Search Results

Search found 49089 results on 1964 pages for 'global address list'.

Page 265/1964 | < Previous Page | 261 262 263 264 265 266 267 268 269 270 271 272  | Next Page >

  • Using CTAS & Exchange Partition Replace IAS for Copying Partition on Exadata

    - by Bandari Huang
    Usage Scenario: Copy data&index from one partition to another partition in a partitioned table. Solution: Create a partition definition Copy data from one partition to another partiton by 'Insert as select (IAS)' Create a nonpartitioned table by 'Create table as select (CTAS)' Convert a nonpartitioned table into a partition of partitoned table by exchangng their data segments. Rebuild unusable index Exchange Partition Convertion Mutual convertion between a partition (or subpartition) and a nonpartitioned table Mutual convertion between a hash-partitioned table and a partition of a composite *-hash partitioned table Mutual convertiton a [range | list]-partitioned table into a partition of a composite *-[range | list] partitioned table. Exchange Partition Usage Scenario High-speed data loading of new, incremental data into an existing partitioned table in DW environment Exchanging old data partitions out of a partitioned table, the data is purged from the partitioned table without actually being deleted and can be archived separately Exchange Partition Syntax ALTER TABLE schema.table EXCHANGE [PARTITION|SUBPARTITION] [partition|subprtition] WITH TABLE schema.table [INCLUDE|EXCLUDING] INDEX [WITH|WITHOUT] VALIDATION UPDATE [INDEXES|GLOBAL INDEXES] INCLUDING | EXCLUDING INDEXES Specify INCLUDING INDEXES if you want local index partitions or subpartitions to be exchanged with the corresponding table index (for a nonpartitioned table) or local indexes (for a hash-partitioned table). Specify EXCLUDING INDEXES if you want all index partitions or subpartitions corresponding to the partition and all the regular indexes and index partitions on the exchanged table to be marked UNUSABLE. If you omit this clause, then the default is EXCLUDING INDEXES. WITH | WITHOUT VALIDATION Specify WITH VALIDATION if you want Oracle Database to return an error if any rows in the exchanged table do not map into partitions or subpartitions being exchanged. Specify WITHOUT VALIDATION if you do not want Oracle Database to check the proper mapping of rows in the exchanged table. If you omit this clause, then the default is WITH VALIDATION.  UPADATE INDEX|GLOBAL INDEX Unless you specify UPDATE INDEXES, the database marks UNUSABLE the global indexes or all global index partitions on the table whose partition is being exchanged. Global indexes or global index partitions on the table being exchanged remain invalidated. (You cannot use UPDATE INDEXES for index-organized tables. Use UPDATE GLOBAL INDEXES instead.) Exchanging Partitions&Subpartitions Notes Both tables involved in the exchange must have the same primary key, and no validated foreign keys can be referencing either of the tables unless the referenced table is empty.  When exchanging partitioned index-organized tables: – The source and target table or partition must have their primary key set on the same columns, in the same order. – If key compression is enabled, then it must be enabled for both the source and the target, and with the same prefix length. – Both the source and target must be index organized. – Both the source and target must have overflow segments, or neither can have overflow segments. Also, both the source and target must have mapping tables, or neither can have a mapping table. – Both the source and target must have identical storage attributes for any LOB columns. 

    Read the article

  • Optimized OCR black/white pixel algorithm

    - by eagle
    I am writing a simple OCR solution for a finite set of characters. That is, I know the exact way all 26 letters in the alphabet will look like. I am using C# and am able to easily determine if a given pixel should be treated as black or white. I am generating a matrix of black/white pixels for every single character. So for example, the letter I (capital i), might look like the following: 01110 00100 00100 00100 01110 Note: all points, which I use later in this post, assume that the top left pixel is (0, 0), bottom right pixel is (4, 4). 1's represent black pixels, and 0's represent white pixels. I would create a corresponding matrix in C# like this: CreateLetter("I", new List<List<bool>>() { new List<bool>() { false, true, true, true, false }, new List<bool>() { false, false, true, false, false }, new List<bool>() { false, false, true, false, false }, new List<bool>() { false, false, true, false, false }, new List<bool>() { false, true, true, true, false } }); I know I could probably optimize this part by using a multi-dimensional array instead, but let's ignore that for now, this is for illustrative purposes. Every letter is exactly the same dimensions, 10px by 11px (10px by 11px is the actual dimensions of a character in my real program. I simplified this to 5px by 5px in this posting since it is much easier to "draw" the letters using 0's and 1's on a smaller image). Now when I give it a 10px by 11px part of an image to analyze with OCR, it would need to run on every single letter (26) on every single pixel (10 * 11 = 110) which would mean 2,860 (26 * 110) iterations (in the worst case) for every single character. I was thinking this could be optimized by defining the unique characteristics of every character. So, for example, let's assume that the set of characters only consists of 5 distinct letters: I, A, O, B, and L. These might look like the following: 01110 00100 00100 01100 01000 00100 01010 01010 01010 01000 00100 01110 01010 01100 01000 00100 01010 01010 01010 01000 01110 01010 00100 01100 01110 After analyzing the unique characteristics of every character, I can significantly reduce the number of tests that need to be performed to test for a character. For example, for the "I" character, I could define it's unique characteristics as having a black pixel in the coordinate (3, 0) since no other characters have that pixel as black. So instead of testing 110 pixels for a match on the "I" character, I reduced it to a 1 pixel test. This is what it might look like for all these characters: var LetterI = new OcrLetter() { Name = "I", BlackPixels = new List<Point>() { new Point (3, 0) } } var LetterA = new OcrLetter() { Name = "A", WhitePixels = new List<Point>() { new Point(2, 4) } } var LetterO = new OcrLetter() { Name = "O", BlackPixels = new List<Point>() { new Point(3, 2) }, WhitePixels = new List<Point>() { new Point(2, 2) } } var LetterB = new OcrLetter() { Name = "B", BlackPixels = new List<Point>() { new Point(3, 1) }, WhitePixels = new List<Point>() { new Point(3, 2) } } var LetterL = new OcrLetter() { Name = "L", BlackPixels = new List<Point>() { new Point(1, 1), new Point(3, 4) }, WhitePixels = new List<Point>() { new Point(2, 2) } } This is challenging to do manually for 5 characters and gets much harder the greater the amount of letters that are added. You also want to guarantee that you have the minimum set of unique characteristics of a letter since you want it to be optimized as much as possible. I want to create an algorithm that will identify the unique characteristics of all the letters and would generate similar code to that above. I would then use this optimized black/white matrix to identify characters. How do I take the 26 letters that have all their black/white pixels filled in (e.g. the CreateLetter code block) and convert them to an optimized set of unique characteristics that define a letter (e.g. the new OcrLetter() code block)? And how would I guarantee that it is the most efficient definition set of unique characteristics (e.g. instead of defining 6 points as the unique characteristics, there might be a way to do it with 1 or 2 points, as the letter "I" in my example was able to). An alternative solution I've come up with is using a hash table, which will reduce it from 2,860 iterations to 110 iterations, a 26 time reduction. This is how it might work: I would populate it with data similar to the following: Letters["01110 00100 00100 00100 01110"] = "I"; Letters["00100 01010 01110 01010 01010"] = "A"; Letters["00100 01010 01010 01010 00100"] = "O"; Letters["01100 01010 01100 01010 01100"] = "B"; Now when I reach a location in the image to process, I convert it to a string such as: "01110 00100 00100 00100 01110" and simply find it in the hash table. This solution seems very simple, however, this still requires 110 iterations to generate this string for each letter. In big O notation, the algorithm is the same since O(110N) = O(2860N) = O(N) for N letters to process on the page. However, it is still improved by a constant factor of 26, a significant improvement (e.g. instead of it taking 26 minutes, it would take 1 minute). Update: Most of the solutions provided so far have not addressed the issue of identifying the unique characteristics of a character and rather provide alternative solutions. I am still looking for this solution which, as far as I can tell, is the only way to achieve the fastest OCR processing. I just came up with a partial solution: For each pixel, in the grid, store the letters that have it as a black pixel. Using these letters: I A O B L 01110 00100 00100 01100 01000 00100 01010 01010 01010 01000 00100 01110 01010 01100 01000 00100 01010 01010 01010 01000 01110 01010 00100 01100 01110 You would have something like this: CreatePixel(new Point(0, 0), new List<Char>() { }); CreatePixel(new Point(1, 0), new List<Char>() { 'I', 'B', 'L' }); CreatePixel(new Point(2, 0), new List<Char>() { 'I', 'A', 'O', 'B' }); CreatePixel(new Point(3, 0), new List<Char>() { 'I' }); CreatePixel(new Point(4, 0), new List<Char>() { }); CreatePixel(new Point(0, 1), new List<Char>() { }); CreatePixel(new Point(1, 1), new List<Char>() { 'A', 'B', 'L' }); CreatePixel(new Point(2, 1), new List<Char>() { 'I' }); CreatePixel(new Point(3, 1), new List<Char>() { 'A', 'O', 'B' }); // ... CreatePixel(new Point(2, 2), new List<Char>() { 'I', 'A', 'B' }); CreatePixel(new Point(3, 2), new List<Char>() { 'A', 'O' }); // ... CreatePixel(new Point(2, 4), new List<Char>() { 'I', 'O', 'B', 'L' }); CreatePixel(new Point(3, 4), new List<Char>() { 'I', 'A', 'L' }); CreatePixel(new Point(4, 4), new List<Char>() { }); Now for every letter, in order to find the unique characteristics, you need to look at which buckets it belongs to, as well as the amount of other characters in the bucket. So let's take the example of "I". We go to all the buckets it belongs to (1,0; 2,0; 3,0; ...; 3,4) and see that the one with the least amount of other characters is (3,0). In fact, it only has 1 character, meaning it must be an "I" in this case, and we found our unique characteristic. You can also do the same for pixels that would be white. Notice that bucket (2,0) contains all the letters except for "L", this means that it could be used as a white pixel test. Similarly, (2,4) doesn't contain an 'A'. Buckets that either contain all the letters or none of the letters can be discarded immediately, since these pixels can't help define a unique characteristic (e.g. 1,1; 4,0; 0,1; 4,4). It gets trickier when you don't have a 1 pixel test for a letter, for example in the case of 'O' and 'B'. Let's walk through the test for 'O'... It's contained in the following buckets: // Bucket Count Letters // 2,0 4 I, A, O, B // 3,1 3 A, O, B // 3,2 2 A, O // 2,4 4 I, O, B, L Additionally, we also have a few white pixel tests that can help: (I only listed those that are missing at most 2). The Missing Count was calculated as (5 - Bucket.Count). // Bucket Missing Count Missing Letters // 1,0 2 A, O // 1,1 2 I, O // 2,2 2 O, L // 3,4 2 O, B So now we can take the shortest black pixel bucket (3,2) and see that when we test for (3,2) we know it is either an 'A' or an 'O'. So we need an easy way to tell the difference between an 'A' and an 'O'. We could either look for a black pixel bucket that contains 'O' but not 'A' (e.g. 2,4) or a white pixel bucket that contains an 'O' but not an 'A' (e.g. 1,1). Either of these could be used in combination with the (3,2) pixel to uniquely identify the letter 'O' with only 2 tests. This seems like a simple algorithm when there are 5 characters, but how would I do this when there are 26 letters and a lot more pixels overlapping? For example, let's say that after the (3,2) pixel test, it found 10 different characters that contain the pixel (and this was the least from all the buckets). Now I need to find differences from 9 other characters instead of only 1 other character. How would I achieve my goal of getting the least amount of checks as possible, and ensure that I am not running extraneous tests?

    Read the article

  • C# Memoization of functions with arbitrary number of arguments

    - by Lirik
    I'm trying to create a memoization interface for functions with arbitrary number of arguments, but I'm failing miserably. The first thing I tried is to define an interface for a function which gets memoized automatically upon execution: class EMAFunction:IFunction { Dictionary<List<object>, List<object>> map; class EMAComparer : IEqualityComparer<List<object>> { private int _multiplier = 97; public bool Equals(List<object> a, List<object> b) { List<object> aVals = (List<object>)a[0]; int aPeriod = (int)a[1]; List<object> bVals = (List<object>)b[0]; int bPeriod = (int)b[1]; return (aVals.Count == bVals.Count) && (aPeriod == bPeriod); } public int GetHashCode(List<object> obj) { // Don't compute hash code on null object. if (obj == null) { return 0; } // Get length. int length = obj.Count; List<object> vals = (List<object>) obj[0]; int period = (int) obj[1]; return (_multiplier * vals.GetHashCode() * period.GetHashCode()) + length;; } } public EMAFunction() { NumParams = 2; Name = "EMA"; map = new Dictionary<List<object>, List<object>>(new EMAComparer()); } #region IFunction Members public int NumParams { get; set; } public string Name { get; set; } public object Execute(List<object> parameters) { if (parameters.Count != NumParams) throw new ArgumentException("The num params doesn't match!"); if (!map.ContainsKey(parameters)) { //map.Add(parameters, List<double> values = new List<double>(); List<object> asObj = (List<object>)parameters[0]; foreach (object val in asObj) { values.Add((double)val); } int period = (int)parameters[1]; asObj.Clear(); List<double> ema = TechFunctions.ExponentialMovingAverage(values, period); foreach (double val in ema) { asObj.Add(val); } map.Add(parameters, asObj); } return map[parameters]; } public void ClearMap() { map.Clear(); } #endregion } Here are my tests of the function: private void MemoizeTest() { DataSet dataSet = DataLoader.LoadData(DataLoader.DataSource.FROM_WEB, 1024); List<String> labels = dataSet.DataLabels; Stopwatch sw = new Stopwatch(); IFunction emaFunc = new EMAFunction(); List<object> parameters = new List<object>(); int numRuns = 1000; long sumTicks = 0; parameters.Add(dataSet.GetValues("open")); parameters.Add(12); // First call for(int i = 0; i < numRuns; ++i) { emaFunc.ClearMap();// remove any memoization mappings sw.Start(); emaFunc.Execute(parameters); sw.Stop(); sumTicks += sw.ElapsedTicks; } Console.WriteLine("Average ticks not-memoized " + (sumTicks/numRuns)); sumTicks = 0; // Repeat call for (int i = 0; i < numRuns; ++i) { sw.Start(); emaFunc.Execute(parameters); sw.Stop(); sumTicks += sw.ElapsedTicks; } Console.WriteLine("Average ticks memoized " + (sumTicks/numRuns)); } The performance is confusing me... I expected the memoized function to be faster, but it didn't work out that way: Average ticks not-memoized 106,182 Average ticks memoized 198,854 I tried doubling the data instances to 2048, but the results were about the same: Average ticks not-memoized 232,579 Average ticks memoized 446,280 I did notice that it was correctly finding the parameters in the map and it going directly to the map, but the performance was still slow... I'm either open for troubleshooting help with this example, or if you have a better solution to the problem then please let me know what it is.

    Read the article

  • Pinning Projects and Solutions with Visual Studio 2010

    - by ScottGu
    This is the twenty-fourth in a series of blog posts I’m doing on the VS 2010 and .NET 4 release. Today’s blog post covers a very small, but still useful, feature of VS 2010 – the ability to “pin” projects and solutions to both the Windows 7 taskbar as well VS 2010 Start Page.  This makes it easier to quickly find and open projects in the IDE. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] VS 2010 Jump List on Windows 7 Taskbar Windows 7 added support for customizing the taskbar at the bottom of your screen.  You can “pin” and re-arrange your application icons on it however you want. Most developers using Visual Studio 2010 on Windows 7 probably already know that they can “pin” the Visual Studio icon to the Windows 7 taskbar – making it always present.  What you might not yet have discovered, though, is that Visual Studio 2010 also exposes a Taskbar “jump list” that you can use to quickly find and load your most recently used projects as well. To activate this, simply right-click on the VS 2010 icon in the task bar and you’ll see a list of your most recent projects.  Clicking one will load it within Visual Studio 2010: Pinning Projects on the VS 2010 Jump List with Windows 7 One nice feature also supported by VS 2010 is the ability to optionally “pin” projects to the jump-list as well – which makes them always listed at the top.  To enable this, simply hover over the project you want to pin and then click the “pin” icon that appears on the right of it: When you click the pin the project will be added to a new “Pinned” list at the top of the jumplist: This enables you to always display your own list of projects at the top of the list.  You can optionally click and drag them to display in any order you want. VS 2010 Start Page and Project Pinning VS 2010 has a new “start page” that displays by default each time you launch a new instance of Visual Studio.  In addition to displaying learning and help resources, it also includes a “Recent Projects” section that you can use to quickly load previous projects that you have recently worked on: The “Recent Projects” section of the start page also supports the concept of “pinning” a link to projects you want to always keep in the list – regardless of how recently they’ve been accessed. To “pin” a project to the list you simply select the “pin” icon that appears when you hover over an item within the list: Once you’ve pinned a project to the start page list it will always show up in it (at least until you “unpin” it). Summary This project pinning support is a small but nice usability improvement with VS 2010 and can make it easier to quickly find and load projects/solutions.  If you work with a lot of projects at the same time it offers a nice shortcut to load them. Hope this helps, Scott

    Read the article

  • Logical Domain Modeling Made Simple

    - by Knut Vatsendvik
    How can logical domain modeling be made simple and collaborative? Many non-technical end-users, managers and business domain experts find it difficult to understand the visual models offered by many UML tools. This creates trouble in capturing and verifying the information that goes into a logical domain model. The tools are also too advanced and complex for a non-technical user to learn and use. We have therefore, in our current project, ended up with using Confluence as tool for designing the logical domain model with the help of a few very useful plugins. Big thanks to Ole Nymoen and Per Spilling for their expertise in this field that made this posting possible. Confluence Plugins Here is a list of Confluence plugins used in this solution. Install these before trying out the macros used below. Plugin Description Copy Space Allows a space administrator to copy a space, including the pages within the space Metadata Supports adding metadata to Wiki pages Label Manages labeling of pages Linking Contains macros for linking to templates, the dashboard and other Table Enhances the table capability in Confluence Creating a Confluence Space First we need to create a new confluence space for the domain model. Click the link Create a Space located below the list of spaces on the Dashboard. Please contact your Confluence administrator is you do not have permissions to do this.   For illustrative purpose all attributes and entities in this posting are based on my imaginary project manager domain model. When a logical domain model is good enough for being implemented, do a copy of the Confluence Space (see Copy Space plugin). In this way you create a stable version of the logical domain model while further design can continue with the new copied space. Typical will the implementation phase result in a database design and/or a XSD schema design. Add Space Templates Go to the Home page of your Confluence Space. Navigate to the Browse drop-down menu and click on Advanced. Then click the Templates option in the left navigation panel. Click Add New Space Template to add the following three templates. Name: attribute {metadata-list} || Name | | || Type | | || Format | | || Description | | {metadata-list} {add-label:attribute} Name: primary-type {metadata-list} || Name | || || Type | || || Format | || || Description | || {metadata-list} {add-label:primary-type} Name: complex-type {metadata-list} || Name | || || Description |  || {metadata-list} h3. Attributes || Name || Type || Format || Description || | [name] | {metadata-from:name|Type} | {metadata-from:name|Format} | {metadata-from:name|Description} | {add-label:complex-type,entity} The metadata-list macro (see Metadata plugin) will save a list of metadata values to the page. The add-label macro (see Label plugin) will automatically label the page. Primary Types Page Our first page to add will act as container for our primary types. Switch to Wiki markup when adding the following content to the page. | (+) {add-page:template=primary-type|parent=@self}Add new primary type{add-page} | {metadata-report:Name,Type,Format,Description|sort=Name|root=@self|pages=@descendents} Once the page is created, click the Add new primary type (create-page macro) to start creating a new pages. Here is an example of input to the LocalDate page. Embrace the LocalDate with square brackets [] to make the page linkable. Again switch to Wiki markup before editing. {metadata-list} || Name | [LocalDate] || || Type | Date || || Format | YYYY-MM-DD || || Description | Date in local time zone. YYYY = year, MM = month and DD = day || {metadata-list} {add-label:primary-type} The metadata-report macro will show a tabular report of all child pages.   Attributes Page The next page will act as container for all of our attributes. | (+) {add-page:template=attribute|parent=@self|title=attribute}Add new attribute{add-page} | {metadata-report:Name,Type,Format,Description|sort=Name|pages=@descendants} Here is an example of input to the startDate page. {metadata-list} || Name | [startDate] || || Type | [LocalDate] || || Format | {metadata-from:LocalDate|Format} || || Description | The projects start date || {metadata-list} {add-label:attribute} Using the metadata-from macro we fetch the text from the previously created LocalDate page. Complex Types Page The last page in this example shows how attributes can be combined together to form more complex types.   h3. Intro Overview of complex types in the domain model. | (+) {add-page:template=complex-type|parent=@self}Add a new complex type{add-page}\\ | {metadata-report:Name,Description|sort=Name|root=@self|pages=@descendents} Here is an example of input to the ProjectType page. {metadata-list} || Name | [ProjectType] || || Description | Represents a project || {metadata-list} h3. Attributes || Name || Type || Format || Description || | [projectId] | {metadata-from:projectId|Type} | {metadata-from:projectId|Format} | {metadata-from:projectId|Description} | | [name] | {metadata-from:name|Type} | {metadata-from:name|Format} | {metadata-from:name|Description} | | [description] | {metadata-from:description|Type} | {metadata-from:description|Format} | {metadata-from:description|Description} | | [startDate] | {metadata-from:startDate|Type} | {metadata-from:startDate|Format} | {metadata-from:startDate|Description} | {add-label:complex-type,entity} Gives us this Conclusion Using a web-based corporate Wiki like Confluence to create a logical domain model increases the collaboration between people with different roles in the enterprise. It’s my believe that this helps the domain model to be more accurate, and better documented. In our real project we have more pages than illustrated here to complete the documentation. We do also still use UML tools to create different types of diagrams that Confluence do not support. As a last tip, an ImageMap plugin can make those diagrams clickable when used in pages. Enjoy!

    Read the article

  • Oracle BI and XS Energy Drinks – Don’t Miss the Amway Presentation!

    - by Michelle Kimihira
    By Maria Forney Amway is a global leader in the direct sales industry with $10.9B in annual sales in more than 100 countries and territories. The company has implemented a global BI framework that provides accurate, consistent, and timely insights to support global, regional and local analytical research, business planning, performance measurement and assessment. Oracle BI EE is used by 1500 employees across Amway sales, marketing, finance, and supply chain business units as well as Amway affiliates in Europe, Russia, South Africa, Japan, Australia, Latin America, Malaysia, Vietnam, and Indonesia. Last week, I spoke with Lead Data Analyst with Amway Global Sales, Dan Arganbright, and IT Manager with Amway BI Competency Center, Mike Olson, about their upcoming presentation at Oracle OpenWorld in San Francisco. Scheduled during a prime speaking slot on Monday, October 1 at 12:15pm in Moscone West, 2007, Dan and Mike will discuss their experience building Amway’s Distributor Consulting solution, powered by Oracle BI EE. You can find more information here. As background, Amway offers people an opportunity to own their own businesses and consumers exclusive products in health and wellness, beauty and home care.  The Amway internal Sales organization is charged with consulting leadership-level Distributors to help them with data insights and ultimately grow their business. Until recently, this was a resource-intense process of gathering and formatting data. In some markets, it took over 40 hours to collect the data and produce the analysis needed for one consultation session. Amway began its global BI journey in 2006 and since then the company has migrated from having multiple technology providers and integration points to an integrated strategic vendor approach. Today, the company has standardized on Oracle technology for BI.  Amway has achieved cost savings through the retirement of redundant technology platforms. In addition, Mike’s organization has led the charge to align disparate BI organizations into a BI Competency Center.  The following diagram highlights the simplicity of the standardized architecture of Amway today. Dubbed Distributor Consulting, Amway has developed a BI solution using the Oracle technology stack to help Distributor leaders grow their businesses. The Distributor Consulting solution provides over 40 metrics for Sales staff to provide data-driven insights on the Distributors and organizations they support.  Using Oracle BI EE, Exadata, and Oracle Data Integrator, Amway provides customized and personalized business intelligence, and the Oracle BI EE dashboards were developed by the Amway Sales organization, which demonstrates business empowerment of the technology. Amway is also leveraging the power of BI to drive business growth in all of its markets.  A new set of Distributor Segmentation metrics are enabling a better understanding of distributor behaviors. A Global Scorecard that Amway developed provides key metrics at a market and global level for executive-level discussions. Product Analysis teams can now highlight repeat purchase rates, product penetration and the success of CRM campaigns. In the words of Dan and Mike, the addition of Exadata 11 months ago has been “a game changer.”  Amway has been able to dramatically reduce complexity, improve performance and increase business productivity and cost savings. For example, the number of indexes on the global data warehouse was reduced from more than 1,000 to less than 20.  Pulling data for the highest level distributors or the largest markets in the company now can be done in minutes instead of hours.  As a result, IT has shifted from performance tuning and keeping the system operational to higher-value business-focused activities. •       “The distributors that have been introduced to the BI reports have found them extremely helpful. Because they have never had this kind of information before, when they were presented with the reports, they wanted to take action immediately!”  -     Sales Development Manager in Latin America Without giving away more, the Amway case study presentation will be one of the unique customer sessions at OpenWorld this year. Speakers Dan Arganbright and Mike Olson have planned an interactive and entertaining session on Monday October 1 at 12:15pm in Moscone West, 2007. I’ll see you there!

    Read the article

  • Oracle BI and XS Energy Drinks – Don’t Miss the Amway Presentation!

    - by Maria Forney
    Amway is a global leader in the direct sales industry with $10.9B in annual sales in more than 100 countries and territories. The company has implemented a global BI framework that provides accurate, consistent, and timely insights to support global, regional and local analytical research, business planning, performance measurement and assessment. Oracle BI EE is used by 1500 employees across Amway sales, marketing, finance, and supply chain business units as well as Amway affiliates in Europe, Russia, South Africa, Japan, Australia, Latin America, Malaysia, Vietnam, and Indonesia. Last week, I spoke with Lead Data Analyst with Amway Global Sales, Dan Arganbright, and IT Manager with Amway BI Competency Center, Mike Olson, about their upcoming presentation at Oracle OpenWorld in San Francisco. Scheduled during a prime speaking slot on Monday, October 1 at 12:15pm in Moscone West, 2007, Dan and Mike will discuss their experience building Amway’s Distributor Consulting solution, powered by Oracle BI EE. You can find more information here. As background, Amway offers people an opportunity to own their own businesses and consumers exclusive products in health and wellness, beauty and home care.  The Amway internal Sales organization is charged with consulting leadership-level Distributors to help them with data insights and ultimately grow their business. Until recently, this was a resource-intense process of gathering and formatting data. In some markets, it took over 40 hours to collect the data and produce the analysis needed for one consultation session. Amway began its global BI journey in 2006 and since then the company has migrated from having multiple technology providers and integration points to an integrated strategic vendor approach. Today, the company has standardized on Oracle technology for BI.  Amway has achieved cost savings through the retirement of redundant technology platforms. In addition, Mike’s organization has led the charge to align disparate BI organizations into a BI Competency Center.  The following diagram highlights the simplicity of the standardized architecture of Amway today. Dubbed Distributor Consulting, Amway has developed a BI solution using the Oracle technology stack to help Distributor leaders grow their businesses. The Distributor Consulting solution provides over 40 metrics for Sales staff to provide data-driven insights on the Distributors and organizations they support.  Using Oracle BI EE, Exadata, and Oracle Data Integrator, Amway provides customized and personalized business intelligence, and the Oracle BI EE dashboards were developed by the Amway Sales organization, which demonstrates business empowerment of the technology. Amway is also leveraging the power of BI to drive business growth in all of its markets.  A new set of Distributor Segmentation metrics are enabling a better understanding of distributor behaviors. A Global Scorecard that Amway developed provides key metrics at a market and global level for executive-level discussions. Product Analysis teams can now highlight repeat purchase rates, product penetration and the success of CRM campaigns. In the words of Dan and Mike, the addition of Exadata 11 months ago has been “a game changer.”  Amway has been able to dramatically reduce complexity, improve performance and increase business productivity and cost savings. For example, the number of indexes on the global data warehouse was reduced from more than 1,000 to less than 20.  Pulling data for the highest level distributors or the largest markets in the company now can be done in minutes instead of hours.  As a result, IT has shifted from performance tuning and keeping the system operational to higher-value business-focused activities. •       “The distributors that have been introduced to the BI reports have found them extremely helpful. Because they have never had this kind of information before, when they were presented with the reports, they wanted to take action immediately!”  -     Sales Development Manager in Latin America Without giving away more, the Amway case study presentation will be one of the unique customer sessions at OpenWorld this year. Speakers Dan Arganbright and Mike Olson have planned an interactive and entertaining session on Monday October 1 at 12:15pm in Moscone West, 2007. I’ll see you there!

    Read the article

  • Error connecting to Sonicwall L2TP VPN from iPad/iPhone

    - by db2
    A client has a Sonicwall Pro 2040 running SonicOS 3.0, and they'd like to be able to use the L2TP VPN client from their iPads to connect to internal services (Citrix, etc). I've enabled the L2TP VPN server on the Sonicwall, made sure to set AES-128 for phase 2, and set up the configuration on a test iPad with the appropriate username, password, and pre-shared key. When I attempt to connect, I get some rather cryptic error messages in the log on the Sonicwall: 2 03/29/2011 12:25:09.096 IKE Responder: IPSec proposal does not match (Phase 2) [My outbound IP address redacted] (admin) [WAN IP address redacted] 10.10.130.7/32 -> [WAN IP address redacted]/32 3 03/29/2011 12:25:09.096 IKE Responder: Received Quick Mode Request (Phase 2) [My outbound IP address redacted], 61364 (admin) [WAN IP address redacted], 500 4 03/29/2011 12:25:07.048 IKE Responder: IPSec proposal does not match (Phase 2) [My outbound IP address redacted] (admin) [WAN IP address redacted] 10.10.130.7/32 -> [WAN IP address redacted]/32 5 03/29/2011 12:25:07.048 IKE Responder: Received Quick Mode Request (Phase 2) [My outbound IP address redacted], 61364 (admin) [WAN IP address redacted], 500 The console log on the iPad looks like this: Mar 29 13:31:24 Daves-iPad racoon[519] <Info>: [519] INFO: ISAKMP-SA established 10.10.130.7[500]-[WAN IP address redacted][500] spi:5d705eb6c760d709:458fcdf80ee8acde Mar 29 13:31:24 Daves-iPad racoon[519] <Notice>: IPSec Phase1 established (Initiated by me). Mar 29 13:31:24 Daves-iPad kernel[0] <Debug>: launchd[519] Builtin profile: racoon (sandbox) Mar 29 13:31:25 Daves-iPad racoon[519] <Info>: [519] INFO: initiate new phase 2 negotiation: 10.10.130.7[500]<=>[WAN IP address redacted][500] Mar 29 13:31:25 Daves-iPad racoon[519] <Notice>: IPSec Phase2 started (Initiated by me). Mar 29 13:31:25 Daves-iPad racoon[519] <Info>: [519] ERROR: fatal NO-PROPOSAL-CHOSEN notify messsage, phase1 should be deleted. Mar 29 13:31:25 Daves-iPad racoon[519] <Info>: [519] ERROR: Message: '@ No proposal is chosen'. Mar 29 13:31:46 Daves-iPad racoon[519] <Info>: [519] ERROR: fatal NO-PROPOSAL-CHOSEN notify messsage, phase1 should be deleted. Mar 29 13:31:46 Daves-iPad racoon[519] <Info>: [519] ERROR: Message: '@ No proposal is chosen'. Mar 29 13:31:55 Daves-iPad pppd[518] <Notice>: IPSec connection failed Does this offer any clues as to what's going wrong?

    Read the article

  • wifi not recognized

    - by pumper
    I had wifi and worked then some day ubuntu asked me to update some packeages and restarted the system and after that no wifi. this is my wireless_script output : ########## wireless info START ########## ##### release ##### Distributor ID: Ubuntu Description: Ubuntu 14.04 LTS Release: 14.04 Codename: trusty ##### kernel ##### Linux S510p 3.13.0-24-generic #47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux ##### lspci ##### 02:00.0 Network controller [0280]: Qualcomm Atheros QCA9565 / AR9565 Wireless Network Adapter [168c:0036] (rev 01) Subsystem: Lenovo Device [17aa:3026] Kernel driver in use: ath9k 03:00.0 Ethernet controller [0200]: Qualcomm Atheros AR8162 Fast Ethernet [1969:1090] (rev 10) Subsystem: Lenovo Device [17aa:3807] Kernel driver in use: alx ##### lsusb ##### Bus 001 Device 006: ID 0eef:a111 D-WAV Scientific Co., Ltd Bus 001 Device 007: ID 0cf3:3004 Atheros Communications, Inc. Bus 001 Device 004: ID 174f:1488 Syntek Bus 001 Device 003: ID 03f0:5607 Hewlett-Packard Bus 001 Device 002: ID 8087:8000 Intel Corp. Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 002 Device 002: ID 15d9:0a4c Trust International B.V. USB+PS/2 Optical Mouse Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub ##### PCMCIA Card Info ##### ##### rfkill ##### 0: ideapad_wlan: Wireless LAN Soft blocked: no Hard blocked: no 1: ideapad_bluetooth: Bluetooth Soft blocked: no Hard blocked: no 2: phy0: Wireless LAN Soft blocked: no Hard blocked: no 3: hci0: Bluetooth Soft blocked: no Hard blocked: no ##### iw reg get ##### country 00: (2402 - 2472 @ 40), (3, 20) (2457 - 2482 @ 40), (3, 20), PASSIVE-SCAN, NO-IBSS (2474 - 2494 @ 20), (3, 20), NO-OFDM, PASSIVE-SCAN, NO-IBSS (5170 - 5250 @ 40), (3, 20), PASSIVE-SCAN, NO-IBSS (5735 - 5835 @ 40), (3, 20), PASSIVE-SCAN, NO-IBSS ##### interfaces ##### # interfaces(5) file used by ifup(8) and ifdown(8) auto lo iface lo inet loopback auto dsl-provider iface dsl-provider inet ppp pre-up /sbin/ifconfig wlan0 up # line maintained by pppoeconf provider dsl-provider auto wlan0 iface wlan0 inet manual ##### iwconfig ##### wlan0 IEEE 802.11bgn ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=16 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off ##### route ##### Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface ##### resolv.conf ##### ##### nm-tool ##### NetworkManager Tool State: connected (global) - Device: eth0 ----------------------------------------------------------------- Type: Wired Driver: alx State: unavailable Default: no HW Address: <MAC address removed> Capabilities: Carrier Detect: yes Wired Properties Carrier: off - Device: wlan0 ---------------------------------------------------------------- Type: 802.11 WiFi Driver: ath9k State: unmanaged Default: no HW Address: <MAC address removed> Capabilities: Wireless Properties WEP Encryption: yes WPA Encryption: yes WPA2 Encryption: yes Wireless Access Points ##### NetworkManager.state ##### [main] NetworkingEnabled=true WirelessEnabled=true WWANEnabled=true WimaxEnabled=true ##### NetworkManager.conf ##### [main] plugins=ifupdown,keyfile,ofono dns=dnsmasq no-auto-default=<MAC address removed>, [ifupdown] managed=false ##### iwlist ##### wlan0 Scan completed : Cell 01 - Address: <MAC address removed> Channel:1 Frequency:2.412 GHz (Channel 1) Quality=55/70 Signal level=-55 dBm Encryption key:on ESSID:"mohsen" Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s 9 Mb/s; 12 Mb/s; 18 Mb/s Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s Mode:Master Extra:tsf=000000076c342498 Extra: Last beacon: 12ms ago IE: Unknown: 00066D6F6873656E IE: Unknown: 010882848B960C121824 IE: Unknown: 030101 IE: Unknown: 2A0104 IE: Unknown: 32043048606C ##### iwlist channel ##### wlan0 13 channels in total; available frequencies : Channel 01 : 2.412 GHz Channel 02 : 2.417 GHz Channel 03 : 2.422 GHz Channel 04 : 2.427 GHz Channel 05 : 2.432 GHz Channel 06 : 2.437 GHz Channel 07 : 2.442 GHz Channel 08 : 2.447 GHz Channel 09 : 2.452 GHz Channel 10 : 2.457 GHz Channel 11 : 2.462 GHz Channel 12 : 2.467 GHz Channel 13 : 2.472 GHz ##### lsmod ##### ath3k 13318 0 bluetooth 395423 23 bnep,ath3k,btusb,rfcomm ath9k 164164 0 ath9k_common 13551 1 ath9k ath9k_hw 453856 2 ath9k_common,ath9k ath 28698 3 ath9k_common,ath9k,ath9k_hw mac80211 626489 1 ath9k cfg80211 484040 3 ath,ath9k,mac80211 ##### modinfo ##### filename: /lib/modules/3.13.0-24-generic/kernel/drivers/bluetooth/ath3k.ko firmware: ath3k-1.fw license: GPL version: 1.0 description: Atheros AR30xx firmware driver author: Atheros Communications srcversion: 98A5245588C09E5E41690D0 alias: usb:v0489pE036d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0489pE03Cd*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0489pE02Cd*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0CF3pE003d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0CF3p3121d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v13D3p3402d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v04C5p1330d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0489pE04Dd*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0489pE056d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0489pE04Ed*dc*dsc*dp*ic*isc*ip*in* alias: usb:v13D3p3393d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0489pE057d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0930p0220d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0930p0219d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0CF3pE005d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0CF3pE004d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v13D3p3362d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v04CAp3008d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v04CAp3006d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v04CAp3005d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v04CAp3004d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v13D3p3375d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0CF3p817Ad*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0CF3p311Dd*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0CF3p3008d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0CF3p3004d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0CF3p0036d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v03F0p311Dd*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0489pE027d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0489pE03Dd*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0930p0215d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v13D3p3304d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0CF3pE019d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0CF3p3002d*dc*dsc*dp*ic*isc*ip*in* alias: usb:v0CF3p3000d*dc*dsc*dp*ic*isc*ip*in* depends: bluetooth intree: Y vermagic: 3.13.0-24-generic SMP mod_unload modversions signer: Magrathea: Glacier signing key sig_key: <MAC address removed>:D9:06:21:70:6E:8D:06:60:4D:73:0B:35:9F:C0 sig_hashalgo: sha512 filename: /lib/modules/3.13.0-24-generic/kernel/drivers/net/wireless/ath/ath9k/ath9k.ko license: Dual BSD/GPL description: Support for Atheros 802.11n wireless LAN cards. author: Atheros Communications srcversion: BAF225EEB618908380B28DA alias: platform:qca955x_wmac alias: platform:ar934x_wmac alias: platform:ar933x_wmac alias: platform:ath9k alias: pci:v0000168Cd00000036sv*sd*bc*sc*i* alias: pci:v0000168Cd00000036sv0000185Fsd00003027bc*sc*i* alias: pci:v0000168Cd00000036sv00001B9Asd00002810bc*sc*i* alias: pci:v0000168Cd00000036sv0000144Fsd00007202bc*sc*i* alias: pci:v0000168Cd00000036sv00001A3Bsd00002130bc*sc*i* alias: pci:v0000168Cd00000036sv000011ADsd00000612bc*sc*i* alias: pci:v0000168Cd00000036sv000011ADsd00000652bc*sc*i* alias: pci:v0000168Cd00000036sv000011ADsd00000642bc*sc*i* alias: pci:v0000168Cd00000036sv0000168Csd0000302Cbc*sc*i* alias: pci:v0000168Cd00000036sv0000168Csd00003027bc*sc*i* alias: pci:v0000168Cd00000036sv0000144Dsd0000411Ebc*sc*i* alias: pci:v0000168Cd00000036sv0000144Dsd0000411Dbc*sc*i* alias: pci:v0000168Cd00000036sv0000144Dsd0000411Cbc*sc*i* alias: pci:v0000168Cd00000036sv0000144Dsd0000411Bbc*sc*i* alias: pci:v0000168Cd00000036sv0000144Dsd0000411Abc*sc*i* alias: pci:v0000168Cd00000036sv00001028sd0000020Ebc*sc*i* alias: pci:v0000168Cd00000036sv0000103Csd0000217Fbc*sc*i* alias: pci:v0000168Cd00000036sv0000103Csd000018E3bc*sc*i* alias: pci:v0000168Cd00000036sv000017AAsd00003026bc*sc*i* alias: pci:v0000168Cd00000036sv00001A3Bsd0000213Abc*sc*i* alias: pci:v0000168Cd00000036sv000011ADsd00000662bc*sc*i* alias: pci:v0000168Cd00000036sv000011ADsd00000672bc*sc*i* alias: pci:v0000168Cd00000036sv000011ADsd00000622bc*sc*i* alias: pci:v0000168Cd00000036sv0000185Fsd00003028bc*sc*i* alias: pci:v0000168Cd00000036sv0000105Bsd0000E069bc*sc*i* alias: pci:v0000168Cd00000036sv0000168Csd0000302Bbc*sc*i* alias: pci:v0000168Cd00000036sv0000168Csd00003026bc*sc*i* alias: pci:v0000168Cd00000036sv0000168Csd00003025bc*sc*i* alias: pci:v0000168Cd00000036sv00001B9Asd00002812bc*sc*i* alias: pci:v0000168Cd00000036sv00001B9Asd00002811bc*sc*i* alias: pci:v0000168Cd00000036sv000011ADsd00006671bc*sc*i* alias: pci:v0000168Cd00000036sv000011ADsd00000632bc*sc*i* alias: pci:v0000168Cd00000036sv0000185Fsd0000A119bc*sc*i* alias: pci:v0000168Cd00000036sv0000105Bsd0000E068bc*sc*i* alias: pci:v0000168Cd00000036sv00001A3Bsd00002176bc*sc*i* alias: pci:v0000168Cd00000036sv0000168Csd00003028bc*sc*i* alias: pci:v0000168Cd00000037sv*sd*bc*sc*i* alias: pci:v0000168Cd00000034sv*sd*bc*sc*i* alias: pci:v0000168Cd00000034sv000010CFsd00001783bc*sc*i* alias: pci:v0000168Cd00000034sv000014CDsd00000064bc*sc*i* alias: pci:v0000168Cd00000034sv000014CDsd00000063bc*sc*i* alias: pci:v0000168Cd00000034sv0000103Csd00001864bc*sc*i* alias: pci:v0000168Cd00000034sv000011ADsd00006641bc*sc*i* alias: pci:v0000168Cd00000034sv000011ADsd00006631bc*sc*i* alias: pci:v0000168Cd00000034sv00001043sd0000850Ebc*sc*i* alias: pci:v0000168Cd00000034sv00001A3Bsd00002110bc*sc*i* alias: pci:v0000168Cd00000034sv00001969sd00000091bc*sc*i* alias: pci:v0000168Cd00000034sv000017AAsd00003214bc*sc*i* alias: pci:v0000168Cd00000034sv0000168Csd00003117bc*sc*i* alias: pci:v0000168Cd00000034sv000011ADsd00006661bc*sc*i* alias: pci:v0000168Cd00000034sv00001A3Bsd00002116bc*sc*i* alias: pci:v0000168Cd00000033sv*sd*bc*sc*i* alias: pci:v0000168Cd00000032sv*sd*bc*sc*i* alias: pci:v0000168Cd00000032sv00001043sd0000850Dbc*sc*i* alias: pci:v0000168Cd00000032sv00001B9Asd00001C01bc*sc*i* alias: pci:v0000168Cd00000032sv00001B9Asd00001C00bc*sc*i* alias: pci:v0000168Cd00000032sv00001A3Bsd00001F95bc*sc*i* alias: pci:v0000168Cd00000032sv00001A3Bsd00001195bc*sc*i* alias: pci:v0000168Cd00000032sv00001A3Bsd00001F86bc*sc*i* alias: pci:v0000168Cd00000032sv00001A3Bsd00001186bc*sc*i* alias: pci:v0000168Cd00000032sv00001B9Asd00002001bc*sc*i* alias: pci:v0000168Cd00000032sv00001B9Asd00002000bc*sc*i* alias: pci:v0000168Cd00000032sv0000144Fsd00007197bc*sc*i* alias: pci:v0000168Cd00000032sv0000105Bsd0000E04Fbc*sc*i* alias: pci:v0000168Cd00000032sv0000105Bsd0000E04Ebc*sc*i* alias: pci:v0000168Cd00000032sv000011ADsd00006628bc*sc*i* alias: pci:v0000168Cd00000032sv000011ADsd00006627bc*sc*i* alias: pci:v0000168Cd00000032sv00001C56sd00004001bc*sc*i* alias: pci:v0000168Cd00000032sv00001A3Bsd00002100bc*sc*i* alias: pci:v0000168Cd00000032sv00001A3Bsd00002C97bc*sc*i* alias: pci:v0000168Cd00000032sv000017AAsd00003219bc*sc*i* alias: pci:v0000168Cd00000032sv000017AAsd00003218bc*sc*i* alias: pci:v0000168Cd00000032sv0000144Dsd0000C708bc*sc*i* alias: pci:v0000168Cd00000032sv0000144Dsd0000C680bc*sc*i* alias: pci:v0000168Cd00000032sv0000144Dsd0000C706bc*sc*i* alias: pci:v0000168Cd00000032sv0000144Dsd0000410Fbc*sc*i* alias: pci:v0000168Cd00000032sv0000144Dsd0000410Ebc*sc*i* alias: pci:v0000168Cd00000032sv0000144Dsd0000410Dbc*sc*i* alias: pci:v0000168Cd00000032sv0000144Dsd00004106bc*sc*i* alias: pci:v0000168Cd00000032sv0000144Dsd00004105bc*sc*i* alias: pci:v0000168Cd00000032sv0000185Fsd00003027bc*sc*i* alias: pci:v0000168Cd00000032sv0000185Fsd00003119bc*sc*i* alias: pci:v0000168Cd00000032sv0000168Csd00003122bc*sc*i* alias: pci:v0000168Cd00000032sv0000168Csd00003119bc*sc*i* alias: pci:v0000168Cd00000032sv0000105Bsd0000E075bc*sc*i* alias: pci:v0000168Cd00000032sv00001A3Bsd00002152bc*sc*i* alias: pci:v0000168Cd00000032sv00001A3Bsd0000126Abc*sc*i* alias: pci:v0000168Cd00000032sv00001A3Bsd00002126bc*sc*i* alias: pci:v0000168Cd00000032sv00001A3Bsd00001237bc*sc*i* alias: pci:v0000168Cd00000032sv00001A3Bsd00002086bc*sc*i* alias: pci:v0000168Cd00000030sv*sd*bc*sc*i* alias: pci:v0000168Cd0000002Esv*sd*bc*sc*i* alias: pci:v0000168Cd0000002Dsv*sd*bc*sc*i* alias: pci:v0000168Cd0000002Csv*sd*bc*sc*i* alias: pci:v0000168Cd0000002Bsv*sd*bc*sc*i* alias: pci:v0000168Cd0000002Bsv00001A3Bsd00002C37bc*sc*i* alias: pci:v0000168Cd0000002Asv000010CFsd00001536bc*sc*i* alias: pci:v0000168Cd0000002Asv000010CFsd0000147Dbc*sc*i* alias: pci:v0000168Cd0000002Asv000010CFsd0000147Cbc*sc*i* alias: pci:v0000168Cd0000002Asv0000185Fsd0000309Dbc*sc*i* alias: pci:v0000168Cd0000002Asv00001A32sd00000306bc*sc*i* alias: pci:v0000168Cd0000002Asv000011ADsd00006642bc*sc*i* alias: pci:v0000168Cd0000002Asv000011ADsd00006632bc*sc*i* alias: pci:v0000168Cd0000002Asv0000105Bsd0000E01Fbc*sc*i* alias: pci:v0000168Cd0000002Asv00001A3Bsd00001C71bc*sc*i* alias: pci:v0000168Cd0000002Asv*sd*bc*sc*i* alias: pci:v0000168Cd00000029sv*sd*bc*sc*i* alias: pci:v0000168Cd00000027sv*sd*bc*sc*i* alias: pci:v0000168Cd00000024sv*sd*bc*sc*i* alias: pci:v0000168Cd00000023sv*sd*bc*sc*i* depends: ath9k_hw,mac80211,ath9k_common,cfg80211,ath intree: Y vermagic: 3.13.0-24-generic SMP mod_unload modversions signer: Magrathea: Glacier signing key sig_key: <MAC address removed>:D9:06:21:70:6E:8D:06:60:4D:73:0B:35:9F:C0 sig_hashalgo: sha512 parm: debug:Debugging mask (uint) parm: nohwcrypt:Disable hardware encryption (int) parm: blink:Enable LED blink on activity (int) parm: btcoex_enable:Enable wifi-BT coexistence (int) parm: bt_ant_diversity:Enable WLAN/BT RX antenna diversity (int) parm: ps_enable:Enable WLAN PowerSave (int) filename: /lib/modules/3.13.0-24-generic/kernel/drivers/net/wireless/ath/ath9k/ath9k_common.ko license: Dual BSD/GPL description: Shared library for Atheros wireless 802.11n LAN cards. author: Atheros Communications srcversion: 696B00A6C59713EC0966997 depends: ath,ath9k_hw intree: Y vermagic: 3.13.0-24-generic SMP mod_unload modversions signer: Magrathea: Glacier signing key sig_key: <MAC address removed>:D9:06:21:70:6E:8D:06:60:4D:73:0B:35:9F:C0 sig_hashalgo: sha512 filename: /lib/modules/3.13.0-24-generic/kernel/drivers/net/wireless/ath/ath9k/ath9k_hw.ko license: Dual BSD/GPL description: Support for Atheros 802.11n wireless LAN cards. author: Atheros Communications srcversion: 4809F3842A0542CD6B556D3 depends: ath intree: Y vermagic: 3.13.0-24-generic SMP mod_unload modversions signer: Magrathea: Glacier signing key sig_key: <MAC address removed>:D9:06:21:70:6E:8D:06:60:4D:73:0B:35:9F:C0 sig_hashalgo: sha512 filename: /lib/modules/3.13.0-24-generic/kernel/drivers/net/wireless/ath/ath.ko license: Dual BSD/GPL description: Shared library for Atheros wireless LAN cards. author: Atheros Communications srcversion: 88A67C5359B02C5A710AFCF depends: cfg80211 intree: Y vermagic: 3.13.0-24-generic SMP mod_unload modversions signer: Magrathea: Glacier signing key sig_key: <MAC address removed>:D9:06:21:70:6E:8D:06:60:4D:73:0B:35:9F:C0 sig_hashalgo: sha512 ##### modules ##### lp rtc ##### blacklist ##### [/etc/modprobe.d/blacklist-ath_pci.conf] blacklist ath_pci [/etc/modprobe.d/blacklist.conf] blacklist evbug blacklist usbmouse blacklist usbkbd blacklist eepro100 blacklist de4x5 blacklist eth1394 blacklist snd_intel8x0m blacklist snd_aw2 blacklist i2c_i801 blacklist prism54 blacklist bcm43xx blacklist garmin_gps blacklist asus_acpi blacklist snd_pcsp blacklist pcspkr blacklist amd76x_edac [/etc/modprobe.d/fbdev-blacklist.conf] blacklist arkfb blacklist aty128fb blacklist atyfb blacklist radeonfb blacklist cirrusfb blacklist cyber2000fb blacklist gx1fb blacklist gxfb blacklist kyrofb blacklist matroxfb_base blacklist mb862xxfb blacklist neofb blacklist nvidiafb blacklist pm2fb blacklist pm3fb blacklist s3fb blacklist savagefb blacklist sisfb blacklist tdfxfb blacklist tridentfb blacklist viafb blacklist vt8623fb ##### udev rules ##### # PCI device 0x1969:0x1090 (alx) SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="<MAC address removed>", ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="eth*", NAME="eth0" # PCI device 0x168c:0x0036 (ath9k) SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="<MAC address removed>", ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="wlan*", NAME="wlan0" ##### dmesg ##### [ 1.707662] psmouse serio1: elantech: assuming hardware version 3 (with firmware version 0x450f03) [ 11.918852] ath: phy0: WB335 1-ANT card detected [ 11.918856] ath: phy0: Set BT/WLAN RX diversity capability [ 11.926438] ath: phy0: Enable LNA combining [ 11.928469] ath: phy0: ASPM enabled: 0x42 [ 11.928473] ath: EEPROM regdomain: 0x65 [ 11.928475] ath: EEPROM indicates we should expect a direct regpair map [ 11.928478] ath: Country alpha2 being used: 00 [ 11.928479] ath: Regpair used: 0x65 [ 14.066021] IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready ########## wireless info END ############

    Read the article

  • Use a Free Tool to Edit, Delete, or Restore the Default Hosts File in Windows

    - by Lori Kaufman
    The hosts file in Windows contains mappings of IP addresses to host names, like an address book for your computer. Your PC uses IP addresses to find websites, so it needs to translate the host names into IP addresses to access websites. When you enter a host name in a browser to visit a website, that host name is looked up in DNS servers to find the IP address. If you enter IP addresses and host names for websites you visit often, these websites will load faster, because the hosts file is loaded into memory when Windows start and overrides DNS server queries, creating a shortcut to the sites. Because the hosts file is checked first, you can also use it to block websites from tracking your activities on the internet, as well as block ads, banners, third-party cookies, and other intrusive elements on webpages. Your computer has its own host address, known as its “localhost” address. The IP address for localhost is 127.0.0.1. To block sites and website elements, you can enter the host name for the unwanted site in the hosts file and associate it with the localhost address. Blocking ads and other undesirable webpage elements, can also speed up the loading of websites. You don’t have to wait for all those items to load. The default hosts file that comes with Windows does not contain any host name/IP address mappings. You can add mappings manually, such as the IP address 74.125.224.72 for www.google.com. As an example of blocking an ad server website, you can enter the following line in your hosts file to block doubleclick.net from serving you ads. How To Use USB Drives With the Nexus 7 and Other Android Devices Why Does 64-Bit Windows Need a Separate “Program Files (x86)” Folder? Why Your Android Phone Isn’t Getting Operating System Updates and What You Can Do About It

    Read the article

  • On StringComparison Values

    - by Jesse
    When you use the .NET Framework’s String.Equals and String.Compare methods do you use an overloStringComparison enumeration value? If not, you should be because the value provided for that StringComparison argument can have a big impact on the results of your string comparison. The StringComparison enumeration defines values that fall into three different major categories: Culture-sensitive comparison using a specific culture, defaulted to the Thread.CurrentThread.CurrentCulture value (StringComparison.CurrentCulture and StringComparison.CurrentCutlureIgnoreCase) Invariant culture comparison (StringComparison.InvariantCulture and StringComparison.InvariantCultureIgnoreCase) Ordinal (byte-by-byte) comparison of  (StringComparison.Ordinal and StringComparison.OrdinalIgnoreCase) There is a lot of great material available that detail the technical ins and outs of these different string comparison approaches. If you’re at all interested in the topic these two MSDN articles are worth a read: Best Practices For Using Strings in the .NET Framework: http://msdn.microsoft.com/en-us/library/dd465121.aspx How To Compare Strings: http://msdn.microsoft.com/en-us/library/cc165449.aspx Those articles cover the technical details of string comparison well enough that I’m not going to reiterate them here other than to say that the upshot is that you typically want to use the culture-sensitive comparison whenever you’re comparing strings that were entered by or will be displayed to users and the ordinal comparison in nearly all other cases. So where does that leave the invariant culture comparisons? The “Best Practices For Using Strings in the .NET Framework” article has the following to say: “On balance, the invariant culture has very few properties that make it useful for comparison. It does comparison in a linguistically relevant manner, which prevents it from guaranteeing full symbolic equivalence, but it is not the choice for display in any culture. One of the few reasons to use StringComparison.InvariantCulture for comparison is to persist ordered data for a cross-culturally identical display. For example, if a large data file that contains a list of sorted identifiers for display accompanies an application, adding to this list would require an insertion with invariant-style sorting.” I don’t know about you, but I feel like that paragraph is a bit lacking. Are there really any “real world” reasons to use the invariant culture comparison? I think the answer to this question is, “yes”, but in order to understand why we should first think about what the invariant culture comparison really does. The invariant culture comparison is really just a culture-sensitive comparison using a special invariant culture (Michael Kaplan has a great post on the history of the invariant culture on his blog: http://blogs.msdn.com/b/michkap/archive/2004/12/29/344136.aspx). This means that the invariant culture comparison will apply the linguistic customs defined by the invariant culture which are guaranteed not to differ between different machines or execution contexts. This sort of consistently does prove useful if you needed to maintain a list of strings that are sorted in a meaningful and consistent way regardless of the user viewing them or the machine on which they are being viewed. Example: Prototype Names Let’s say that you work for a large multi-national toy company with branch offices in 10 different countries. Each year the company would work on 15-25 new toy prototypes each of which is assigned a “code name” while it is under development. Coming up with fun new code names is a big part of the company culture that everyone really enjoys, so to be fair the CEO of the company spent a lot of time coming up with a prototype naming scheme that would be fun for everyone to participate in, fair to all of the different branch locations, and accessible to all members of the organization regardless of the country they were from and the language that they spoke. Each new prototype will get a code name that begins with a letter following the previously created name using the alphabetical order of the Latin/Roman alphabet. Each new year prototype names would start back at “A”. The country that leads the prototype development effort gets to choose the name in their native language. (An appropriate Romanization system will be used for countries where the primary language is not written in the Latin/Roman alphabet. For example, the Pinyin system could be used for Chinese). To avoid repeating names, a list of all current and past prototype names will be maintained on each branch location’s company intranet site. Assuming that maintaining a single pre-sorted list is not feasible among all of the highly distributed intranet implementations, what string comparison method would you use to sort each year’s list of prototype names so that the list is both meaningful and consistent regardless of the country within which the list is being viewed? Sorting the list with a culture-sensitive comparison using the default configured culture on each country’s intranet server the list would probably work most of the time, but subtle differences between cultures could mean that two different people would see a list that was sorted slightly differently. The CEO wants the prototype names to be a unifying aspect of company culture and is adamant that everyone see the the same list sorted in the same order and there’s no way to guarantee a consistent sort across different cultures using the culture-sensitive string comparison rules. The culture-sensitive sort would produce a meaningful list for the specific user viewing it, but it wouldn’t always be consistent between different users. Sorting with the ordinal comparison would certainly be consistent regardless of the user viewing it, but would it be meaningful? Let’s say that the current year’s prototype name list looks like this: Antílope (Spanish) Babouin (French) Cahoun (Czech) Diamond (English) Flosse (German) If you were to sort this list using ordinal rules you’d end up with: Antílope Babouin Diamond Flosse Cahoun This sort is no good because the entry for “C” appears the bottom of the list after “F”. This is because the Czech entry for the letter “C” makes use of a diacritic (accent mark). The ordinal string comparison does a byte-by-byte comparison of the code points that make up each character in the string and the code point for the “C” with the diacritic mark is higher than any letter without a diacritic mark, which pushes that entry to the bottom of the sorted list. The CEO wants each country to be able to create prototype names in their native language, which means we need to allow for names that might begin with letters that have diacritics, so ordinal sorting kills the meaningfulness of the list. As it turns out, this situation is actually well-suited for the invariant culture comparison. The invariant culture accounts for linguistically relevant factors like the use of diacritics but will provide a consistent sort across all machines that perform the sort. Now that we’ve walked through this example, the following line from the “Best Practices For Using Strings in the .NET Framework” makes a lot more sense: One of the few reasons to use StringComparison.InvariantCulture for comparison is to persist ordered data for a cross-culturally identical display That line describes the prototype name example perfectly: we need a way to persist ordered data for a cross-culturally identical display. While this example is 100% made-up, I think it illustrates that there are indeed real-world situations where the invariant culture comparison is useful.

    Read the article

  • Samba smb.conf read only and read/write accounts

    - by Pieter
    Below you can see my smb.conf, pieter is my admin user read/write on the shares works good with that account. Then I have a leecher account that has been added with smbpasswd -a leecher to the smb users, it is set up so this user only has read access to the shares. This works on MegaSam and on Thumbnails but not on my other drives, leecher does not get any access on the other shares. [global] security = user [MegaSam] comment = MegaSam path = /media/MegaSam browsable = yes guest ok = no read list = leecher write list = pieter create mask = 0755 [SilentBob] comment = SilentBob path = /media/SilentBob browsable = yes guest ok = no read list = leecher write list = pieter create mask = 0755 [Thumbnails] comment = Thumbnails path = /media/Thumbnails browsable = yes guest ok = no read list = leecher write list = pieter create mask = 0755 [Downloads] comment = Downloads path = /media/Downloads browsable = yes guest ok = no read list = leecher write list = pieter create mask = 0755

    Read the article

  • Why an empty MAIL FROM address can sent out email?

    - by garconcn
    We are using Smarter Mail system. Recently, we found that hacker had hacked some user accounts and sent out lots of spams. We have firewall to ratelimit the sender, but for the following email, the firewall couldn't do this because of the empty FROM address. Why an empty FROM address is consider OK? Actually, in our MTA(surgemail), we can see the sender in the email header. Any idea? Thanks. 11:17:06 [xx.xx.xx.xx][15459629] rsp: 220 mail30.server.com 11:17:06 [xx.xx.xx.xx][15459629] connected at 6/16/2010 11:17:06 AM 11:17:06 [xx.xx.xx.xx][15459629] cmd: EHLO ulix.geo.auth.gr 11:17:06 [xx.xx.xx.xx][15459629] rsp: 250-mail30.server.com Hello [xx.xx.xx.xx] 250-SIZE 31457280 250-AUTH LOGIN CRAM-MD5 250 OK 11:17:06 [xx.xx.xx.xx][15459629] cmd: AUTH LOGIN 11:17:06 [xx.xx.xx.xx][15459629] rsp: 334 VXNlcm5hbWU6 11:17:07 [xx.xx.xx.xx][15459629] rsp: 334 UGFzc3dvcmQ6 11:17:07 [xx.xx.xx.xx][15459629] rsp: 235 Authentication successful 11:17:07 [xx.xx.xx.xx][15459629] Authenticated as [email protected] 11:17:07 [xx.xx.xx.xx][15459629] cmd: MAIL FROM: 11:17:07 [xx.xx.xx.xx][15459629] rsp: 250 OK < Sender ok 11:17:07 [xx.xx.xx.xx][15459629] cmd: RCPT TO:[email protected] 11:17:07 [xx.xx.xx.xx][15459629] rsp: 250 OK Recipient ok 11:17:08 [xx.xx.xx.xx][15459629] cmd: DATA

    Read the article

  • Why from a virtualized Ubuntu system I can't discover the ip address of my router?

    - by AndreaNobili
    I am not into computer network and I have the following problem finding my router IP address. I have a Windows 8 PC on on which it is installed VmWare Workstation that virtualizes Linux Ubuntu. The network adapter settings of this Virtual Machine is setted as NAT. Now my problem is that if in the Windows 8 DOS shell I perform the ifconfig statment I obtain C:\Users\Andrea>ipconfig Configurazione IP di Windows Scheda Ethernet tap0: Stato supporto. . . . . . . . . . . . : Supporto disconnesso Suffisso DNS specifico per connessione: techub.lan Scheda Ethernet Connessione di rete Bluetooth: Stato supporto. . . . . . . . . . . . : Supporto disconnesso Suffisso DNS specifico per connessione: Scheda LAN wireless Connessione alla rete locale (LAN)* 11: Stato supporto. . . . . . . . . . . . : Supporto disconnesso Suffisso DNS specifico per connessione: Scheda LAN wireless Wi-Fi: Suffisso DNS specifico per connessione: DSL2750B Indirizzo IPv6 locale rispetto al collegamento . : fe80::89ff:6d12:49cf:4354%13 Indirizzo IPv4. . . . . . . . . . . . : 192.168.1.3 Subnet mask . . . . . . . . . . . . . : 255.255.255.0 Gateway predefinito . . . . . . . . . : 192.168.1.1 Scheda Ethernet Ethernet: Stato supporto. . . . . . . . . . . . : Supporto disconnesso Suffisso DNS specifico per connessione: Scheda Ethernet VMware Network Adapter VMnet1: Suffisso DNS specifico per connessione: Indirizzo IPv6 locale rispetto al collegamento . : fe80::edb3:8352:f954:2b0c%23 Indirizzo IPv4. . . . . . . . . . . . : 192.168.129.1 Subnet mask . . . . . . . . . . . . . : 255.255.255.0 Gateway predefinito . . . . . . . . . : Scheda Ethernet VMware Network Adapter VMnet8: Suffisso DNS specifico per connessione: Indirizzo IPv6 locale rispetto al collegamento . : fe80::d00b:8c6e:98b:f1ec%24 Indirizzo IPv4. . . . . . . . . . . . : 192.168.15.1 Subnet mask . . . . . . . . . . . . . : 255.255.255.0 Gateway predefinito . . . . . . . . . : Scheda Tunnel Teredo Tunneling Pseudo-Interface: Stato supporto. . . . . . . . . . . . : Supporto disconnesso Suffisso DNS specifico per connessione: Scheda Tunnel isatap.techub.lan: Stato supporto. . . . . . . . . . . . : Supporto disconnesso Suffisso DNS specifico per connessione: techub.lan Scheda Tunnel isatap.{5B95051D-79AB-4147-92CF-3A2E16698432}: Stato supporto. . . . . . . . . . . . : Supporto disconnesso Suffisso DNS specifico per connessione: Scheda Tunnel isatap.{340A5FAD-1597-402E-B658-29C37E8F7BC2}: Stato supporto. . . . . . . . . . . . : Supporto disconnesso Suffisso DNS specifico per connessione: Scheda Tunnel isatap.DSL2750B: Suffisso DNS specifico per connessione: DSL2750B Indirizzo IPv6 locale rispetto al collegamento . : fe80::5efe:192.168.1.3%26 Gateway predefinito . . . . . . . . . : So, looking at the previous output it appear clear that the default gateway (my router) is: 192.168.1.1, infact if I open it into a browser it apear to me the login mask to enter in the router settings.... Ok, if now I open the virtualized Ubuntu shell and perform the route command I obtain this output: andrea@andrea-virtual-machine:~$ route Tabella di routing IP del kernel Destination Gateway Genmask Flags Metric Ref Use Iface default 192.168.15.2 0.0.0.0 UG 0 0 0 eth0 link-local * 255.255.0.0 U 1000 0 0 eth0 192.168.15.0 * 255.255.255.0 U 1 0 0 eth0 So, here it say to me that the default gateway is 192.168.15.2 (that is not my router ip address), why? My idea is that it could depend by the NAT. Because my Windows system is connected using the wireless but in the virtualized Ubuntu I see that I am connected to a "wired network". So I think that the NAT virtualize a network adapter (or something like this) and that 192.168.15.2 could be the ip address of this network adapter... But it seems strange to me because, as you can see in the previous ipconfig output the VmWare network adapter addresses are: 192.168.129.1 and 192.168.15.1. So I have also 2 others doubts: 1) What device represents the 192.168.15.2 ip address that the virtualized Ubuntu see as Default gateway but that is not my router? 2) What exactly do the two VmWare network adapter that I have configured into my Windows 8 system? There is a way to discover my router ip from the virtualized Ubuntu system ? Tnx Andrea

    Read the article

  • Joining two routers together, but I have no access to the second router, although I know it's IP address and Gateway

    - by JohnnyVegas
    I have temporarily moved into a rented apartment for 4 months, which has wireless. The trouble I am having is that the access points here are wifi only and no RJ45 and I need to use RJ45 to connect some equipment that I am working with. I have purchased an RT-N66U and installed Tomato (shibby ver. 1.28) and successfully replaced the existing access point, but now I want to enable the access point that I have replaced as it links wirelessly to 3 others. Can I plug in a cable from the access point to my RT-N66U and get it to access the internet via my router? I have no access to the existing wireless access point, and don't want to reset it as it's not mine. There is another router situated in the roof somewhere which I also have no access to, but it's supplying my RT-N66U internet and I most definitely have a double-nat, which although isn't the best way of doing things I am limited with what I can do. Any suggestions on routing tables, vlans etc would be helpful, but I have no experience in these fields before - but I know the tomato firmware can cater for this. My router is set to IP 10.0.1.1 and dhcp is 10.0.1.100-200 The wireless access point address was 192.168.1.2 but this was assigned by the router in the roof which has the address 192.168.1.1. There is a cable from this router going to a wall socket which I now have my RT-N66u attached to via the WAN port. I understand it's scruffy and it isn't the way to do things but I have tried to ask for the admin details but as the wireless network is looked after by a third party and nobody knows their details I am stuck with this dilemma. I could buy three wireless access points and replace the existing but this isn't what I want to do, and although I have installed plenty of DD-WRT wireless repeater bridges they simply don't work here for some unknown reason. The phone line here is very noisy too and I don't have the rights to install ADSL in a building that isn't mine, and 3G coverage isn't good enough either. Thanks for your time

    Read the article

  • How do you make a randomly generated url address after form input?

    - by pmal10
    this is my first time ever posting on a Stackexchange website so I don't know much but my friend, a guy named Ethan know. But, to get on topic, I have a problem or question. Is there a way to get a URL from what you posted? I don't want to use the GET function on the post, because what I want to make is something like this: http://testwebsiteblahblahblah.com/forminput?formID=817 Is there a way to do it with JavaScript, HTML (CSS), ASP, or PHP ?

    Read the article

  • Is it the address bus size or the data bus size that determines "8-bit , 16-bit ,32-bit ,64-bit " systems?

    - by learner
    My simple understanding is as follows. Memory (RAM) is composed of bits, groups of 8 which form bytes, each of which can be addressed ,and hence byte addressable memory. Address Bus stores the location of a byte of memory. If an address bus is of size 32 bits, that means it can hold upto 232 numbers and it hence can refer upto 232 bytes of memory = 4GB of memory and any memory greater than that is useless. Data bus is used to send the value to be written to/read off the memory. If I have a data bus of size 32 bits, it means a maximum of 4 bytes can be written to/read off the memory at a time. I find no relation between this size and the maximum memory size possible. But I read here that: Even though most systems are byte-addressable, it makes sense for the processor to move as much data around as possible. This is done by the data bus, and the size of the data bus is where the names 8-bit system, 16-bit system, 32-bit system, 64-bit system, etc.. come from. When the data bus is 8 bits wide, it can transfer 8 bits in a single memory operation. When the data bus is 32 bits wide (as is most common at the time of writing), at most, 32 bits can be moved in a single memory operation. This says that the size of the data bus is what gives an OS the name, 8bit, 16bit and so on. What is wrong with my understanding?

    Read the article

  • Why an empty MAIL FROM address can sent out email?

    - by garconcn
    We are using Smarter Mail system. Recently, we found that hacker had hacked some user accounts and sent out lots of spams. We have firewall to ratelimit the sender, but for the following email, the firewall couldn't do this because of the empty FROM address. Why an empty FROM address is consider OK? Actually, in our MTA(surgemail), we can see the sender in the email header. Any idea? Thanks. 11:17:06 [xx.xx.xx.xx][15459629] rsp: 220 mail30.server.com 11:17:06 [xx.xx.xx.xx][15459629] connected at 6/16/2010 11:17:06 AM 11:17:06 [xx.xx.xx.xx][15459629] cmd: EHLO ulix.geo.auth.gr 11:17:06 [xx.xx.xx.xx][15459629] rsp: 250-mail30.server.com Hello [xx.xx.xx.xx] 250-SIZE 31457280 250-AUTH LOGIN CRAM-MD5 250 OK 11:17:06 [xx.xx.xx.xx][15459629] cmd: AUTH LOGIN 11:17:06 [xx.xx.xx.xx][15459629] rsp: 334 VXNlcm5hbWU6 11:17:07 [xx.xx.xx.xx][15459629] rsp: 334 UGFzc3dvcmQ6 11:17:07 [xx.xx.xx.xx][15459629] rsp: 235 Authentication successful 11:17:07 [xx.xx.xx.xx][15459629] Authenticated as [email protected] 11:17:07 [xx.xx.xx.xx][15459629] cmd: MAIL FROM: 11:17:07 [xx.xx.xx.xx][15459629] rsp: 250 OK < Sender ok 11:17:07 [xx.xx.xx.xx][15459629] cmd: RCPT TO:[email protected] 11:17:07 [xx.xx.xx.xx][15459629] rsp: 250 OK Recipient ok 11:17:08 [xx.xx.xx.xx][15459629] cmd: DATA

    Read the article

  • Why can't I connect to computers on my network using our external IP address?

    - by Kivin
    My home network is serviced by an ADSL line. The modem is in bridged mode. The router performs the PPPoE. Three computers are connected to the router: two wired Windows 7 boxes and a Ubuntu Linux box over wifi. The computers are hosting various forms of services including FTP and HTTP. The router has port forwarding mapped from the relevant ports to the reserved IP addresses for the computers. If I attempt to connect to a server inside the network, such as ftp://67.xx.xxx.xxx from inside the network, the request times out. However if I connect using the internally mapped address, such as ftp://192.168.0.100, all is well. This is a nuisance for setting up software, especially on the laptop which needs to be able to phone home from anywhere, and I just don't have enough expertise with networking to know why this is occurring to even have a clue whether it can be solved or not. edit: It should be noted that the servers can be accessible outside the network - say, at the starbucks across the street - perfectly fine, using the ISP provided address and the appropriate port.

    Read the article

  • How do I list installed software with the installed size?

    - by Lewis Goddard
    I would like to have a list the installed software on my machine, with the disk space consumed by them alongside. I would prefer to be able to order by largest/smallest, but that is not a necessity. I am the sort of person who will install software to try it, and never clean up after myself. As a result, my 7GB (Windows and my Data are on separate partitions, as well as a swap area) Ubuntu 11.04 partition is suffering, and has started regularly showing warning messages. I have cleaned my browser cache, as well as everything under Package Cleaner in Ubuntu Tweak, and am left with 149.81 MB off free space.

    Read the article

  • How to convert aspell dictionary to simple list of words?

    - by rafalmag
    I want to get list of all words from aspell dictionary. I downloaded aspell and aspell polish dictionary, then unziped it using: preunzip pl.cwl I got pl.wl: ... hippie hippies hippiesowski/bXxYc hippika/MNn hippis/NOqsT hippisiara/MnN hippiska/mMN hippisowski/bXxYc ... but they appear with sufix like /bXxYc or /MNn. These suffixes are defined in pl_affix.dat, which looks like ... SFX n Y 5 SFX n a 0 [^ij]a SFX n ja yj [^aeijoóuy]ja SFX n a 0 [aeijoóuy]ja SFX n ia ij [^drt]ia SFX n ia yj [drt]ia ... It is connected to the declination and conjugation. How can I add to the first list all forms (with all corresponding suffixes as defined in .dat file ) ? BTW: I need this list to spell-checker jazzy.

    Read the article

  • PowerDNS CNAME with multiple A records produces unexpected results

    - by bwight
    This problem from what i can tell is isolated to PowerDNS. The servers are running two packages pdns-static-3.0.1-1.i386.rpm and pdns-recursor-3.3-1.i386.rpm on the most recent version of Amazon Linux. The amazon ec2 loadbalancers are assigned a CNAME with multiple hosts. Below is an example of the actual behavior. Notice how the hosts are always in the same order. [root@localhost ~]# host cache.domain.com cache.domain.com is an alias for xxxxx.us-east-1.elb.amazonaws.com. xxxxx.us-east-1.elb.amazonaws.com has address aaa.aaa.aaa.aaa xxxxx.us-east-1.elb.amazonaws.com has address bbb.bbb.bbb.bbb [root@localhost ~]# host cache.domain.com cache.domain.com is an alias for xxxxx.us-east-1.elb.amazonaws.com. xxxxx.us-east-1.elb.amazonaws.com has address aaa.aaa.aaa.aaa xxxxx.us-east-1.elb.amazonaws.com has address bbb.bbb.bbb.bbb [root@localhost ~]# host cache.domain.com cache.domain.com is an alias for xxxxx.us-east-1.elb.amazonaws.com. xxxxx.us-east-1.elb.amazonaws.com has address aaa.aaa.aaa.aaa xxxxx.us-east-1.elb.amazonaws.com has address bbb.bbb.bbb.bbb Expected behavior is round robin for the hosts [root@localhost ~]# host cache.domain.com cache.domain.com is an alias for xxxxx.us-east-1.elb.amazonaws.com. xxxxx.us-east-1.elb.amazonaws.com has address aaa.aaa.aaa.aaa xxxxx.us-east-1.elb.amazonaws.com has address bbb.bbb.bbb.bbb [root@localhost ~]# host cache.domain.com cache.domain.com is an alias for xxxxx.us-east-1.elb.amazonaws.com. xxxxx.us-east-1.elb.amazonaws.com has address bbb.bbb.bbb.bbb xxxxx.us-east-1.elb.amazonaws.com has address aaa.aaa.aaa.aaa [root@localhost ~]# host cache.domain.com cache.domain.com is an alias for xxxxx.us-east-1.elb.amazonaws.com. xxxxx.us-east-1.elb.amazonaws.com has address aaa.aaa.aaa.aaa xxxxx.us-east-1.elb.amazonaws.com has address bbb.bbb.bbb.bbb The addresses eventually do swap but it seems to be on a 30 minute cache timer changing the TTL of the record doesn't appear to affect anything. It appears as though the resolver has a cache of the response. This adversely affects my application because all of the load is only being sent to one of the loadbalancers (Availability Zones) so if I have servers in two zones then only one zone is under load at a time. Do you know how I can fix this so that each time the host is resolved the order of the addresses is alternating.

    Read the article

  • Where can I find an exhaustive list of meta tags and what they do?

    - by leeand00
    It seems to me that there are a ton of <meta> tags for all sorts of different purposes out there... Though they all follow a similar format of <meta name="" content="" /> they seem to serve a vast variety of different purposes from controlling the crawling of search engine bots, providing search engine bots with descriptions of pages, to making sure a page display correctly on a mobile device. These tags fall into so many different categories I was wondering if anyone had a wiki or master list of possible meta tags and their content.

    Read the article

  • Algorithm to reduce a bitmap mask to a list of rectangles?

    - by mos
    Before I go spend an afternoon writing this myself, I thought I'd ask if there was an implementation already available --even just as a reference. The first image is an example of a bitmap mask that I would like to turn into a list of rectangles. A bad algorithm would return every set pixel as a 1x1 rectangle. A good algorithm would look like the second image, where it returns the coordinates of the orange and red rectangles. The fact that the rectangles overlap don't matter, just that there are only two returned. To summarize, the ideal result would be these two rectangles (x, y, w, h): [ { 3, 1, 2, 6 }, { 1, 3, 6, 2 } ]

    Read the article

< Previous Page | 261 262 263 264 265 266 267 268 269 270 271 272  | Next Page >