Search Results

Search found 14940 results on 598 pages for 'android wake lock'.

Page 266/598 | < Previous Page | 262 263 264 265 266 267 268 269 270 271 272 273  | Next Page >

  • which android event is called if i click on same item again and again?

    - by UMMA
    dear friends, i have created a "pick date" item text inside android spinner and written event onItemSelected to open datepicker dialog if user clicks on that perticular text. but the problem is if once date picker is opened i press cancel of datepicker dialog and then i try to re open it clicking on date picker text of spinner no event is called. can any one guide me what which event should i use ? any help would be appriciated.

    Read the article

  • Would it make sense to have a separate Scala library in Android market?

    - by soc
    As far as I understand it is necessary for people using Scala for Android applications to bundle the Scala classes they used with their application. Considering this adds hundreds of kilobytes to each Scala app redundantly, would it be possible to build a Scala library which can be delivered over the market, so app writers can just depend on that library instead of bundling it themselves?

    Read the article

  • Database Tutorial: The method open() is undefined for the type MainActivity.DBAdapter

    - by user2203633
    I am trying to do this database tutorial on SQLite Eclipse: https://www.youtube.com/watch?v=j-IV87qQ00M But I get a few errors at the end.. at db.ppen(); i get error: The method open() is undefined for the type MainActivity.DBAdapter and similar for insert record and close. MainActivity: package com.example.studentdatabase; import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import android.app.Activity; import android.app.ListActivity; import android.content.Intent; import android.database.Cursor; import android.os.Bundle; import android.util.Log; import android.view.LayoutInflater; import android.view.View; import android.view.ViewGroup; import android.widget.BaseAdapter; import android.widget.Button; import android.widget.Toast; public class MainActivity extends Activity { /** Called when the activity is first created. */ //DBAdapter db = new DBAdapter(this); @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); Button addBtn = (Button)findViewById(R.id.add); addBtn.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { Intent i = new Intent(MainActivity.this, addassignment.class); startActivity(i); } }); try { String destPath = "/data/data/" + getPackageName() + "/databases/AssignmentDB"; File f = new File(destPath); if (!f.exists()) { CopyDB( getBaseContext().getAssets().open("mydb"), new FileOutputStream(destPath)); } } catch (FileNotFoundException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } DBAdapter db = new DBAdapter(); //---add an assignment--- db.open(); long id = db.insertRecord("Hello World", "2/18/2012", "DPR 224", "First Android Project"); id = db.insertRecord("Workbook Exercises", "3/1/2012", "MAT 100", "Do odd numbers"); db.close(); //---get all Records--- /* db.open(); Cursor c = db.getAllRecords(); if (c.moveToFirst()) { do { DisplayRecord(c); } while (c.moveToNext()); } db.close(); */ /* //---get a Record--- db.open(); Cursor c = db.getRecord(2); if (c.moveToFirst()) DisplayRecord(c); else Toast.makeText(this, "No Assignments found", Toast.LENGTH_LONG).show(); db.close(); */ //---update Record--- /* db.open(); if (db.updateRecord(1, "Hello Android", "2/19/2012", "DPR 224", "First Android Project")) Toast.makeText(this, "Update successful.", Toast.LENGTH_LONG).show(); else Toast.makeText(this, "Update failed.", Toast.LENGTH_LONG).show(); db.close(); */ /* //---delete a Record--- db.open(); if (db.deleteRecord(1)) Toast.makeText(this, "Delete successful.", Toast.LENGTH_LONG).show(); else Toast.makeText(this, "Delete failed.", Toast.LENGTH_LONG).show(); db.close(); */ } private class DBAdapter extends BaseAdapter { private LayoutInflater mInflater; //private ArrayList<> @Override public int getCount() { return 0; } @Override public Object getItem(int arg0) { return null; } @Override public long getItemId(int arg0) { return 0; } @Override public View getView(int arg0, View arg1, ViewGroup arg2) { return null; } } public void CopyDB(InputStream inputStream, OutputStream outputStream) throws IOException { //---copy 1K bytes at a time--- byte[] buffer = new byte[1024]; int length; while ((length = inputStream.read(buffer)) > 0) { outputStream.write(buffer, 0, length); } inputStream.close(); outputStream.close(); } public void DisplayRecord(Cursor c) { Toast.makeText(this, "id: " + c.getString(0) + "\n" + "Title: " + c.getString(1) + "\n" + "Due Date: " + c.getString(2), Toast.LENGTH_SHORT).show(); } public void addAssignment(View view) { Intent i = new Intent("com.pinchtapzoom.addassignment"); startActivity(i); Log.d("TAG", "Clicked"); } } DBAdapter code: package com.example.studentdatabase; public class DBAdapter { public static final String KEY_ROWID = "id"; public static final String KEY_TITLE = "title"; public static final String KEY_DUEDATE = "duedate"; public static final String KEY_COURSE = "course"; public static final String KEY_NOTES = "notes"; private static final String TAG = "DBAdapter"; private static final String DATABASE_NAME = "AssignmentsDB"; private static final String DATABASE_TABLE = "assignments"; private static final int DATABASE_VERSION = 2; private static final String DATABASE_CREATE = "create table if not exists assignments (id integer primary key autoincrement, " + "title VARCHAR not null, duedate date, course VARCHAR, notes VARCHAR );"; private final Context context; private DatabaseHelper DBHelper; private SQLiteDatabase db; public DBAdapter(Context ctx) { this.context = ctx; DBHelper = new DatabaseHelper(context); } private static class DatabaseHelper extends SQLiteOpenHelper { DatabaseHelper(Context context) { super(context, DATABASE_NAME, null, DATABASE_VERSION); } @Override public void onCreate(SQLiteDatabase db) { try { db.execSQL(DATABASE_CREATE); } catch (SQLException e) { e.printStackTrace(); } } @Override public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) { Log.w(TAG, "Upgrading database from version " + oldVersion + " to " + newVersion + ", which will destroy all old data"); db.execSQL("DROP TABLE IF EXISTS contacts"); onCreate(db); } } //---opens the database--- public DBAdapter open() throws SQLException { db = DBHelper.getWritableDatabase(); return this; } //---closes the database--- public void close() { DBHelper.close(); } //---insert a record into the database--- public long insertRecord(String title, String duedate, String course, String notes) { ContentValues initialValues = new ContentValues(); initialValues.put(KEY_TITLE, title); initialValues.put(KEY_DUEDATE, duedate); initialValues.put(KEY_COURSE, course); initialValues.put(KEY_NOTES, notes); return db.insert(DATABASE_TABLE, null, initialValues); } //---deletes a particular record--- public boolean deleteContact(long rowId) { return db.delete(DATABASE_TABLE, KEY_ROWID + "=" + rowId, null) > 0; } //---retrieves all the records--- public Cursor getAllRecords() { return db.query(DATABASE_TABLE, new String[] {KEY_ROWID, KEY_TITLE, KEY_DUEDATE, KEY_COURSE, KEY_NOTES}, null, null, null, null, null); } //---retrieves a particular record--- public Cursor getRecord(long rowId) throws SQLException { Cursor mCursor = db.query(true, DATABASE_TABLE, new String[] {KEY_ROWID, KEY_TITLE, KEY_DUEDATE, KEY_COURSE, KEY_NOTES}, KEY_ROWID + "=" + rowId, null, null, null, null, null); if (mCursor != null) { mCursor.moveToFirst(); } return mCursor; } //---updates a record--- public boolean updateRecord(long rowId, String title, String duedate, String course, String notes) { ContentValues args = new ContentValues(); args.put(KEY_TITLE, title); args.put(KEY_DUEDATE, duedate); args.put(KEY_COURSE, course); args.put(KEY_NOTES, notes); return db.update(DATABASE_TABLE, args, KEY_ROWID + "=" + rowId, null) > 0; } } addassignment code: package com.example.studentdatabase; public class addassignment extends Activity { DBAdapter db = new DBAdapter(this); @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.add); } public void addAssignment(View v) { Log.d("test", "adding"); //get data from form EditText nameTxt = (EditText)findViewById(R.id.editTitle); EditText dateTxt = (EditText)findViewById(R.id.editDuedate); EditText courseTxt = (EditText)findViewById(R.id.editCourse); EditText notesTxt = (EditText)findViewById(R.id.editNotes); db.open(); long id = db.insertRecord(nameTxt.getText().toString(), dateTxt.getText().toString(), courseTxt.getText().toString(), notesTxt.getText().toString()); db.close(); nameTxt.setText(""); dateTxt.setText(""); courseTxt.setText(""); notesTxt.setText(""); Toast.makeText(addassignment.this,"Assignment Added", Toast.LENGTH_LONG).show(); } public void viewAssignments(View v) { Intent i = new Intent(this, MainActivity.class); startActivity(i); } } What is wrong here? Thanks in advance.

    Read the article

  • how to calculate power consumption on an Android mobile that uses wifi?

    - by Marco
    Hello, I have implemented a routing protocol on an Android 1.6 mobile that uses wireless (ad-hoc) network in order to exchange messages. Now I would like to evaluate it under an energy consumption point of view, the base would be to try to calculate the energy wasted to transmit a single packet, do anybody has any idea how to do that? Software/hardware solutions are welcome! Thanx :)

    Read the article

  • how to center layout to vertical in android through java code?

    - by UMMA
    friends, i want to set android:layout_centerVertical="true" property of layout through java code of an image. can any one guide me how to achieve this. here is my code. RelativeLayout.LayoutParams params = new RelativeLayout.LayoutParams(LayoutParams.FILL_PARENT, LayoutParams.WRAP_CONTENT); params.height = (int)totalHeight; img.setLayoutParams(params); i have tried using setScaleType(ScaleType.FIT_CENTER) but no use. any help would be appriciated.

    Read the article

  • As a person getting into mobile development, what's the best mobile platform in terms of profitability? [closed]

    - by Kyle Loman
    I realize this question can range very far so would love to hear any and all opinions on this. However, I'll be honest and say that I have been thinking of this in terms of most profitable. I know how this may sound either way but this is one of my main sticking points. I realize that I'm not guaranteed a single cent and success is never guaranteed but I'm going into this with the thought of making something out of it both financially and also for my own interest. I know that iOS gets a lot of attention on this front but Android commands a lot more market share. However, I know there are drawbacks to Android too, whether it's in the actual development process and programming (though I've heard conflicting reports on this, such as how easy/difficult it is for to address screen res in different devices) or the app ecosystem being flooded. But iOS's app ecosystem has been described as too saturated and harder to compete in for that reason. Since Windows Phone has fewer apps than both of those two, that might be the best place to start in order to be closer to the ground floor of the store and be noticed more? Less saturation = better chances of sales or differentiating? Something like the gold rush during the first years of the iOS App Store (not exactly but at least in concept)? Would it be that despite fewer users on the platform, there's more exposure due to less competition so that may translate to better success at sales? Plus, I know MS is in it for the long haul so I'm not too fearful of something like WebOS going away. Obviously RIM isn't very popular nowadays but I read a recent article that says Blackberry actually has the apps that make the most money, any thoughts on that: http://gigaom.com/mobile/which-mobile-oss-apps-make-most-money-surprise-its-blackberry/ Again, this is all I've heard or known about so if there's anything to add or correct here, please do. In addition, this has actually affected my next personal phone upgrade. I'm eligible for a carrier discount now and I've had my eye on the iPhone 5. However, the Lumia 920 is the one I'm holding out for and I'm open to trying an Android but I'm not sure I can wait that long for any new Nexus or even the Razr HD. Even the new Lumia in November is making me antsy, I'm so close to just getting an iPhone 5. But when I say this has affected my phone choice, I'd want to be able to carry the apps I write with me so that I'm able to pull my phone out to show people without having to carry around a second device to do so. So that's why I'd like to make my personal phone match the main platform I'm developing for. Of course, I will likely expand to other platforms if I gain any decent success but the one I target now would serve well as my personal phone I carry around so that I can use it as a marketing tool, in a sense, showing people my apps if the opportunity presents itself. So what's the best mobile platform to choose, and especially in regards to most lucrative? As said previously, this would influence my personal phone choice greatly. Thanks in advance and I hope this isn't taken the wrong way - I understand there are trade-offs and other factors that may balance this out but making some revenue is key among that. For some background, I have done software development and know programming language concepts so I'm not entirely new to it and I do get the notion of being familiar with these things so that I can translate this skill among a variety of languages but I'm currently just having difficulty choosing my first main mobile platform based on the criteria I've outlined above.

    Read the article

  • C#/.NET Little Wonders: Interlocked CompareExchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Two posts ago, I discussed the Interlocked Add(), Increment(), and Decrement() methods (here) for adding and subtracting values in a thread-safe, lightweight manner.  Then, last post I talked about the Interlocked Read() and Exchange() methods (here) for safely and efficiently reading and setting 32 or 64 bit values (or references).  This week, we’ll round out the discussion by talking about the Interlocked CompareExchange() method and how it can be put to use to exchange a value if the current value is what you expected it to be. Dirty reads can lead to bad results Many of the uses of Interlocked that we’ve explored so far have centered around either reading, setting, or adding values.  But what happens if you want to do something more complex such as setting a value based on the previous value in some manner? Perhaps you were creating an application that reads a current balance, applies a deposit, and then saves the new modified balance, where of course you’d want that to happen atomically.  If you read the balance, then go to save the new balance and between that time the previous balance has already changed, you’ll have an issue!  Think about it, if we read the current balance as $400, and we are applying a new deposit of $50.75, but meanwhile someone else deposits $200 and sets the total to $600, but then we write a total of $450.75 we’ve lost $200! Now, certainly for int and long values we can use Interlocked.Add() to handles these cases, and it works well for that.  But what if we want to work with doubles, for example?  Let’s say we wanted to add the numbers from 0 to 99,999 in parallel.  We could do this by spawning several parallel tasks to continuously add to a total: 1: double total = 0; 2:  3: Parallel.For(0, 10000, next => 4: { 5: total += next; 6: }); Were this run on one thread using a standard for loop, we’d expect an answer of 4,999,950,000 (the sum of all numbers from 0 to 99,999).  But when we run this in parallel as written above, we’ll likely get something far off.  The result of one of my runs, for example, was 1,281,880,740.  That is way off!  If this were banking software we’d be in big trouble with our clients.  So what happened?  The += operator is not atomic, it will read in the current value, add the result, then store it back into the total.  At any point in all of this another thread could read a “dirty” current total and accidentally “skip” our add.   So, to clean this up, we could use a lock to guarantee concurrency: 1: double total = 0.0; 2: object locker = new object(); 3:  4: Parallel.For(0, count, next => 5: { 6: lock (locker) 7: { 8: total += next; 9: } 10: }); Which will give us the correct result of 4,999,950,000.  One thing to note is that locking can be heavy, especially if the operation being locked over is trivial, or the life of the lock is a high percentage of the work being performed concurrently.  In the case above, the lock consumes pretty much all of the time of each parallel task – and the task being locked on is relatively trivial. Now, let me put in a disclaimer here before we go further: For most uses, lock is more than sufficient for your needs, and is often the simplest solution!    So, if lock is sufficient for most needs, why would we ever consider another solution?  The problem with locking is that it can suspend execution of your thread while it waits for the signal that the lock is free.  Moreover, if the operation being locked over is trivial, the lock can add a very high level of overhead.  This is why things like Interlocked.Increment() perform so well, instead of locking just to perform an increment, we perform the increment with an atomic, lockless method. As with all things performance related, it’s important to profile before jumping to the conclusion that you should optimize everything in your path.  If your profiling shows that locking is causing a high level of waiting in your application, then it’s time to consider lighter alternatives such as Interlocked. CompareExchange() – Exchange existing value if equal some value So let’s look at how we could use CompareExchange() to solve our problem above.  The general syntax of CompareExchange() is: T CompareExchange<T>(ref T location, T newValue, T expectedValue) If the value in location == expectedValue, then newValue is exchanged.  Either way, the value in location (before exchange) is returned. Actually, CompareExchange() is not one method, but a family of overloaded methods that can take int, long, float, double, pointers, or references.  It cannot take other value types (that is, can’t CompareExchange() two DateTime instances directly).  Also keep in mind that the version that takes any reference type (the generic overload) only checks for reference equality, it does not call any overridden Equals(). So how does this help us?  Well, we can grab the current total, and exchange the new value if total hasn’t changed.  This would look like this: 1: // grab the snapshot 2: double current = total; 3:  4: // if the total hasn’t changed since I grabbed the snapshot, then 5: // set it to the new total 6: Interlocked.CompareExchange(ref total, current + next, current); So what the code above says is: if the amount in total (1st arg) is the same as the amount in current (3rd arg), then set total to current + next (2nd arg).  This check and exchange pair is atomic (and thus thread-safe). This works if total is the same as our snapshot in current, but the problem, is what happens if they aren’t the same?  Well, we know that in either case we will get the previous value of total (before the exchange), back as a result.  Thus, we can test this against our snapshot to see if it was the value we expected: 1: // if the value returned is != current, then our snapshot must be out of date 2: // which means we didn't (and shouldn't) apply current + next 3: if (Interlocked.CompareExchange(ref total, current + next, current) != current) 4: { 5: // ooops, total was not equal to our snapshot in current, what should we do??? 6: } So what do we do if we fail?  That’s up to you and the problem you are trying to solve.  It’s possible you would decide to abort the whole transaction, or perhaps do a lightweight spin and try again.  Let’s try that: 1: double current = total; 2:  3: // make first attempt... 4: if (Interlocked.CompareExchange(ref total, current + i, current) != current) 5: { 6: // if we fail, go into a spin wait, spin, and try again until succeed 7: var spinner = new SpinWait(); 8:  9: do 10: { 11: spinner.SpinOnce(); 12: current = total; 13: } 14: while (Interlocked.CompareExchange(ref total, current + i, current) != current); 15: } 16:  This is not trivial code, but it illustrates a possible use of CompareExchange().  What we are doing is first checking to see if we succeed on the first try, and if so great!  If not, we create a SpinWait and then repeat the process of SpinOnce(), grab a fresh snapshot, and repeat until CompareExchnage() succeeds.  You may wonder why not a simple do-while here, and the reason it’s more efficient to only create the SpinWait until we absolutely know we need one, for optimal efficiency. Though not as simple (or maintainable) as a simple lock, this will perform better in many situations.  Comparing an unlocked (and wrong) version, a version using lock, and the Interlocked of the code, we get the following average times for multiple iterations of adding the sum of 100,000 numbers: 1: Unlocked money average time: 2.1 ms 2: Locked money average time: 5.1 ms 3: Interlocked money average time: 3 ms So the Interlocked.CompareExchange(), while heavier to code, came in lighter than the lock, offering a good compromise of safety and performance when we need to reduce contention. CompareExchange() - it’s not just for adding stuff… So that was one simple use of CompareExchange() in the context of adding double values -- which meant we couldn’t have used the simpler Interlocked.Add() -- but it has other uses as well. If you think about it, this really works anytime you want to create something new based on a current value without using a full lock.  For example, you could use it to create a simple lazy instantiation implementation.  In this case, we want to set the lazy instance only if the previous value was null: 1: public static class Lazy<T> where T : class, new() 2: { 3: private static T _instance; 4:  5: public static T Instance 6: { 7: get 8: { 9: // if current is null, we need to create new instance 10: if (_instance == null) 11: { 12: // attempt create, it will only set if previous was null 13: Interlocked.CompareExchange(ref _instance, new T(), (T)null); 14: } 15:  16: return _instance; 17: } 18: } 19: } So, if _instance == null, this will create a new T() and attempt to exchange it with _instance.  If _instance is not null, then it does nothing and we discard the new T() we created. This is a way to create lazy instances of a type where we are more concerned about locking overhead than creating an accidental duplicate which is not used.  In fact, the BCL implementation of Lazy<T> offers a similar thread-safety choice for Publication thread safety, where it will not guarantee only one instance was created, but it will guarantee that all readers get the same instance.  Another possible use would be in concurrent collections.  Let’s say, for example, that you are creating your own brand new super stack that uses a linked list paradigm and is “lock free”.  We could use Interlocked.CompareExchange() to be able to do a lockless Push() which could be more efficient in multi-threaded applications where several threads are pushing and popping on the stack concurrently. Yes, there are already concurrent collections in the BCL (in .NET 4.0 as part of the TPL), but it’s a fun exercise!  So let’s assume we have a node like this: 1: public sealed class Node<T> 2: { 3: // the data for this node 4: public T Data { get; set; } 5:  6: // the link to the next instance 7: internal Node<T> Next { get; set; } 8: } Then, perhaps, our stack’s Push() operation might look something like: 1: public sealed class SuperStack<T> 2: { 3: private volatile T _head; 4:  5: public void Push(T value) 6: { 7: var newNode = new Node<int> { Data = value, Next = _head }; 8:  9: if (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next) 10: { 11: var spinner = new SpinWait(); 12:  13: do 14: { 15: spinner.SpinOnce(); 16: newNode.Next = _head; 17: } 18: while (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next); 19: } 20: } 21:  22: // ... 23: } Notice a similar paradigm here as with adding our doubles before.  What we are doing is creating the new Node with the data to push, and with a Next value being the original node referenced by _head.  This will create our stack behavior (LIFO – Last In, First Out).  Now, we have to set _head to now refer to the newNode, but we must first make sure it hasn’t changed! So we check to see if _head has the same value we saved in our snapshot as newNode.Next, and if so, we set _head to newNode.  This is all done atomically, and the result is _head’s original value, as long as the original value was what we assumed it was with newNode.Next, then we are good and we set it without a lock!  If not, we SpinWait and try again. Once again, this is much lighter than locking in highly parallelized code with lots of contention.  If I compare the method above with a similar class using lock, I get the following results for pushing 100,000 items: 1: Locked SuperStack average time: 6 ms 2: Interlocked SuperStack average time: 4.5 ms So, once again, we can get more efficient than a lock, though there is the cost of added code complexity.  Fortunately for you, most of the concurrent collection you’d ever need are already created for you in the System.Collections.Concurrent (here) namespace – for more information, see my Little Wonders – The Concurent Collections Part 1 (here), Part 2 (here), and Part 3 (here). Summary We’ve seen before how the Interlocked class can be used to safely and efficiently add, increment, decrement, read, and exchange values in a multi-threaded environment.  In addition to these, Interlocked CompareExchange() can be used to perform more complex logic without the need of a lock when lock contention is a concern. The added efficiency, though, comes at the cost of more complex code.  As such, the standard lock is often sufficient for most thread-safety needs.  But if profiling indicates you spend a lot of time waiting for locks, or if you just need a lock for something simple such as an increment, decrement, read, exchange, etc., then consider using the Interlocked class’s methods to reduce wait. Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked,CompareExchange,threading,concurrency

    Read the article

  • Android : plus de 61% des smartphones embarquent la version 2.2 et moins de 8% sont sur une version 1.x, fin de la fragmentation ?

    Android : plus de 61 % des smartphones embarquent la version 2.2 Et moins de 8% sont sur une version 1.x, la fin de la fragmentation ? Mise à jour du 18/03/11, par Hinault Romaric La version 2.2 est de « très » loin la plus utilisée par les terminaux tournant sur Android d'après l'analyse menée par Google sur les terminaux Android ayant accédé à l'Android Market au cours des deux premières semaines de mars 2011 (du 01 au 14). Actuellement, c'est un total de 61,3% de terminaux qui tournent sur la version 2.2 (Froyo) d'Android au détriment de la version 2.1 (Eclair) qui chute à moins de 30%. [IMG]http://rdonfack.dev...

    Read the article

  • Android 2.2 repéré sur le Net, la prochaine version de l'OS mobile de Google pourrait arriver offici

    Android 2.2 repéré sur le Net La prochaine version de l'OS mobile de Google pourrait arriver officiellement en mai "Froyo", nom de code de la future version d'Android, a été repéré sur le Net. Google serait donc en train de tester Android 2.2 en interne. C'est en tout cas ce que croit savoir Android and Me, un site spécialisé - entre autre - dans la mesure du trafic d'Android. [IMG]http://ftp-developpez.com/gordon-fowler/android22.png[/IMG] Cette nouvelle version proposera un compilateur JIT (pour Just In Time), une méthode qui permet la compilation en temps réel d'un code vers le code natif de l'appareil et de garder le résultat en ...

    Read the article

  • If I'm updating a DataRow, do I lock the entire DataTable or just the DataRow?

    - by Dan Tao
    Suppose I'm accessing a DataTable from multiple threads. If I want to access a particular row, I suspect I need to lock that operation (I could be mistaken about this, but at least I know this way I'm safe): // this is a strongly-typed table OrdersRow row = null; lock (orderTable.Rows.SyncRoot) { row = orderTable.FindByOrderId(myOrderId); } But then, if I want to update that row, should I lock the table (or rather, the table's Rows.SyncRoot object) again, or can I simply lock the row?

    Read the article

  • Understanding CLR 2.0 Memory Model

    - by Eloff
    Joe Duffy, gives 6 rules that describe the CLR 2.0+ memory model (it's actual implementation, not any ECMA standard) I'm writing down my attempt at figuring this out, mostly as a way of rubber ducking, but if I make a mistake in my logic, at least someone here will be able to catch it before it causes me grief. Rule 1: Data dependence among loads and stores is never violated. Rule 2: All stores have release semantics, i.e. no load or store may move after one. Rule 3: All volatile loads are acquire, i.e. no load or store may move before one. Rule 4: No loads and stores may ever cross a full-barrier (e.g. Thread.MemoryBarrier, lock acquire, Interlocked.Exchange, Interlocked.CompareExchange, etc.). Rule 5: Loads and stores to the heap may never be introduced. Rule 6: Loads and stores may only be deleted when coalescing adjacent loads and stores from/to the same location. I'm attempting to understand these rules. x = y y = 0 // Cannot move before the previous line according to Rule 1. x = y z = 0 // equates to this sequence of loads and stores before possible re-ordering load y store x load 0 store z Looking at this, it appears that the load 0 can be moved up to before load y, but the stores may not be re-ordered at all. Therefore, if a thread sees z == 0, then it also will see x == y. If y was volatile, then load 0 could not move before load y, otherwise it may. Volatile stores don't seem to have any special properties, no stores can be re-ordered with respect to each other (which is a very strong guarantee!) Full barriers are like a line in the sand which loads and stores can not be moved over. No idea what rule 5 means. I guess rule 6 means if you do: x = y x = z Then it is possible for the CLR to delete both the load to y and the first store to x. x = y z = y // equates to this sequence of loads and stores before possible re-ordering load y store x load y store z // could be re-ordered like this load y load y store x store z // rule 6 applied means this is possible? load y store x // but don't pop y from stack (or first duplicate item on top of stack) store z What if y was volatile? I don't see anything in the rules that prohibits the above optimization from being carried out. This does not violate double-checked locking, because the lock() between the two identical conditions prevents the loads from being moved into adjacent positions, and according to rule 6, that's the only time they can be eliminated. So I think I understand all but rule 5, here. Anyone want to enlighten me (or correct me or add something to any of the above?)

    Read the article

  • Only error showing is null, rss feed reader not working

    - by Callum
    I have been following a tutorial which is showing me how to create an rssfeed reader, I come to the end of the tutorial; and the feed is not displaying in the listView. So I am looking for errors in logCat, but the only one I can find is one just saying 'null', which is not helpful at all. Can anyone spot a potential problem with the code I have written? Thanks. DirectRSS(main class): package com.example.rssapplication; import java.util.List; import android.app.ListActivity; import android.content.pm.ActivityInfo; import android.os.Bundle; import android.util.Log; import android.widget.ArrayAdapter; import android.widget.ListView; public class DirectRSS extends ListActivity{ @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.directrss); //Set to portrait, so that every time the view changes; it does not run the DB query again... setRequestedOrientation (ActivityInfo.SCREEN_ORIENTATION_PORTRAIT); try{ RssReader1 rssReader = new RssReader1("http://www.skysports.com/rss/0,20514,11661,00.xml"); ListView list = (ListView)findViewById(R.id.list); ArrayAdapter<RssItem1> adapter = new ArrayAdapter<RssItem1>(this, android.R.layout.simple_list_item_1); list.setAdapter(adapter); list.setOnItemClickListener(new ListListener1(rssReader.getItems(),this)); }catch(Exception e) { String err = (e.getMessage()==null)?"SD Card failed": e.getMessage(); Log.e("sdcard-err2:",err + " " + e.getMessage()); // Log.e("Error", e.getMessage()); Log.e("LOGCAT", "" + e.getMessage()); } } } ListListener1: package com.example.rssapplication; import java.util.List; import android.app.Activity; import android.content.Intent; import android.net.Uri; import android.view.View; import android.widget.AdapterView; import android.widget.AdapterView.OnItemClickListener; public class ListListener1 implements OnItemClickListener{ List<RssItem1> listItems; Activity activity; public ListListener1(List<RssItem1> listItems, Activity activity) { this.listItems = listItems; this.activity = activity; } @Override public void onItemClick(AdapterView<?> parent, View view, int pos, long id) { // TODO Auto-generated method stub Intent i = new Intent(Intent.ACTION_VIEW); i.setData(Uri.parse(listItems.get(pos).getLink())); activity.startActivity(i); } } RssItem1: package com.example.rssapplication; public class RssItem1 { private String title; private String link; public String getTitle() { return title; } public void setTitle(String title) { this.title = title; } public String getLink() { return link; } public void setLink(String link) { this.link = link; } } RssParseHandler1: package com.example.rssapplication; import java.util.ArrayList; import java.util.List; import org.xml.sax.Attributes; import org.xml.sax.SAXException; import org.xml.sax.helpers.DefaultHandler; public class RssParseHandler1 extends DefaultHandler{ private List<RssItem1> rssItems; private RssItem1 currentItem; private boolean parsingTitle; private boolean parsingLink; public RssParseHandler1(){ rssItems = new ArrayList<RssItem1>(); } public List<RssItem1> getItems(){ return rssItems; } @Override public void startElement(String uri, String localName, String qName, Attributes attributes) throws SAXException { if("item".equals(qName)){ currentItem = new RssItem1(); } else if("title".equals(qName)){ parsingTitle = true; } else if("link".equals(qName)){ parsingLink = true; } // TODO Auto-generated method stub super.startElement(uri, localName, qName, attributes); } @Override public void endElement(String uri, String localName, String qName) throws SAXException { if("item".equals(qName)){ rssItems.add(currentItem); currentItem = null; } else if("title".equals(qName)){ parsingTitle = false; } else if("link".equals(qName)){ parsingLink = false; } // TODO Auto-generated method stub super.endElement(uri, localName, qName); } @Override public void characters(char[] ch, int start, int length) throws SAXException { if(parsingTitle) { if(currentItem!=null) { currentItem.setTitle(new String(ch,start,length)); } } else if(parsingLink) { if(currentItem!=null) { currentItem.setLink(new String(ch,start,length)); parsingLink = false; } } // TODO Auto-generated method stub super.characters(ch, start, length); } } RssReader1: package com.example.rssapplication; import java.util.List; import javax.xml.parsers.SAXParser; import javax.xml.parsers.SAXParserFactory; public class RssReader1 { private String rssUrl; public RssReader1(String rssUrl) { this.rssUrl = rssUrl; } public List<RssItem1> getItems() throws Exception { SAXParserFactory factory = SAXParserFactory.newInstance(); SAXParser saxParser = factory.newSAXParser(); RssParseHandler1 handler = new RssParseHandler1(); saxParser.parse(rssUrl, handler); return handler.getItems(); } } Here is the logCat also: 08-25 11:13:20.803: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:20.803: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:20.803: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:20.813: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:20.813: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:20.813: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:20.813: W/ApplicationPackageManager(26291): getCSCPackageItemText() 08-25 11:13:20.843: D/AbsListView(26291): Get MotionRecognitionManager 08-25 11:13:20.843: E/sdcard-err2:(26291): SD Card failed null 08-25 11:13:20.843: E/LOGCAT(26291): null 08-25 11:13:20.843: D/AbsListView(26291): onVisibilityChanged() is called, visibility : 4 08-25 11:13:20.843: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:20.873: D/AbsListView(26291): onVisibilityChanged() is called, visibility : 0 08-25 11:13:20.883: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:20.903: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:20.933: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:20.963: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:20.973: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:21.323: D/AbsListView(26291): onVisibilityChanged() is called, visibility : 4 08-25 11:13:21.323: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:21.323: D/AbsListView(26291): onVisibilityChanged() is called, visibility : 4 08-25 11:13:21.323: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:21.323: D/AbsListView(26291): onVisibilityChanged() is called, visibility : 4 08-25 11:13:21.323: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:21.323: D/AbsListView(26291): onVisibilityChanged() is called, visibility : 4 08-25 11:13:21.323: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:21.323: D/AbsListView(26291): onVisibilityChanged() is called, visibility : 4 08-25 11:13:21.323: D/AbsListView(26291): unregisterIRListener() is called 08-25 11:13:21.333: D/AbsListView(26291): onVisibilityChanged() is called, visibility : 4 08-25 11:13:21.333: D/AbsListView(26291): unregisterIRListener() is called

    Read the article

  • How to lock files in a tomcat web application?

    - by yankee
    The Java manual says: The locks held on a particular file by a single Java virtual machine do not overlap. The overlaps method may be used to test whether a candidate lock range overlaps an existing lock. I guess that if I lock a file in a tomcat web application I can't be sure that every call to this application is done by a different JVM, can I? So how can I lock files within my tomcat application in a reliable way?

    Read the article

< Previous Page | 262 263 264 265 266 267 268 269 270 271 272 273  | Next Page >