Search Results

Search found 6580 results on 264 pages for 'boost foreach'.

Page 261/264 | < Previous Page | 257 258 259 260 261 262 263 264  | Next Page >

  • Pass a variable from javascript to php in the same session OnClickFunction

    - by MickyScion
    I was seeing through stackoverflow the solutions for this kind of problems but any of them are executing the code of javascript in the same session...please i want some help with this...i have this in my session <script> function show_alert() { var ProdAntes = document.getElementById("productoseleccionado").value; var CantAntes = document.getElementById("cantidadantes").value; var PrecAntes = document.getElementById("precioantes").value; var FecAntes = document.getElementById("fechaantes").value; var ProdAhora = document.getElementById("SoyaProductorProduccionProducto").value; var CantAhora = document.getElementById("SoyaProductorProduccionCantidadtm").value; var PrecAhora = document.getElementById("SoyaProductorProduccionPreciodolar").value; var FecAhora = document.getElementById("select_date").value; } </script> and in my html stuff i have this <?php echo $this->Form->create('SoyaProductorProduccion');?> <fieldset> <?php echo $this->Form->hidden('id', array('value' => $this->data['SoyaProductorProduccion']['id'])); echo $this->Form->input('operacion', array('type' => 'hidden', 'value'=>'Produccion')); //-------------------------------------------------------------- $productoseleccionado = $this->data['SoyaProductorProduccion']['producto']; echo $this->Form->input('productoseleccionado', array('type' => 'hidden','style'=>'width:500px; height:30px;','id' => 'productoseleccionado' , 'value' => $productoseleccionado)); echo $this->Form->input('producto', array( 'options' => array( $productoseleccionado => $productoseleccionado, 'Torta solvente de soya' => 'Torta solvente de soya', 'Torta solvente de girasol' => 'Torta solvente de girasol', 'Harina integral de soya' => 'Harina integral de soya', 'Harina de girasol' => 'Harina de girasol', 'Cascarilla de soya' => 'Cascarilla de soya', 'Cascarilla de girasol' => 'Cascarilla de girasol', 'Aceite de soya refinado' => 'Aceite de soya refinado', 'Aceite de soya crudo' => 'Aceite de soya crudo', 'Aceite de girasol refinado' => 'Aceite de girasol refinado', 'Aceite de girasol crudo' => 'Aceite de girasol crudo', ),'label'=>'Tipo de Producto' )); foreach ($soyacambiodolares as $soyacambiodolar): $dolar=$soyacambiodolar['SoyaCambioDolar']['cambio']; endforeach; echo $this->Form->input('cambio', array('type' => 'hidden','value' => $dolar)); //----------------------------------------------------------------------------- $cantidadantes = $this->data['SoyaProductorProduccion']['cantidadtm']; echo $this->Form->input('cantidadantes', array('type' => 'hidden','style'=>'width:500px; height:30px;', 'value' => $cantidadantes,'id' => 'cantidadantes')); echo $this->Form->input('cantidadtm', array('label' => 'Cantidad en tonelada(s) métrica(s) del producto (TM)','style'=>'width:500px; height:30px;')); //----------------------------------------------------------------------------- $precioantes = $this->data['SoyaProductorProduccion']['preciodolar']; echo $this->Form->input('precioantes', array('type' => 'hidden','style'=>'width:500px; height:30px;', 'value' => $precioantes,'id' => 'precioantes')); echo $this->Form->input('preciodolar', array('label' => 'Precio en Dolares Americanos por tonelada métrica (TM / $us)','style'=>'width:500px; height:30px;')); //----------------------------------------------------------------------------- ?> <table style="width: 600px"> <tr> <td > <?php //---------------------------------------------------------------- $fechaantes = $this->data['SoyaProductorProduccion']['fecharegistro']; echo $this->Form->input('fechaantes', array('type' => 'hidden','style'=>'width:500px; height:30px;', 'value' => $fechaantes, 'id' => 'fechaantes')); //---------------------------------------------------------------- echo $this->Form->input("fecharegistro", array( 'label' => '<strong>Periodo al que corresponde la declaración</strong>', 'type' => 'text', 'style' => 'width: 110px', 'class' => 'fl tal vat w300p', 'error' => false , 'id' => 'select_date')); ?> <?php echo $this->Html->div('datepicker_img w100p fl pl460p pa', $this->Html->image('datepicker_calendar_icon.gif'),array('id' => 'datepicker_img')); ?> <?php echo $this->Html->div('datepicker fl pl460p pa', ' ' ,array('id' => 'datepicker')); ?> </td> </tr> </table> <?php echo $this->Form->submit('Modificar Existencia', array('class' => 'form-submit', 'title' => 'Presione aqui para agregar datos', 'onclick' => 'return show_alert();')); ?> </fieldset> <?php echo $this->Form->end(); ?> my function is ok but i want these: when i click the submit button i want to compare wich field had been changed, and i want to create a chain of detailed changes like "change in the field 1, change in the fiel 2.--" and so on...and this has to be saved in my database so i have to pass to a variable in my php before saving...thanks!

    Read the article

  • weird problem..the exact xml work in one host and not working in another...

    - by Ofear
    hi all! i search alot for this but can't find an aswer... I have made a working xml parser using php. till today i host my files on a free web host, and everything works just fine. today i got access to my college server and i host my files there. now for some reason.. i can't make the parser work as i was in the free host... look on those files please: working site: xml file: [http://ofear.onlinewebshop.net/asce/calendar.xml] working parser is this: [http://ofear.onlinewebshop.net/asce/calendar.php] (the lower table is the xml,it's hebrew) not working site: xml file: [http://apps.sce.ac.il/agoda/calendar.xml] not working parser is this: [http://apps.sce.ac.il/agoda/calendar.php] anyone have idea why it's not working.. those are the same files and they should work. maybe it a server problem? calendar.xml: <?xml version="1.0" encoding="UTF-8" ?> <events> <record> <event>??? ???? ????? ???? ???</event> <eventDate>30/12/2010</eventDate> <desc>?????? ?? ????</desc> </record> <record> <event>??? ???? ??????? - 2 : ???? ??? ???? ??????</event> <eventDate>22/12/2010</eventDate> <desc>????? ???? ??????? ?????? ??? ???? ??????? ?????? ????? ?????? ?? ??? ???? ??????? 2 ??????? ????? ???????? 22-23 ?????? 2010. ???? ????? ???? ????? "?????? ????"</desc> </record> <record> <event>????? ???? ?????? ?????? - ?? ????</event> <eventDate>5/12/2010</eventDate> <desc>??? ????? 17:30-20:45</desc> </record> </events> parser: <?php $doc = new DOMDocument(); $doc->load( 'calendar.xml' ); $events = $doc->getElementsByTagName( "record" ); foreach( $events as $record ) { $events = $record->getElementsByTagName( "event" ); $event = $events->item(0)->nodeValue; $eventDates= $record->getElementsByTagName( "eventDate" ); $eventDate= $eventDates->item(0)->nodeValue; $descs = $record->getElementsByTagName( "desc" ); $desc = $descs->item(0)->nodeValue; echo "<tr><td>$event</td><td>$eventDate</td><td>$desc</td></tr>"; } ?> after a little debugging i saw that it's stop here: $doc = new DOMDocument(); and it's not doing anything after that. i think that the line above is the cos

    Read the article

  • Class structure for the proposed data and its containers ?

    - by Prix
    First I would like to wish a happy new year to everyone that may read this :) I am having trouble on how to make a container for some data that I am importing into my application, and I am not sure on how to explain this very well and my english is not really a that good so I hope you can bear with my mistake and help me with some guidance. Currently with a foreach I am importing the follow fields from the data I receive: guid, itemid, name, owner(optional, can be null), zoneid, titleid, subid, heading, x, y, z, typeA, typeB, typeC From the above fields I need to store a Waypoint list of all coords a given item has moved to BUT for each guid I have a new list of waypoints. And from the waypoint list the first entry is also my initial item start location which would be my item initial position (if you notice i have a separate list for it which I was not sure would be better or not) not all items have a waypoint list but all items have the first position. So the first idea I came with to store this data was a list with a class with 2 inner classes with their list: public List<ItemList> myList = new List<ItemList>(); public class ItemList { public int guid { get; set; } public int itemid { get; set; } public string name { get; set; } public int titleid { get; set; } public itemType status { get; set; } public class Waypoint { public float posX { get; set; } public float posY { get; set; } public float posZ { get; set; } } public List<Waypoint> waypoint = new List<Waypoint>(); public class Location { public int zone { get; set; } public int subid { get; set; } public int heading { get; set; } public float posX { get; set; } public float posY { get; set; } public float posZ { get; set; } } public List<Location> position = new List<Location>(); } So here is an example of how I would add a new waypoint to a GUID that exists in the list bool itemExists = myList.Exists(item => item.guid == guid && item.itemid == itemid); if (itemExists) { int lastDistance = 3; ItemList.Waypoint nextWaypoint; ItemList myItem = myList.Find(item => item.guid == guid && item.itemid == itemid); if (myItem.waypoint.Count == 0) { nextWaypoint = new ItemList.Waypoint(); nextWaypoint.posX = PosX; nextWaypoint.posY = PosY; nextWaypoint.posZ = PosZ; } else { ItemList.Waypoint lastWaypoint = myItem.waypoint[myItem.waypoint.Count - 1]; if (lastWaypoint != null) { lastDistance = getDistance(x, y, z, lastWaypoint.posX, lastWaypoint.posY, lastWaypoint.posZ); } if (lastDistance > 2) { nextWaypoint = new ItemList.Waypoint(); nextWaypoint.posX = PosX; nextWaypoint.posY = PosY; nextWaypoint.posZ = PosZ; } } myItem.waypoint.Add(nextWaypoint); } Then to register a new item I would take advantage of the itemExist above so I won't register the same GUID again: ItemList newItem = new ItemList(); newItem.guid = guid; newItem.itemid = itemid; newItem.name = name; newItem.status = status; newItem.titleid = titleid; // Item location ItemList.Location itemLocation = new ItemList.Location(); itemLocation.subid = 0; itemLocation.zone= zone; itemLocation.heading = convertHeading(Heading); itemLocation.posX = PosX; itemLocation.posY = PosY; itemLocation.posZ = PosZ; newItem.position.Add(itemLocation); myList.Add(newItem); Could you help me with advices on how my class structure and lists should look like ? Are there better ways to interate with the lists to get lastWaypoint of a GUID or verify wether an item exist or not ? What else would you advise me in general ? PS: If you have any questions or if there is something I missed to post please let me know and I will update it.

    Read the article

  • How can I Include Multiples Tables in my linq to entities eager loading using mvc4 C#

    - by EBENEZER CURVELLO
    I have 6 classes and I try to use linq to Entities to get the SiglaUF information of the last deeper table (in the view - MVC). The problem is I receive the following error: "The ObjectContext instance has been disposed and can no longer be used for operations that require a connection." The view is like that: > @model IEnumerable<DiskPizzaDelivery.Models.EnderecoCliente> > @foreach (var item in Model) { > @Html.DisplayFor(modelItem => item.CEP.Cidade.UF.SiglaUF) > } The query that i use: var cliente = context.Clientes .Include(e => e.Enderecos) .Include(e1 => e1.Enderecos.Select(cep => cep.CEP)) .SingleOrDefault(); The question is: How Can I improve this query to pre loading (eager loading) "Cidade" and "UF"? See below the classes: public partial class Cliente { [Key] [DatabaseGeneratedAttribute(DatabaseGeneratedOption.Identity)] public int IdCliente { get; set; } public string Email { get; set; } public string Senha { get; set; } public virtual ICollection<EnderecoCliente> Enderecos { get; set; } } public partial class EnderecoCliente { public int IdEndereco { get; set; } public int IdCliente { get; set; } public string CEPEndereco { get; set; } public string Numero { get; set; } public string Complemento { get; set; } public string PontoReferencia { get; set; } public virtual Cliente Cliente { get; set; } public virtual CEP CEP { get; set; } } public partial class CEP { public string CodCep { get; set; } public string Tipo_Logradouro { get; set; } public string Logradouro { get; set; } public string Bairro { get; set; } public int CodigoUF { get; set; } public int CodigoCidade { get; set; } public virtual Cidade Cidade { get; set; } } public partial class Cidade { public int CodigoCidade { get; set; } public string NomeCidade { get; set; } public int CodigoUF { get; set; } public virtual ICollection<CEP> CEPs { get; set; } public virtual UF UF { get; set; } public virtual ICollection<UF> UFs { get; set; } } public partial class UF { public int CodigoUF { get; set; } public string SiglaUF { get; set; } public string NomeUF { get; set; } public int CodigoCidadeCapital { get; set; } public virtual ICollection<Cidade> Cidades { get; set; } public virtual Cidade Cidade { get; set; } } var cliente = context.Clientes .Where(c => c.Email == email) .Where(c => c.Senha == senha) .Include(e => e.Enderecos) .Include(e1 => e1.Enderecos.Select(cep => cep.CEP)) .SingleOrDefault(); Thanks!

    Read the article

  • Cant update table in using isset

    - by Ali Munandar
    I have a table called settings, when I would change or enter data into the form it did not change the data in the table. In addition on form an image upload file is not running, There may be the wrong code below. <div class="maintitle">Site Settings</div> <?php $act=isset($_GET['act'])?$_GET['act']:""; if($act=='sub'){ $name=isset($_POST['site'])?$_POST['site']:""; $keys=isset($_POST['keywords'])?$_POST['keywords']:""; $desc=isset($_POST['descrp'])?$_POST['descrp']:""; $email=isset($_POST['email'])?$_POST['email']:""; $fbpage=isset($_POST['fbpage'])?$_POST['fbpage']:""; $twitter=isset($_POST['twitter'])?$_POST['twitter']:""; $gplus=isset($_POST['gplus'])?$_POST['gplus']:""; $disclaimer=isset($_POST['disclaimer'])?$_POST['disclaimer']:""; $template=isset($_POST['template'])?$_POST['template']:""; mysql_query("UPDATE settings SET site='$name',keywords='$keys',descrp='$desc',email='$email',fbpage='$fbpage',twitter='$twitter',gplus='$gplus',disclaimer='$disclaimer',template='$template' WHERE id=1"); if($_FILES["file"]["name"]!=''){ move_uploaded_file($_FILES["file"]["tmp_name"], "../images/logo.png"); }?> <div class="infomsgbox">Settings updated successfully.</div> <?php } $q=mysql_query("select * from settings where id=1"); $s=mysql_fetch_assoc($q); ?> <div class="box"> <div class="inbox"> <!--form--> <form action="index.php?act=sub" method="post" enctype="multipart/form-data"> <label class="artlbl">Site Name</label> <div class="formdiv"> <input type="text" name='site' value='<?php echo $s['name']?>'/> </div> <label class="artlbl">Logo (264px x 85px)</label> <div class="formdiv"> <input type='file' class="file" name='file'/> </div> <div class="clear"></div> <label class="artlbl">Meta Keywords (Separated by Commas)</label> <div class="formdiv"> <textarea name='keywords' cols=40 rows=5 ><?php echo $s['keywords']?></textarea> </div> <label class="artlbl">Meta Description</label> <div class="formdiv"> <textarea name='descrp' cols=40 rows=5 ><?php echo $s['descrp']?></textarea> </div> <label class="artlbl">Email</label> <div class="formdiv"> <input type="text" name='email' value='<?php echo $s['email']?>'/> </div> <label class="artlbl">Facebook Fan Page</label> <div class="formdiv"> <input type="text" name='fbpage' value='<?php echo $s['fbpage']?>'/> </div> <label class="artlbl">Twitter URL</label> <div class="formdiv"> <input type="text" name='twitter' value='<?php echo $s['twitter']?>'/> </div> <label class="artlbl">Google+ URL</label> <div class="formdiv"> <input type="text" name='gplus' value='<?php echo $s['gplus']?>'/> </div> <label class="artlbl">Site Disclaimer</label> <div class="formdiv"> <textarea name='disclaimer' cols=40 rows=5 ><?php echo $s['disclaimer']?></textarea> </div> <label class="artlbl">Template</label> <div class="formdiv"> <select name="template" id="template"> <option value="<?php echo $s['template'];?>"><?php echo ucfirst($s['template']);?></option> <?php foreach(glob('../templates/*', GLOB_ONLYDIR) as $dir) { $TemplateDir = substr($dir, 13); $TemplateName = ucfirst($TemplateDir) ?> <option value="<?php echo $TemplateDir;?>"><?php echo $TemplateName;?></option> <?php }?> </select> </div> <div class="clear"></div> </br> <div class="formdiv"> <div class="sbutton"><input type="submit" id="submit" value="Update Site Settings"/></div> </div> </form> </div> </div><!--box--> Maybe someone can help me Related to this.

    Read the article

  • How do I update mysql database when posting form without using hidden inputs?

    - by user1322707
    I have a "members" table in mysql which has approximately 200 field names. Each user is given up to 7 website templates with 26 different values they can insert unique data into for each template. Each time they create a template, they post the form with the 26 associated values. These 26 field names are the same for each template, but are differentiated by an integer at the end, ie _1, _2, ... _7. In the form submitting the template, I have a variable called $pid_sum which is inserted at the end of each field name to identify which template they are creating. For instance: <form method='post' action='create.template.php'> <input type='hidden' name='address_1' value='address_1'> <input type='hidden' name='city_1' value='city_1'> <input type='hidden' name='state_1' value='state_1'> etc... <input type='hidden' name='address_1' value='address_2'> <input type='hidden' name='city_1' value='city_2'> <input type='hidden' name='state_1' value='state_2'> etc... <input type='hidden' name='address_2' value='address_3'> <input type='hidden' name='city_2' value='city_3'> <input type='hidden' name='state_2' value='state_3'> etc... <input type='hidden' name='address_2' value='address_4'> <input type='hidden' name='city_2' value='city_4'> <input type='hidden' name='state_2' value='state_4'> etc... <input type='hidden' name='address_2' value='address_5'> <input type='hidden' name='city_2' value='city_5'> <input type='hidden' name='state_2' value='state_5'> etc... <input type='hidden' name='address_2' value='address_6'> <input type='hidden' name='city_2' value='city_6'> <input type='hidden' name='state_2' value='state_6'> etc... <input type='hidden' name='address_2' value='address_7'> <input type='hidden' name='city_2' value='city_7'> <input type='hidden' name='state_2' value='state_7'> etc... // Visible form user fills out in creating their template ($pid_sum converts // into an integer 1-7, depending on what template they are filling out) <input type='' name='address_$pid_sum'> <input type='' name='city_$pid_sum'> <input type='' name='state_$pid_sum'> etc... <input type='submit' name='save_button' id='save_button' value='Save Settings'> <form> Each of these need updated in a hidden input tag with each form post, or the values in the database table (which aren't submitted with the form) get deleted. So I am forced to insert approximately 175 hidden input tags with every creation of 26 new values for one of the 7 templates. Is there a PHP function or command that would enable me to update all these values without inserting 175 hidden input tags within each form post? Here is the create.template.php file which the form action calls: <?php $q=new Cdb; $t->set_file("content", "create_template.html"); $q2=new CDB; $query="SELECT menu_category FROM menus WHERE link='create.template.ag.php'"; $q2->query($query); $toall=0; if ($q2->nf()<1) { $toall=1; } while ($q2->next_record()) { if ($q2->f('menu_category')=="main") { $toall=1; } } if ($toall==0) { get_logged_info(); $q2=new CDB; $query="SELECT id FROM menus WHERE link='create_template.php'"; $q2->query($query); $q2->next_record(); $query="SELECT membership_id FROM menu_permissions WHERE menu_item='".$q2->f("id")."'"; $q2->query($query); while ($q2->next_record()) { $permissions[]=$q2->f("membership_id"); } if (count($permissions)>0) { $error='<center><font color="red"><b>You do not have access to this area!<br><br>Upgrade your membership level!</b></font></center>'; foreach ($permissions as $value) { if ($value==$q->f("membership_id")) { $error=''; break; } } if ($error!="") { die("$error"); } } } $member_id=$q->f("id"); $pid=$q->f("pid"); $pid_sum = $pid +1; $first_name=$q->f("first_name"); $last_name=$q->f("last_name"); $email=$q->f("email"); echo " // THIS IS WHERE THE HTML FORM GOES "; replace_tags_t($q->f("id"), $t); ?>

    Read the article

  • How to optimize method's that track metrics in 3rd party application?

    - by WulfgarPro
    Hi, I have two listboxes that keep updated lists of various objects roaming in a 3rd party application. When a user selects an object from a listbox, an event handler is fired, calling a method that gathers various metrics belonging to that object from the 3rd party application for displaying in a set of textboxes. This is slow! I am not sure how to optimize this functionality to facilitate greater speeds.. private void lsbUavs_SelectedIndexChanged(object sender, EventArgs e) { if (_ourSelectedUavFromListBox != null) { UtilStkScenario.ChangeUavColourOnScenario(_ourSelectedUavFromListBox.UavName, false); } if (lsbUavs.SelectedItem != null) { Uav ourUav = UtilStkScenario.FindUavFromScenarioBasedOnName(lsbUavs.SelectedItem.ToString()); hsbThrottle.Value = (int)ourUav.ThrottleValue; UtilStkScenario.ChangeUavColourOnScenario(ourUav.UavName, true); _ourSelectedUavFromListBox = ourUav; // we don't want this thread spawning many times if (tUpdateMetricInformationInTabControl != null) { if (tUpdateMetricInformationInTabControl.IsAlive) { tUpdateMetricInformationInTabControl.Abort(); } } tUpdateMetricInformationInTabControl = new Thread(UpdateMetricInformationInTabControl); tUpdateMetricInformationInTabControl.Name = "UpdateMetricInformationInTabControlUavs"; tUpdateMetricInformationInTabControl.IsBackground = true; tUpdateMetricInformationInTabControl.Start(lsbUavs); } } delegate string GetNameOfListItem(ListBox listboxId); delegate void SetTextBoxValue(TextBox textBoxId, string valueToSet); private void UpdateMetricInformationInTabControl(object listBoxToUpdate) { ListBox theListBoxToUpdate = (ListBox)listBoxToUpdate; GetNameOfListItem dGetNameOfListItem = new GetNameOfListItem(GetNameOfSelectedListItem); SetTextBoxValue dSetTextBoxValue = new SetTextBoxValue(SetNamedTextBoxValue); try { foreach (KeyValuePair<string, IAgStkObject> entity in UtilStkScenario._totalListOfAllStkObjects) { if (entity.Key.ToString() == (string)theListBoxToUpdate.Invoke(dGetNameOfListItem, theListBoxToUpdate)) { while ((string)theListBoxToUpdate.Invoke(dGetNameOfListItem, theListBoxToUpdate) == entity.Key.ToString()) { if (theListBoxToUpdate.Name == "lsbEntities") { double[] latLonAndAltOfEntity = UtilStkScenario.FindMetricsOfStkObjectOnScenario(UtilStkScenario._stkObjectRoot.CurrentTime, entity.Value); SetEntityOrUavMetricValuesInTextBoxes(dSetTextBoxValue, "Entity", entity.Key, "", "", "", "", latLonAndAltOfEntity[4].ToString(), latLonAndAltOfEntity[3].ToString()); } else if (theListBoxToUpdate.Name == "lsbUavs") { double[] latLonAndAltOfEntity = UtilStkScenario.FindMetricsOfStkObjectOnScenario(UtilStkScenario._stkObjectRoot.CurrentTime, entity.Value); SetEntityOrUavMetricValuesInTextBoxes(dSetTextBoxValue, "UAV", entity.Key, entity.Value.ClassName.ToString(), latLonAndAltOfEntity[0].ToString(), latLonAndAltOfEntity[1].ToString(), latLonAndAltOfEntity[2].ToString(), latLonAndAltOfEntity[4].ToString(), latLonAndAltOfEntity[3].ToString()); } } } } } catch (Exception e) { // selected entity was deleted(end-of-life) in STK - remove LLA information from GUI if (theListBoxToUpdate.Name == "lsbEntities") { SetEntityOrUavMetricValuesInTextBoxes(dSetTextBoxValue, "Entity", "", "", "", "", "", "", ""); UtilLog.Log(e.Message.ToString(), e.GetType().ToString(), "UpdateMetricInformationInTabControl", UtilLog.logWriter); } else if (theListBoxToUpdate.Name == "lsbUavs") { SetEntityOrUavMetricValuesInTextBoxes(dSetTextBoxValue, "UAV", "", "", "", "", "", "", ""); UtilLog.Log(e.Message.ToString(), e.GetType().ToString(), "UpdateMetricInformationInTabControl", UtilLog.logWriter); } } } internal static double[] FindMetricsOfStkObjectOnScenario(object timeToFindMetricState, IAgStkObject stkObject) { double[] stkObjectMetrics = null; try { stkObjectMetrics = new double[5]; object latOfStkObject, lonOfStkObject; double altOfStkObject, headingOfStkObject, velocityOfStkObject; IAgProvideSpatialInfo spatial = stkObject as IAgProvideSpatialInfo; IAgVeSpatialInfo spatialInfo = spatial.GetSpatialInfo(false); IAgSpatialState spatialState = spatialInfo.GetState(timeToFindMetricState); spatialState.FixedPosition.QueryPlanetodetic(out latOfStkObject, out lonOfStkObject, out altOfStkObject); double[] stkObjectheadingAndVelocity = FindHeadingAndVelocityOfStkObjectFromScenario(stkObject.InstanceName); headingOfStkObject = stkObjectheadingAndVelocity[0]; velocityOfStkObject = stkObjectheadingAndVelocity[1]; stkObjectMetrics[0] = (double)latOfStkObject; stkObjectMetrics[1] = (double)lonOfStkObject; stkObjectMetrics[2] = altOfStkObject; stkObjectMetrics[3] = headingOfStkObject; stkObjectMetrics[4] = velocityOfStkObject; } catch (Exception e) { UtilLog.Log(e.Message.ToString(), e.GetType().ToString(), "FindMetricsOfStkObjectOnScenario", UtilLog.logWriter); } return stkObjectMetrics; } private static double[] FindHeadingAndVelocityOfStkObjectFromScenario(string stkObjectName) { double[] stkObjectHeadingAndVelocity = new double[2]; IAgStkObject stkUavObject = null; try { string typeOfObject = CheckIfStkObjectIsEntityOrUav(stkObjectName); if (typeOfObject == "UAV") { stkUavObject = _stkObjectRootToIsolateForUavs.CurrentScenario.Children[stkObjectName]; IAgDataProviderGroup group = (IAgDataProviderGroup)stkUavObject.DataProviders["Heading"]; IAgDataProvider provider = (IAgDataProvider)group.Group["Fixed"]; IAgDrResult result = ((IAgDataPrvTimeVar)provider).ExecSingle(_stkObjectRootToIsolateForUavs.CurrentTime); stkObjectHeadingAndVelocity[0] = (double)result.DataSets[1].GetValues().GetValue(0); stkObjectHeadingAndVelocity[1] = (double)result.DataSets[4].GetValues().GetValue(0); } else if (typeOfObject == "Entity") { IAgStkObject stkEntityObject = _stkObjectRootToIsolateForEntities.CurrentScenario.Children[stkObjectName]; IAgDataProviderGroup group = (IAgDataProviderGroup)stkEntityObject.DataProviders["Heading"]; IAgDataProvider provider = (IAgDataProvider)group.Group["Fixed"]; IAgDrResult result = ((IAgDataPrvTimeVar)provider).ExecSingle(_stkObjectRootToIsolateForEntities.CurrentTime); stkObjectHeadingAndVelocity[0] = (double)result.DataSets[1].GetValues().GetValue(0); stkObjectHeadingAndVelocity[1] = (double)result.DataSets[4].GetValues().GetValue(0); } } catch (Exception e) { UtilLog.Log(e.Message.ToString(), e.GetType().ToString(), "FindHeadingAndVelocityOfStkObjectFromScenario", UtilLog.logWriter); } return stkObjectHeadingAndVelocity; } Any help would be really appreciated. From my knowledge, I cant really see any issues with the C#. Maybe it has to do with the methodology I'm using.. maybe some kind of caching mechanism is required - this is not natively available. WulfgarPro

    Read the article

  • Rendering ASP.NET Script References into the Html Header

    - by Rick Strahl
    One thing that I’ve come to appreciate in control development in ASP.NET that use JavaScript is the ability to have more control over script and script include placement than ASP.NET provides natively. Specifically in ASP.NET you can use either the ClientScriptManager or ScriptManager to embed scripts and script references into pages via code. This works reasonably well, but the script references that get generated are generated into the HTML body and there’s very little operational control for placement of scripts. If you have multiple controls or several of the same control that need to place the same scripts onto the page it’s not difficult to end up with scripts that render in the wrong order and stop working correctly. This is especially critical if you load script libraries with dependencies either via resources or even if you are rendering referenced to CDN resources. Natively ASP.NET provides a host of methods that help embedding scripts into the page via either Page.ClientScript or the ASP.NET ScriptManager control (both with slightly different syntax): RegisterClientScriptBlock Renders a script block at the top of the HTML body and should be used for embedding callable functions/classes. RegisterStartupScript Renders a script block just prior to the </form> tag and should be used to for embedding code that should execute when the page is first loaded. Not recommended – use jQuery.ready() or equivalent load time routines. RegisterClientScriptInclude Embeds a reference to a script from a url into the page. RegisterClientScriptResource Embeds a reference to a Script from a resource file generating a long resource file string All 4 of these methods render their <script> tags into the HTML body. The script blocks give you a little bit of control by having a ‘top’ and ‘bottom’ of the document location which gives you some flexibility over script placement and precedence. Script includes and resource url unfortunately do not even get that much control – references are simply rendered into the page in the order of declaration. The ASP.NET ScriptManager control facilitates this task a little bit with the abililty to specify scripts in code and the ability to programmatically check what scripts have already been registered, but it doesn’t provide any more control over the script rendering process itself. Further the ScriptManager is a bear to deal with generically because generic code has to always check and see if it is actually present. Some time ago I posted a ClientScriptProxy class that helps with managing the latter process of sending script references either to ClientScript or ScriptManager if it’s available. Since I last posted about this there have been a number of improvements in this API, one of which is the ability to control placement of scripts and script includes in the page which I think is rather important and a missing feature in the ASP.NET native functionality. Handling ScriptRenderModes One of the big enhancements that I’ve come to rely on is the ability of the various script rendering functions described above to support rendering in multiple locations: /// <summary> /// Determines how scripts are included into the page /// </summary> public enum ScriptRenderModes { /// <summary> /// Inherits the setting from the control or from the ClientScript.DefaultScriptRenderMode /// </summary> Inherit, /// Renders the script include at the location of the control /// </summary> Inline, /// <summary> /// Renders the script include into the bottom of the header of the page /// </summary> Header, /// <summary> /// Renders the script include into the top of the header of the page /// </summary> HeaderTop, /// <summary> /// Uses ClientScript or ScriptManager to embed the script include to /// provide standard ASP.NET style rendering in the HTML body. /// </summary> Script, /// <summary> /// Renders script at the bottom of the page before the last Page.Controls /// literal control. Note this may result in unexpected behavior /// if /body and /html are not the last thing in the markup page. /// </summary> BottomOfPage } This enum is then applied to the various Register functions to allow more control over where scripts actually show up. Why is this useful? For me I often render scripts out of control resources and these scripts often include things like a JavaScript Library (jquery) and a few plug-ins. The order in which these can be loaded is critical so that jQuery.js always loads before any plug-in for example. Typically I end up with a general script layout like this: Core Libraries- HeaderTop Plug-ins: Header ScriptBlocks: Header or Script depending on other dependencies There’s also an option to render scripts and CSS at the very bottom of the page before the last Page control on the page which can be useful for speeding up page load when lots of scripts are loaded. The API syntax of the ClientScriptProxy methods is closely compatible with ScriptManager’s using static methods and control references to gain access to the page and embedding scripts. For example, to render some script into the current page in the header: // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Same again - shouldn't be rendered because it's the same id ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Create a second script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function2", "function helloWorld2() { alert('hello2'); }", true, ScriptRenderModes.Header); // This just calls ClientScript and renders into bottom of document ClientScriptProxy.Current.RegisterStartupScript(this,typeof(ControlResources), "call_hello", "helloWorld();helloWorld2();", true); which generates: <html xmlns="http://www.w3.org/1999/xhtml" > <head><title> </title> <script type="text/javascript"> function helloWorld() { alert('hello'); } </script> <script type="text/javascript"> function helloWorld2() { alert('hello2'); } </script> </head> <body> … <script type="text/javascript"> //<![CDATA[ helloWorld();helloWorld2();//]]> </script> </form> </body> </html> Note that the scripts are generated into the header rather than the body except for the last script block which is the call to RegisterStartupScript. In general I wouldn’t recommend using RegisterStartupScript – ever. It’s a much better practice to use a script base load event to handle ‘startup’ code that should fire when the page first loads. So instead of the code above I’d actually recommend doing: ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "call_hello", "$().ready( function() { alert('hello2'); });", true, ScriptRenderModes.Header); assuming you’re using jQuery on the page. For script includes from a Url the following demonstrates how to embed scripts into the header. This example injects a jQuery and jQuery.UI script reference from the Google CDN then checks each with a script block to ensure that it has loaded and if not loads it from a server local location: // load jquery from CDN ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js", ScriptRenderModes.HeaderTop); // check if jquery loaded - if it didn't we're not online string scriptCheck = @"if (typeof jQuery != 'object') document.write(unescape(""%3Cscript src='{0}' type='text/javascript'%3E%3C/script%3E""));"; string jQueryUrl = ClientScriptProxy.Current.GetWebResourceUrl(this, typeof(ControlResources), ControlResources.JQUERY_SCRIPT_RESOURCE); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jquery_register", string.Format(scriptCheck,jQueryUrl),true, ScriptRenderModes.HeaderTop); // Load jquery-ui from cdn ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js", ScriptRenderModes.Header); // check if we need to load from local string jQueryUiUrl = ResolveUrl("~/scripts/jquery-ui-custom.min.js"); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jqueryui_register", string.Format(scriptCheck, jQueryUiUrl), true, ScriptRenderModes.Header); // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "$().ready( function() { alert('hello'); });", true, ScriptRenderModes.Header); which in turn generates this HTML: <html xmlns="http://www.w3.org/1999/xhtml" > <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/WebResource.axd?d=DIykvYhJ_oXCr-TA_dr35i4AayJoV1mgnQAQGPaZsoPM2LCdvoD3cIsRRitHKlKJfV5K_jQvylK7tsqO3lQIFw2&t=633979863959332352' type='text/javascript'%3E%3C/script%3E")); </script> <title> </title> <script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/scripts/jquery-ui-custom.min.js' type='text/javascript'%3E%3C/script%3E")); </script> <script type="text/javascript"> $().ready(function() { alert('hello'); }); </script> </head> <body> …</body> </html> As you can see there’s a bit more control in this process as you can inject both script includes and script blocks into the document at the top or bottom of the header, plus if necessary at the usual body locations. This is quite useful especially if you create custom server controls that interoperate with script and have certain dependencies. The above is a good example of a useful switchable routine where you can switch where scripts load from by default – the above pulls from Google CDN but a configuration switch may automatically switch to pull from the local development copies if your doing development for example. How does it work? As mentioned the ClientScriptProxy object mimicks many of the ScriptManager script related methods and so provides close API compatibility with it although it contains many additional overloads that enhance functionality. It does however work against ScriptManager if it’s available on the page, or Page.ClientScript if it’s not so it provides a single unified frontend to script access. There are however many overloads of the original SM methods like the above to provide additional functionality. The implementation of script header rendering is pretty straight forward – as long as a server header (ie. it has to have runat=”server” set) is available. Otherwise these routines fall back to using the default document level insertions of ScriptManager/ClientScript. Given that there is a server header it’s relatively easy to generate the script tags and code and append them to the header either at the top or bottom. I suspect Microsoft didn’t provide header rendering functionality precisely because a runat=”server” header is not required by ASP.NET so behavior would be slightly unpredictable. That’s not really a problem for a custom implementation however. Here’s the RegisterClientScriptBlock implementation that takes a ScriptRenderModes parameter to allow header rendering: /// <summary> /// Renders client script block with the option of rendering the script block in /// the Html header /// /// For this to work Header must be defined as runat="server" /// </summary> /// <param name="control">any control that instance typically page</param> /// <param name="type">Type that identifies this rendering</param> /// <param name="key">unique script block id</param> /// <param name="script">The script code to render</param> /// <param name="addScriptTags">Ignored for header rendering used for all other insertions</param> /// <param name="renderMode">Where the block is rendered</param> public void RegisterClientScriptBlock(Control control, Type type, string key, string script, bool addScriptTags, ScriptRenderModes renderMode) { if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; if (control.Page.Header == null || renderMode != ScriptRenderModes.HeaderTop && renderMode != ScriptRenderModes.Header && renderMode != ScriptRenderModes.BottomOfPage) { RegisterClientScriptBlock(control, type, key, script, addScriptTags); return; } // No dupes - ref script include only once const string identifier = "scriptblock_"; if (HttpContext.Current.Items.Contains(identifier + key)) return; HttpContext.Current.Items.Add(identifier + key, string.Empty); StringBuilder sb = new StringBuilder(); // Embed in header sb.AppendLine("\r\n<script type=\"text/javascript\">"); sb.AppendLine(script); sb.AppendLine("</script>"); int? index = HttpContext.Current.Items["__ScriptResourceIndex"] as int?; if (index == null) index = 0; if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if(renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1,new LiteralControl(sb.ToString())); HttpContext.Current.Items["__ScriptResourceIndex"] = index; } Note that the routine has to keep track of items inserted by id so that if the same item is added again with the same key it won’t generate two script entries. Additionally the code has to keep track of how many insertions have been made at the top of the document so that entries are added in the proper order. The RegisterScriptInclude method is similar but there’s some additional logic in here to deal with script file references and ClientScriptProxy’s (optional) custom resource handler that provides script compression /// <summary> /// Registers a client script reference into the page with the option to specify /// the script location in the page /// </summary> /// <param name="control">Any control instance - typically page</param> /// <param name="type">Type that acts as qualifier (uniqueness)</param> /// <param name="url">the Url to the script resource</param> /// <param name="ScriptRenderModes">Determines where the script is rendered</param> public void RegisterClientScriptInclude(Control control, Type type, string url, ScriptRenderModes renderMode) { const string STR_ScriptResourceIndex = "__ScriptResourceIndex"; if (string.IsNullOrEmpty(url)) return; if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; // Extract just the script filename string fileId = null; // Check resource IDs and try to match to mapped file resources // Used to allow scripts not to be loaded more than once whether // embedded manually (script tag) or via resources with ClientScriptProxy if (url.Contains(".axd?r=")) { string res = HttpUtility.UrlDecode( StringUtils.ExtractString(url, "?r=", "&", false, true) ); foreach (ScriptResourceAlias item in ScriptResourceAliases) { if (item.Resource == res) { fileId = item.Alias + ".js"; break; } } if (fileId == null) fileId = url.ToLower(); } else fileId = Path.GetFileName(url).ToLower(); // No dupes - ref script include only once const string identifier = "script_"; if (HttpContext.Current.Items.Contains( identifier + fileId ) ) return; HttpContext.Current.Items.Add(identifier + fileId, string.Empty); // just use script manager or ClientScriptManager if (control.Page.Header == null || renderMode == ScriptRenderModes.Script || renderMode == ScriptRenderModes.Inline) { RegisterClientScriptInclude(control, type,url, url); return; } // Retrieve script index in header int? index = HttpContext.Current.Items[STR_ScriptResourceIndex] as int?; if (index == null) index = 0; StringBuilder sb = new StringBuilder(256); url = WebUtils.ResolveUrl(url); // Embed in header sb.AppendLine("\r\n<script src=\"" + url + "\" type=\"text/javascript\"></script>"); if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if (renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1, new LiteralControl(sb.ToString())); HttpContext.Current.Items[STR_ScriptResourceIndex] = index; } There’s a little more code here that deals with cleaning up the passed in Url and also some custom handling of script resources that run through the ScriptCompressionModule – any script resources loaded in this fashion are automatically cached based on the resource id. Raw urls extract just the filename from the URL and cache based on that. All of this to avoid doubling up of scripts if called multiple times by multiple instances of the same control for example or several controls that all load the same resources/includes. Finally RegisterClientScriptResource utilizes the previous method to wrap the WebResourceUrl as well as some custom functionality for the resource compression module: /// <summary> /// Returns a WebResource or ScriptResource URL for script resources that are to be /// embedded as script includes. /// </summary> /// <param name="control">Any control</param> /// <param name="type">A type in assembly where resources are located</param> /// <param name="resourceName">Name of the resource to load</param> /// <param name="renderMode">Determines where in the document the link is rendered</param> public void RegisterClientScriptResource(Control control, Type type, string resourceName, ScriptRenderModes renderMode) { string resourceUrl = GetClientScriptResourceUrl(control, type, resourceName); RegisterClientScriptInclude(control, type, resourceUrl, renderMode); } /// <summary> /// Works like GetWebResourceUrl but can be used with javascript resources /// to allow using of resource compression (if the module is loaded). /// </summary> /// <param name="control"></param> /// <param name="type"></param> /// <param name="resourceName"></param> /// <returns></returns> public string GetClientScriptResourceUrl(Control control, Type type, string resourceName) { #if IncludeScriptCompressionModuleSupport // If wwScriptCompression Module through Web.config is loaded use it to compress // script resources by using wcSC.axd Url the module intercepts if (ScriptCompressionModule.ScriptCompressionModuleActive) { string url = "~/wwSC.axd?r=" + HttpUtility.UrlEncode(resourceName); if (type.Assembly != GetType().Assembly) url += "&t=" + HttpUtility.UrlEncode(type.FullName); return WebUtils.ResolveUrl(url); } #endif return control.Page.ClientScript.GetWebResourceUrl(type, resourceName); } This code merely retrieves the resource URL and then simply calls back to RegisterClientScriptInclude with the URL to be embedded which means there’s nothing specific to deal with other than the custom compression module logic which is nice and easy. What else is there in ClientScriptProxy? ClientscriptProxy also provides a few other useful services beyond what I’ve already covered here: Transparent ScriptManager and ClientScript calls ClientScriptProxy includes a host of routines that help figure out whether a script manager is available or not and all functions in this class call the appropriate object – ScriptManager or ClientScript – that is available in the current page to ensure that scripts get embedded into pages properly. This is especially useful for control development where controls have no control over the scripting environment in place on the page. RegisterCssLink and RegisterCssResource Much like the script embedding functions these two methods allow embedding of CSS links. CSS links are appended to the header or to a form declared with runat=”server”. LoadControlScript Is a high level resource loading routine that can be used to easily switch between different script linking modes. It supports loading from a WebResource, a url or not loading anything at all. This is very useful if you build controls that deal with specification of resource urls/ids in a standard way. Check out the full Code You can check out the full code to the ClientScriptProxyClass here: ClientScriptProxy.cs ClientScriptProxy Documentation (class reference) Note that the ClientScriptProxy has a few dependencies in the West Wind Web Toolkit of which it is part of. ControlResources holds a few standard constants and script resource links and the ScriptCompressionModule which is referenced in a few of the script inclusion methods. There’s also another useful ScriptContainer companion control  to the ClientScriptProxy that allows scripts to be placed onto the page’s markup including the ability to specify the script location and script minification options. You can find all the dependencies in the West Wind Web Toolkit repository: West Wind Web Toolkit Repository West Wind Web Toolkit Home Page© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  JavaScript  

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • Using Durandal to Create Single Page Apps

    - by Stephen.Walther
    A few days ago, I gave a talk on building Single Page Apps on the Microsoft Stack. In that talk, I recommended that people use Knockout, Sammy, and RequireJS to build their presentation layer and use the ASP.NET Web API to expose data from their server. After I gave the talk, several people contacted me and suggested that I investigate a new open-source JavaScript library named Durandal. Durandal stitches together Knockout, Sammy, and RequireJS to make it easier to use these technologies together. In this blog entry, I want to provide a brief walkthrough of using Durandal to create a simple Single Page App. I am going to demonstrate how you can create a simple Movies App which contains (virtual) pages for viewing a list of movies, adding new movies, and viewing movie details. The goal of this blog entry is to give you a sense of what it is like to build apps with Durandal. Installing Durandal First things first. How do you get Durandal? The GitHub project for Durandal is located here: https://github.com/BlueSpire/Durandal The Wiki — located at the GitHub project — contains all of the current documentation for Durandal. Currently, the documentation is a little sparse, but it is enough to get you started. Instead of downloading the Durandal source from GitHub, a better option for getting started with Durandal is to install one of the Durandal NuGet packages. I built the Movies App described in this blog entry by first creating a new ASP.NET MVC 4 Web Application with the Basic Template. Next, I executed the following command from the Package Manager Console: Install-Package Durandal.StarterKit As you can see from the screenshot of the Package Manager Console above, the Durandal Starter Kit package has several dependencies including: · jQuery · Knockout · Sammy · Twitter Bootstrap The Durandal Starter Kit package includes a sample Durandal application. You can get to the Starter Kit app by navigating to the Durandal controller. Unfortunately, when I first tried to run the Starter Kit app, I got an error because the Starter Kit is hard-coded to use a particular version of jQuery which is already out of date. You can fix this issue by modifying the App_Start\DurandalBundleConfig.cs file so it is jQuery version agnostic like this: bundles.Add( new ScriptBundle("~/scripts/vendor") .Include("~/Scripts/jquery-{version}.js") .Include("~/Scripts/knockout-{version}.js") .Include("~/Scripts/sammy-{version}.js") // .Include("~/Scripts/jquery-1.9.0.min.js") // .Include("~/Scripts/knockout-2.2.1.js") // .Include("~/Scripts/sammy-0.7.4.min.js") .Include("~/Scripts/bootstrap.min.js") ); The recommendation is that you create a Durandal app in a folder off your project root named App. The App folder in the Starter Kit contains the following subfolders and files: · durandal – This folder contains the actual durandal JavaScript library. · viewmodels – This folder contains all of your application’s view models. · views – This folder contains all of your application’s views. · main.js — This file contains all of the JavaScript startup code for your app including the client-side routing configuration. · main-built.js – This file contains an optimized version of your application. You need to build this file by using the RequireJS optimizer (unfortunately, before you can run the optimizer, you must first install NodeJS). For the purpose of this blog entry, I wanted to start from scratch when building the Movies app, so I deleted all of these files and folders except for the durandal folder which contains the durandal library. Creating the ASP.NET MVC Controller and View A Durandal app is built using a single server-side ASP.NET MVC controller and ASP.NET MVC view. A Durandal app is a Single Page App. When you navigate between pages, you are not navigating to new pages on the server. Instead, you are loading new virtual pages into the one-and-only-one server-side view. For the Movies app, I created the following ASP.NET MVC Home controller: public class HomeController : Controller { public ActionResult Index() { return View(); } } There is nothing special about the Home controller – it is as basic as it gets. Next, I created the following server-side ASP.NET view. This is the one-and-only server-side view used by the Movies app: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that I set the Layout property for the view to the value null. If you neglect to do this, then the default ASP.NET MVC layout will be applied to the view and you will get the <!DOCTYPE> and opening and closing <html> tags twice. Next, notice that the view contains a DIV element with the Id applicationHost. This marks the area where virtual pages are loaded. When you navigate from page to page in a Durandal app, HTML page fragments are retrieved from the server and stuck in the applicationHost DIV element. Inside the applicationHost element, you can place any content which you want to display when a Durandal app is starting up. For example, you can create a fancy splash screen. I opted for simply displaying the text “Loading app…”: Next, notice the view above includes a call to the Scripts.Render() helper. This helper renders out all of the JavaScript files required by the Durandal library such as jQuery and Knockout. Remember to fix the App_Start\DurandalBundleConfig.cs as described above or Durandal will attempt to load an old version of jQuery and throw a JavaScript exception and stop working. Your application JavaScript code is not included in the scripts rendered by the Scripts.Render helper. Your application code is loaded dynamically by RequireJS with the help of the following SCRIPT element located at the bottom of the view: <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> The data-main attribute on the SCRIPT element causes RequireJS to load your /app/main.js JavaScript file to kick-off your Durandal app. Creating the Durandal Main.js File The Durandal Main.js JavaScript file, located in your App folder, contains all of the code required to configure the behavior of Durandal. Here’s what the Main.js file looks like in the case of the Movies app: require.config({ paths: { 'text': 'durandal/amd/text' } }); define(function (require) { var app = require('durandal/app'), viewLocator = require('durandal/viewLocator'), system = require('durandal/system'), router = require('durandal/plugins/router'); //>>excludeStart("build", true); system.debug(true); //>>excludeEnd("build"); app.start().then(function () { //Replace 'viewmodels' in the moduleId with 'views' to locate the view. //Look for partial views in a 'views' folder in the root. viewLocator.useConvention(); //configure routing router.useConvention(); router.mapNav("movies/show"); router.mapNav("movies/add"); router.mapNav("movies/details/:id"); app.adaptToDevice(); //Show the app by setting the root view model for our application with a transition. app.setRoot('viewmodels/shell', 'entrance'); }); }); There are three important things to notice about the main.js file above. First, notice that it contains a section which enables debugging which looks like this: //>>excludeStart(“build”, true); system.debug(true); //>>excludeEnd(“build”); This code enables debugging for your Durandal app which is very useful when things go wrong. When you call system.debug(true), Durandal writes out debugging information to your browser JavaScript console. For example, you can use the debugging information to diagnose issues with your client-side routes: (The funny looking //> symbols around the system.debug() call are RequireJS optimizer pragmas). The main.js file is also the place where you configure your client-side routes. In the case of the Movies app, the main.js file is used to configure routes for three page: the movies show, add, and details pages. //configure routing router.useConvention(); router.mapNav("movies/show"); router.mapNav("movies/add"); router.mapNav("movies/details/:id");   The route for movie details includes a route parameter named id. Later, we will use the id parameter to lookup and display the details for the right movie. Finally, the main.js file above contains the following line of code: //Show the app by setting the root view model for our application with a transition. app.setRoot('viewmodels/shell', 'entrance'); This line of code causes Durandal to load up a JavaScript file named shell.js and an HTML fragment named shell.html. I’ll discuss the shell in the next section. Creating the Durandal Shell You can think of the Durandal shell as the layout or master page for a Durandal app. The shell is where you put all of the content which you want to remain constant as a user navigates from virtual page to virtual page. For example, the shell is a great place to put your website logo and navigation links. The Durandal shell is composed from two parts: a JavaScript file and an HTML file. Here’s what the HTML file looks like for the Movies app: <h1>Movies App</h1> <div class="container-fluid page-host"> <!--ko compose: { model: router.activeItem, //wiring the router afterCompose: router.afterCompose, //wiring the router transition:'entrance', //use the 'entrance' transition when switching views cacheViews:true //telling composition to keep views in the dom, and reuse them (only a good idea with singleton view models) }--><!--/ko--> </div> And here is what the JavaScript file looks like: define(function (require) { var router = require('durandal/plugins/router'); return { router: router, activate: function () { return router.activate('movies/show'); } }; }); The JavaScript file contains the view model for the shell. This view model returns the Durandal router so you can access the list of configured routes from your shell. Notice that the JavaScript file includes a function named activate(). This function loads the movies/show page as the first page in the Movies app. If you want to create a different default Durandal page, then pass the name of a different age to the router.activate() method. Creating the Movies Show Page Durandal pages are created out of a view model and a view. The view model contains all of the data and view logic required for the view. The view contains all of the HTML markup for rendering the view model. Let’s start with the movies show page. The movies show page displays a list of movies. The view model for the show page looks like this: define(function (require) { var moviesRepository = require("repositories/moviesRepository"); return { movies: ko.observable(), activate: function() { this.movies(moviesRepository.listMovies()); } }; }); You create a view model by defining a new RequireJS module (see http://requirejs.org). You create a RequireJS module by placing all of your JavaScript code into an anonymous function passed to the RequireJS define() method. A RequireJS module has two parts. You retrieve all of the modules which your module requires at the top of your module. The code above depends on another RequireJS module named repositories/moviesRepository. Next, you return the implementation of your module. The code above returns a JavaScript object which contains a property named movies and a method named activate. The activate() method is a magic method which Durandal calls whenever it activates your view model. Your view model is activated whenever you navigate to a page which uses it. In the code above, the activate() method is used to get the list of movies from the movies repository and assign the list to the view model movies property. The HTML for the movies show page looks like this: <table> <thead> <tr> <th>Title</th><th>Director</th> </tr> </thead> <tbody data-bind="foreach:movies"> <tr> <td data-bind="text:title"></td> <td data-bind="text:director"></td> <td><a data-bind="attr:{href:'#/movies/details/'+id}">Details</a></td> </tr> </tbody> </table> <a href="#/movies/add">Add Movie</a> Notice that this is an HTML fragment. This fragment will be stuffed into the page-host DIV element in the shell.html file which is stuffed, in turn, into the applicationHost DIV element in the server-side MVC view. The HTML markup above contains data-bind attributes used by Knockout to display the list of movies (To learn more about Knockout, visit http://knockoutjs.com). The list of movies from the view model is displayed in an HTML table. Notice that the page includes a link to a page for adding a new movie. The link uses the following URL which starts with a hash: #/movies/add. Because the link starts with a hash, clicking the link does not cause a request back to the server. Instead, you navigate to the movies/add page virtually. Creating the Movies Add Page The movies add page also consists of a view model and view. The add page enables you to add a new movie to the movie database. Here’s the view model for the add page: define(function (require) { var app = require('durandal/app'); var router = require('durandal/plugins/router'); var moviesRepository = require("repositories/moviesRepository"); return { movieToAdd: { title: ko.observable(), director: ko.observable() }, activate: function () { this.movieToAdd.title(""); this.movieToAdd.director(""); this._movieAdded = false; }, canDeactivate: function () { if (this._movieAdded == false) { return app.showMessage('Are you sure you want to leave this page?', 'Navigate', ['Yes', 'No']); } else { return true; } }, addMovie: function () { // Add movie to db moviesRepository.addMovie(ko.toJS(this.movieToAdd)); // flag new movie this._movieAdded = true; // return to list of movies router.navigateTo("#/movies/show"); } }; }); The view model contains one property named movieToAdd which is bound to the add movie form. The view model also has the following three methods: 1. activate() – This method is called by Durandal when you navigate to the add movie page. The activate() method resets the add movie form by clearing out the movie title and director properties. 2. canDeactivate() – This method is called by Durandal when you attempt to navigate away from the add movie page. If you return false then navigation is cancelled. 3. addMovie() – This method executes when the add movie form is submitted. This code adds the new movie to the movie repository. I really like the Durandal canDeactivate() method. In the code above, I use the canDeactivate() method to show a warning to a user if they navigate away from the add movie page – either by clicking the Cancel button or by hitting the browser back button – before submitting the add movie form: The view for the add movie page looks like this: <form data-bind="submit:addMovie"> <fieldset> <legend>Add Movie</legend> <div> <label> Title: <input data-bind="value:movieToAdd.title" required /> </label> </div> <div> <label> Director: <input data-bind="value:movieToAdd.director" required /> </label> </div> <div> <input type="submit" value="Add" /> <a href="#/movies/show">Cancel</a> </div> </fieldset> </form> I am using Knockout to bind the movieToAdd property from the view model to the INPUT elements of the HTML form. Notice that the FORM element includes a data-bind attribute which invokes the addMovie() method from the view model when the HTML form is submitted. Creating the Movies Details Page You navigate to the movies details Page by clicking the Details link which appears next to each movie in the movies show page: The Details links pass the movie ids to the details page: #/movies/details/0 #/movies/details/1 #/movies/details/2 Here’s what the view model for the movies details page looks like: define(function (require) { var router = require('durandal/plugins/router'); var moviesRepository = require("repositories/moviesRepository"); return { movieToShow: { title: ko.observable(), director: ko.observable() }, activate: function (context) { // Grab movie from repository var movie = moviesRepository.getMovie(context.id); // Add to view model this.movieToShow.title(movie.title); this.movieToShow.director(movie.director); } }; }); Notice that the view model activate() method accepts a parameter named context. You can take advantage of the context parameter to retrieve route parameters such as the movie Id. In the code above, the context.id property is used to retrieve the correct movie from the movie repository and the movie is assigned to a property named movieToShow exposed by the view model. The movie details view displays the movieToShow property by taking advantage of Knockout bindings: <div> <h2 data-bind="text:movieToShow.title"></h2> directed by <span data-bind="text:movieToShow.director"></span> </div> Summary The goal of this blog entry was to walkthrough building a simple Single Page App using Durandal and to get a feel for what it is like to use this library. I really like how Durandal stitches together Knockout, Sammy, and RequireJS and establishes patterns for using these libraries to build Single Page Apps. Having a standard pattern which developers on a team can use to build new pages is super valuable. Once you get the hang of it, using Durandal to create new virtual pages is dead simple. Just define a new route, view model, and view and you are done. I also appreciate the fact that Durandal did not attempt to re-invent the wheel and that Durandal leverages existing JavaScript libraries such as Knockout, RequireJS, and Sammy. These existing libraries are powerful libraries and I have already invested a considerable amount of time in learning how to use them. Durandal makes it easier to use these libraries together without losing any of their power. Durandal has some additional interesting features which I have not had a chance to play with yet. For example, you can use the RequireJS optimizer to combine and minify all of a Durandal app’s code. Also, Durandal supports a way to create custom widgets (client-side controls) by composing widgets from a controller and view. You can download the code for the Movies app by clicking the following link (this is a Visual Studio 2012 project): Durandal Movie App

    Read the article

  • Node.js Adventure - Host Node.js on Windows Azure Worker Role

    - by Shaun
    In my previous post I demonstrated about how to develop and deploy a Node.js application on Windows Azure Web Site (a.k.a. WAWS). WAWS is a new feature in Windows Azure platform. Since it’s low-cost, and it provides IIS and IISNode components so that we can host our Node.js application though Git, FTP and WebMatrix without any configuration and component installation. But sometimes we need to use the Windows Azure Cloud Service (a.k.a. WACS) and host our Node.js on worker role. Below are some benefits of using worker role. - WAWS leverages IIS and IISNode to host Node.js application, which runs in x86 WOW mode. It reduces the performance comparing with x64 in some cases. - WACS worker role does not need IIS, hence there’s no restriction of IIS, such as 8000 concurrent requests limitation. - WACS provides more flexibility and controls to the developers. For example, we can RDP to the virtual machines of our worker role instances. - WACS provides the service configuration features which can be changed when the role is running. - WACS provides more scaling capability than WAWS. In WAWS we can have at most 3 reserved instances per web site while in WACS we can have up to 20 instances in a subscription. - Since when using WACS worker role we starts the node by ourselves in a process, we can control the input, output and error stream. We can also control the version of Node.js.   Run Node.js in Worker Role Node.js can be started by just having its execution file. This means in Windows Azure, we can have a worker role with the “node.exe” and the Node.js source files, then start it in Run method of the worker role entry class. Let’s create a new windows azure project in Visual Studio and add a new worker role. Since we need our worker role execute the “node.exe” with our application code we need to add the “node.exe” into our project. Right click on the worker role project and add an existing item. By default the Node.js will be installed in the “Program Files\nodejs” folder so we can navigate there and add the “node.exe”. Then we need to create the entry code of Node.js. In WAWS the entry file must be named “server.js”, which is because it’s hosted by IIS and IISNode and IISNode only accept “server.js”. But here as we control everything we can choose any files as the entry code. For example, I created a new JavaScript file named “index.js” in project root. Since we created a C# Windows Azure project we cannot create a JavaScript file from the context menu “Add new item”. We have to create a text file, and then rename it to JavaScript extension. After we added these two files we should set their “Copy to Output Directory” property to “Copy Always”, or “Copy if Newer”. Otherwise they will not be involved in the package when deployed. Let’s paste a very simple Node.js code in the “index.js” as below. As you can see I created a web server listening at port 12345. 1: var http = require("http"); 2: var port = 12345; 3:  4: http.createServer(function (req, res) { 5: res.writeHead(200, { "Content-Type": "text/plain" }); 6: res.end("Hello World\n"); 7: }).listen(port); 8:  9: console.log("Server running at port %d", port); Then we need to start “node.exe” with this file when our worker role was started. This can be done in its Run method. I found the Node.js and entry JavaScript file name, and then create a new process to run it. Our worker role will wait for the process to be exited. If everything is OK once our web server was opened the process will be there listening for incoming requests, and should not be terminated. The code in worker role would be like this. 1: public override void Run() 2: { 3: // This is a sample worker implementation. Replace with your logic. 4: Trace.WriteLine("NodejsHost entry point called", "Information"); 5:  6: // retrieve the node.exe and entry node.js source code file name. 7: var node = Environment.ExpandEnvironmentVariables(@"%RoleRoot%\approot\node.exe"); 8: var js = "index.js"; 9:  10: // prepare the process starting of node.exe 11: var info = new ProcessStartInfo(node, js) 12: { 13: CreateNoWindow = false, 14: ErrorDialog = true, 15: WindowStyle = ProcessWindowStyle.Normal, 16: UseShellExecute = false, 17: WorkingDirectory = Environment.ExpandEnvironmentVariables(@"%RoleRoot%\approot") 18: }; 19: Trace.WriteLine(string.Format("{0} {1}", node, js), "Information"); 20:  21: // start the node.exe with entry code and wait for exit 22: var process = Process.Start(info); 23: process.WaitForExit(); 24: } Then we can run it locally. In the computer emulator UI the worker role started and it executed the Node.js, then Node.js windows appeared. Open the browser to verify the website hosted by our worker role. Next let’s deploy it to azure. But we need some additional steps. First, we need to create an input endpoint. By default there’s no endpoint defined in a worker role. So we will open the role property window in Visual Studio, create a new input TCP endpoint to the port we want our website to use. In this case I will use 80. Even though we created a web server we should add a TCP endpoint of the worker role, since Node.js always listen on TCP instead of HTTP. And then changed the “index.js”, let our web server listen on 80. 1: var http = require("http"); 2: var port = 80; 3:  4: http.createServer(function (req, res) { 5: res.writeHead(200, { "Content-Type": "text/plain" }); 6: res.end("Hello World\n"); 7: }).listen(port); 8:  9: console.log("Server running at port %d", port); Then publish it to Windows Azure. And then in browser we can see our Node.js website was running on WACS worker role. We may encounter an error if we tried to run our Node.js website on 80 port at local emulator. This is because the compute emulator registered 80 and map the 80 endpoint to 81. But our Node.js cannot detect this operation. So when it tried to listen on 80 it will failed since 80 have been used.   Use NPM Modules When we are using WAWS to host Node.js, we can simply install modules we need, and then just publish or upload all files to WAWS. But if we are using WACS worker role, we have to do some extra steps to make the modules work. Assuming that we plan to use “express” in our application. Firstly of all we should download and install this module through NPM command. But after the install finished, they are just in the disk but not included in the worker role project. If we deploy the worker role right now the module will not be packaged and uploaded to azure. Hence we need to add them to the project. On solution explorer window click the “Show all files” button, select the “node_modules” folder and in the context menu select “Include In Project”. But that not enough. We also need to make all files in this module to “Copy always” or “Copy if newer”, so that they can be uploaded to azure with the “node.exe” and “index.js”. This is painful step since there might be many files in a module. So I created a small tool which can update a C# project file, make its all items as “Copy always”. The code is very simple. 1: static void Main(string[] args) 2: { 3: if (args.Length < 1) 4: { 5: Console.WriteLine("Usage: copyallalways [project file]"); 6: return; 7: } 8:  9: var proj = args[0]; 10: File.Copy(proj, string.Format("{0}.bak", proj)); 11:  12: var xml = new XmlDocument(); 13: xml.Load(proj); 14: var nsManager = new XmlNamespaceManager(xml.NameTable); 15: nsManager.AddNamespace("pf", "http://schemas.microsoft.com/developer/msbuild/2003"); 16:  17: // add the output setting to copy always 18: var contentNodes = xml.SelectNodes("//pf:Project/pf:ItemGroup/pf:Content", nsManager); 19: UpdateNodes(contentNodes, xml, nsManager); 20: var noneNodes = xml.SelectNodes("//pf:Project/pf:ItemGroup/pf:None", nsManager); 21: UpdateNodes(noneNodes, xml, nsManager); 22: xml.Save(proj); 23:  24: // remove the namespace attributes 25: var content = xml.InnerXml.Replace("<CopyToOutputDirectory xmlns=\"\">", "<CopyToOutputDirectory>"); 26: xml.LoadXml(content); 27: xml.Save(proj); 28: } 29:  30: static void UpdateNodes(XmlNodeList nodes, XmlDocument xml, XmlNamespaceManager nsManager) 31: { 32: foreach (XmlNode node in nodes) 33: { 34: var copyToOutputDirectoryNode = node.SelectSingleNode("pf:CopyToOutputDirectory", nsManager); 35: if (copyToOutputDirectoryNode == null) 36: { 37: var n = xml.CreateNode(XmlNodeType.Element, "CopyToOutputDirectory", null); 38: n.InnerText = "Always"; 39: node.AppendChild(n); 40: } 41: else 42: { 43: if (string.Compare(copyToOutputDirectoryNode.InnerText, "Always", true) != 0) 44: { 45: copyToOutputDirectoryNode.InnerText = "Always"; 46: } 47: } 48: } 49: } Please be careful when use this tool. I created only for demo so do not use it directly in a production environment. Unload the worker role project, execute this tool with the worker role project file name as the command line argument, it will set all items as “Copy always”. Then reload this worker role project. Now let’s change the “index.js” to use express. 1: var express = require("express"); 2: var app = express(); 3:  4: var port = 80; 5:  6: app.configure(function () { 7: }); 8:  9: app.get("/", function (req, res) { 10: res.send("Hello Node.js!"); 11: }); 12:  13: app.get("/User/:id", function (req, res) { 14: var id = req.params.id; 15: res.json({ 16: "id": id, 17: "name": "user " + id, 18: "company": "IGT" 19: }); 20: }); 21:  22: app.listen(port); Finally let’s publish it and have a look in browser.   Use Windows Azure SQL Database We can use Windows Azure SQL Database (a.k.a. WACD) from Node.js as well on worker role hosting. Since we can control the version of Node.js, here we can use x64 version of “node-sqlserver” now. This is better than if we host Node.js on WAWS since it only support x86. Just install the “node-sqlserver” module from NPM, copy the “sqlserver.node” from “Build\Release” folder to “Lib” folder. Include them in worker role project and run my tool to make them to “Copy always”. Finally update the “index.js” to use WASD. 1: var express = require("express"); 2: var sql = require("node-sqlserver"); 3:  4: var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:{SERVER NAME}.database.windows.net,1433;Database={DATABASE NAME};Uid={LOGIN}@{SERVER NAME};Pwd={PASSWORD};Encrypt=yes;Connection Timeout=30;"; 5: var port = 80; 6:  7: var app = express(); 8:  9: app.configure(function () { 10: app.use(express.bodyParser()); 11: }); 12:  13: app.get("/", function (req, res) { 14: sql.open(connectionString, function (err, conn) { 15: if (err) { 16: console.log(err); 17: res.send(500, "Cannot open connection."); 18: } 19: else { 20: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 21: if (err) { 22: console.log(err); 23: res.send(500, "Cannot retrieve records."); 24: } 25: else { 26: res.json(results); 27: } 28: }); 29: } 30: }); 31: }); 32:  33: app.get("/text/:key/:culture", function (req, res) { 34: sql.open(connectionString, function (err, conn) { 35: if (err) { 36: console.log(err); 37: res.send(500, "Cannot open connection."); 38: } 39: else { 40: var key = req.params.key; 41: var culture = req.params.culture; 42: var command = "SELECT * FROM [Resource] WHERE [Key] = '" + key + "' AND [Culture] = '" + culture + "'"; 43: conn.queryRaw(command, function (err, results) { 44: if (err) { 45: console.log(err); 46: res.send(500, "Cannot retrieve records."); 47: } 48: else { 49: res.json(results); 50: } 51: }); 52: } 53: }); 54: }); 55:  56: app.get("/sproc/:key/:culture", function (req, res) { 57: sql.open(connectionString, function (err, conn) { 58: if (err) { 59: console.log(err); 60: res.send(500, "Cannot open connection."); 61: } 62: else { 63: var key = req.params.key; 64: var culture = req.params.culture; 65: var command = "EXEC GetItem '" + key + "', '" + culture + "'"; 66: conn.queryRaw(command, function (err, results) { 67: if (err) { 68: console.log(err); 69: res.send(500, "Cannot retrieve records."); 70: } 71: else { 72: res.json(results); 73: } 74: }); 75: } 76: }); 77: }); 78:  79: app.post("/new", function (req, res) { 80: var key = req.body.key; 81: var culture = req.body.culture; 82: var val = req.body.val; 83:  84: sql.open(connectionString, function (err, conn) { 85: if (err) { 86: console.log(err); 87: res.send(500, "Cannot open connection."); 88: } 89: else { 90: var command = "INSERT INTO [Resource] VALUES ('" + key + "', '" + culture + "', N'" + val + "')"; 91: conn.queryRaw(command, function (err, results) { 92: if (err) { 93: console.log(err); 94: res.send(500, "Cannot retrieve records."); 95: } 96: else { 97: res.send(200, "Inserted Successful"); 98: } 99: }); 100: } 101: }); 102: }); 103:  104: app.listen(port); Publish to azure and now we can see our Node.js is working with WASD through x64 version “node-sqlserver”.   Summary In this post I demonstrated how to host our Node.js in Windows Azure Cloud Service worker role. By using worker role we can control the version of Node.js, as well as the entry code. And it’s possible to do some pre jobs before the Node.js application started. It also removed the IIS and IISNode limitation. I personally recommended to use worker role as our Node.js hosting. But there are some problem if you use the approach I mentioned here. The first one is, we need to set all JavaScript files and module files as “Copy always” or “Copy if newer” manually. The second one is, in this way we cannot retrieve the cloud service configuration information. For example, we defined the endpoint in worker role property but we also specified the listening port in Node.js hardcoded. It should be changed that our Node.js can retrieve the endpoint. But I can tell you it won’t be working here. In the next post I will describe another way to execute the “node.exe” and Node.js application, so that we can get the cloud service configuration in Node.js. I will also demonstrate how to use Windows Azure Storage from Node.js by using the Windows Azure Node.js SDK.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1

    - by shiju
    In this post, I will demonstrate web application development using ASP. NET MVC 3, Razor and EF code First. This post will also cover Dependency Injection using Unity 2.0 and generic Repository and Unit of Work for EF Code First. The following frameworks will be used for this step by step tutorial. ASP.NET MVC 3 EF Code First CTP 5 Unity 2.0 Define Domain Model Let’s create domain model for our simple web application Category class public class Category {     public int CategoryId { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public virtual ICollection<Expense> Expenses { get; set; } }   Expense class public class Expense {             public int ExpenseId { get; set; }            public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }     public int CategoryId { get; set; }     public virtual Category Category { get; set; } } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. In this post, we will be focusing on CRUD operations for the entity Category and will be working on the Expense entity with a View Model object in the later post. And the source code for this application will be refactored over time. The above entities are very simple POCO (Plain Old CLR Object) classes and the entity Category is decorated with validation attributes in the System.ComponentModel.DataAnnotations namespace. Now we want to use these entities for defining model objects for the Entity Framework 4. Using the Code First approach of Entity Framework, we can first define the entities by simply writing POCO classes without any coupling with any API or database library. This approach lets you focus on domain model which will enable Domain-Driven Development for applications. EF code first support is currently enabled with a separate API that is runs on top of the Entity Framework 4. EF Code First is reached CTP 5 when I am writing this article. Creating Context Class for Entity Framework We have created our domain model and let’s create a class in order to working with Entity Framework Code First. For this, you have to download EF Code First CTP 5 and add reference to the assembly EntitFramework.dll. You can also use NuGet to download add reference to EEF Code First.    public class MyFinanceContext : DbContext {     public MyFinanceContext() : base("MyFinance") { }     public DbSet<Category> Categories { get; set; }     public DbSet<Expense> Expenses { get; set; }         }   The above class MyFinanceContext is derived from DbContext that can connect your model classes to a database. The MyFinanceContext class is mapping our Category and Expense class into database tables Categories and Expenses using DbSet<TEntity> where TEntity is any POCO class. When we are running the application at first time, it will automatically create the database. EF code-first look for a connection string in web.config or app.config that has the same name as the dbcontext class. If it is not find any connection string with the convention, it will automatically create database in local SQL Express database by default and the name of the database will be same name as the dbcontext class. You can also define the name of database in constructor of the the dbcontext class. Unlike NHibernate, we don’t have to use any XML based mapping files or Fluent interface for mapping between our model and database. The model classes of Code First are working on the basis of conventions and we can also use a fluent API to refine our model. The convention for primary key is ‘Id’ or ‘<class name>Id’.  If primary key properties are detected with type ‘int’, ‘long’ or ‘short’, they will automatically registered as identity columns in the database by default. Primary key detection is not case sensitive. We can define our model classes with validation attributes in the System.ComponentModel.DataAnnotations namespace and it automatically enforces validation rules when a model object is updated or saved. Generic Repository for EF Code First We have created model classes and dbcontext class. Now we have to create generic repository pattern for data persistence with EF code first. If you don’t know about the repository pattern, checkout Martin Fowler’s article on Repository Let’s create a generic repository to working with DbContext and DbSet generics. public interface IRepository<T> where T : class     {         void Add(T entity);         void Delete(T entity);         T GetById(long Id);         IEnumerable<T> All();     }   RepositoryBasse – Generic Repository class public abstract class RepositoryBase<T> where T : class { private MyFinanceContext database; private readonly IDbSet<T> dbset; protected RepositoryBase(IDatabaseFactory databaseFactory) {     DatabaseFactory = databaseFactory;     dbset = Database.Set<T>(); }   protected IDatabaseFactory DatabaseFactory {     get; private set; }   protected MyFinanceContext Database {     get { return database ?? (database = DatabaseFactory.Get()); } } public virtual void Add(T entity) {     dbset.Add(entity);            }        public virtual void Delete(T entity) {     dbset.Remove(entity); }   public virtual T GetById(long id) {     return dbset.Find(id); }   public virtual IEnumerable<T> All() {     return dbset.ToList(); } }   DatabaseFactory class public class DatabaseFactory : Disposable, IDatabaseFactory {     private MyFinanceContext database;     public MyFinanceContext Get()     {         return database ?? (database = new MyFinanceContext());     }     protected override void DisposeCore()     {         if (database != null)             database.Dispose();     } } Unit of Work If you are new to Unit of Work pattern, checkout Fowler’s article on Unit of Work . According to Martin Fowler, the Unit of Work pattern "maintains a list of objects affected by a business transaction and coordinates the writing out of changes and the resolution of concurrency problems." Let’s create a class for handling Unit of Work   public interface IUnitOfWork {     void Commit(); }   UniOfWork class public class UnitOfWork : IUnitOfWork {     private readonly IDatabaseFactory databaseFactory;     private MyFinanceContext dataContext;       public UnitOfWork(IDatabaseFactory databaseFactory)     {         this.databaseFactory = databaseFactory;     }       protected MyFinanceContext DataContext     {         get { return dataContext ?? (dataContext = databaseFactory.Get()); }     }       public void Commit()     {         DataContext.Commit();     } }   The Commit method of the UnitOfWork will call the commit method of MyFinanceContext class and it will execute the SaveChanges method of DbContext class.   Repository class for Category In this post, we will be focusing on the persistence against Category entity and will working on other entities in later post. Let’s create a repository for handling CRUD operations for Category using derive from a generic Repository RepositoryBase<T>.   public class CategoryRepository: RepositoryBase<Category>, ICategoryRepository     {     public CategoryRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface ICategoryRepository : IRepository<Category> { } If we need additional methods than generic repository for the Category, we can define in the CategoryRepository. Dependency Injection using Unity 2.0 If you are new to Inversion of Control/ Dependency Injection or Unity, please have a look on my articles at http://weblogs.asp.net/shijuvarghese/archive/tags/IoC/default.aspx. I want to create a custom lifetime manager for Unity to store container in the current HttpContext.   public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName] = newValue;     }     public void Dispose()     {         RemoveValue();     } }   Let’s create controller factory for Unity in the ASP.NET MVC 3 application. public class UnityControllerFactory : DefaultControllerFactory { IUnityContainer container; public UnityControllerFactory(IUnityContainer container) {     this.container = container; } protected override IController GetControllerInstance(RequestContext reqContext, Type controllerType) {     IController controller;     if (controllerType == null)         throw new HttpException(                 404, String.Format(                     "The controller for path '{0}' could not be found" +     "or it does not implement IController.",                 reqContext.HttpContext.Request.Path));       if (!typeof(IController).IsAssignableFrom(controllerType))         throw new ArgumentException(                 string.Format(                     "Type requested is not a controller: {0}",                     controllerType.Name),                     "controllerType");     try     {         controller= container.Resolve(controllerType) as IController;     }     catch (Exception ex)     {         throw new InvalidOperationException(String.Format(                                 "Error resolving controller {0}",                                 controllerType.Name), ex);     }     return controller; }   }   Configure contract and concrete types in Unity Let’s configure our contract and concrete types in Unity for resolving our dependencies.   private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()                 .RegisterType<IDatabaseFactory, DatabaseFactory>(new HttpContextLifetimeManager<IDatabaseFactory>())     .RegisterType<IUnitOfWork, UnitOfWork>(new HttpContextLifetimeManager<IUnitOfWork>())     .RegisterType<ICategoryRepository, CategoryRepository>(new HttpContextLifetimeManager<ICategoryRepository>());                 //Set container for Controller Factory                ControllerBuilder.Current.SetControllerFactory(             new UnityControllerFactory(container)); }   In the above ConfigureUnity method, we are registering our types onto Unity container with custom lifetime manager HttpContextLifetimeManager. Let’s call ConfigureUnity method in the Global.asax.cs for set controller factory for Unity and configuring the types with Unity.   protected void Application_Start() {     AreaRegistration.RegisterAllAreas();     RegisterGlobalFilters(GlobalFilters.Filters);     RegisterRoutes(RouteTable.Routes);     ConfigureUnity(); }   Developing web application using ASP.NET MVC 3 We have created our domain model for our web application and also have created repositories and configured dependencies with Unity container. Now we have to create controller classes and views for doing CRUD operations against the Category entity. Let’s create controller class for Category Category Controller   public class CategoryController : Controller {     private readonly ICategoryRepository categoryRepository;     private readonly IUnitOfWork unitOfWork;           public CategoryController(ICategoryRepository categoryRepository, IUnitOfWork unitOfWork)     {         this.categoryRepository = categoryRepository;         this.unitOfWork = unitOfWork;     }       public ActionResult Index()     {         var categories = categoryRepository.All();         return View(categories);     }     [HttpGet]     public ActionResult Edit(int id)     {         var category = categoryRepository.GetById(id);         return View(category);     }       [HttpPost]     public ActionResult Edit(int id, FormCollection collection)     {         var category = categoryRepository.GetById(id);         if (TryUpdateModel(category))         {             unitOfWork.Commit();             return RedirectToAction("Index");         }         else return View(category);                 }       [HttpGet]     public ActionResult Create()     {         var category = new Category();         return View(category);     }           [HttpPost]     public ActionResult Create(Category category)     {         if (!ModelState.IsValid)         {             return View("Create", category);         }                     categoryRepository.Add(category);         unitOfWork.Commit();         return RedirectToAction("Index");     }       [HttpPost]     public ActionResult Delete(int  id)     {         var category = categoryRepository.GetById(id);         categoryRepository.Delete(category);         unitOfWork.Commit();         var categories = categoryRepository.All();         return PartialView("CategoryList", categories);       }        }   Creating Views in Razor Now we are going to create views in Razor for our ASP.NET MVC 3 application.  Let’s create a partial view CategoryList.cshtml for listing category information and providing link for Edit and Delete operations. CategoryList.cshtml @using MyFinance.Helpers; @using MyFinance.Domain; @model IEnumerable<Category>      <table>         <tr>         <th>Actions</th>         <th>Name</th>          <th>Description</th>         </tr>     @foreach (var item in Model) {             <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.CategoryId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.CategoryId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divCategoryList" })                           </td>             <td>                 @item.Name             </td>             <td>                 @item.Description             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New", "Create")     </p> The delete link is providing Ajax functionality using the Ajax.ActionLink. This will call an Ajax request for Delete action method in the CategoryCotroller class. In the Delete action method, it will return Partial View CategoryList after deleting the record. We are using CategoryList view for the Ajax functionality and also for Index view using for displaying list of category information. Let’s create Index view using partial view CategoryList  Index.chtml @model IEnumerable<MyFinance.Domain.Category> @{     ViewBag.Title = "Index"; }    <h2>Category List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script>    <div id="divCategoryList">               @Html.Partial("CategoryList", Model) </div>   We can call the partial views using Html.Partial helper method. Now we are going to create View pages for insert and update functionality for the Category. Both view pages are sharing common user interface for entering the category information. So I want to create an EditorTemplate for the Category information. We have to create the EditorTemplate with the same name of entity object so that we can refer it on view pages using @Html.EditorFor(model => model) . So let’s create template with name Category. Let’s create view page for insert Category information   @model MyFinance.Domain.Category   @{     ViewBag.Title = "Save"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) {     @Html.ValidationSummary(true)     <fieldset>         <legend>Category</legend>                @Html.EditorFor(model => model)               <p>             <input type="submit" value="Create" />         </p>     </fieldset> }   <div>     @Html.ActionLink("Back to List", "Index") </div> ViewStart file In Razor views, we can add a file named _viewstart.cshtml in the views directory  and this will be shared among the all views with in the Views directory. The below code in the _viewstart.cshtml, sets the Layout page for every Views in the Views folder.      @{     Layout = "~/Views/Shared/_Layout.cshtml"; }   Source Code You can download the source code from http://efmvc.codeplex.com/ . The source will be refactored on over time.   Summary In this post, we have created a simple web application using ASP.NET MVC 3 and EF Code First. We have discussed on technologies and practices such as ASP.NET MVC 3, Razor, EF Code First, Unity 2, generic Repository and Unit of Work. In my later posts, I will modify the application and will be discussed on more things. Stay tuned to my blog  for more posts on step by step application building.

    Read the article

  • Tips on Migrating from AquaLogic .NET Accelerator to WebCenter WSRP Producer for .NET

    - by user647124
    This year I embarked on a journey to migrate a group of ASP.NET web applications developed to integrate with WebLogic Portal 9.2 via the AquaLogic® Interaction .NET Application Accelerator 1.0 to instead use the Oracle WebCenter WSRP Producer for .NET and integrated with WebLogic Portal 10.3.4. It has been a very winding path and this blog entry is intended to share both the lessons learned and relevant approaches that led to those learnings. Like most journeys of discovery, it was not a direct path, and there are notes to let you know when it is practical to skip a section if you are in a hurry to get from here to there. For the Curious From the perspective of necessity, this section would be better at the end. If it were there, though, it would probably be read by far fewer people, including those that are actually interested in these types of sections. Those in a hurry may skip past and be none the worst for it in dealing with the hands-on bits of performing a migration from .NET Accelerator to WSRP Producer. For others who want to talk about why they did what they did after they did it, or just want to know for themselves, enjoy. A Brief (and edited) History of the WSRP for .NET Technologies (as Relevant to the this Post) Note: This section is for those who are curious about why the migration path is not as simple as many other Oracle technologies. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The currently deployed architecture that was to be migrated and upgraded achieved initial integration between .NET and J2EE over the WSRP protocol through the use of The AquaLogic Interaction .NET Application Accelerator. The .NET Accelerator allowed the applications that were written in ASP.NET and deployed on a Microsoft Internet Information Server (IIS) to interact with a WebLogic Portal application deployed on a WebLogic (J2EE application) Server (both version 9.2, the state of the art at the time of its creation). At the time this architectural decision for the application was made, both the AquaLogic and WebLogic brands were owned by BEA Systems. The AquaLogic brand included products acquired by BEA through the acquisition of Plumtree, whose flagship product was a portal platform available in both J2EE and .NET versions. As part of this dual technology support an adaptor was created to facilitate the use of WSRP as a communication protocol where customers wished to integrate components from both versions of the Plumtree portal. The adapter evolved over several product generations to include a broad array of both standard and proprietary WSRP integration capabilities. Later, BEA Systems was acquired by Oracle. Over the course of several years Oracle has acquired a large number of portal applications and has taken the strategic direction to migrate users of these myriad (and formerly competitive) products to the Oracle WebCenter technology stack. As part of Oracle’s strategic technology roadmap, older portal products are being schedule for end of life, including the portal products that were part of the BEA acquisition. The .NET Accelerator has been modified over a very long period of time with features driven by users of that product and developed under three different vendors (each a direct competitor in the same solution space prior to merger). The Oracle WebCenter WSRP Producer for .NET was introduced much more recently with the key objective to specifically address the needs of the WebCenter customers developing solutions accessible through both J2EE and .NET platforms utilizing the WSRP specifications. The Oracle Product Development Team also provides these insights on the drivers for developing the WSRP Producer: ***************************************** Support for ASP.NET AJAX. Controls using the ASP.NET AJAX script manager do not function properly in the Application Accelerator for .NET. Support 2 way SSL in WLP. This was not possible with the proxy/bridge set up in the existing Application Accelerator for .NET. Allow developers to code portlets (Web Parts) using the .NET framework rather than a proprietary framework. Developers had to use the Application Accelerator for .NET plug-ins to Visual Studio to manage preferences and profile data. This is now replaced with the .NET Framework Personalization (for preferences) and Profile providers. The WSRP Producer for .NET was created as a new way of developing .NET portlets. It was never designed to be an upgrade path for the Application Accelerator for .NET. .NET developers would create new .NET portlets with the WSRP Producer for .NET and leave any existing .NET portlets running in the Application Accelerator for .NET. ***************************************** The advantage to creating a new solution for WSRP is a product that is far easier for Oracle to maintain and support which in turn improves quality, reliability and maintainability for their customers. No changes to J2EE applications consuming the WSRP portlets previously rendered by the.NET Accelerator is required to migrate from the Aqualogic WSRP solution. For some customers using the .NET Accelerator the challenge is adapting their current .NET applications to work with the WSRP Producer (or any other WSRP adapter as they are proprietary by nature). Part of this adaptation is the need to deploy the .NET applications as a child to the WSRP producer web application as root. Differences between .NET Accelerator and WSRP Producer Note: This section is for those who are curious about why the migration is not as pluggable as something such as changing security providers in WebLogic Server. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The basic terminology used to describe the participating applications in a WSRP environment are the same when applied to either the .NET Accelerator or the WSRP Producer: Producer and Consumer. In both cases the .NET application serves as what is referred to as a WSRP environment as the Producer. The difference lies in how the two adapters create the WSRP translation of the .NET application. The .NET Accelerator, as the name implies, is meant to serve as a quick way of adding WSRP capability to a .NET application. As such, at a high level, the .NET Accelerator behaves as a proxy for requests between the .NET application and the WSRP Consumer. A WSRP request is sent from the consumer to the .NET Accelerator, the.NET Accelerator transforms this request into an ASP.NET request, receives the response, then transforms the response into a WSRP response. The .NET Accelerator is deployed as a stand-alone application on IIS. The WSRP Producer is deployed as a parent application on IIS and all ASP.NET modules that will be made available over WSRP are deployed as children of the WSRP Producer application. In this manner, the WSRP Producer acts more as a Request Filter than a proxy in the WSRP transactions between Producer and Consumer. Highly Recommended Enabling Logging Note: You can skip this section now, but you will most likely want to come back to it later, so why not just read it now? Logging is very helpful in tracking down the causes of any anomalies during testing of migrated portlets. To enable the WSRP Producer logging, update the Application_Start method in the Global.asax.cs for your .NET application by adding log4net.Config.XmlConfigurator.Configure(); IIS logs will usually (in a standard configuration) be in a sub folder under C:\WINDOWS\system32\LogFiles\W3SVC. WSRP Producer logs will be found at C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\Logs\WSRPProducer.log InputTrace.webinfo and OutputTrace.webinfo are located under C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault and can be useful in debugging issues related to markup transformations. Things You Must Do Merge Web.Config Note: If you have been skipping all the sections that you can, now is the time to stop and pay attention J Because the existing .NET application will become a sub-application to the WSRP Producer, you will want to merge required settings from the existing Web.Config to the one in the WSRP Producer. Use the WSRP Producer Master Page The Master Page installed for the WSRP Producer provides common, hiddenform fields and JavaScripts to facilitate portlet instance management and display configuration when the child page is being rendered over WSRP. You add the Master Page by including it in the <@ Page declaration with MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" . You then replace: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > <HTML> <HEAD> With <asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead" Runat="Server"> And </HEAD> <body> <form id="theForm" method="post" runat="server"> With </asp:Content> <asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server"> And finally </form> </body> </HTML> With </asp:Content> In the event you already use Master Pages, adapt your existing Master Pages to be sub masters. See Nested ASP.NET Master Pages for a detailed reference of how to do this. It Happened to Me, It Might Happen to You…Or Not Watch for Use of Session or Request in OnInit In the event the .NET application being modified has pages developed to assume the user has been authenticated in an earlier page request there may be direct or indirect references in the OnInit method to request or session objects that may not have been created yet. This will vary from application to application, so the recommended approach is to test first. If there is an issue with a page running as a WSRP portlet then check for potential references in the OnInit method (including references by methods called within OnInit) to session or request objects. If there are, the simplest solution is to create a new method and then call that method once the necessary object(s) is fully available. I find doing this at the start of the Page_Load method to be the simplest solution. Case Sensitivity .NET languages are not case sensitive, but Java is. This means it is possible to have many variations of SRC= and src= or .JPG and .jpg. The preferred solution is to make these mark up instances all lower case in your .NET application. This will allow the default Rewriter rules in wsrp-producer.xml to work as is. If this is not practical, then make duplicates of any rules where an issue is occurring due to upper or mixed case usage in the .NET application markup and match the case in use with the duplicate rule. For example: <RewriterRule> <LookFor>(href=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> May need to be duplicated as: <RewriterRule> <LookFor>(HREF=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> While it is possible to write a regular expression that will handle mixed case usage, it would be long and strenous to test and maintain, so the recommendation is to use duplicate rules. Is it Still Relative? Some .NET applications base relative paths with a fixed root location. With the introduction of the WSRP Producer, the root has moved up one level. References to ~/ will need to be updated to ~/portlets and many ../ paths will need another ../ in front. I Can See You But I Can’t Find You This issue was first discovered while debugging modules with code that referenced the form on a page from the code-behind by name and/or id. The initial error presented itself as run-time error that was difficult to interpret over WSRP but seemed clear when run as straight ASP.NET as it indicated that the object with the form name did not exist. Since the form name was no longer valid after implementing the WSRP Master Page, the likely fix seemed to simply update the references in the code. However, as the WSRP Master Page is external to the code, a compile time error resulted: Error      155         The name 'form1' does not exist in the current context                C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\portlets\legacywebsite\module\Screens \Reporting.aspx.cs                51           52           legacywebsite.module Much hair-pulling research later it was discovered that it was the use of the FindControl method causing the issue. FindControl doesn’t work quite as expected once a Master Page has been introduced as the controls become embedded in controls, require a recursion to find them that is not part of the FindControl method. In code where the page form is referenced by name, there are two steps to the solution. First, the form needs to be referenced in code generically with Page.Form. For example, this: ToggleControl ctrl = new ToggleControl(frmManualEntry, FunctionLibrary.ParseArrayLst(userObj.Roles)); Becomes this: ToggleControl ctrl = new ToggleControl(Page.Form, FunctionLibrary.ParseArrayLst(userObj.Roles)); Generally the form id is referenced in most ASP.NET applications as a path to a control on the form. To reach the control once a MasterPage has been added requires an additional method to recurse through the controls collections within the form and find the control ID. The following method (found at Rick Strahl's Web Log) corrects this very nicely: public static Control FindControlRecursive(Control Root, string Id) { if (Root.ID == Id) return Root; foreach (Control Ctl in Root.Controls) { Control FoundCtl = FindControlRecursive(Ctl, Id); if (FoundCtl != null) return FoundCtl; } return null; } Where the form name is not referenced, simply using the FindControlRecursive method in place of FindControl will be all that is necessary. Following the second part of the example referenced earlier, the method called with Page.Form changes its value extraction code block from this: Label lblErrMsg = (Label)frmRef.FindControl("lblBRMsg" To this: Label lblErrMsg = (Label) FunctionLibrary.FindControlRecursive(frmRef, "lblBRMsg" The Master That Won’t Step Aside In most migrations it is preferable to make as few changes as possible. In one case I ran across an existing Master Page that would not function as a sub-Master Page. While it would probably have been educational to trace down why, the expedient process of updating it to take the place of the WSRP Master Page is the route I took. The changes are highlighted below: … <asp:ContentPlaceHolder ID="wsrphead" runat="server"></asp:ContentPlaceHolder> </head> <body leftMargin="0" topMargin="0"> <form id="TheForm" runat="server"> <input type="hidden" name="key" id="key" value="" /> <input type="hidden" name="formactionurl" id="formactionurl" value="" /> <input type="hidden" name="handle" id="handle" value="" /> <asp:ScriptManager ID="ScriptManager1" runat="server" EnablePartialRendering="true" > </asp:ScriptManager> This approach did not work for all existing Master Pages, but fortunately all of the other existing Master Pages I have run across worked fine as a sub-Master to the WSRP Master Page. Moving On In Enterprise Portals, even after you get everything working, the work is not finished. Next you need to get it where everyone will work with it. Migration Planning Providing that the server where IIS is running is adequately sized, it is possible to run both the .NET Accelerator and the WSRP Producer on the same server during the upgrade process. The upgrade can be performed incrementally, i.e., one portlet at a time, if server administration processes support it. Those processes would include the ability to manage a second producer in the consuming portal and to change over individual portlet instances from one provider to the other. If processes or requirements demand that all portlets be cut over at the same time, it needs to be determined if this cut over should include a new producer, updating all of the portlets in the consumer, or if the WSRP Producer portlet configuration must maintain the naming conventions used by the .NET Accelerator and simply change the WSRP end point configured in the consumer. In some enterprises it may even be necessary to maintain the same WSDL end point, at which point the IIS configuration will be where the updates occur. The downside to such a requirement is that it makes rolling back very difficult, should the need arise. Location, Location, Location Not everyone wants the web application to have the descriptively obvious wsrpdefault location, or needs to create a second WSRP site on the same server. The instructions below are from the product team and, while targeted towards making a second site, will work for creating a site with a different name and then remove the old site. You can also change just the name in IIS. Manually Creating a WSRP Producer Site Instructions (NOTE: all executables used are the same ones used by the installer and “wsrpdev” will be the name of the new instance): 1. Copy C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault to C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev. 2. Bring up a command window as an administrator 3. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\IISAppAccelSiteCreator.exe install WSRPProducers wsrpdev "C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev" 8678 2.0.50727 4. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev "NETWORK SERVICE" 3 1 5. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev EVERYONE 1 1 6. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\1.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev 7. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\2.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev Tests: 1. Bring up a browser on the host itself and go to http://localhost:8678/wsrpdev/wsdl/1.0/WSRPService.wsdl and make sure that the URLs in the XML returned include the wsrpdev changes you made in step 6. 2. Bring up a browser on the host itself and see if the default sample comes up: http://localhost:8678/wsrpdev/portlets/ASPNET_AJAX_sample/default.aspx 3. Register the producer in WLP and test the portlet. Changing the Port used by WSRP Producer The pre-configured port for the WSRP Producer is 8678. You can change this port by updating both the IIS configuration and C:\Oracle\Middleware\WSRPProducerForDotNet\[WSRP_APP_NAME]\wsdl\1.0\WSRPService.wsdl. Do You Need to Migrate? Oracle Premier Support ended in November of 2010 for AquaLogic Interaction .NET Application Accelerator 1.x and Extended Support ends in November 2012 (see http://www.oracle.com/us/support/lifetime-support/lifetime-support-software-342730.html for other related dates). This means that integration with products released after November of 2010 is not supported. If having such support is the policy within your enterprise, you do indeed need to migrate. If changes in your enterprise cause your current solution with the .NET Accelerator to no longer function properly, you may need to migrate. Migration is a choice, and if the goals of your enterprise are to take full advantage of newer technologies then migration is certainly one activity you should be planning for.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Using the jQuery UI Library in a MVC 3 Application to Build a Dialog Form

    - by ChrisD
    Using a simulated dialog window is a nice way to handle inline data editing. The jQuery UI has a UI widget for a dialog window that makes it easy to get up and running with it in your application. With the release of ASP.NET MVC 3, Microsoft included the jQuery UI scripts and files in the MVC 3 project templates for Visual Studio. With the release of the MVC 3 Tools Update, Microsoft implemented the inclusion of those with NuGet as packages. That means we can get up and running using the latest version of the jQuery UI with minimal effort. To the code! Another that might interested you about JQuery Mobile and ASP.NET MVC 3 with C#. If you are starting with a new MVC 3 application and have the Tools Update then you are a NuGet update and a <link> and <script> tag away from adding the jQuery UI to your project. If you are using an existing MVC project you can still get the jQuery UI library added to your project via NuGet and then add the link and script tags. Assuming that you have pulled down the latest version (at the time of this publish it was 1.8.13) you can add the following link and script tags to your <head> tag: < link href = "@Url.Content(" ~ / Content / themes / base / jquery . ui . all . css ")" rel = "Stylesheet" type = "text/css" /> < script src = "@Url.Content(" ~ / Scripts / jquery-ui-1 . 8 . 13 . min . js ")" type = "text/javascript" ></ script > The jQuery UI library relies upon the CSS scripts and some image files to handle rendering of its widgets (you can choose a different theme or role your own if you like). Adding these to the stock _Layout.cshtml file results in the following markup: <!DOCTYPE html> < html > < head >     < meta charset = "utf-8" />     < title > @ViewBag.Title </ title >     < link href = "@Url.Content(" ~ / Content / Site . css ")" rel = "stylesheet" type = "text/css" />     <link href="@Url.Content("~/Content/themes/base/jquery.ui.all.css")" rel="Stylesheet" type="text/css" />     <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")" type="text/javascript"></script>     <script src="@Url.Content("~/Scripts/modernizr-1.7.min . js ")" type = "text/javascript" ></ script >     < script src = "@Url.Content(" ~ / Scripts / jquery-ui-1 . 8 . 13 . min . js ")" type = "text/javascript" ></ script > </ head > < body >     @RenderBody() </ body > </ html > Our example will involve building a list of notes with an id, title and description. Each note can be edited and new notes can be added. The user will never have to leave the single page of notes to manage the note data. The add and edit forms will be delivered in a jQuery UI dialog widget and the note list content will get reloaded via an AJAX call after each change to the list. To begin, we need to craft a model and a data management class. We will do this so we can simulate data storage and get a feel for the workflow of the user experience. The first class named Note will have properties to represent our data model. namespace Website . Models {     public class Note     {         public int Id { get ; set ; }         public string Title { get ; set ; }         public string Body { get ; set ; }     } } The second class named NoteManager will be used to set up our simulated data storage and provide methods for querying and updating the data. We will take a look at the class content as a whole and then walk through each method after. using System . Collections . ObjectModel ; using System . Linq ; using System . Web ; namespace Website . Models {     public class NoteManager     {         public Collection < Note > Notes         {             get             {                 if ( HttpRuntime . Cache [ "Notes" ] == null )                     this . loadInitialData ();                 return ( Collection < Note >) HttpRuntime . Cache [ "Notes" ];             }         }         private void loadInitialData ()         {             var notes = new Collection < Note >();             notes . Add ( new Note                           {                               Id = 1 ,                               Title = "Set DVR for Sunday" ,                               Body = "Don't forget to record Game of Thrones!"                           });             notes . Add ( new Note                           {                               Id = 2 ,                               Title = "Read MVC article" ,                               Body = "Check out the new iwantmymvc.com post"                           });             notes . Add ( new Note                           {                               Id = 3 ,                               Title = "Pick up kid" ,                               Body = "Daughter out of school at 1:30pm on Thursday. Don't forget!"                           });             notes . Add ( new Note                           {                               Id = 4 ,                               Title = "Paint" ,                               Body = "Finish the 2nd coat in the bathroom"                           });             HttpRuntime . Cache [ "Notes" ] = notes ;         }         public Collection < Note > GetAll ()         {             return Notes ;         }         public Note GetById ( int id )         {             return Notes . Where ( i => i . Id == id ). FirstOrDefault ();         }         public int Save ( Note item )         {             if ( item . Id <= 0 )                 return saveAsNew ( item );             var existingNote = Notes . Where ( i => i . Id == item . Id ). FirstOrDefault ();             existingNote . Title = item . Title ;             existingNote . Body = item . Body ;             return existingNote . Id ;         }         private int saveAsNew ( Note item )         {             item . Id = Notes . Count + 1 ;             Notes . Add ( item );             return item . Id ;         }     } } The class has a property named Notes that is read only and handles instantiating a collection of Note objects in the runtime cache if it doesn't exist, and then returns the collection from the cache. This property is there to give us a simulated storage so that we didn't have to add a full blown database (beyond the scope of this post). The private method loadInitialData handles pre-filling the collection of Note objects with some initial data and stuffs them into the cache. Both of these chunks of code would be refactored out with a move to a real means of data storage. The GetAll and GetById methods access our simulated data storage to return all of our notes or a specific note by id. The Save method takes in a Note object, checks to see if it has an Id less than or equal to zero (we assume that an Id that is not greater than zero represents a note that is new) and if so, calls the private method saveAsNew . If the Note item sent in has an Id , the code finds that Note in the simulated storage, updates the Title and Description , and returns the Id value. The saveAsNew method sets the Id , adds it to the simulated storage, and returns the Id value. The increment of the Id is simulated here by getting the current count of the note collection and adding 1 to it. The setting of the Id is the only other chunk of code that would be refactored out when moving to a different data storage approach. With our model and data manager code in place we can turn our attention to the controller and views. We can do all of our work in a single controller. If we use a HomeController , we can add an action method named Index that will return our main view. An action method named List will get all of our Note objects from our manager and return a partial view. We will use some jQuery to make an AJAX call to that action method and update our main view with the partial view content returned. Since the jQuery AJAX call will cache the call to the content in Internet Explorer by default (a setting in jQuery), we will decorate the List, Create and Edit action methods with the OutputCache attribute and a duration of 0. This will send the no-cache flag back in the header of the content to the browser and jQuery will pick that up and not cache the AJAX call. The Create action method instantiates a new Note model object and returns a partial view, specifying the NoteForm.cshtml view file and passing in the model. The NoteForm view is used for the add and edit functionality. The Edit action method takes in the Id of the note to be edited, loads the Note model object based on that Id , and does the same return of the partial view as the Create method. The Save method takes in the posted Note object and sends it to the manager to save. It is decorated with the HttpPost attribute to ensure that it will only be available via a POST. It returns a Json object with a property named Success that can be used by the UX to verify everything went well (we won't use that in our example). Both the add and edit actions in the UX will post to the Save action method, allowing us to reduce the amount of unique jQuery we need to write in our view. The contents of the HomeController.cs file: using System . Web . Mvc ; using Website . Models ; namespace Website . Controllers {     public class HomeController : Controller     {         public ActionResult Index ()         {             return View ();         }         [ OutputCache ( Duration = 0 )]         public ActionResult List ()         {             var manager = new NoteManager ();             var model = manager . GetAll ();             return PartialView ( model );         }         [ OutputCache ( Duration = 0 )]         public ActionResult Create ()         {             var model = new Note ();             return PartialView ( "NoteForm" , model );         }         [ OutputCache ( Duration = 0 )]         public ActionResult Edit ( int id )         {             var manager = new NoteManager ();             var model = manager . GetById ( id );             return PartialView ( "NoteForm" , model );         }         [ HttpPost ]         public JsonResult Save ( Note note )         {             var manager = new NoteManager ();             var noteId = manager . Save ( note );             return Json ( new { Success = noteId > 0 });         }     } } The view for the note form, NoteForm.cshtml , looks like so: @model Website . Models . Note @using ( Html . BeginForm ( "Save" , "Home" , FormMethod . Post , new { id = "NoteForm" })) { @Html . Hidden ( "Id" ) < label class = "Title" >     < span > Title < /span><br / >     @Html . TextBox ( "Title" ) < /label> <label class="Body">     <span>Body</ span >< br />     @Html . TextArea ( "Body" ) < /label> } It is a strongly typed view for our Note model class. We give the <form> element an id attribute so that we can reference it via jQuery. The <label> and <span> tags give our UX some structure that we can style with some CSS. The List.cshtml view is used to render out a <ul> element with all of our notes. @model IEnumerable < Website . Models . Note > < ul class = "NotesList" >     @foreach ( var note in Model )     {     < li >         @note . Title < br />         @note . Body < br />         < span class = "EditLink ButtonLink" noteid = "@note.Id" > Edit < /span>     </ li >     } < /ul> This view is strongly typed as well. It includes a <span> tag that we will use as an edit button. We add a custom attribute named noteid to the <span> tag that we can use in our jQuery to identify the Id of the note object we want to edit. The view, Index.cshtml , contains a bit of html block structure and all of our jQuery logic code. @ {     ViewBag . Title = "Index" ; } < h2 > Notes < /h2> <div id="NoteListBlock"></ div > < span class = "AddLink ButtonLink" > Add New Note < /span> <div id="NoteDialog" title="" class="Hidden"></ div > < script type = "text/javascript" >     $ ( function () {         $ ( "#NoteDialog" ). dialog ({             autoOpen : false , width : 400 , height : 330 , modal : true ,             buttons : {                 "Save" : function () {                     $ . post ( "/Home/Save" ,                         $ ( "#NoteForm" ). serialize (),                         function () {                             $ ( "#NoteDialog" ). dialog ( "close" );                             LoadList ();                         });                 },                 Cancel : function () { $ ( this ). dialog ( "close" ); }             }         });         $ ( ".EditLink" ). live ( "click" , function () {             var id = $ ( this ). attr ( "noteid" );             $ ( "#NoteDialog" ). html ( "" )                 . dialog ( "option" , "title" , "Edit Note" )                 . load ( "/Home/Edit/" + id , function () { $ ( "#NoteDialog" ). dialog ( "open" ); });         });         $ ( ".AddLink" ). click ( function () {             $ ( "#NoteDialog" ). html ( "" )                 . dialog ( "option" , "title" , "Add Note" )                 . load ( "/Home/Create" , function () { $ ( "#NoteDialog" ). dialog ( "open" ); });         });         LoadList ();     });     function LoadList () {         $ ( "#NoteListBlock" ). load ( "/Home/List" );     } < /script> The <div> tag with the id attribute of "NoteListBlock" is used as a container target for the load of the partial view content of our List action method. It starts out empty and will get loaded with content via jQuery once the DOM is loaded. The <div> tag with the id attribute of "NoteDialog" is the element for our dialog widget. The jQuery UI library will use the title attribute for the text in the dialog widget top header bar. We start out with it empty here and will dynamically change the text via jQuery based on the request to either add or edit a note. This <div> tag is given a CSS class named "Hidden" that will set the display:none style on the element. Since our call to the jQuery UI method to make the element a dialog widget will occur in the jQuery document ready code block, the end user will see the <div> element rendered in their browser as the page renders and then it will hide after that jQuery call. Adding the display:hidden to the <div> element via CSS will ensure that it is never rendered until the user triggers the request to open the dialog. The jQuery document load block contains the setup for the dialog node, click event bindings for the edit and add links, and a call to a JavaScript function called LoadList that handles the AJAX call to the List action method. The .dialog() method is called on the "NoteDialog" <div> element and the options are set for the dialog widget. The buttons option defines 2 buttons and their click actions. The first is the "Save" button (the text in quotations is used as the text for the button) that will do an AJAX post to our Save action method and send the serialized form data from the note form (targeted with the id attribute "NoteForm"). Upon completion it will close the dialog widget and call the LoadList to update the UX without a redirect. The "Cancel" button simply closes the dialog widget. The .live() method handles binding a function to the "click" event on all elements with the CSS class named EditLink . We use the .live() method because it will catch and bind our function to elements even as the DOM changes. Since we will be constantly changing the note list as we add and edit we want to ensure that the edit links get wired up with click events. The function for the click event on the edit links gets the noteid attribute and stores it in a local variable. Then it clears out the HTML in the dialog element (to ensure a fresh start), calls the .dialog() method and sets the "title" option (this sets the title attribute value), and then calls the .load() AJAX method to hit our Edit action method and inject the returned content into the "NoteDialog" <div> element. Once the .load() method is complete it opens the dialog widget. The click event binding for the add link is similar to the edit, only we don't need to get the id value and we load the Create action method. This binding is done via the .click() method because it will only be bound on the initial load of the page. The add button will always exist. Finally, we toss in some CSS in the Content/Site.css file to style our form and the add/edit links. . ButtonLink { color : Blue ; cursor : pointer ; } . ButtonLink : hover { text - decoration : underline ; } . Hidden { display : none ; } #NoteForm label { display:block; margin-bottom:6px; } #NoteForm label > span { font-weight:bold; } #NoteForm input[type=text] { width:350px; } #NoteForm textarea { width:350px; height:80px; } With all of our code in place we can do an F5 and see our list of notes: If we click on an edit link we will get the dialog widget with the correct note data loaded: And if we click on the add new note link we will get the dialog widget with the empty form: The end result of our solution tree for our sample:

    Read the article

  • How to create Custom ListForm WebPart

    - by DipeshBhanani
    Mostly all who works extensively on SharePoint (including meJ) don’t like to use out-of-box list forms (DispForm.aspx, EditForm.aspx, NewForm.aspx) as interface. Actually these OOB list forms bind hands of developers for the customization. It gives headache to developers to add just one post back event, for a dropdown field and to populate other fields in NewForm.aspx or EditForm.aspx. On top of that clients always ask such stuff. So here I am going to give you guys a flight for SharePoint Customization world. In this blog, I will explain, how to create CustomListForm WebPart. In my next blogs, I am going to explain easy deployment of List Forms through features and last, guidance on using SharePoint web controls. 1.       First thing, create a class library project through Visual Studio and inherit the class with WebPart class.     public class CustomListForm : WebPart   2.       Declare the public variables and properties which we are going to use throughout the class. You will get to know these once you see them in use.         #region "Variable Declaration"           Table spTableCntl;         FormToolBar formToolBar;         Literal ltAlertMessage;         Guid SiteId;         Guid ListId;         int ItemId;         string ListName;           #endregion           #region "Properties"           SPControlMode _ControlMode = SPControlMode.New;         [Personalizable(PersonalizationScope.Shared),          WebBrowsable(true),          WebDisplayName("Control Mode"),          WebDescription("Set Control Mode"),          DefaultValue(""),          Category("Miscellaneous")]         public SPControlMode ControlMode         {             get { return _ControlMode; }             set { _ControlMode = value; }         }           #endregion     The property “ControlMode” is used to identify the mode of the List Form. The property is of type SPControlMode which is an enum type with values (Display, Edit, New and Invalid). When we will add this WebPart to DispForm.aspx, EditForm.aspx and NewForm.aspx, we will set the WebPart property “ControlMode” to Display, Edit and New respectively.     3.       Now, we need to override the CreateChildControl method and write code to manually add SharePoint Web Controls related to each list fields as well as ToolBar controls.         protected override void CreateChildControls()         {             base.CreateChildControls();               try             {                 SiteId = SPContext.Current.Site.ID;                 ListId = SPContext.Current.ListId;                 ListName = SPContext.Current.List.Title;                   if (_ControlMode == SPControlMode.Display || _ControlMode == SPControlMode.Edit)                     ItemId = SPContext.Current.ItemId;                   SPSecurity.RunWithElevatedPrivileges(delegate()                 {                     using (SPSite site = new SPSite(SiteId))                     {                         //creating a new SPSite with credentials of System Account                         using (SPWeb web = site.OpenWeb())                         {                               //<Custom Code for creating form controls>                         }                     }                 });             }             catch (Exception ex)             {                 ShowError(ex, "CreateChildControls");             }         }   Here we are assuming that we are developing this WebPart to plug into List Forms. Hence we will get the List Id and List Name from the current context. We can have Item Id only in case of Display and Edit Mode. We are putting our code into “RunWithElevatedPrivileges” to elevate privileges to System Account. Now, let’s get deep down into the main code and expand “//<Custom Code for creating form controls>”. Before initiating any SharePoint control, we need to set context of SharePoint web controls explicitly so that it will be instantiated with elevated System Account user. Following line does the job.     //To create SharePoint controls with new web object and System Account credentials     SPControl.SetContextWeb(Context, web);   First thing, let’s add main table as container for all controls.     //Table to render webpart     Table spTableMain = new Table();     spTableMain.CellPadding = 0;     spTableMain.CellSpacing = 0;     spTableMain.Width = new Unit(100, UnitType.Percentage);     this.Controls.Add(spTableMain);   Now we need to add Top toolbar with Save and Cancel button at top as you see in the below screen shot.       // Add Row and Cell for Top ToolBar     TableRow spRowTopToolBar = new TableRow();     spTableMain.Rows.Add(spRowTopToolBar);     TableCell spCellTopToolBar = new TableCell();     spRowTopToolBar.Cells.Add(spCellTopToolBar);     spCellTopToolBar.Width = new Unit(100, UnitType.Percentage);         ToolBar toolBarTop = (ToolBar)Page.LoadControl("/_controltemplates/ToolBar.ascx");     toolBarTop.CssClass = "ms-formtoolbar";     toolBarTop.ID = "toolBarTbltop";     toolBarTop.RightButtons.SeparatorHtml = "<td class=ms-separator> </td>";       if (_ControlMode != SPControlMode.Display)     {         SaveButton btnSave = new SaveButton();         btnSave.ControlMode = _ControlMode;         btnSave.ListId = ListId;           if (_ControlMode == SPControlMode.New)             btnSave.RenderContext = SPContext.GetContext(web);         else         {             btnSave.RenderContext = SPContext.GetContext(this.Context, ItemId, ListId, web);             btnSave.ItemContext = SPContext.GetContext(this.Context, ItemId, ListId, web);             btnSave.ItemId = ItemId;         }         toolBarTop.RightButtons.Controls.Add(btnSave);     }       GoBackButton goBackButtonTop = new GoBackButton();     toolBarTop.RightButtons.Controls.Add(goBackButtonTop);     goBackButtonTop.ControlMode = SPControlMode.Display;       spCellTopToolBar.Controls.Add(toolBarTop);   Here we have use “SaveButton” and “GoBackButton” which are internal SharePoint web controls for save and cancel functionality. I have set some of the properties of Save Button with if-else condition because we will not have Item Id in case of New Mode. Item Id property is used to identify which SharePoint List Item need to be saved. Now, add Form Toolbar to the page which contains “Attach File”, “Delete Item” etc buttons.       // Add Row and Cell for FormToolBar     TableRow spRowFormToolBar = new TableRow();     spTableMain.Rows.Add(spRowFormToolBar);     TableCell spCellFormToolBar = new TableCell();     spRowFormToolBar.Cells.Add(spCellFormToolBar);     spCellFormToolBar.Width = new Unit(100, UnitType.Percentage);       FormToolBar formToolBar = new FormToolBar();     formToolBar.ID = "formToolBar";     formToolBar.ListId = ListId;     if (_ControlMode == SPControlMode.New)         formToolBar.RenderContext = SPContext.GetContext(web);     else     {         formToolBar.RenderContext = SPContext.GetContext(this.Context, ItemId, ListId, web);         formToolBar.ItemContext = SPContext.GetContext(this.Context, ItemId, ListId, web);         formToolBar.ItemId = ItemId;     }     formToolBar.ControlMode = _ControlMode;     formToolBar.EnableViewState = true;       spCellFormToolBar.Controls.Add(formToolBar);     The ControlMode property will take care of which button to be displayed on the toolbar. E.g. “Attach files”, “Delete Item” in new/edit forms and “New Item”, “Edit Item”, “Delete Item”, “Manage Permissions” etc in display forms. Now add main section which contains form field controls.     //Create Form Field controls and add them in Table "spCellCntl"     CreateFieldControls(web);     //Add public variable "spCellCntl" containing all form controls to the page     spRowCntl.Cells.Add(spCellCntl);     spCellCntl.Width = new Unit(100, UnitType.Percentage);     spCellCntl.Controls.Add(spTableCntl);       //Add a Blank Row with height of 5px to render space between ToolBar table and Control table     TableRow spRowLine1 = new TableRow();     spTableMain.Rows.Add(spRowLine1);     TableCell spCellLine1 = new TableCell();     spRowLine1.Cells.Add(spCellLine1);     spCellLine1.Height = new Unit(5, UnitType.Pixel);     spCellLine1.Controls.Add(new LiteralControl("<IMG SRC='/_layouts/images/blank.gif' width=1 height=1 alt=''>"));       //Add Row and Cell for Form Controls Section     TableRow spRowCntl = new TableRow();     spTableMain.Rows.Add(spRowCntl);     TableCell spCellCntl = new TableCell();       //Create Form Field controls and add them in Table "spCellCntl"     CreateFieldControls(web);     //Add public variable "spCellCntl" containing all form controls to the page     spRowCntl.Cells.Add(spCellCntl);     spCellCntl.Width = new Unit(100, UnitType.Percentage);     spCellCntl.Controls.Add(spTableCntl);       TableRow spRowLine2 = new TableRow();     spTableMain.Rows.Add(spRowLine2);     TableCell spCellLine2 = new TableCell();     spRowLine2.Cells.Add(spCellLine2);     spCellLine2.CssClass = "ms-formline";     spCellLine2.Controls.Add(new LiteralControl("<IMG SRC='/_layouts/images/blank.gif' width=1 height=1 alt=''>"));       // Add Blank row with height of 5 pixel     TableRow spRowLine3 = new TableRow();     spTableMain.Rows.Add(spRowLine3);     TableCell spCellLine3 = new TableCell();     spRowLine3.Cells.Add(spCellLine3);     spCellLine3.Height = new Unit(5, UnitType.Pixel);     spCellLine3.Controls.Add(new LiteralControl("<IMG SRC='/_layouts/images/blank.gif' width=1 height=1 alt=''>"));   You can add bottom toolbar also to get same look and feel as OOB forms. I am not adding here as the blog will be much lengthy. At last, you need to write following lines to allow unsafe updates for Save and Delete button.     // Allow unsafe update on web for save button and delete button     if (this.Page.IsPostBack && this.Page.Request["__EventTarget"] != null         && (this.Page.Request["__EventTarget"].Contains("IOSaveItem")         || this.Page.Request["__EventTarget"].Contains("IODeleteItem")))     {         SPContext.Current.Web.AllowUnsafeUpdates = true;     }   So that’s all. We have finished writing Custom Code for adding field control. But something most important is skipped. In above code, I have called function “CreateFieldControls(web);” to add SharePoint field controls to the page. Let’s see the implementation of the function:     private void CreateFieldControls(SPWeb pWeb)     {         SPList listMain = pWeb.Lists[ListId];         SPFieldCollection fields = listMain.Fields;           //Main Table to render all fields         spTableCntl = new Table();         spTableCntl.BorderWidth = new Unit(0);         spTableCntl.CellPadding = 0;         spTableCntl.CellSpacing = 0;         spTableCntl.Width = new Unit(100, UnitType.Percentage);         spTableCntl.CssClass = "ms-formtable";           SPContext controlContext = SPContext.GetContext(this.Context, ItemId, ListId, pWeb);           foreach (SPField listField in fields)         {             string fieldDisplayName = listField.Title;             string fieldInternalName = listField.InternalName;               //Skip if the field is system field or hidden             if (listField.Hidden || listField.ShowInVersionHistory == false)                 continue;               //Skip if the control mode is display and field is read-only             if (_ControlMode != SPControlMode.Display && listField.ReadOnlyField == true)                 continue;               FieldLabel fieldLabel = new FieldLabel();             fieldLabel.FieldName = listField.InternalName;             fieldLabel.ListId = ListId;               BaseFieldControl fieldControl = listField.FieldRenderingControl;             fieldControl.ListId = ListId;             //Assign unique id using Field Internal Name             fieldControl.ID = string.Format("Field_{0}", fieldInternalName);             fieldControl.EnableViewState = true;               //Assign control mode             fieldLabel.ControlMode = _ControlMode;             fieldControl.ControlMode = _ControlMode;             switch (_ControlMode)             {                 case SPControlMode.New:                     fieldLabel.RenderContext = SPContext.GetContext(pWeb);                     fieldControl.RenderContext = SPContext.GetContext(pWeb);                     break;                 case SPControlMode.Edit:                 case SPControlMode.Display:                     fieldLabel.RenderContext = controlContext;                     fieldLabel.ItemContext = controlContext;                     fieldLabel.ItemId = ItemId;                       fieldControl.RenderContext = controlContext;                     fieldControl.ItemContext = controlContext;                     fieldControl.ItemId = ItemId;                     break;             }               //Add row to display a field row             TableRow spCntlRow = new TableRow();             spTableCntl.Rows.Add(spCntlRow);               //Add the cells for containing field lable and control             TableCell spCellLabel = new TableCell();             spCellLabel.Width = new Unit(30, UnitType.Percentage);             spCellLabel.CssClass = "ms-formlabel";             spCntlRow.Cells.Add(spCellLabel);             TableCell spCellControl = new TableCell();             spCellControl.Width = new Unit(70, UnitType.Percentage);             spCellControl.CssClass = "ms-formbody";             spCntlRow.Cells.Add(spCellControl);               //Add the control to the table cells             spCellLabel.Controls.Add(fieldLabel);             spCellControl.Controls.Add(fieldControl);               //Add description if there is any in case of New and Edit Mode             if (_ControlMode != SPControlMode.Display && listField.Description != string.Empty)             {                 FieldDescription fieldDesc = new FieldDescription();                 fieldDesc.FieldName = fieldInternalName;                 fieldDesc.ListId = ListId;                 spCellControl.Controls.Add(fieldDesc);             }               //Disable Name(Title) in Edit Mode             if (_ControlMode == SPControlMode.Edit && fieldDisplayName == "Name")             {                 TextBox txtTitlefield = (TextBox)fieldControl.Controls[0].FindControl("TextField");                 txtTitlefield.Enabled = false;             }         }         fields = null;     }   First of all, I have declared List object and got list fields in field collection object called “fields”. Then I have added a table for the container of all controls and assign CSS class as "ms-formtable" so that it gives consistent look and feel of SharePoint. Now it’s time to navigate through all fields and add them if required. Here we don’t need to add hidden or system fields. We also don’t want to display read-only fields in new and edit forms. Following lines does this job.             //Skip if the field is system field or hidden             if (listField.Hidden || listField.ShowInVersionHistory == false)                 continue;               //Skip if the control mode is display and field is read-only             if (_ControlMode != SPControlMode.Display && listField.ReadOnlyField == true)                 continue;   Let’s move to the next line of code.             FieldLabel fieldLabel = new FieldLabel();             fieldLabel.FieldName = listField.InternalName;             fieldLabel.ListId = ListId;               BaseFieldControl fieldControl = listField.FieldRenderingControl;             fieldControl.ListId = ListId;             //Assign unique id using Field Internal Name             fieldControl.ID = string.Format("Field_{0}", fieldInternalName);             fieldControl.EnableViewState = true;               //Assign control mode             fieldLabel.ControlMode = _ControlMode;             fieldControl.ControlMode = _ControlMode;   We have used “FieldLabel” control for displaying field title. The advantage of using Field Label is, SharePoint automatically adds red star besides field label to identify it as mandatory field if there is any. Here is most important part to understand. The “BaseFieldControl”. It will render the respective web controls according to type of the field. For example, if it’s single line of text, then Textbox, if it’s look up then it renders dropdown. Additionally, the “ControlMode” property tells compiler that which mode (display/edit/new) controls need to be rendered with. In display mode, it will render label with field value. In edit mode, it will render respective control with item value and in new mode it will render respective control with empty value. Please note that, it’s not always the case when dropdown field will be rendered for Lookup field or Choice field. You need to understand which controls are rendered for which list fields. I am planning to write a separate blog which I hope to publish it very soon. Moreover, we also need to assign list field specific properties like List Id, Field Name etc to identify which SharePoint List field is attached with the control.             switch (_ControlMode)             {                 case SPControlMode.New:                     fieldLabel.RenderContext = SPContext.GetContext(pWeb);                     fieldControl.RenderContext = SPContext.GetContext(pWeb);                     break;                 case SPControlMode.Edit:                 case SPControlMode.Display:                     fieldLabel.RenderContext = controlContext;                     fieldLabel.ItemContext = controlContext;                     fieldLabel.ItemId = ItemId;                       fieldControl.RenderContext = controlContext;                     fieldControl.ItemContext = controlContext;                     fieldControl.ItemId = ItemId;                     break;             }   Here, I have separate code for new mode and Edit/Display mode because we will not have Item Id to assign in New Mode. We also need to set CSS class for cell containing Label and Controls so that those controls get rendered with SharePoint theme.             spCellLabel.CssClass = "ms-formlabel";             spCellControl.CssClass = "ms-formbody";   “FieldDescription” control is used to add field description if there is any.    Now it’s time to add some more customization,               //Disable Name(Title) in Edit Mode             if (_ControlMode == SPControlMode.Edit && fieldDisplayName == "Name")             {                 TextBox txtTitlefield = (TextBox)fieldControl.Controls[0].FindControl("TextField");                 txtTitlefield.Enabled = false;             }   The above code will disable the title field in edit mode. You can add more code here to achieve more customization according to your requirement. Some of the examples are as follow:             //Adding post back event on UserField to auto populate some other dependent field             //in new mode and disable it in edit mode             if (_ControlMode != SPControlMode.Display && fieldDisplayName == "Manager")             {                 if (fieldControl.Controls[0].FindControl("UserField") != null)                 {                     PeopleEditor pplEditor = (PeopleEditor)fieldControl.Controls[0].FindControl("UserField");                     if (_ControlMode == SPControlMode.New)                         pplEditor.AutoPostBack = true;                     else                         pplEditor.Enabled = false;                 }             }               //Add JavaScript Event on Dropdown field. Don't forget to add the JavaScript function on the page.             if (_ControlMode == SPControlMode.Edit && fieldDisplayName == "Designation")             {                 DropDownList ddlCategory = (DropDownList)fieldControl.Controls[0];                 ddlCategory.Attributes.Add("onchange", string.Format("javascript:DropdownChangeEvent('{0}');return false;", ddlCategory.ClientID));             }    Following are the screenshots of my Custom ListForm WebPart. Let’s play a game, check out your OOB List forms of SharePoint, compare with these screens and find out differences.   DispForm.aspx:   EditForm.aspx:   NewForm.aspx:   Enjoy the SharePoint Soup!!! ­­­­­­­­­­­­­­­­­­­­

    Read the article

  • Mouse Clicks, Reactive Extensions and StreamInsight Mashup

    I had an hour spare this afternoon so I wanted to have another play with Reactive Extensions in .Net and StreamInsight.  I also didn’t want to simply use a console window as a way of gathering events so I decided to use a windows form instead. The task I set myself was this. Whenever I click on my form I want to subscribe to the event and output its location to the console window and also the timestamp of the event.  In addition to this I want to know for every mouse click I do, how many mouse clicks have happened in the last 5 seconds. The second point here is really interesting.  I have often found this when working with people on problems.  It is how you ask the question that determines how you tackle the problem.  I will show 2 ways of possibly answering the second question depending on how the question was interpreted. As a side effect of this example I will show how time in StreamInsight can stand still.  This is an important concept and we can see it in the output later. Now to the code.  I will break it all down in this blogpost but you can download the solution and see it all together. I created a Console application and then instantiate a windows form.   frm = new Form(); Thread g = new Thread(CallUI); g.SetApartmentState(ApartmentState.STA); g.Start();   Call UI looks like this   static void CallUI() { System.Windows.Forms.Application.Run(frm); frm.Activate(); frm.BringToFront(); }   Now what we need to do is create an observable from the MouseClick event on the form.  For this we use the Reactive Extensions.   var lblevt = Observable.FromEvent<MouseEventArgs>(frm, "MouseClick").Timestamp();   As mentioned earlier I have two objectives in this example and to solve the first I am going to again use the Reactive extensions.  Let’s subscribe to the MouseClick event and output the location and timestamp to the console. lblevt.Subscribe(evt => { Console.WriteLine("Clicked: {0}, {1} ", evt.Value.EventArgs.Location,evt.Timestamp); }); That should take care of obective #1 but what about the second objective.  For that we need some temporal windowing and this means StreamInsight.  First we need to turn our Observable collection of MouseClick events into a PointStream Server s = Server.Create("Default"); Microsoft.ComplexEventProcessing.Application a = s.CreateApplication("MouseClicks"); var input = lblevt.ToPointStream( a, evt => PointEvent.CreateInsert( evt.Timestamp, new { loc = evt.Value.EventArgs.Location.ToString(), ts = evt.Timestamp.ToLocalTime().ToString() }), AdvanceTimeSettings.IncreasingStartTime);   Now that we have created out PointStream we need to do something with it and this is where we get to our second objective.  It is pretty clear that we want some kind of windowing but what? Here is one way of doing it.  It might not be what you wanted but again it is how the second objective is interpreted   var q = from i in input.TumblingWindow(TimeSpan.FromSeconds(5), HoppingWindowOutputPolicy.ClipToWindowEnd) select new { CountOfClicks = i.Count() };   The above code creates tumbling windows of 5 seconds and counts the number of events in the windows.  If there are no events in the window then no result is output.  Likewise until an event (MouseClick) is issued then we do not see anything in the output (that is not strictly true because it is the CTI strapped to our MouseClick events that flush the events through the StreamInsight engine not the events themselves).  This approach is centred around the windows and not the events.  Until the windows complete and a CTI is issued then no events are pushed through. An alternate way of answering our second question is below   var q = from i in input.AlterEventDuration(evt => TimeSpan.FromSeconds(5)).SnapshotWindow(SnapshotWindowOutputPolicy.Clip) select new { CountOfClicks = i.Count() };   In this code we extend the duration of each MouseClick to five seconds.  We then create  Snapshot Windows over those events.  Snapshot windows are discussed in detail here.  With this solution we are centred around the events.  It is the events that are driving the output.  Let’s have a look at the output from this solution as it may be a little confusing. First though let me show how we get the output from StreamInsight into the Console window. foreach (var x in q.ToPointEnumerable().Where(e => e.EventKind != EventKind.Cti)) { Console.WriteLine(x.Payload.CountOfClicks); }   Ok so now to the output.   The table at the top shows the output from our routine and the table at the bottom helps to explain the output.  One of the things that will help as well is, you will note that for our PointStream we set the issuing of CTIs to be IncreasingStartTime.  What this means is that the CTI is placed right at the start of the event so will not flush the event with which it was issued but will flush those prior to it.  In the bottom table the Blue fill is where we issued a click.  Yellow fill is the duration and boundaries of our events.  The numbers at the bottom indicate the count of events   Clicked 22:40:16                                 Clicked 23:40:18                                 1                                   Clicked 23:40:20                                 2                                   Clicked 23:40:22                                 3                                   2                                   Clicked 23:40:24                                 3                                   2                                   Clicked 23:40:32                                 3                                   2                                   1                                                                                                         secs 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32                                                                                                                                                                                                                         counts   1   2 3 2 3 2 3   2   1           What we can see here in the output is that the counts include all the end edges that have occurred between the mouse clicks.  If we look specifically at the mouse click at 22:40:32. then we see that 3 events are returned to us. These include the following End Edge count at 22:40:25 End Edge count at 22:40:27 End Edge count at 22:40:29 Another thing we notice is that until we actually issue a CTI at 22:40:32 then those last 3 snapshot window counts will never be reported. Hopefully this has helped to explain  a few concepts around StreamInsight and the IObservable() pattern.   You can download this solution from here and play.  You will need the Reactive Framework from here and StreamInsight 1.1

    Read the article

  • datagrid binding

    - by abcdd007
    using System; using System.Data; using System.Configuration; using System.Collections; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Web.UI.HtmlControls; using System.Data.SqlClient; public partial class OrderMaster : System.Web.UI.Page { BLLOrderMaster objMaster = new BLLOrderMaster(); protected void Page_Load(object sender, EventArgs e) { if (!Page.IsPostBack) { SetInitialRow(); string OrderNumber = objMaster.SelectDetails().ToString(); if (OrderNumber != "") { txtOrderNo.Text = OrderNumber.ToString(); txtOrderDate.Focus(); } } } private void InsertEmptyRow() { DataTable dt = new DataTable(); DataRow dr = null; dt.Columns.Add(new DataColumn("ItemCode", typeof(string))); dt.Columns.Add(new DataColumn("Description", typeof(string))); dt.Columns.Add(new DataColumn("Unit", typeof(string))); dt.Columns.Add(new DataColumn("Qty", typeof(string))); dt.Columns.Add(new DataColumn("Rate", typeof(string))); dt.Columns.Add(new DataColumn("Disc", typeof(string))); dt.Columns.Add(new DataColumn("Amount", typeof(string))); for (int i = 0; i < 5; i++) { dr = dt.NewRow(); dr["ItemCode"] = string.Empty; dr["Description"] = string.Empty; dr["Unit"] = string.Empty; dr["Qty"] = string.Empty; dr["Rate"] = string.Empty; dr["Disc"] = string.Empty; dr["Amount"] = string.Empty; dt.Rows.Add(dr); } //GridView1.DataSource = dt; //GridView1.DataBind(); } private void SetInitialRow() { DataTable dt = new DataTable(); DataRow dr = null; dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); dt.Columns.Add(new DataColumn("ItemCode", typeof(string))); dt.Columns.Add(new DataColumn("Description", typeof(string))); dt.Columns.Add(new DataColumn("Unit", typeof(string))); dt.Columns.Add(new DataColumn("Qty", typeof(string))); dt.Columns.Add(new DataColumn("Rate", typeof(string))); dt.Columns.Add(new DataColumn("Disc", typeof(string))); dt.Columns.Add(new DataColumn("Amount", typeof(string))); dr = dt.NewRow(); dr["RowNumber"] = 1; dr["ItemCode"] = string.Empty; dr["Description"] = string.Empty; dr["Unit"] = string.Empty; dr["Qty"] = string.Empty; dr["Rate"] = string.Empty; dr["Disc"] = string.Empty; dr["Amount"] = string.Empty; dt.Rows.Add(dr); //Store DataTable ViewState["OrderDetails"] = dt; Gridview1.DataSource = dt; Gridview1.DataBind(); } protected void AddNewRowToGrid() { int rowIndex = 0; if (ViewState["OrderDetails"] != null) { DataTable dtCurrentTable = (DataTable)ViewState["OrderDetails"]; DataRow drCurrentRow = null; if (dtCurrentTable.Rows.Count > 0) { for (int i = 1; i <= dtCurrentTable.Rows.Count; i++) { //extract the TextBox values TextBox box1 = (TextBox)Gridview1.Rows[rowIndex].Cells[1].FindControl("txtItemCode"); TextBox box2 = (TextBox)Gridview1.Rows[rowIndex].Cells[2].FindControl("txtdescription"); TextBox box3 = (TextBox)Gridview1.Rows[rowIndex].Cells[3].FindControl("txtunit"); TextBox box4 = (TextBox)Gridview1.Rows[rowIndex].Cells[4].FindControl("txtqty"); TextBox box5 = (TextBox)Gridview1.Rows[rowIndex].Cells[5].FindControl("txtRate"); TextBox box6 = (TextBox)Gridview1.Rows[rowIndex].Cells[6].FindControl("txtdisc"); TextBox box7 = (TextBox)Gridview1.Rows[rowIndex].Cells[7].FindControl("txtamount"); drCurrentRow = dtCurrentTable.NewRow(); drCurrentRow["RowNumber"] = i + 1; drCurrentRow["ItemCode"] = box1.Text; drCurrentRow["Description"] = box2.Text; drCurrentRow["Unit"] = box3.Text; drCurrentRow["Qty"] = box4.Text; drCurrentRow["Rate"] = box5.Text; drCurrentRow["Disc"] = box6.Text; drCurrentRow["Amount"] = box7.Text; rowIndex++; } //add new row to DataTable dtCurrentTable.Rows.Add(drCurrentRow); //Store the current data to ViewState ViewState["OrderDetails"] = dtCurrentTable; //Rebind the Grid with the current data Gridview1.DataSource = dtCurrentTable; Gridview1.DataBind(); } } else { // } //Set Previous Data on Postbacks SetPreviousData(); } private void SetPreviousData() { int rowIndex = 0; if (ViewState["OrderDetails"] != null) { DataTable dt = (DataTable)ViewState["OrderDetails"]; if (dt.Rows.Count > 0) { for (int i = 1; i < dt.Rows.Count; i++) { TextBox box1 = (TextBox)Gridview1.Rows[rowIndex].Cells[1].FindControl("txtItemCode"); TextBox box2 = (TextBox)Gridview1.Rows[rowIndex].Cells[2].FindControl("txtdescription"); TextBox box3 = (TextBox)Gridview1.Rows[rowIndex].Cells[3].FindControl("txtunit"); TextBox box4 = (TextBox)Gridview1.Rows[rowIndex].Cells[4].FindControl("txtqty"); TextBox box5 = (TextBox)Gridview1.Rows[rowIndex].Cells[5].FindControl("txtRate"); TextBox box6 = (TextBox)Gridview1.Rows[rowIndex].Cells[6].FindControl("txtdisc"); TextBox box7 = (TextBox)Gridview1.Rows[rowIndex].Cells[7].FindControl("txtamount"); box1.Text = dt.Rows[i]["ItemCode"].ToString(); box2.Text = dt.Rows[i]["Description"].ToString(); box3.Text = dt.Rows[i]["Unit"].ToString(); box4.Text = dt.Rows[i]["Qty"].ToString(); box5.Text = dt.Rows[i]["Rate"].ToString(); box6.Text = dt.Rows[i]["Disc"].ToString(); box7.Text = dt.Rows[i]["Amount"].ToString(); rowIndex++; } dt.AcceptChanges(); } ViewState["OrderDetails"] = dt; } } protected void BindOrderDetails() { DataTable dtOrderDetails = new DataTable(); if (ViewState["OrderDetails"] != null) { dtOrderDetails = (DataTable)ViewState["OrderDetails"]; } else { dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.Columns.Add(""); dtOrderDetails.AcceptChanges(); DataRow dr = dtOrderDetails.NewRow(); dtOrderDetails.Rows.Add(dr); ViewState["OrderDetails"] = dtOrderDetails; } if (dtOrderDetails != null) { Gridview1.DataSource = dtOrderDetails; Gridview1.DataBind(); if (Gridview1.Rows.Count > 0) { ((LinkButton)Gridview1.Rows[Gridview1.Rows.Count - 1].FindControl("btnDelete")).Visible = false; } } } protected void btnSave_Click(object sender, EventArgs e) { if (txtOrderDate.Text != "" && txtOrderNo.Text != "" && txtPartyName.Text != "" && txttotalAmount.Text !="") { BLLOrderMaster bllobj = new BLLOrderMaster(); DataTable dtdetails = new DataTable(); UpdateItemDetailRow(); dtdetails = (DataTable)ViewState["OrderDetails"]; SetValues(bllobj); int k = 0; k = bllobj.Insert_Update_Delete(1, bllobj, dtdetails); if (k > 0) { ScriptManager.RegisterStartupScript(this, this.GetType(), "Login Denied", "<Script>alert('Order Code Alraddy Exist');</Script>", false); } else { ScriptManager.RegisterStartupScript(this, this.GetType(), "Login Denied", "<Script>alert('Record Saved Successfully');</Script>", false); } dtdetails.Clear(); SetInitialRow(); txttotalAmount.Text = ""; txtOrderNo.Text = ""; txtPartyName.Text = ""; txtOrderDate.Text = ""; txttotalQty.Text = ""; string OrderNumber = objMaster.SelectDetails().ToString(); if (OrderNumber != "") { txtOrderNo.Text = OrderNumber.ToString(); txtOrderDate.Focus(); } } else { txtOrderNo.Text = ""; } } public void SetValues(BLLOrderMaster bllobj) { if (txtOrderNo.Text != null && txtOrderNo.Text.ToString() != "") { bllobj.OrNumber = Convert.ToInt16(txtOrderNo.Text); } if (txtOrderDate.Text != null && txtOrderDate.Text.ToString() != "") { bllobj.Date = DateTime.Parse(txtOrderDate.Text.ToString()).ToString("dd/MM/yyyy"); } if (txtPartyName.Text != null && txtPartyName.Text.ToString() != "") { bllobj.PartyName = txtPartyName.Text; } bllobj.TotalBillAmount = txttotalAmount.Text == "" ? 0 : int.Parse(txttotalAmount.Text); bllobj.TotalQty = txttotalQty.Text == "" ? 0 : int.Parse(txttotalQty.Text); } protected void txtdisc_TextChanged(object sender, EventArgs e) { double total = 0; double totalqty = 0; foreach (GridViewRow dgvr in Gridview1.Rows) { TextBox tb = (TextBox)dgvr.Cells[7].FindControl("txtamount"); double sum; if (double.TryParse(tb.Text.Trim(), out sum)) { total += sum; } TextBox tb1 = (TextBox)dgvr.Cells[4].FindControl("txtqty"); double qtysum; if (double.TryParse(tb1.Text.Trim(), out qtysum)) { totalqty += qtysum; } } txttotalAmount.Text = total.ToString(); txttotalQty.Text = totalqty.ToString(); AddNewRowToGrid(); Gridview1.TabIndex = 1; } public void UpdateItemDetailRow() { DataTable dt = new DataTable(); if (ViewState["OrderDetails"] != null) { dt = (DataTable)ViewState["OrderDetails"]; } if (dt.Rows.Count > 0) { for (int i = 0; i < Gridview1.Rows.Count; i++) { dt.Rows[i]["ItemCode"] = (Gridview1.Rows[i].FindControl("txtItemCode") as TextBox).Text.ToString(); if (dt.Rows[i]["ItemCode"].ToString() == "") { dt.Rows[i].Delete(); break; } else { dt.Rows[i]["Description"] = (Gridview1.Rows[i].FindControl("txtdescription") as TextBox).Text.ToString(); dt.Rows[i]["Unit"] = (Gridview1.Rows[i].FindControl("txtunit") as TextBox).Text.ToString(); dt.Rows[i]["Qty"] = (Gridview1.Rows[i].FindControl("txtqty") as TextBox).Text.ToString(); dt.Rows[i]["Rate"] = (Gridview1.Rows[i].FindControl("txtRate") as TextBox).Text.ToString(); dt.Rows[i]["Disc"] = (Gridview1.Rows[i].FindControl("txtdisc") as TextBox).Text.ToString(); dt.Rows[i]["Amount"] = (Gridview1.Rows[i].FindControl("txtamount") as TextBox).Text.ToString(); } } dt.AcceptChanges(); } ViewState["OrderDetails"] = dt; } }

    Read the article

  • Powershell Win32_NetworkAdapterConfiguration Not "seeing" PPP Adapter

    - by Ben
    I am trying to get the IP of a PPP VPN network connection, but Win32_NetworkAdapterConfiguration does not seem to "see" it. If I interrogate all adapters using my script, it will see everything but the PPP VPN adapter. Is there a specific filter or something I need to enable, or do I need a different class? My Script: $colItems = Get-wmiobject Win32_NetworkAdapterConfiguration foreach ($objItem in $colItems) { Write-Host Description: $objItem.Description Write-Host IP Address: $objItem.IPAddress Write-Host "" } Script Output: Description: WAN Miniport (SSTP) IP Address: Description: WAN Miniport (IKEv2) IP Address: Description: WAN Miniport (L2TP) IP Address: Description: WAN Miniport (PPTP) IP Address: Description: WAN Miniport (PPPOE) IP Address: Description: WAN Miniport (IPv6) IP Address: Description: WAN Miniport (Network Monitor) IP Address: Description: Intel(R) PRO/Wireless 3945ABG Network Connection IP Address: 192.168.2.5 Description: WAN Miniport (IP) IP Address: ipconfig /all output: PPP adapter My VPN: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : My VPN Physical Address. . . . . . . . . : DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes IPv4 Address. . . . . . . . . . . : 10.1.8.12(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.255 Default Gateway . . . . . . . . . : 0.0.0.0 DNS Servers . . . . . . . . . . . : 10.1.1.3 10.1.1.2 Primary WINS Server . . . . . . . : 10.1.1.2 Secondary WINS Server . . . . . . : 10.1.1.3 NetBIOS over Tcpip. . . . . . . . : Enabled Wireless LAN adapter Wireless Network Connection: Connection-specific DNS Suffix . : Belkin Description . . . . . . . . . . . : Intel(R) PRO/Wireless 3945ABG Network Connection Physical Address. . . . . . . . . : 00-3F-3C-22-22-22 DHCP Enabled. . . . . . . . . . . : Yes Autoconfiguration Enabled . . . . : Yes IPv4 Address. . . . . . . . . . . : 192.168.2.5(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.0 Lease Obtained. . . . . . . . . . : 25 May 2010 20:33:19 Lease Expires . . . . . . . . . . : 22 May 2020 20:33:17 Default Gateway . . . . . . . . . : 192.168.2.1 DHCP Server . . . . . . . . . . . : 192.168.2.1 DNS Servers . . . . . . . . . . . : 192.168.2.1 NetBIOS over Tcpip. . . . . . . . : Enabled Thanks in advance, Ben

    Read the article

  • MVC2 EditorTemplate for DropDownList

    - by tschreck
    I've spent the majority of the past week knee deep in the new templating functionality baked into MVC2. I had a hard time trying to get a DropDownList template working. The biggest problem I've been working to solve is how to get the source data for the drop down list to the template. I saw a lot of examples where you can put the source data in the ViewData dictionary (ViewData["DropDownSourceValuesKey"]) then retrieve them in the template itself (var sourceValues = ViewData["DropDownSourceValuesKey"];) This works, but I did not like having a silly string as the lynch pin for making this work. Below is an approach I've come up with and wanted to get opinions on this approach: here are my design goals: The view model should contain the source data for the drop down list Limit Silly Strings Not use ViewData dictionary Controller is responsible for filling the property with the source data for the drop down list Here's my View Model: public class CustomerViewModel { [ScaffoldColumn(false)] public String CustomerCode{ get; set; } [UIHint("DropDownList")] [DropDownList(DropDownListTargetProperty = "CustomerCode"] [DisplayName("Customer Code")] public IEnumerable<SelectListItem> CustomerCodeList { get; set; } public String FirstName { get; set; } public String LastName { get; set; } public String PhoneNumber { get; set; } public String Address1 { get; set; } public String Address2 { get; set; } public String City { get; set; } public String State { get; set; } public String Zip { get; set; } } My View Model has a CustomerCode property which is a value that the user selects from a list of values. I have a CustomerCodeList property that is a list of possible CustomerCode values and is the source for a drop down list. I've created a DropDownList attribute with a DropDownListTargetProperty. DropDownListTargetProperty points to the property which will be populated based on the user selection from the generated drop down (in this case, the CustomerCode property). Notice that the CustomerCode property has [ScaffoldColumn(false)] which forces the generator to skip the field in the generated output. My DropDownList.ascx file will generate a dropdown list form element with the source data from the CustomerCodeList property. The generated dropdown list will use the value of the DropDownListTargetProperty from the DropDownList attribute as the Id and the Name attributes of the Select form element. So the generated code will look like this: <select id="CustomerCode" name="CustomerCode"> <option>... </select> This works out great because when the form is submitted, MVC will populate the target property with the selected value from the drop down list because the name of the generated dropdown list IS the target property. I kinda visualize it as the CustomerCodeList property is an extension of sorts of the CustomerCode property. I've coupled the source data to the property. Here's my code for the controller: public ActionResult Create() { //retrieve CustomerCodes from a datasource of your choosing List<CustomerCode> customerCodeList = modelService.GetCustomerCodeList(); CustomerViewModel viewModel= new CustomerViewModel(); viewModel.CustomerCodeList = customerCodeList.Select(s => new SelectListItem() { Text = s.CustomerCode, Value = s.CustomerCode, Selected = (s.CustomerCode == viewModel.CustomerCode) }).AsEnumerable(); return View(viewModel); } Here's my code for the DropDownListAttribute: namespace AutoForm.Attributes { public class DropDownListAttribute : Attribute { public String DropDownListTargetProperty { get; set; } } } Here's my code for the template (DropDownList.ascx): <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<IEnumerable<SelectListItem>>" %> <%@ Import Namespace="AutoForm.Attributes"%> <script runat="server"> DropDownListAttribute GetDropDownListAttribute() { var dropDownListAttribute = new DropDownListAttribute(); if (ViewData.ModelMetadata.AdditionalValues.ContainsKey("DropDownListAttribute")) { dropDownListAttribute = (DropDownListAttribute)ViewData.ModelMetadata.AdditionalValues["DropDownListAttribute"]; } return dropDownListAttribute; } </script> <% DropDownListAttribute attribute = GetDropDownListAttribute();%> <select id="<%= attribute.DropDownListTargetProperty %>" name="<%= attribute.DropDownListTargetProperty %>"> <% foreach(SelectListItem item in ViewData.Model) {%> <% if (item.Selected == true) {%> <option value="<%= item.Value %>" selected="true"><%= item.Text %></option> <% } %> <% else {%> <option value="<%= item.Value %>"><%= item.Text %></option> <% } %> <% } %> </select> I tried using the Html.DropDownList helper, but it would not allow me to change the Id and Name attributes of the generated Select element. NOTE: you have to override the CreateMetadata method of the DataAnnotationsModelMetadataProvider for the DropDownListAttribute. Here's the code for that: public class MetadataProvider : DataAnnotationsModelMetadataProvider { protected override ModelMetadata CreateMetadata(IEnumerable<Attribute> attributes, Type containerType, Func<object> modelAccessor, Type modelType, string propertyName) { var metadata = base.CreateMetadata(attributes, containerType, modelAccessor, modelType, propertyName); var additionalValues = attributes.OfType<DropDownListAttribute>().FirstOrDefault(); if (additionalValues != null) { metadata.AdditionalValues.Add("DropDownListAttribute", additionalValues); } return metadata; } } Then you have to make a call to the new MetadataProvider in Application_Start of Global.asax.cs: protected void Application_Start() { RegisterRoutes(RouteTable.Routes); ModelMetadataProviders.Current = new MetadataProvider(); } Well, I hope this makes sense and I hope this approach may save you some time. I'd like some feedback on this approach please. Is there a better approach?

    Read the article

  • C# .Net 3.5 Asynchronous Socket Server Performance Problem

    - by iBrAaAa
    I'm developing an Asynchronous Game Server using .Net Socket Asynchronous Model( BeginAccept/EndAccept...etc.) The problem I'm facing is described like that: When I have only one client connected, the server response time is very fast but once a second client connects, the server response time increases too much. I've measured the time from a client sends a message to the server until it gets the reply in both cases. I found that the average time in case of one client is about 17ms and in case of 2 clients about 280ms!!! What I really see is that: When 2 clients are connected and only one of them is moving(i.e. requesting service from the server) it is equivalently equal to the case when only one client is connected(i.e. fast response). However, when the 2 clients move at the same time(i.e. requests service from the server at the same time) their motion becomes very slow (as if the server replies each one of them in order i.e. not simultaneously). Basically, what I am doing is that: When a client requests a permission for motion from the server and the server grants him the request, the server then broadcasts the new position of the client to all the players. So if two clients are moving in the same time, the server is eventually trying to broadcast to both clients the new position of each of them at the same time. EX: Client1 asks to go to position (2,2) Client2 asks to go to position (5,5) Server sends to each of Client1 & Client2 the same two messages: message1: "Client1 at (2,2)" message2: "Client2 at (5,5)" I believe that the problem comes from the fact that Socket class is thread safe according MSDN documentation http://msdn.microsoft.com/en-us/library/system.net.sockets.socket.aspx. (NOT SURE THAT IT IS THE PROBLEM) Below is the code for the server: /// /// This class is responsible for handling packet receiving and sending /// public class NetworkManager { /// /// An integer to hold the server port number to be used for the connections. Its default value is 5000. /// private readonly int port = 5000; /// /// hashtable contain all the clients connected to the server. /// key: player Id /// value: socket /// private readonly Hashtable connectedClients = new Hashtable(); /// /// An event to hold the thread to wait for a new client /// private readonly ManualResetEvent resetEvent = new ManualResetEvent(false); /// /// keeps track of the number of the connected clients /// private int clientCount; /// /// The socket of the server at which the clients connect /// private readonly Socket mainSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); /// /// The socket exception that informs that a client is disconnected /// private const int ClientDisconnectedErrorCode = 10054; /// /// The only instance of this class. /// private static readonly NetworkManager networkManagerInstance = new NetworkManager(); /// /// A delegate for the new client connected event. /// /// the sender object /// the event args public delegate void NewClientConnected(Object sender, SystemEventArgs e); /// /// A delegate for the position update message reception. /// /// the sender object /// the event args public delegate void PositionUpdateMessageRecieved(Object sender, PositionUpdateEventArgs e); /// /// The event which fires when a client sends a position message /// public PositionUpdateMessageRecieved PositionUpdateMessageEvent { get; set; } /// /// keeps track of the number of the connected clients /// public int ClientCount { get { return clientCount; } } /// /// A getter for this class instance. /// /// only instance. public static NetworkManager NetworkManagerInstance { get { return networkManagerInstance; } } private NetworkManager() {} /// Starts the game server and holds this thread alive /// public void StartServer() { //Bind the mainSocket to the server IP address and port mainSocket.Bind(new IPEndPoint(IPAddress.Any, port)); //The server starts to listen on the binded socket with max connection queue //1024 mainSocket.Listen(1024); //Start accepting clients asynchronously mainSocket.BeginAccept(OnClientConnected, null); //Wait until there is a client wants to connect resetEvent.WaitOne(); } /// /// Receives connections of new clients and fire the NewClientConnected event /// private void OnClientConnected(IAsyncResult asyncResult) { Interlocked.Increment(ref clientCount); ClientInfo newClient = new ClientInfo { WorkerSocket = mainSocket.EndAccept(asyncResult), PlayerId = clientCount }; //Add the new client to the hashtable and increment the number of clients connectedClients.Add(newClient.PlayerId, newClient); //fire the new client event informing that a new client is connected to the server if (NewClientEvent != null) { NewClientEvent(this, System.EventArgs.Empty); } newClient.WorkerSocket.BeginReceive(newClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), newClient); //Start accepting clients asynchronously again mainSocket.BeginAccept(OnClientConnected, null); } /// Waits for the upcoming messages from different clients and fires the proper event according to the packet type. /// /// private void WaitForData(IAsyncResult asyncResult) { ClientInfo sendingClient = null; try { //Take the client information from the asynchronous result resulting from the BeginReceive sendingClient = asyncResult.AsyncState as ClientInfo; // If client is disconnected, then throw a socket exception // with the correct error code. if (!IsConnected(sendingClient.WorkerSocket)) { throw new SocketException(ClientDisconnectedErrorCode); } //End the pending receive request sendingClient.WorkerSocket.EndReceive(asyncResult); //Fire the appropriate event FireMessageTypeEvent(sendingClient.ConvertBytesToPacket() as BasePacket); // Begin receiving data from this client sendingClient.WorkerSocket.BeginReceive(sendingClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), sendingClient); } catch (SocketException e) { if (e.ErrorCode == ClientDisconnectedErrorCode) { // Close the socket. if (sendingClient.WorkerSocket != null) { sendingClient.WorkerSocket.Close(); sendingClient.WorkerSocket = null; } // Remove it from the hash table. connectedClients.Remove(sendingClient.PlayerId); if (ClientDisconnectedEvent != null) { ClientDisconnectedEvent(this, new ClientDisconnectedEventArgs(sendingClient.PlayerId)); } } } catch (Exception e) { // Begin receiving data from this client sendingClient.WorkerSocket.BeginReceive(sendingClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), sendingClient); } } /// /// Broadcasts the input message to all the connected clients /// /// public void BroadcastMessage(BasePacket message) { byte[] bytes = message.ConvertToBytes(); foreach (ClientInfo client in connectedClients.Values) { client.WorkerSocket.BeginSend(bytes, 0, bytes.Length, SocketFlags.None, SendAsync, client); } } /// /// Sends the input message to the client specified by his ID. /// /// /// The message to be sent. /// The id of the client to receive the message. public void SendToClient(BasePacket message, int id) { byte[] bytes = message.ConvertToBytes(); (connectedClients[id] as ClientInfo).WorkerSocket.BeginSend(bytes, 0, bytes.Length, SocketFlags.None, SendAsync, connectedClients[id]); } private void SendAsync(IAsyncResult asyncResult) { ClientInfo currentClient = (ClientInfo)asyncResult.AsyncState; currentClient.WorkerSocket.EndSend(asyncResult); } /// Fires the event depending on the type of received packet /// /// The received packet. void FireMessageTypeEvent(BasePacket packet) { switch (packet.MessageType) { case MessageType.PositionUpdateMessage: if (PositionUpdateMessageEvent != null) { PositionUpdateMessageEvent(this, new PositionUpdateEventArgs(packet as PositionUpdatePacket)); } break; } } } The events fired are handled in a different class, here are the event handling code for the PositionUpdateMessage (Other handlers are irrelevant): private readonly Hashtable onlinePlayers = new Hashtable(); /// /// Constructor that creates a new instance of the GameController class. /// private GameController() { //Start the server server = new Thread(networkManager.StartServer); server.Start(); //Create an event handler for the NewClientEvent of networkManager networkManager.PositionUpdateMessageEvent += OnPositionUpdateMessageReceived; } /// /// this event handler is called when a client asks for movement. /// private void OnPositionUpdateMessageReceived(object sender, PositionUpdateEventArgs e) { Point currentLocation = ((PlayerData)onlinePlayers[e.PositionUpdatePacket.PlayerId]).Position; Point locationRequested = e.PositionUpdatePacket.Position; ((PlayerData)onlinePlayers[e.PositionUpdatePacket.PlayerId]).Position = locationRequested; // Broadcast the new position networkManager.BroadcastMessage(new PositionUpdatePacket { Position = locationRequested, PlayerId = e.PositionUpdatePacket.PlayerId }); }

    Read the article

  • Please help me understand why my XSL Transform is not transforming

    - by Damovisa
    I'm trying to transform one XML format to another using XSL. Try as I might, I can't seem to get a result. I've hacked away at this for a while now and I've had no success. I'm not even getting any exceptions. I'm going to post the entire code and hopefully someone can help me work out what I've done wrong. I'm aware there are likely to be problems in the xsl I have in terms of selects and matches, but I'm not fussed about that at the moment. The output I'm getting is the input XML without any XML tags. The transformation is simply not occurring. Here's my XML Document: <?xml version="1.0"?> <Transactions> <Account> <PersonalAccount> <AccountNumber>066645621</AccountNumber> <AccountName>A Smith</AccountName> <CurrentBalance>-200125.96</CurrentBalance> <AvailableBalance>0</AvailableBalance> <AccountType>LOAN</AccountType> </PersonalAccount> </Account> <StartDate>2010-03-01T00:00:00</StartDate> <EndDate>2010-03-23T00:00:00</EndDate> <Items> <Transaction> <ErrorNumber>-1</ErrorNumber> <Amount>12000</Amount> <Reference>Transaction 1</Reference> <CreatedDate>0001-01-01T00:00:00</CreatedDate> <EffectiveDate>2010-03-15T00:00:00</EffectiveDate> <IsCredit>true</IsCredit> <Balance>-324000</Balance> </Transaction> <Transaction> <ErrorNumber>-1</ErrorNumber> <Amount>11000</Amount> <Reference>Transaction 2</Reference> <CreatedDate>0001-01-01T00:00:00</CreatedDate> <EffectiveDate>2010-03-14T00:00:00</EffectiveDate> <IsCredit>true</IsCredit> <Balance>-324000</Balance> </Transaction> </Items> </Transactions> Here's my XSLT: <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"> <xsl:output method="xml" /> <xsl:param name="currentdate"></xsl:param> <xsl:template match="Transactions"> <xsl:element name="OFX"> <xsl:element name="SIGNONMSGSRSV1"> <xsl:element name="SONRS"> <xsl:element name="STATUS"> <xsl:element name="CODE">0</xsl:element> <xsl:element name="SEVERITY">INFO</xsl:element> </xsl:element> <xsl:element name="DTSERVER"><xsl:value-of select="$currentdate" /></xsl:element> <xsl:element name="LANGUAGE">ENG</xsl:element> </xsl:element> </xsl:element> <xsl:element name="BANKMSGSRSV1"> <xsl:element name="STMTTRNRS"> <xsl:element name="TRNUID">1</xsl:element> <xsl:element name="STATUS"> <xsl:element name="CODE">0</xsl:element> <xsl:element name="SEVERITY">INFO</xsl:element> </xsl:element> <xsl:element name="STMTRS"> <xsl:element name="CURDEF">AUD</xsl:element> <xsl:element name="BANKACCTFROM"> <xsl:element name="BANKID">RAMS</xsl:element> <xsl:element name="ACCTID"><xsl:value-of select="Account/PersonalAccount/AccountNumber" /></xsl:element> <xsl:element name="ACCTTYPE"><xsl:value-of select="Account/PersonalAccount/AccountType" /></xsl:element> </xsl:element> <xsl:element name="BANKTRANLIST"> <xsl:element name="DTSTART"><xsl:value-of select="StartDate" /></xsl:element> <xsl:element name="DTEND"><xsl:value-of select="EndDate" /></xsl:element> <xsl:for-each select="Items/Transaction"> <xsl:element name="STMTTRN"> <xsl:element name="TRNTYPE"><xsl:choose><xsl:when test="IsCredit">CREDIT</xsl:when><xsl:otherwise>DEBIT</xsl:otherwise></xsl:choose></xsl:element> <xsl:element name="DTPOSTED"><xsl:value-of select="EffectiveDate" /></xsl:element> <xsl:element name="DTUSER"><xsl:value-of select="CreatedDate" /></xsl:element> <xsl:element name="TRNAMT"><xsl:value-of select="Amount" /></xsl:element> <xsl:element name="FITID" /> <xsl:element name="NAME"><xsl:value-of select="Reference" /></xsl:element> <xsl:element name="MEMO"><xsl:value-of select="Reference" /></xsl:element> </xsl:element> </xsl:for-each> </xsl:element> <xsl:element name="LEDGERBAL"> <xsl:element name="BALAMT"><xsl:value-of select="Account/PersonalAccount/CurrentBalance" /></xsl:element> <xsl:element name="DTASOF"><xsl:value-of select="EndDate" /></xsl:element> </xsl:element> </xsl:element> </xsl:element> </xsl:element> </xsl:element> </xsl:template> </xsl:stylesheet> Here's my method to transform my XML: public string TransformToXml(XmlElement xmlElement, Dictionary<string, object> parameters) { string strReturn = ""; // Load the XSLT Document XslCompiledTransform xslt = new XslCompiledTransform(); xslt.Load(xsltFileName); // arguments XsltArgumentList args = new XsltArgumentList(); if (parameters != null && parameters.Count > 0) { foreach (string key in parameters.Keys) { args.AddParam(key, "", parameters[key]); } } //Create a memory stream to write to Stream objStream = new MemoryStream(); // Apply the transform xslt.Transform(xmlElement, args, objStream); objStream.Seek(0, SeekOrigin.Begin); // Read the contents of the stream StreamReader objSR = new StreamReader(objStream); strReturn = objSR.ReadToEnd(); return strReturn; } The contents of strReturn is an XML tag (<?xml version="1.0" encoding="utf-8"?>) followed by a raw dump of the contents of the original XML document, stripped of XML tags. What am I doing wrong here?

    Read the article

  • Silverlight 4 + WCF RIA - Data Service Design Best Practices

    - by Chadd Nervig
    Hey all. I realize this is a rather long question, but I'd really appreciate any help from anyone experienced with RIA services. Thanks! I'm working on a Silverlight 4 app that views data from the server. I'm relatively inexperienced with RIA Services, so have been working through the tasks of getting the data I need down to the client, but every new piece I add to the puzzle seems to be more and more problematic. I feel like I'm missing some basic concepts here, and it seems like I'm just 'hacking' pieces on, in time-consuming ways, each one breaking the previous ones as I try to add them. I'd love to get the feedback of developers experienced with RIA services, to figure out the intended way to do what I'm trying to do. Let me lay out what I'm trying to do: First, the data. The source of this data is a variety of sources, primarily created by a shared library which reads data from our database, and exposes it as POCOs (Plain Old CLR Objects). I'm creating my own POCOs to represent the different types of data I need to pass between server and client. DataA - This app is for viewing a certain type of data, lets call DataA, in near-realtime. Every 3 minutes, the client should pull data down from the server, of all the new DataA since the last time it requested data. DataB - Users can view the DataA objects in the app, and may select one of them from the list, which displays additional details about that DataA. I'm bringing these extra details down from the server as DataB. DataC - One of the things that DataB contains is a history of a couple important values over time. I'm calling each data point of this history a DataC object, and each DataB object contains many DataCs. The Data Model - On the server side, I have a single DomainService: [EnableClientAccess] public class MyDomainService : DomainService { public IEnumerable<DataA> GetDataA(DateTime? startDate) { /*Pieces together the DataAs that have been created since startDate, and returns them*/ } public DataB GetDataB(int dataAID) { /*Looks up the extended info for that dataAID, constructs a new DataB with that DataA's data, plus the extended info (with multiple DataCs in a List<DataC> property on the DataB), and returns it*/ } //Not exactly sure why these are here, but I think it //wouldn't compile without them for some reason? The data //is entirely read-only, so I don't need to update. public void UpdateDataA(DataA dataA) { throw new NotSupportedException(); } public void UpdateDataB(DataB dataB) { throw new NotSupportedException(); } } The classes for DataA/B/C look like this: [KnownType(typeof(DataB))] public partial class DataA { [Key] [DataMember] public int DataAID { get; set; } [DataMember] public decimal MyDecimalA { get; set; } [DataMember] public string MyStringA { get; set; } [DataMember] public DataTime MyDateTimeA { get; set; } } public partial class DataB : DataA { [Key] [DataMember] public int DataAID { get; set; } [DataMember] public decimal MyDecimalB { get; set; } [DataMember] public string MyStringB { get; set; } [Include] //I don't know which of these, if any, I need? [Composition] [Association("DataAToC","DataAID","DataAID")] public List<DataC> DataCs { get; set; } } public partial class DataC { [Key] [DataMember] public int DataAID { get; set; } [Key] [DataMember] public DateTime Timestamp { get; set; } [DataMember] public decimal MyHistoricDecimal { get; set; } } I guess a big question I have here is... Should I be using Entities instead of POCOs? Are my classes constructed correctly to be able to pass the data down correctly? Should I be using Invoke methods instead of Query (Get) methods on the DomainService? On the client side, I'm having a number of issues. Surprisingly, one of my biggest ones has been threading. I didn't expect there to be so many threading issues with MyDomainContext. What I've learned is that you only seem to be able to create MyDomainContextObjects on the UI thread, all of the queries you can make are done asynchronously only, and that if you try to fake doing it synchronously by blocking the calling thread until the LoadOperation finishes, you have to do so on a background thread, since it uses the UI thread to make the query. So here's what I've got so far. The app should display a stream of the DataA objects, spreading each 3min chunk of them over the next 3min (so they end up displayed 3min after the occurred, looking like a continuous stream, but only have to be downloaded in 3min bursts). To do this, the main form initializes, creates a private MyDomainContext, and starts up a background worker, which continuously loops in a while(true). On each loop, it checks if it has any DataAs left over to display. If so, it displays that Data, and Thread.Sleep()s until the next DataA is scheduled to be displayed. If it's out of data, it queries for more, using the following methods: public DataA[] GetDataAs(DateTime? startDate) { _loadOperationGetDataACompletion = new AutoResetEvent(false); LoadOperation<DataA> loadOperationGetDataA = null; loadOperationGetDataA = _context.Load(_context.GetDataAQuery(startDate), System.ServiceModel.DomainServices.Client.LoadBehavior.RefreshCurrent, false); loadOperationGetDataA.Completed += new EventHandler(loadOperationGetDataA_Completed); _loadOperationGetDataACompletion.WaitOne(); List<DataA> dataAs = new List<DataA>(); foreach (var dataA in loadOperationGetDataA.Entities) dataAs.Add(dataA); return dataAs.ToArray(); } private static AutoResetEvent _loadOperationGetDataACompletion; private static void loadOperationGetDataA_Completed(object sender, EventArgs e) { _loadOperationGetDataACompletion.Set(); } Seems kind of clunky trying to force it into being synchronous, but since this already is on a background thread, I think this is OK? So far, everything actually works, as much of a hack as it seems like it may be. It's important to note that if I try to run that code on the UI thread, it locks, because it waits on the WaitOne() forever, locking the thread, so it can't make the Load request to the server. So once the data is displayed, users can click on one as it goes by to fill a details pane with the full DataB data about that object. To do that, I have the the details pane user control subscribing to a selection event I have setup, which gets fired when the selection changes (on the UI thread). I use a similar technique there, to get the DataB object: void SelectionService_SelectedDataAChanged(object sender, EventArgs e) { DataA dataA = /*Get the selected DataA*/; MyDomainContext context = new MyDomainContext(); var loadOperationGetDataB = context.Load(context.GetDataBQuery(dataA.DataAID), System.ServiceModel.DomainServices.Client.LoadBehavior.RefreshCurrent, false); loadOperationGetDataB.Completed += new EventHandler(loadOperationGetDataB_Completed); } private void loadOperationGetDataB_Completed(object sender, EventArgs e) { this.DataContext = ((LoadOperation<DataB>)sender).Entities.SingleOrDefault(); } Again, it seems kinda hacky, but it works... except on the DataB that it loads, the DataCs list is empty. I've tried all kinds of things there, and I don't see what I'm doing wrong to allow the DataCs to come down with the DataB. I'm about ready to make a 3rd query for the DataCs, but that's screaming even more hackiness to me. It really feels like I'm fighting against the grain here, like I'm doing this in an entirely unintended way. If anyone could offer any assistance, and point out what I'm doing wrong here, I'd very much appreciate it! Thanks!

    Read the article

  • Some problems with GridView in webpart with multiple filters.

    - by NF_81
    Hello, I'm currently working on a highly configurable Database Viewer webpart for WSS 3.0 which we are going to need for several customized sharepoint sites. Sorry in advance for the large wall of text, but i fear it's necessary to recap the whole issue. As background information and to describe my problem as good as possible, I'll start by telling you what the webpart shall do: Basically the webpart contains an UpdatePanel, which contains a GridView and an SqlDataSource. The select-query the Datasource uses can be set via webbrowseable properties or received from a consumer method from another webpart. Now i wanted to add a filtering feature to the webpart, so i want a dropdownlist in the headerrow for each column that should be filterable. As the select-query is completely dynamic and i don't know at design time which columns shall be filterable, i decided to add a webbrowseable property to contain an xml-formed string with filter information. So i added the following into OnRowCreated of the gridview: void gridView_RowCreated(object sender, GridViewRowEventArgs e) { if (e.Row.RowType == DataControlRowType.Header) { for (int i = 0; i < e.Row.Cells.Count; i++) { if (e.Row.Cells[i].GetType() == typeof(DataControlFieldHeaderCell)) { string headerText = ((DataControlFieldHeaderCell)e.Row.Cells[i]).ContainingField.HeaderText; // add sorting functionality if (_allowSorting && !String.IsNullOrEmpty(headerText)) { Label l = new Label(); l.Text = headerText; l.ForeColor = Color.Blue; l.Font.Bold = true; l.ID = "Header" + i; l.Attributes["title"] = "Sort by " + headerText; l.Attributes["onmouseover"] = "this.style.cursor = 'pointer'; this.style.color = 'red'"; l.Attributes["onmouseout"] = "this.style.color = 'blue'"; l.Attributes["onclick"] = "__doPostBack('" + panel.UniqueID + "','SortBy$" + headerText + "');"; e.Row.Cells[i].Controls.Add(l); } // check if this column shall be filterable if (!String.IsNullOrEmpty(filterXmlData)) { XmlNode columnNode = GetColumnNode(headerText); if (columnNode != null) { string dataValueField = columnNode.Attributes["DataValueField"] == null ? "" : columnNode.Attributes["DataValueField"].Value; string filterQuery = columnNode.Attributes["FilterQuery"] == null ? "" : columnNode.Attributes["FilterQuery"].Value; if (!String.IsNullOrEmpty(dataValueField) && !String.IsNullOrEmpty(filterQuery)) { SqlDataSource ds = new SqlDataSource(_conStr, filterQuery); DropDownList cbx = new DropDownList(); cbx.ID = "FilterCbx" + i; cbx.Attributes["onchange"] = "__doPostBack('" + panel.UniqueID + "','SelectionChange$" + headerText + "$' + this.options[this.selectedIndex].value);"; cbx.Width = 150; cbx.DataValueField = dataValueField; cbx.DataSource = ds; cbx.DataBound += new EventHandler(cbx_DataBound); cbx.PreRender += new EventHandler(cbx_PreRender); cbx.DataBind(); e.Row.Cells[i].Controls.Add(cbx); } } } } } } } GetColumnNode() checks in the filter property, if there is a node for the current column, which contains information about the Field the DropDownList should bind to, and the query for filling in the items. In cbx_PreRender() i check ViewState and select an item in case of a postback. In cbx_DataBound() i just add tooltips to the list items as the dropdownlist has a fixed width. Previously, I used AutoPostback and SelectedIndexChanged of the DDL to filter the grid, but to my disappointment it was not always fired. Now i check __EVENTTARGET and __EVENTARGUMENT in OnLoad and call a function when the postback event was due to a selection change in a DDL: private void FilterSelectionChanged(string columnName, string selectedValue) { columnName = "[" + columnName + "]"; if (selectedValue.IndexOf("--") < 0 ) // "-- All --" selected { if (filter.ContainsKey(columnName)) filter[columnName] = "='" + selectedValue + "'"; else filter.Add(columnName, "='" + selectedValue + "'"); } else { filter.Remove(columnName); } gridView.PageIndex = 0; } "filter" is a HashTable which is stored in ViewState for persisting the filters (got this sample somewhere on the web, don't remember where). In OnPreRender of the webpart, i call a function which reads the ViewState and apply the filterExpression to the datasource if there is one. I assume i had to place it here, because if there is another postback (e.g. for sorting) the filters are not applied any more. private void ApplyGridFilter() { string args = " "; int i = 0; foreach (object key in filter.Keys) { if (i == 0) args = key.ToString() + filter[key].ToString(); else args += " AND " + key.ToString() + filter[key].ToString(); i++; } dataSource.FilterExpression = args; ViewState.Add("FilterArgs", filter); } protected override void OnPreRender(EventArgs e) { EnsureChildControls(); if (WebPartManager.DisplayMode.Name == "Edit") { errMsg = "Webpart in Edit mode..."; return; } if (useWebPartConnection == true) // get select-query from consumer webpart { if (provider != null) { dataSource.SelectCommand = provider.strQuery; } } try { int currentPageIndex = gridView.PageIndex; if (!String.IsNullOrEmpty(m_SortExpression)) { gridView.Sort("[" + m_SortExpression + "]", m_SortDirection); } gridView.PageIndex = currentPageIndex; // for some reason, the current pageindex resets after sorting ApplyGridFilter(); gridView.DataBind(); } catch (Exception ex) { Functions.ShowJavaScriptAlert(Page, ex.Message); } base.OnPreRender(e); } So i set the filterExpression and the call DataBind(). I don't know if this is ok on this late stage.. don't have a lot of asp.net experience after all. If anyone can suggest a better solution, please give me a hint. This all works great so far, except when i have two or more filters and set them to a combination that returns zero records. Bam ... gridview gone, completely - without a possiblity of changing the filters back. So i googled and found out that i have to subclass gridview in order to always show the headerrow. I found this solution and implemented it with some modifications. The headerrow get's displayed and i can change the filters even if the returned result contains no rows. But finally to my current problem: When i have two or more filters set which return zero rows, and i change back one filter to something that should return rows, the gridview remains empty (although the pager is rendered). I have to completly refresh the page to reset the filters. When debugging, i can see in the overridden CreateChildControls of the grid, that the base method indeed returns 0, but anyway... the gridView.RowCount remains 0 after databinding. Anyone have an idea what's going wrong here?

    Read the article

< Previous Page | 257 258 259 260 261 262 263 264  | Next Page >