallel Development Maintainability Testability To illustrate some of these benefits he gives a HelloWorld example using DI that illustrates some of the basic principles. It goes something like this… class Program { static void Main(string[] args) { var writer = new ConsoleMessageWriter(); var salutation = new Salutation(writer); salutation.Exclaim(); Console.ReadLine(); } } public interface IMessageWriter { void Write(string message); } public class ConsoleMessageWriter : IMessageWriter { public void Write(string message) { Console.WriteLine(message); } } public class Salutation { private readonly IMessageWriter _writer; public Salutation(IMessageWriter writer) { _writer = writer; } public void Exclaim() { _writer.Write("Hello World"); } }   If you had asked me a few years ago if I had thought this was a good approach to solving the HelloWorld problem I would have resounded “No”. How could the above be better than the following…. class Program { static void Main(string[] args) { Console.WriteLine("Hello World"); Console.ReadLine(); } }  Today, my mind-set has changed because of the pain of past programs. So often we can look at a small snippet of code and make judgements when we need to keep in mind that we will most probably be implementing these patterns in projects with hundreds of thousands of lines of code and in projects that we have tests that we don’t want to break and that’s where the first solution outshines the latter. Let’s see if the first example achieves some of the outcomes that were listed as benefits of DI. Could I test the first solution easily? Yes… We could write something like the following using NUnit and RhinoMocks… [TestFixture] public class SalutationTests { [Test] public void ExclaimWillWriteCorrectMessageToMessageWriter() { var writerMock = MockRepository.GenerateMock<IMessageWriter>(); var sut = new Salutation(writerMock); sut.Exclaim(); writerMock.AssertWasCalled(x => x.Write("Hello World")); } }   This would test the existing code fine. Let’s say we then wanted to extend the original solution so that we had a secure message writer. We could write a class like the following… public class SecureMessageWriter : IMessageWriter { private readonly IMessageWriter _writer; private readonly string _secretPassword; public SecureMessageWriter(IMessageWriter writer, string secretPassword) { _writer = writer; _secretPassword = secretPassword; } public void Write(string message) { if (_secretPassword == "Mark") { _writer.Write(message); } else { _writer.Write("Unauthenticated"); } } }   And then extend our implementation of the program as follows… class Program { static void Main(string[] args) { var writer = new SecureMessageWriter(new ConsoleMessageWriter(), "Mark"); var salutation = new Salutation(writer); salutation.Exclaim(); Console.ReadLine(); } }   Our application has now been successfully extended and yet we did very little code change. In addition, our existing tests did not break and we would just need add tests for the extended functionality. Would this approach allow parallel development? Well, I am in two camps on parallel development but with some planning ahead of time it would allow for it as you would simply need to decide on the interface signature and could then have teams develop different sections programming to that interface. So,this was really just a quick intro to some of the basic concepts of DI that Mark introduces very successfully in his book. I am hoping to blog about this further as I continue through the book to list some of the more complex implementations of containers.

    Read the article

  • Why do the outputs differ when I run this code using Netbeans 6.8 and Eclipse?

    - by Vimal Basdeo
    When I am running the following codes using Eclipse and Netbeans 6.8. I want to see the available COM ports on my computer. When running in Eclipse it is returning me all available COm ports but when running t in Netbeans, it does not seem to find any ports .. public static void test(){ Enumeration lists=CommPortIdentifier.getPortIdentifiers(); System.out.println(lists.hasMoreElements()); while (lists.hasMoreElements()){ CommPortIdentifier cn=(CommPortIdentifier)lists.nextElement(); if ((CommPortIdentifier.PORT_SERIAL==cn.getPortType())){ System.out.println("Name is serail portzzzz "+cn.getName()+" Owned status "+cn.isCurrentlyOwned()); try{ SerialPort port1=(SerialPort)cn.open("ComControl",800000); port1.setSerialPortParams(9600, SerialPort.DATABITS_8, SerialPort.STOPBITS_1, SerialPort.PARITY_NONE); System.out.println("Before get stream"); OutputStream out=port1.getOutputStream(); InputStream input=port1.getInputStream(); System.out.println("Before write"); out.write("AT".getBytes()); System.out.println("After write"); int sample=0; //while((( sample=input.read())!=-1)){ System.out.println("Before read"); //System.out.println(input.read() + "TEsting "); //} System.out.println("After read"); System.out.println("Receive timeout is "+port1.getReceiveTimeout()); }catch(Exception e){ System.err.println(e.getMessage()); } } else{ System.out.println("Name is parallel portzzzz "+cn.getName()+" Owned status "+cn.isCurrentlyOwned()+cn.getPortType()+" "); } } } Output with Netbeans false Output using Eclipse true Name is serail portzzzz COM1 Owned status false Before get stream Before write After write Before read After read Receive timeout is -1 Name is serail portzzzz COM2 Owned status false Before get stream Before write After write Before read After read Receive timeout is -1 Name is parallel portzzzz LPT1 Owned status false2 Name is parallel portzzzz LPT2 Owned status false2

    Read the article

  • How can I force Parallels' networking to obtain an IP through a wireless router?

    - by RLH
    Here is my setup. I have a Macbook, Thunderbolt display and an Ethernet connection plugged into the Thunderbolt display. During the day, most of my network use can (and should) operate across the ethernet associated with my display. However, I also need to be able to connect up to a wireless router. This hasn't been a problem on the Mac OS X side, but the program that I need to run on the router has to obtain an IP address from the wireless access point. Considering my current setup, how can I leave it so that I can access the internet in OS X, yet have my Window 7 instance running in Parallels, get it's assigned IP address from a wireless router that my Mac is also connected to? I've fiddled around with the Parallel's network settings for an hour, and I can't get Parallel's to see the router, even though my Mac is certainly connected to it.

    Read the article

  • Homegroup and NTFS permissions

    - by bytenik
    I'm running a copy of Windows 7 as a "server" at my home. I have several file shares that I want to make available to specific users only. I've modified the NTFS permissions to only allow these users to access their respective shares. However, while a locally logged on user can access the actual folders just fine, over the network the remote access is authenticating as HomeGroupUser$ rather than the actual user in question, as shown by the Computer Management panel for shares. I do have matching user accounts (i.e. my username locally is abc and a parallel account with username abc and the same password exists on the server machine). I don't want to disable homegroup because there are other shares where homegroup authentication would be desirable, especially for some people where they don't have a parallel account. Is there a way to get the system to authenticate first by matching username, and then by homegroup authentication if there's no matching user?

    Read the article

  • Optimal way to make MySQL backups for fairly large databases (MyISAM / InnoDB)

    - by WinkyWolly
    Currently we have one beefy MySQL database that runs a couple of high traffic Django based websites as well as some e-commerce websites of decent size. As a result we have a fair amount of large databases using both InnoDB and MyISAM tables. Unfortunately we've recently hit a wall due to the amount of traffic so I've setup another master server to help alleviate reads / backups. Now at the moment I simply use mysqldump with a few arguments and it's proven to be fine.. until now. Obviously mysqldump is a slow quick method however I believe we've outgrown its use. I now need a good alternative and have been looking into utilizing Maatkits mk-parallel-dump utility or an LVM snapshot solution. Succinct short version: I have a fairly large MySQL databases I need to backup Current method using mysqldump is inefficient and slow (causing issues) Looking into something such as mk-parallel-dump or LVM snapshots Any recommendations or ideas would be appreciated - since I have to re-do how we're doing things I rather have it done properly / most efficient :).

    Read the article

  • Where would an S3 upload speed cap originate?

    - by CoreyH
    I do a ton of uploading to S3 and am experiencing capped speeds and I can't quite figure out how to address it. The setup: Windows Server 2008 R2 x64, external HD, using a Java based upload tool called Jsh3ll and custom VBS scripts to kick the jobs off. Running one process at a time, I am always limited to about 4mbps. I have FiOS at 35/35mbps speeds, so it isn't an outright limit. AND, I can run parallel instances and can go all the way up to 35mbps, so I know the problem isn't gateway/nic/machine/amazon related. Running parallel instances works to a degree as a solution, but increases the complexity of my workflow greatly. Solving this would make my life dramatically easier. When I was first doing this I was playing around with a bunch of Windows TCP parameters and was able to briefly get unconstrained bandwidth, but it wasn't repeatable. Thoughts?

    Read the article

  • Best of "The Moth" 2011

    - by Daniel Moth
    Once again (like in 2004, 2005, 2006, 2007, 2008, 2009, 2010) the time has come to wish you a Happy New Year and to share my favorite posts from the year we just left behind. 1. My first blog entry in January and last one in December were both about my Windows Phone app: Translator by Moth and Translator by Moth v2. In between, I shared a few code snippets for Windows Phone development including a watermark textbox, a scroll helper, an RTL helper and a network connectivity helper - there will be more coming in 2012. 2. Efficiently using Microsoft Office products is the hallmark of an efficient Program Manager (and not only), and I'll continue sharing tips on this blog in that area. An example from last year is tracking changes in SharePoint-hosted Word document. 3. Half-way through last year I moved from managing the parallel debugger team to managing the C++ AMP team (both of them in Visual Studio 11). That means I had to deprioritize sharing content on VS parallel debugging features (I promise to do that in 2012), and it also meant that I wrote a lot about C++ AMP. You'll need a few cups of coffee to go through all of it, and most of the links were aggregated on this single highly recommended post: Give a session on C++ AMP – here is how You can stay tuned for more by subscribing via one of the options on the left… Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Points on lines where the two lines are the closest together

    - by James Bedford
    Hey guys, I'm trying to find the points on two lines where the two lines are the closest. I've implemented the following method (Points and Vectors are as you'd expect, and a Line consists of a Point on the line and a non-normalized direction Vector from that point): void CDClosestPointsOnTwoLines(Line line1, Line line2, Point* closestPoints) { closestPoints[0] = line1.pointOnLine; closestPoints[1] = line2.pointOnLine; Vector d1 = line1.direction; Vector d2 = line2.direction; float a = d1.dot(d1); float b = d1.dot(d2); float e = d2.dot(d2); float d = a*e - b*b; if (d != 0) // If the two lines are not parallel. { Vector r = Vector(line1.pointOnLine) - Vector(line2.pointOnLine); float c = d1.dot(r); float f = d2.dot(r); float s = (b*f - c*e) / d; float t = (a*f - b*c) / d; closestPoints[0] = line1.positionOnLine(s); closestPoints[1] = line2.positionOnLine(t); } else { printf("Lines were parallel.\n"); } } I'm using OpenGL to draw three lines that move around the world, the third of which should be the line that most closely connects the other two lines, the two end points of which are calculated using this function. The problem is that the first point of closestPoints after this function is called will lie on line1, but the second point won't lie on line2, let alone at the closest point on line2! I've checked over the function many times but I can't see where the mistake in my implementation is. I've checked my dot product function, scalar multiplication, subtraction, positionOnLine() etc. etc. So my assumption is that the problem is within this method implementation. If it helps to find the answer, this is function supposed to be an implementation of section 5.1.8 from 'Real-Time Collision Detection' by Christer Ericson. Many thanks for any help!

    Read the article

  • VS 2010 IDE Features in a nutshell

    - by Rajesh Pillai
    Going through a VS 2010 IDE Features.  We will explore each feature in subsequent posts.  The post are documented as being reviewed by me.   Breakpoint Labeling Breakpoint Searching Breakpoint Import/Export Dynamic Data Tooling WPF Tree Visualizer Call Hierarchy Improved WPF Tooling Historical Debugging Mini-Dump Debugging Quick Search Better Multi-Monitor Support Highlight References Parallel Stacks Window Parallel Tasks Window Document Map Margin Generate from Usage Concurrency Profiler Inline Call Tree Extensible Test Runner MVC Tooling Web Deploy JQuery IntelliSense SharePoint Tooling HTML Snippets Web.config Transformation ClickOnce Enhancements for MS Office     VS is an editor as well as a platform for development and this is only more true with VS 2010.  As an editor there is improved forcus on writing code, understanding code, navigating and publishing code.   VS Shell has been completely rewritten using WPF extending huge benefits.  The start page has been rewritten using XAML, so it is easy to customize.   Support new support for Silverlight, MFC, F# , Azure and extended support for Office 2010, Sharepoint.   Has a good Extension Manager as well.   Enjoy Coding !!!

    Read the article

  • How do I get a CardScan 60 II working with SANE?

    - by TiuTalk
    I have a CardScan 60 II device and installed SANE in my Ubuntu 10.10 laptop. The problem is I can't make scanimage find the device. Quote: $ sudo sane-find-scanner # sane-find-scanner will now attempt to detect your scanner. If the # result is different from what you expected, first make sure your # scanner is powered up and properly connected to your computer. # No SCSI scanners found. If you expected something different, make sure that # you have loaded a kernel SCSI driver for your SCSI adapter. found USB scanner (vendor=0x08f0 [Corex Technologies Corporation], product=0x1000 [Corex CardScan 60], chip=LM9832/3) at libusb:006:002 # Your USB scanner was (probably) detected. It may or may not be supported by # SANE. Try scanimage -L and read the backend's manpage. # Not checking for parallel port scanners. # Most Scanners connected to the parallel port or other proprietary ports # can't be detected by this program. But I can't find the device: $ sudo scanimage -L No scanners were identified. If you were expecting something different, check that the scanner is plugged in, turned on and detected by the sane-find-scanner tool (if appropriate). Please read the documentation which came with this software (README, FAQ, manpages).

    Read the article

  • Microsoft&rsquo;s new technical computing initiative

    - by Randy Walker
    I made a mental note from earlier in the year.  Microsoft literally buys computers by the truckload.  From what I understand, it’s a typical practice amongst large software vendors.  You plug a few wires in, you test it, and you instantly have mega tera tera flops (don’t hold me to that number).  Microsoft has been trying to plug away at their cloud services (named Azure).  Which, for the layman, means Microsoft runs your software on their computers, and as demand increases you can allocate more computing power on the fly. With this in mind, it doesn’t surprise me that I was recently sent an executive email concerning Microsoft’s new technical computing initiative.  I find it to be a great marketing idea with actual substance behind their real work.  From the programmer academic perspective, in college we dreamed about this type of processing power.  This has decades of computer science theory behind it. A copy of the email received.  (note that I almost deleted this email, thinking it was spam due to it’s length) We don't often think about how complex life really is. Take the relatively simple task of commuting to and from work: it is, in fact, a complicated interplay of variables such as weather, train delays, accidents, traffic patterns, road construction, etc. You can however, take steps to shorten your commute - using a good, predictive understanding of a few of these variables. In fact, you probably are already taking these inputs and instinctively building a predictive model that you act on daily to get to your destination more quickly. Now, when we apply the same method to very complex tasks, this modeling approach becomes much more challenging. Recent world events clearly demonstrated our inability to process vast amounts of information and variables that would have helped to more accurately predict the behavior of global financial markets or the occurrence and impact of a volcano eruption in Iceland. To make sense of issues like these, researchers, engineers and analysts create computer models of the almost infinite number of possible interactions in complex systems. But, they need increasingly more sophisticated computer models to better understand how the world behaves and to make fact-based predictions about the future. And, to do this, it requires a tremendous amount of computing power to process and examine the massive data deluge from cameras, digital sensors and precision instruments of all kinds. This is the key to creating more accurate and realistic models that expose the hidden meaning of data, which gives us the kind of insight we need to solve a myriad of challenges. We have made great strides in our ability to build these kinds of computer models, and yet they are still too difficult, expensive and time consuming to manage. Today, even the most complicated data-rich simulations cannot fully capture all of the intricacies and dependencies of the systems they are trying to model. That is why, across the scientific and engineering world, it is so hard to say with any certainty when or where the next volcano will erupt and what flight patterns it might affect, or to more accurately predict something like a global flu pandemic. So far, we just cannot collect, correlate and compute enough data to create an accurate forecast of the real world. But this is about to change. Innovations in technology are transforming our ability to measure, monitor and model how the world behaves. The implication for scientific research is profound, and it will transform the way we tackle global challenges like health care and climate change. It will also have a huge impact on engineering and business, delivering breakthroughs that could lead to the creation of new products, new businesses and even new industries. Because you are a subscriber to executive e-mails from Microsoft, I want you to be the first to know about a new effort focused specifically on empowering millions of the world's smartest problem solvers. Today, I am happy to introduce Microsoft's Technical Computing initiative. Our goal is to unleash the power of pervasive, accurate, real-time modeling to help people and organizations achieve their objectives and realize their potential. We are bringing together some of the brightest minds in the technical computing community across industry, academia and science at www.modelingtheworld.com to discuss trends, challenges and shared opportunities. New advances provide the foundation for tools and applications that will make technical computing more affordable and accessible where mathematical and computational principles are applied to solve practical problems. One day soon, complicated tasks like building a sophisticated computer model that would typically take a team of advanced software programmers months to build and days to run, will be accomplished in a single afternoon by a scientist, engineer or analyst working at the PC on their desktop. And as technology continues to advance, these models will become more complete and accurate in the way they represent the world. This will speed our ability to test new ideas, improve processes and advance our understanding of systems. Our technical computing initiative reflects the best of Microsoft's heritage. Ever since Bill Gates articulated the then far-fetched vision of "a computer on every desktop" in the early 1980's, Microsoft has been at the forefront of expanding the power and reach of computing to benefit the world. As someone who worked closely with Bill for many years at Microsoft, I am happy to share with you that the passion behind that vision is fully alive at Microsoft and is carried out in the creation of our new Technical Computing group. Enabling more people to make better predictions We have seen the impact of making greater computing power more available firsthand through our investments in high performance computing (HPC) over the past five years. Scientists, engineers and analysts in organizations of all sizes and sectors are finding that using distributed computational power creates societal impact, fuels scientific breakthroughs and delivers competitive advantages. For example, we have seen remarkable results from some of our current customers: Malaria strikes 300,000 to 500,000 people around the world each year. To help in the effort to eradicate malaria worldwide, scientists at Intellectual Ventures use software that simulates how the disease spreads and would respond to prevention and control methods, such as vaccines and the use of bed nets. Technical computing allows researchers to model more detailed parameters for more accurate results and receive those results in less than an hour, rather than waiting a full day. Aerospace engineering firm, a.i. solutions, Inc., needed a more powerful computing platform to keep up with the increasingly complex computational needs of its customers: NASA, the Department of Defense and other government agencies planning space flights. To meet that need, it adopted technical computing. Now, a.i. solutions can produce detailed predictions and analysis of the flight dynamics of a given spacecraft, from optimal launch times and orbit determination to attitude control and navigation, up to eight times faster. This enables them to avoid mistakes in any areas that can cause a space mission to fail and potentially result in the loss of life and millions of dollars. Western & Southern Financial Group faced the challenge of running ever larger and more complex actuarial models as its number of policyholders and products grew and regulatory requirements changed. The company chose an actuarial solution that runs on technical computing technology. The solution is easy for the company's IT staff to manage and adjust to meet business needs. The new solution helps the company reduce modeling time by up to 99 percent - letting the team fine-tune its models for more accurate product pricing and financial projections. Our Technical Computing direction Collaborating closely with partners across industry and academia, we must now extend the reach of technical computing even further to help predictive modelers and data explorers make faster, more accurate predictions. As we build the Technical Computing initiative, we will invest in three core areas: Technical computing to the cloud: Microsoft will play a leading role in bringing technical computing power to scientists, engineers and analysts through the cloud. Existing high- performance computing users will benefit from the ability to augment their on-premises systems with cloud resources that enable 'just-in-time' processing. This platform will help ensure processing resources are available whenever they are needed-reliably, consistently and quickly. Simplify parallel development: Today, computers are shipping with more processing power than ever, including multiple cores, but most modern software only uses a small amount of the available processing power. Parallel programs are extremely difficult to write, test and trouble shoot. However, a consistent model for parallel programming can help more developers unlock the tremendous power in today's modern computers and enable a new generation of technical computing. We are delivering new tools to automate and simplify writing software through parallel processing from the desktop... to the cluster... to the cloud. Develop powerful new technical computing tools and applications: We know scientists, engineers and analysts are pushing common tools (i.e., spreadsheets and databases) to the limits with complex, data-intensive models. They need easy access to more computing power and simplified tools to increase the speed of their work. We are building a platform to do this. Our development efforts will yield new, easy-to-use tools and applications that automate data acquisition, modeling, simulation, visualization, workflow and collaboration. This will allow them to spend more time on their work and less time wrestling with complicated technology. Thinking bigger There is so much left to be discovered and so many questions yet to be answered in the fascinating world around us. We believe the technical computing community will show us that we have not seen anything yet. Imagine just some of the breakthroughs this community could make possible: Better predictions to help improve the understanding of pandemics, contagion and global health trends. Climate change models that predict environmental, economic and human impact, accessible in real-time during key discussions and debates. More accurate prediction of natural disasters and their impact to develop more effective emergency response plans. With an ambitious charter in hand, this new team is ready to build on our progress to-date and execute Microsoft's technical computing vision over the months and years ahead. We will steadily invest in the right technologies, tools and talent, and work to bring together the technical computing community. I invite you to visit www.modelingtheworld.com today. We welcome your ideas and feedback. I look forward to making this journey with you and others who want to answer the world's biggest questions, discover solutions to problems that seem impossible and uncover a host of new opportunities to change the world we live in for the better. Bob

    Read the article

  • Step by Step screencasts to do Behavior Driven Development on WCF and UI using xUnit

    - by oazabir
    I am trying to encourage my team to get into Behavior Driven Development (BDD). So, I made two quick video tutorials to show how BDD can be done from early requirement collection stage to late integration tests. It explains breaking user stories into behaviors, and then developers and test engineers taking the behavior specs and writing a WCF service and unit test for it, in parallel, and then eventually integrating the WCF service and doing the integration tests. It introduces how mocking is done using the Moq library. Moreover, it shows a way how you can write test once and do both unit and integration tests at the flip of a config setting. Watch the screencast here: Doing BDD with xUnit, Subspec and on a WCF Service  Warning: you might hear some noise in the audio in some places. Something wrong with audio bit rate. I suggest you let the video download for a while and then play it. If you still get noise, go back couple of seconds earlier and then resume play. It eliminates the noise.  The next video tutorial is about doing BDD to do automated UI tests. It shows how test engineers can take behaviors and then write tests that tests a prototype UI in isolation (just like Service Contract) in order to ensure the prototype conforms to the expected behaviors, while developers can write the real code and build the real product in parallel. When the real stuff is done, the same test can test the real stuff and ensure the agreed behaviors are satisfied. I have used WatiN to automate UI and test UI for expected behaviors. Doing BDD with xUnit and WatiN on a ASP.NET webform Hope you like it!

    Read the article

  • What to use for simple cross-platform games instead of Flash?

    - by jmh_gr
    In short, for simple games: Is Flash still a good option for browser-based PC clients? It still has 90%+ penetration. What is a good alternative for mobile devices? It HTML5 + JavaScript the choice for mobile? Or does one have to learn a new native language for each target platform? (Android, Apple, Windows Phone)... If you desire further background: There are more blogs about the official demise of mobile Flash than I can count, along with endless useless and vitriolic comments. I'm actually trying to do something practical: build simple games that can be served accross multiple platforms. Several months ago I plopped down $1100 for CS5.5 Web and am wading into Flash. Bummer. My question to people who actually develop simple games and apps: What platform should I use instead? Is Flash still a sensible platform for web-served PC users? For example, let's say I build a simple arcade game that I would like to serve as an app to mobile users and as a browser-based game to PC users. Should I still invest the time and effort to learn and develop in Flash for the PC users, while building a parallel code set in some other language for mobile users? My games are simple enough that it would be annoying but not inconceivable to maintain parallel code sets.

    Read the article

  • Dev Lead Job opening on my team

    My product unit (Parallel Developer Tools) is hiring a developer lead here in Redmond. This position is specifically on the debugger feature team that I "Program Manage".So, if you have what it takes and don't mind working with me every single day, click on the link below to read more and apply. You can also send me your resume and I'll make sure it gets to the right place and that you get a prompt response.There is a very long job description on the Microsoft careers site under job id 707388.Here is an excerpt from the middle (emphasis mine):"...We are in search of a talented and innovative senior lead software design engineer to own development of the debugging tools for data parallelism (including GP-GPU) and HPC Clusters being built by our team.To be successful, you need to be able to guide careers, design and architect well, communicate and share the best development practices, collaborate with your peers, contribute to the vision, and code significant portions of the solution. We want to hear from you if you're passionate about making your mark in the parallel development space, improving people, and building world-class tools."Responsibilities include:Managing a team of senior and junior developersDesign and coding high-quality software..."For the full background story, requirements, qualifications and responsibilities please visit the official page. Comments about this post welcome at the original blog.

    Read the article

  • Problem with SANE and CardScan

    - by TiuTalk
    I have a CardScan 60 II device and installed SANE in my Ubuntu 10.10 laptop. The problem is I can't make scanimage find the device. Quote: $ sudo sane-find-scanner # sane-find-scanner will now attempt to detect your scanner. If the # result is different from what you expected, first make sure your # scanner is powered up and properly connected to your computer. # No SCSI scanners found. If you expected something different, make sure that # you have loaded a kernel SCSI driver for your SCSI adapter. found USB scanner (vendor=0x08f0 [Corex Technologies Corporation], product=0x1000 [Corex CardScan 60], chip=LM9832/3) at libusb:006:002 # Your USB scanner was (probably) detected. It may or may not be supported by # SANE. Try scanimage -L and read the backend's manpage. # Not checking for parallel port scanners. # Most Scanners connected to the parallel port or other proprietary ports # can't be detected by this program. But I can't find the device: $ sudo scanimage -L No scanners were identified. If you were expecting something different, check that the scanner is plugged in, turned on and detected by the sane-find-scanner tool (if appropriate). Please read the documentation which came with this software (README, FAQ, manpages).

    Read the article

  • Parallelize incremental processing in Tabular #ssas #tabular

    - by Marco Russo (SQLBI)
    I recently came in a problem trying to improve the parallelism of Tabular processing. As you know, multiple tables can be processed in parallel, whereas the processing of several partitions within the same table cannot be parallelized. When you perform an incremental update by adding only new rows to existing table, what you really do is adding rows to a partition, so adding rows to many tables means adding rows to several partitions. The particular condition you have in this case is that every partition in which you add rows belongs to a different table. Adding rows implies using the ProcessAdd command; its QueryBinding parameter specifies a SQL syntax to read new rows, otherwise the original query specified for the partition will be used, and it could generate duplicated data if you don’t have a dynamic behavior on the SQL side. If you create the required XMLA code manually, you will find that the QueryBinding node that should be part of the ProcessAdd command has to be moved out from ProcessAdd in case you are using a Batch command with more than one Process command (which is the reason why you want to use a single batch: run multiple process operations in parallel!). If you use AMO (Analysis Management Objects) you will find that this combination is not supported, even if you don’t have a syntax error compiling the code, but you might obtain this error at execution time: The syntax for the 'Process' command is incorrect. The 'Bindings' keyword cannot appear under a 'Process' command if the 'Process' command is a part of a 'Batch' command and there are more than one 'Process' commands in the 'Batch' or the 'Batch' command contains any out of line related information. In this case, the 'Bindings' keyword should be a part of the 'Batch' command only. If this is happening to you, the best solution I’ve found is manipulating the XMLA code generated by AMO moving the Binding nodes in the right place. A more detailed description of the issue and the code required to send a correct XMLA batch to Analysis Services is available in my article Parallelize ProcessAdd with AMO. By the way, the same technique (and code) can be used also if you have the same problem in a Multidimensional model.

    Read the article

  • Upcoming events : OBUG Connect Conference 2012

    - by Maria Colgan
    The Oracle Benelux User Group (OBUG) have given me an amazing opportunity to present a one day Optimizer workshop at their annual Connect Conference in Maastricht on April 24th. The workshop will run as one of the parallel tracks at the conference and consists of three 45 minute sessions. Each session can be attended stand alone but they will build on each other to allow someone new to the Oracle Optimizer or SQL tuning to come away from the conference with a better understanding of how the Optimizer works and what techniques they should deploy to tune their SQL. Below is a brief description of each of the sessions Session 7 - 11:30 am Oracle Optimizer: Understanding Optimizer StatisticsThe workshop opens with a discussion on Optimizer statistics and the features introduced in Oracle Database 11g to improve the quality and efficiency of statistics-gathering. The session will also provide strategies for managing statistics in various database environments. Session 27 -  14:30 pm Oracle Optimizer: Explain the Explain PlanThe workshop will continue with a detailed examination of the different aspects of an execution plan, from selectivity to parallel execution, and explains what information you should be gleaning from the plan. Session 47 -  15:45 pm Top Tips to get Optimal Execution Plans Finally I will show you how to identify and resolving the most common SQL execution performance problems, such as poor cardinality estimations, bind peeking issues, and selecting the wrong access method.   Hopefully I will see you there! +Maria Colgan

    Read the article

  • Should you create a class within a method?

    - by Amndeep7
    I have made a program using Java that is an implementation of this project: http://nifty.stanford.edu/2009/stone-random-art/sml/index.html. Essentially, you create a mathematical expression and, using the pixel coordinate as input, make a picture. After I initially implemented this in serial, I then implemented it in parallel due to the fact that if the picture size is too large or if the mathematical expression is too complex (especially considering the fact that I made the expression recursively), it takes a really long time. During this process, I realized that I needed two classes which implemented the Runnable interface as I had to put in parameters for the run method, which you aren't allowed to do directly. One of these classes ended up being a medium sized static inner class (not large enough to make an independent class file for it though). The other though, just needed a few parameters to determine some indexes and the size of the for loop that I was making run in parallel - here it is: class DataConversionRunnable implements Runnable { int jj, kk, w; DataConversionRunnable(int column, int matrix, int wid) { jj = column; kk = matrix; w = wid; } public void run() { for(int i = 0; i < w; i++) colorvals[kk][jj][i] = (int) ((raw[kk][jj][i] + 1.0) * 255 / 2.0); increaseCounter(); } } My question is should I make it a static inner class or can I just create it in a method? What is the general programming convention followed in this case?

    Read the article

  • First Shard for SQL Azure and SQL Server

    - by Herve Roggero
    That's it!!!!! It's ready to go and be tested, abused and improved! It requires .NET 4.0 and uses some cool technologies, like caching (the new System.Runtime.Caching) and the Task Parallel Library (System.Threading.Tasks). With this library you can: Define a shard of 1, 2 or 100 SQL databases (a mix of SQL Server and SQL Azure) Read from the shard in parallel or sequentially, and cache resultsets Update, Delete a record from the shard Insert records quickly in the shard with a round-robin load Reset the cache You can download the source code and a sample application here: http://enzosqlshard.codeplex.com/  Note about the breadcrumbs: I had to add a connection GUID in order for the library to know which database a record came from. The GUID is currently calculated on the fly in the library using some of the parameters of the connection string. The GUID is also dynamically added to the result set so the client can pass it back to the library. I am curious to get your feedback on this approach. ** Correction from my previous post: this is a library for a Horizontal Partition Shard (HPS): tables are split across databases horizontally. So in essence, the tables need to have the same schema across the databases.

    Read the article

< Previous Page | 22 23 24 25 26 27 28 29 30 31 32 33  | Next Page >