Search Results

Search found 37183 results on 1488 pages for 'string conversion'.

Page 267/1488 | < Previous Page | 263 264 265 266 267 268 269 270 271 272 273 274  | Next Page >

  • what is the purpose of numeric/boolean/string objects as opposed to primitive values?

    - by zespri
    In javascript you can call a function as a function or as a constructor. For example you can do : myObject = new Number(13); myPrimitiveValue = Number(13); or simply myPrimitiveValue = 13; I understand the difference between the results. Can you explain me under which reasonable circumstances creating a number, a boolean or a string as an object is desirable? For example, ability to set new properties (this is something you can do on objects but can't really do on primitive values) is almost always a bad idea for objects containing number/boolean/string. Why would I want a numeric/boolean/string object?

    Read the article

  • Easy way to cast an object array into another type in C#

    - by Na7coldwater
    I want to be able to be able to quickly cast an array of objects to a different type, such as String, but the following code doesn't work: String[] a = new String[2]; a[0] = "Hello"; a[1] = "World"; ArrayList b = new ArrayList(a); String[] c = (String[]) b.ToArray(); And I don't want to have to do this: String[] a = new String[2]; a[0] = "Hello"; a[1] = "World"; ArrayList b = new ArrayList(a); Object[] temp = b.ToArray(); Object[] temp = b.ToArray(); String[] c = new String[temp.Length]; for(int i=0;i<temp.Length;i++) { c[i] = (String) temp[i]; } Is there an easy way to do this without using a temporary variable?

    Read the article

  • Core Animation cross-dissolve between one string (or image) and another when changing bound value?

    - by danwood
    I have an NSTextView and an NSImageView that is bound to a NSString and an NSImage in my code. I would like to have the displayed string and image cross-dissolve when I change the string and image in code. Any way to do this? Do I need to stop using bindings? (And if I do, is there any trick to getting the string and the image to cross-dissolve when I change the value, or do I have to do something weird like fade it out and fade a new one back in?)

    Read the article

  • Is there a way to create a string that matches a given C# regex?

    - by Chris Phillips
    My application has a feature that parses text using a regular expression to extract special values. I find myself also needing to create strings that follow the same format. Is there a way to use the already defined regular expression to create those strings? For example, assume my regex looks something like this: public static Regex MyRegex = new Regex( @"sometext_(?<group1>\d*)" ); I'd like to be able to use MyRegex to create a new string, something like: var created = MyRegex.ToString( new Dictionary<string, string>() {{ "group1", "data1" }}; Such that created would then have the value "sometextdata1".

    Read the article

  • Java Error When correct code is put together

    - by Eric
    I have a few string problems that I need to put together for a complete homework assignment. They all work correctly by themselves, but when I put them together in the main function, the last one that finds the smallest word in a string gives an error. Anyone know why? public static void main(String[] args){ Scanner sc = new Scanner(System.in); //Length of Word String word1 = sc.next(); System.out.println(word1.length()); //Evens in one string odds in the other String word2 = sc.next(); StringBuilder even = new StringBuilder(); StringBuilder odd = new StringBuilder(); for(int i = 0; i < word2.length(); i++){ if(i % 2 == 0){ even.append(word2.charAt(i)); } else{ odd.append(word2.charAt(i)); } } System.out.println(even + " " + odd); //Diminishing Suffix String word3 = sc.next(); for(int j = 0; j < word3.length(); j++){ System.out.print(word3.substring(j, word3.length()) + " "); } System.out.printf("\n"); //Letter Replacement String word4 = sc.next(); String word5 = sc.next(); String word6 = sc.next(); String word7 = word4.replace(word5, word6); System.out.println(word7); //How many times x appears in xstring String word8 = sc.next(); String word9 = sc.next(); int index = word8.indexOf(word9); int count = 0; while (index != -1) { count++; word8 = word8.substring(index + 1); index = word8.indexOf(word9); } System.out.println(count); System.out.println(); //Lexicographically smallest word String Sentence = sc.nextLine(); String[] myWords = Sentence.split(" "); int shortestLengths, shortestLocation; shortestLengths=(myWords[1]).length(); shortestLocation=1; for (int i = 1; i <myWords.length; i++) { if ((myWords[i]).length() < shortestLengths) { shortestLengths=(myWords[i]).length(); shortestLocation=i; } } System.out.println(myWords[shortestLocation]); } } Talking about the lexicographically smallest one

    Read the article

  • How to get radio button's id and convert to string?

    - by user3461659
    I am working in Android Studio and am trying to get the ID of the selected radio button and then store the ID in a string. Is this possible? I have tried replacing the .getText() method below with .getId() but it wont let me store it as a string: RadioGroup radioGroup = (RadioGroup) findViewById(R.id.radioGroup); radioGroup.setOnCheckedChangeListener(new RadioGroup.OnCheckedChangeListener() { @Override public void onCheckedChanged(RadioGroup radioGroup, int checkedId) { RadioButton checkedRadioButton = (RadioButton) findViewById(checkedId); String text = checkedRadioButton.getText().toString(); Toast.makeText(getApplicationContext(), text, Toast.LENGTH_SHORT).show(); } });

    Read the article

  • SharePoint threw "Unknown SQL Exception 206 occured." Anyone familiar with this?

    - by dalehhirt
    Our SharePoint instance threw the following errors when attempting to access data through a Content Query Tool: 04/02/2010 10:45:06.12 w3wp.exe (0x062C) 0x1734 Windows SharePoint Services Database 5586 Critical Unknown SQL Exception 206 occured. Additional error information from SQL Server is included below. Operand type clash: uniqueidentifier is incompatible with datetime 04/02/2010 10:45:06.25 w3wp.exe (0x062C) 0x1734 Office Server Office Server General 900n Critical A runtime exception was detected. Details follow. Message: Operand type clash: uniqueidentifier is incompatible with datetime Techinal Details: System.Data.SqlClient.SqlException: Operand type clash: uniqueidentifier is incompatible with datetime at System.Data.SqlClient.SqlConnection.OnError(SqlException exception, Boolean breakConnection) at System.Data.SqlClient.SqlInternalConnection.OnError(SqlException exception, Boolean breakConnection) at System.Data.SqlClient.TdsParser.ThrowExceptionAndWarning(TdsParserStateObject stateObj) at System.Data.SqlClient.TdsParser.Run(RunBehavior runBehavior, SqlCommand cmdHandler, SqlDataReader dataStream, BulkCopySimpleResultSet bulkCopyHandler, TdsParserStateObject stateObj) at System.Data.SqlClient.SqlDataReader.ConsumeMetaData(... 04/02/2010 10:45:06.25* w3wp.exe (0x062C) 0x1734 Office Server Office Server General 900n Critical ...) at System.Data.SqlClient.SqlDataReader.get_MetaData() at System.Data.SqlClient.SqlCommand.FinishExecuteReader(SqlDataReader ds, RunBehavior runBehavior, String resetOptionsString) at System.Data.SqlClient.SqlC 04/02/2010 10:45:06.25 w3wp.exe (0x062C) 0x1734 CMS Publishing 8vyd Exception (Watson Reporting Cancelled) System.Data.SqlClient.SqlException: Operand type clash: uniqueidentifier is incompatible with datetime at System.Data.SqlClient.SqlConnection.OnError(SqlException exception, Boolean breakConnection) at System.Data.SqlClient.SqlInternalConnection.OnError(SqlException exception, Boolean breakConnection) at System.Data.SqlClient.TdsParser.ThrowExceptionAndWarning(TdsParserStateObject stateObj) at System.Data.SqlClient.TdsParser.Run(RunBehavior runBehavior, SqlCommand cmdHandler, SqlDataReader dataStream, BulkCopySimpleResultSet bulkCopyHandler, TdsParserStateObject stateObj) at System.Data.SqlClient.SqlDataReader.ConsumeMetaData() at System.Data.SqlClient.SqlDataReader.get_MetaData() at System.Data.SqlClient.SqlCommand.FinishExecuteRead... 04/02/2010 10:45:06.25* w3wp.exe (0x062C) 0x1734 CMS Publishing 8vyd Exception ...er(SqlDataReader ds, RunBehavior runBehavior, String resetOptionsString) at System.Data.SqlClient.SqlCommand.RunExecuteReaderTds(CommandBehavior cmdBehavior, RunBehavior runBehavior, Boolean returnStream, Boolean async) at System.Data.SqlClient.SqlCommand.RunExecuteReader(CommandBehavior cmdBehavior, RunBehavior runBehavior, Boolean returnStream, String method, DbAsyncResult result) at System.Data.SqlClient.SqlCommand.RunExecuteReader(CommandBehavior cmdBehavior, RunBehavior runBehavior, Boolean returnStream, String method) at System.Data.SqlClient.SqlCommand.ExecuteReader(CommandBehavior behavior, String method) at System.Data.SqlClient.SqlCommand.ExecuteReader(CommandBehavior behavior) at Microsoft.SharePoint.Utilities.SqlSession.ExecuteReader(SqlCommand command, ... 04/02/2010 10:45:06.25* w3wp.exe (0x062C) 0x1734 CMS Publishing 8vyd Exception ...CommandBehavior behavior) at Microsoft.SharePoint.SPSqlClient.ExecuteQuery(Boolean& bSucceed) at Microsoft.SharePoint.Library.SPRequestInternalClass.CrossListQuery(String bstrUrl, String bstrXmlWebs, String bstrXmlLists, String bstrXmlQuery, ISP2DSafeArrayWriter pCallback, Object& pvarColumns) at Microsoft.SharePoint.Library.SPRequest.CrossListQuery(String bstrUrl, String bstrXmlWebs, String bstrXmlLists, String bstrXmlQuery, ISP2DSafeArrayWriter pCallback, Object& pvarColumns) at Microsoft.SharePoint.SPWeb.GetSiteData(SPSiteDataQuery query) at Microsoft.SharePoint.Publishing.CachedArea.GetCrossListQuery(SPSiteDataQuery query, SPWeb currentContext) at Microsoft.SharePoint.Publishing.CrossListQueryCache.GetSiteData(CachedArea cachedArea, SPWeb web, SPSiteDataQuery qu... 04/02/2010 10:45:06.25* w3wp.exe (0x062C) 0x1734 CMS Publishing 8vyd Exception ...ery) 04/02/2010 10:45:06.25 w3wp.exe (0x062C) 0x1734 CMS Publishing 78ed Warning Error occured while processing a Content Query Web Part. Performing the following query ' 04/02/2010 10:45:06.25* w3wp.exe (0x062C) 0x1734 CMS Publishing 78ed Warning ...ue" Type="Number"/ The farm is MOSS 2007 with SQL Server 2005 backend. Any ideas are welcomed. Dale

    Read the article

  • Passing multiple POST parameters to Web API Controller Methods

    - by Rick Strahl
    ASP.NET Web API introduces a new API for creating REST APIs and making AJAX callbacks to the server. This new API provides a host of new great functionality that unifies many of the features of many of the various AJAX/REST APIs that Microsoft created before it - ASP.NET AJAX, WCF REST specifically - and combines them into a whole more consistent API. Web API addresses many of the concerns that developers had with these older APIs, namely that it was very difficult to build consistent REST style resource APIs easily. While Web API provides many new features and makes many scenarios much easier, a lot of the focus has been on making it easier to build REST compliant APIs that are focused on resource based solutions and HTTP verbs. But  RPC style calls that are common with AJAX callbacks in Web applications, have gotten a lot less focus and there are a few scenarios that are not that obvious, especially if you're expecting Web API to provide functionality similar to ASP.NET AJAX style AJAX callbacks. RPC vs. 'Proper' REST RPC style HTTP calls mimic calling a method with parameters and returning a result. Rather than mapping explicit server side resources or 'nouns' RPC calls tend simply map a server side operation, passing in parameters and receiving a typed result where parameters and result values are marshaled over HTTP. Typically RPC calls - like SOAP calls - tend to always be POST operations rather than following HTTP conventions and using the GET/POST/PUT/DELETE etc. verbs to implicitly determine what operation needs to be fired. RPC might not be considered 'cool' anymore, but for typical private AJAX backend operations of a Web site I'd wager that a large percentage of use cases of Web API will fall towards RPC style calls rather than 'proper' REST style APIs. Web applications that have needs for things like live validation against data, filling data based on user inputs, handling small UI updates often don't lend themselves very well to limited HTTP verb usage. It might not be what the cool kids do, but I don't see RPC calls getting replaced by proper REST APIs any time soon.  Proper REST has its place - for 'real' API scenarios that manage and publish/share resources, but for more transactional operations RPC seems a better choice and much easier to implement than trying to shoehorn a boatload of endpoint methods into a few HTTP verbs. In any case Web API does a good job of providing both RPC abstraction as well as the HTTP Verb/REST abstraction. RPC works well out of the box, but there are some differences especially if you're coming from ASP.NET AJAX service or WCF Rest when it comes to multiple parameters. Action Routing for RPC Style Calls If you've looked at Web API demos you've probably seen a bunch of examples of how to create HTTP Verb based routing endpoints. Verb based routing essentially maps a controller and then uses HTTP verbs to map the methods that are called in response to HTTP requests. This works great for resource APIs but doesn't work so well when you have many operational methods in a single controller. HTTP Verb routing is limited to the few HTTP verbs available (plus separate method signatures) and - worse than that - you can't easily extend the controller with custom routes or action routing beyond that. Thankfully Web API also supports Action based routing which allows you create RPC style endpoints fairly easily:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumApi", action = "GetAblums" } ); This uses traditional MVC style {action} method routing which is different from the HTTP verb based routing you might have read a bunch about in conjunction with Web API. Action based routing like above lets you specify an end point method in a Web API controller either via the {action} parameter in the route string or via a default value for custom routes. Using routing you can pass multiple parameters either on the route itself or pass parameters on the query string, via ModelBinding or content value binding. For most common scenarios this actually works very well. As long as you are passing either a single complex type via a POST operation, or multiple simple types via query string or POST buffer, there's no issue. But if you need to pass multiple parameters as was easily done with WCF REST or ASP.NET AJAX things are not so obvious. Web API has no issue allowing for single parameter like this:[HttpPost] public string PostAlbum(Album album) { return String.Format("{0} {1:d}", album.AlbumName, album.Entered); } There are actually two ways to call this endpoint: albums/PostAlbum Using the Model Binder with plain POST values In this mechanism you're sending plain urlencoded POST values to the server which the ModelBinder then maps the parameter. Each property value is matched to each matching POST value. This works similar to the way that MVC's  ModelBinder works. Here's how you can POST using the ModelBinder and jQuery:$.ajax( { url: "albums/PostAlbum", type: "POST", data: { AlbumName: "Dirty Deeds", Entered: "5/1/2012" }, success: function (result) { alert(result); }, error: function (xhr, status, p3, p4) { var err = "Error " + " " + status + " " + p3; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); Here's what the POST data looks like for this request: The model binder and it's straight form based POST mechanism is great for posting data directly from HTML pages to model objects. It avoids having to do manual conversions for many operations and is a great boon for AJAX callback requests. Using Web API JSON Formatter The other option is to post data using a JSON string. The process for this is similar except that you create a JavaScript object and serialize it to JSON first.album = { AlbumName: "PowerAge", Entered: new Date(1977,0,1) } $.ajax( { url: "albums/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify(album), success: function (result) { alert(result); } }); Here the data is sent using a JSON object rather than form data and the data is JSON encoded over the wire. The trace reveals that the data is sent using plain JSON (Source above), which is a little more efficient since there's no UrlEncoding that occurs. BTW, notice that WebAPI automatically deals with the date. I provided the date as a plain string, rather than a JavaScript date value and the Formatter and ModelBinder both automatically map the date propertly to the Entered DateTime property of the Album object. Passing multiple Parameters to a Web API Controller Single parameters work fine in either of these RPC scenarios and that's to be expected. ModelBinding always works against a single object because it maps a model. But what happens when you want to pass multiple parameters? Consider an API Controller method that has a signature like the following:[HttpPost] public string PostAlbum(Album album, string userToken) Here I'm asking to pass two objects to an RPC method. Is that possible? This used to be fairly straight forward either with WCF REST and ASP.NET AJAX ASMX services, but as far as I can tell this is not directly possible using a POST operation with WebAPI. There a few workarounds that you can use to make this work: Use both POST *and* QueryString Parameters in Conjunction If you have both complex and simple parameters, you can pass simple parameters on the query string. The above would actually work with: /album/PostAlbum?userToken=sekkritt but that's not always possible. In this example it might not be a good idea to pass a user token on the query string though. It also won't work if you need to pass multiple complex objects, since query string values do not support complex type mapping. They only work with simple types. Use a single Object that wraps the two Parameters If you go by service based architecture guidelines every service method should always pass and return a single value only. The input should wrap potentially multiple input parameters and the output should convey status as well as provide the result value. You typically have a xxxRequest and a xxxResponse class that wraps the inputs and outputs. Here's what this method might look like:public PostAlbumResponse PostAlbum(PostAlbumRequest request) { var album = request.Album; var userToken = request.UserToken; return new PostAlbumResponse() { IsSuccess = true, Result = String.Format("{0} {1:d} {2}", album.AlbumName, album.Entered,userToken) }; } with these support types:public class PostAlbumRequest { public Album Album { get; set; } public User User { get; set; } public string UserToken { get; set; } } public class PostAlbumResponse { public string Result { get; set; } public bool IsSuccess { get; set; } public string ErrorMessage { get; set; } }   To call this method you now have to assemble these objects on the client and send it up as JSON:var album = { AlbumName: "PowerAge", Entered: "1/1/1977" } var user = { Name: "Rick" } var userToken = "sekkritt"; $.ajax( { url: "samples/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify({ Album: album, User: user, UserToken: userToken }), success: function (result) { alert(result.Result); } }); I assemble the individual types first and then combine them in the data: property of the $.ajax() call into the actual object passed to the server, that mimics the structure of PostAlbumRequest server class that has Album, User and UserToken properties. This works well enough but it gets tedious if you have to create Request and Response types for each method signature. If you have common parameters that are always passed (like you always pass an album or usertoken) you might be able to abstract this to use a single object that gets reused for all methods, but this gets confusing too: Overload a single 'parameter' too much and it becomes a nightmare to decipher what your method actual can use. Use JObject to parse multiple Property Values out of an Object If you recall, ASP.NET AJAX and WCF REST used a 'wrapper' object to make default AJAX calls. Rather than directly calling a service you always passed an object which contained properties for each parameter: { parm1: Value, parm2: Value2 } WCF REST/ASP.NET AJAX would then parse this top level property values and map them to the parameters of the endpoint method. This automatic type wrapping functionality is no longer available directly in Web API, but since Web API now uses JSON.NET for it's JSON serializer you can actually simulate that behavior with a little extra code. You can use the JObject class to receive a dynamic JSON result and then using the dynamic cast of JObject to walk through the child objects and even parse them into strongly typed objects. Here's how to do this on the API Controller end:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } This is clearly not as nice as having the parameters passed directly, but it works to allow you to pass multiple parameters and access them using Web API. JObject is JSON.NET's generic object container which sports a nice dynamic interface that allows you to walk through the object's properties using standard 'dot' object syntax. All you have to do is cast the object to dynamic to get access to the property interface of the JSON type. Additionally JObject also allows you to parse JObject instances into strongly typed objects, which enables us here to retrieve the two objects passed as parameters from this jquery code:var album = { AlbumName: "PowerAge", Entered: "1/1/1977" } var user = { Name: "Rick" } var userToken = "sekkritt"; $.ajax( { url: "samples/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify({ Album: album, User: user, UserToken: userToken }), success: function (result) { alert(result); } }); Summary ASP.NET Web API brings many new features and many advantages over the older Microsoft AJAX and REST APIs, but realize that some things like passing multiple strongly typed object parameters will work a bit differently. It's not insurmountable, but just knowing what options are available to simulate this behavior is good to know. Now let me say here that it's probably not a good practice to pass a bunch of parameters to an API call. Ideally APIs should be closely factored to accept single parameters or a single content parameter at least along with some identifier parameters that can be passed on the querystring. But saying that doesn't mean that occasionally you don't run into a situation where you have the need to pass several objects to the server and all three of the options I mentioned might have merit in different situations. For now I'm sure the question of how to pass multiple parameters will come up quite a bit from people migrating WCF REST or ASP.NET AJAX code to Web API. At least there are options available to make it work.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Why Java servlet can't get Paypal IPN messages everytime ?

    - by Frank
    I have a Java servlet running on my notebook with Windows Vista, I set up a static IP, did port forwarding and registered for a free DDNS service, now my servlet is running, I gave the url to Paypal to send me IPN messages, I went on to it's sandbox site got to the test tools page, tried to send test messages by clicking the "Send IPN" button, most of the time it would fail, the error is : "IPN delivery failed. Unable to connect to the specified URL. Please verify the URL and try again." But maybe 1 in 10 times, it might be successful and my servlet would get the message, and I looked at the messages I got, they are in correct format. So I called Paypal asking why, he said I shouldn't run the servlet on my notebook, in stead I should run it on the web server, but I told him my ISP doesn't support Java on their server, and since I did all the above steps, shouldn't it be the same to run the servlet on my notebook ? He said his test showed he couldn't get to my servlet, but I asked why maybe 1 in 10 times it could get through ? If there is something wrong with running it on my notebook, then 100% times it should fail, am I correct on this point ? But anyway he said that's all he could do, and I should troubleshoot it myself. The servlet looks like this : import java.io.*; import java.net.*; import javax.servlet.*; import javax.servlet.http.*; import java.util.*; public class PayPal_Servlet extends HttpServlet { static boolean Debug=true; static String PayPal_Url="https://www.paypal.com/cgi-bin/webscr",Sandbox_Url="https://www.sandbox.paypal.com/cgi-bin/webscr", Dir_License_Messages="C:/Dir_License_Messages/"; static TransparencyExample Transparency_Example; static PayPal_Message_To_License_File_Worker PayPal_message_to_license_file_worker; // Initializes the servlet. public void init(ServletConfig config) throws ServletException { super.init(config); if (!new File(Dir_License_Messages).exists()) new File(Dir_License_Messages).mkdirs(); System.gc(); } /** Processes requests for both HTTP <code>GET</code> and <code>POST</code> methods. * @param request servlet request * @param response servlet response */ protected void processRequest(HttpServletRequest request,HttpServletResponse response) throws ServletException,IOException { // Read post from PayPal system and add 'cmd' Enumeration en=request.getParameterNames(); String str="cmd=_notify-validate"; while (en.hasMoreElements()) { String paramName=(String)en.nextElement(); String paramValue=request.getParameter(paramName); str=str+"&"+paramName+"="+URLEncoder.encode(paramValue); } // Post back to PayPal system to validate // NOTE: change http: to https: in the following URL to verify using SSL (for increased security). // using HTTPS requires either Java 1.4 or greater, or Java Secure Socket Extension (JSSE) and configured for older versions. URL u=new URL(Debug?Sandbox_Url:PayPal_Url); URLConnection uc=u.openConnection(); uc.setDoOutput(true); uc.setRequestProperty("Content-Type","application/x-www-form-urlencoded"); PrintWriter pw=new PrintWriter(uc.getOutputStream()); pw.println(str); pw.close(); BufferedReader in=new BufferedReader(new InputStreamReader(uc.getInputStream())); String res=in.readLine(); in.close(); // Assign posted variables to local variables String itemName=request.getParameter("item_name"); String itemNumber=request.getParameter("item_number"); String paymentStatus=request.getParameter("payment_status"); String paymentAmount=request.getParameter("mc_gross"); String paymentCurrency=request.getParameter("mc_currency"); String txnId=request.getParameter("txn_id"); String receiverEmail=request.getParameter("receiver_email"); String payerEmail=request.getParameter("payer_email"); if (res.equals("VERIFIED")) // Check notification validation { // check that paymentStatus=Completed // check that txnId has not been previously processed // check that receiverEmail is your Primary PayPal email // check that paymentAmount/paymentCurrency are correct // process payment } else if (res.equals("INVALID")) // Log for investigation { } else // Log for error { } // =========================================================================== if (txnId!=null) { Write_File_Safe_Fast(Dir_License_Messages+txnId+".txt",new StringBuffer(str.replace("&","\n")),false); } // =========================================================================== String Message_File_List[]=Tool_Lib.Get_File_List_From_Dir(Dir_License_Messages); response.setContentType("text/html"); PrintWriter out=response.getWriter(); String title="Reading All Request Parameters",Name="",Value; out.println("<Html><Head><Title>"+title+"</Title></Head>\n<Body Bgcolor=\"#FDF5E6\">\n<H1 Align=Center>"+title+"</H1>\n"+ "<Table Border=1 Align=Center>\n"+"<Tr Bgcolor=\"#FFAD00\"><Th>Parameter Name</Th><Th>Parameter Value(s) Messages = "+Message_File_List.length+"</Th></Tr>"); Enumeration paramNames=request.getParameterNames(); while(paramNames.hasMoreElements()) { String paramName=(String)paramNames.nextElement(); out.print("<Tr><Td>"+paramName+"</Td><Td>"); String[] paramValues=request.getParameterValues(paramName); if (paramValues.length == 1) { String paramValue=paramValues[0]; if (paramValue.length() == 0) out.print("<I>No Value</I>"); else { out.println(paramValue+"</Td></Tr>"); // Out("paramName = "+paramName+" paramValue = "+paramValue); // if (paramName.startsWith("Name")) Name=paramValue; // else if (paramName.startsWith("Value")) Write_File_Safe_Fast("C:/Dir_Data/"+Name,new StringBuffer(paramValue),false); } } else { out.println("<Ul>"); for (int i=0;i<paramValues.length;i++) out.println("<Li>"+paramValues[i]); out.println("</Ul></Td</Tr>"); } } out.println("</Table>\n</Body></Html>"); } /** Handles the HTTP <code>GET</code> method. * @param request servlet request * @param response servlet response */ protected void doGet(HttpServletRequest request,HttpServletResponse response) throws ServletException,IOException { processRequest(request,response); } /** Handles the HTTP <code>POST</code> method. * @param request servlet request * @param response servlet response */ protected void doPost(HttpServletRequest request,HttpServletResponse response) throws ServletException,IOException { processRequest(request,response); } // Returns a short description of the servlet. public String getServletInfo() { return "Short description"; } // Destroys the servlet. public void destroy() { System.gc(); } public static void Write_File_Safe_Fast(String File_Path,StringBuffer Str_Buf,boolean Append) { FileOutputStream fos=null; BufferedOutputStream bos=null; try { fos=new FileOutputStream(File_Path,Append); bos=new BufferedOutputStream(fos); for (int j=0;j<Str_Buf.length();j++) bos.write(Str_Buf.charAt(j)); } catch (Exception e) { e.printStackTrace(); } finally { try { if (bos!=null) { bos.close(); bos=null; } if (fos!=null) { fos.close(); fos=null; } } catch (Exception ex) { ex.printStackTrace(); } } System.gc(); } } I use Netbean6.7 to develop the servlet, and the code was from Paypal's JSP sample code, what can I do to debug the problem ?

    Read the article

  • Need Help Customizing a Grammar Checking Replace Rule in Java

    - by user567785
    Hello, I am currently adding the Khmer (Cambodian) language to LanguageTool, an opensource grammar checker for OpenOffice (http://www.languagetool.org). I don't know enough Java to customize one of the scripts and wanted to make a request here asking if anyone would be willing to customize it for me (I can put link to your website at http://www.sbbic.org/lang/en-us/volunteer/ if you help). Here is the script that needs customization KhmerWordCoherencyRule.java: /* LanguageTool, a natural language style checker * Copyright (C) 2005 Daniel Naber (http://www.danielnaber.de) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 * USA */ package de.danielnaber.languagetool.rules.km; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Locale; import java.util.Map; import java.util.ResourceBundle; import de.danielnaber.languagetool.AnalyzedSentence; import de.danielnaber.languagetool.AnalyzedToken; import de.danielnaber.languagetool.AnalyzedTokenReadings; import de.danielnaber.languagetool.JLanguageTool; import de.danielnaber.languagetool.tools.StringTools; import de.danielnaber.languagetool.rules.Category; import de.danielnaber.languagetool.rules.RuleMatch; /** * A Khmer rule that matches words or phrases which should not be used and suggests * correct ones instead. Loads the relevant words from * <code>rules/km/coherency.txt</code>, where km is a code of the language. * * @author Andriy Rysin */ public abstract class KhmerWordCoherencyRule extends KhmerRule { private static final String FILE_ENCODING = "utf-8"; private Map<String, String> wrongWords; // e.g. "????? -> "?????" private static final String FILE_NAME = "/km/coherency.txt"; public abstract String getFileName(); public String getEncoding() { return FILE_ENCODING; } /** * Indicates if the rule is case-sensitive. Default value is <code>true</code>. * @return true if the rule is case-sensitive, false otherwise. */ //in Khmer there is no case public boolean isCaseSensitive() { return false; } /** * @return the locale used for case conversion when {@link #isCaseSensitive()} is set to <code>false</code>. */ public Locale getLocale() { return Locale.getDefault(); } public KhmerWordCoherencyRule(final ResourceBundle messages) throws IOException { if (messages != null) { super.setCategory(new Category(messages.getString("category_misc"))); } wrongWords = loadWords(JLanguageTool.getDataBroker().getFromRulesDirAsStream(getFileName())); } public String getId() { return "KM_WORD_COHERENCY"; } public String getDescription() { return "Checks for wrong words/phrases"; } public String getSuggestion() { return " does not match your previous spelling of the word, use "; } public String getShort() { return "Use a consistant spelling throughout"; } public final RuleMatch[] match(final AnalyzedSentence text) { final List<RuleMatch> ruleMatches = new ArrayList<RuleMatch>(); final AnalyzedTokenReadings[] tokens = text.getTokensWithoutWhitespace(); for (int i = 1; i < tokens.length; i++) { final String token = tokens[i].getToken(); final String origToken = token; final String replacement = isCaseSensitive()?wrongWords.get(token):wrongWords.get(token.toLowerCase(getLocale())); if (replacement != null) { final String msg = token + getSuggestion() + replacement; final int pos = tokens[i].getStartPos(); final RuleMatch potentialRuleMatch = new RuleMatch(this, pos, pos + origToken.length(), msg, getShort()); if (!isCaseSensitive() && StringTools.startsWithUppercase(token)) { potentialRuleMatch.setSuggestedReplacement(StringTools.uppercaseFirstChar(replacement)); } else { potentialRuleMatch.setSuggestedReplacement(replacement); } ruleMatches.add(potentialRuleMatch); } } return toRuleMatchArray(ruleMatches); } private Map<String, String> loadWords(final InputStream file) throws IOException { final Map<String, String> map = new HashMap<String, String>(); InputStreamReader isr = null; BufferedReader br = null; try { isr = new InputStreamReader(file, getEncoding()); br = new BufferedReader(isr); String line; while ((line = br.readLine()) != null) { line = line.trim(); if (line.length() < 1) { continue; } if (line.charAt(0) == '#') { // ignore comments continue; } final String[] parts = line.split(";"); if (parts.length != 2) { throw new IOException("Format error in file " + JLanguageTool.getDataBroker().getFromRulesDirAsUrl(getFileName()) + ", line: " + line); } map.put(parts[0], parts[1]); } } finally { if (br != null) { br.close(); } if (isr != null) { isr.close(); } } return map; } public void reset() { } } Here is what I need the SimpleReplaceRule.java to do: 1 - Be able to have more than two spelling variations in the coherency.txt file (right now it can only be Word1;Word2). 2 - Find the first use of ANY of the spelling variations in a document that are found in coherency.txt and then make sure only that spelling is used throughout the document (ex. in the coherency.txt I have Word1;Word2;Word3 then in my document on the first line I write Word2. then on next line I write Word1 and Word 3 - then the grammar checker will flag Word1 and Word3 saying that I should use the spelling "Word2" instead...etc.). If anyone can help I would be grateful! Thanks for your time, Nathan

    Read the article

  • Tuple in C# 4.0

    - by Jalpesh P. Vadgama
    C# 4.0 language includes a new feature called Tuple. Tuple provides us a way of grouping elements of different data type. That enables us to use it a lots places at practical world like we can store a coordinates of graphs etc. In C# 4.0 we can create Tuple with Create method. This Create method offer 8 overload like following. So you can group maximum 8 data types with a Tuple. Followings are overloads of a data type. Create(T1)- Which represents a tuple of size 1 Create(T1,T2)- Which represents a tuple of size 2 Create(T1,T2,T3) – Which represents a tuple of size 3 Create(T1,T2,T3,T4) – Which represents a tuple of size 4 Create(T1,T2,T3,T4,T5) – Which represents a tuple of size 5 Create(T1,T2,T3,T4,T5,T6) – Which represents a tuple of size 6 Create(T1,T2,T3,T4,T5,T6,T7) – Which represents a tuple of size 7 Create(T1,T2,T3,T4,T5,T6,T7,T8) – Which represents a tuple of size 8 Following are some example code for tuple. using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace TupleExample { class Program { static void Main(string[] args) { var tuple = System.Tuple.Create<string, string, string>("Jalpesh", "P", "Vadgama"); Console.WriteLine(tuple); var t = System.Tuple.Create<int, string>(1, "Jalpesh"); Console.WriteLine(t); } } } Following is a output of above as expected. You can also access values insides Tuple with ItemN property. Where N represents particular number of item in tuple. Following is an example of it. using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace TupleExample { class Program { static void Main(string[] args) { var tuple = System.Tuple.Create<string, string, string>("Jalpesh", "P", "Vadgama"); Console.WriteLine(tuple.Item1); Console.WriteLine(tuple.Item2); Console.WriteLine(tuple.Item3); } } } Here you can see I have printed items with Item1,Item2 and Item3 . Following is the output of above code.   Even we can create a nested tuple also following is code for nested tuple. using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace TupleExample { class Program { static void Main(string[] args) { var tuple = System.Tuple.Create(1,"Jalpesh",new Tuple<string,string>("P","Vadgama")); Console.WriteLine(tuple.Item1); Console.WriteLine(tuple.Item2); Console.WriteLine(tuple.Item3); } } } Following is a output above code as expected. As you can see there are unlimited possibilities we can do lots of things with Tuple. Hope you liked it. Stay tuned for more. Till then Happy Programming!!

    Read the article

  • Default Parameters vs Method Overloading

    - by João Angelo
    With default parameters introduced in C# 4.0 one might be tempted to abandon the old approach of providing method overloads to simulate default parameters. However, you must take in consideration that both techniques are not interchangeable since they show different behaviors in certain scenarios. For me the most relevant difference is that default parameters are a compile time feature while method overloading is a runtime feature. To illustrate these concepts let’s take a look at a complete, although a bit long, example. What you need to retain from the example is that static method Foo uses method overloading while static method Bar uses C# 4.0 default parameters. static void CreateCallerAssembly(string name) { // Caller class - Invokes Example.Foo() and Example.Bar() string callerCode = String.Concat( "using System;", "public class Caller", "{", " public void Print()", " {", " Console.WriteLine(Example.Foo());", " Console.WriteLine(Example.Bar());", " }", "}"); var parameters = new CompilerParameters(new[] { "system.dll", "Common.dll" }, name); new CSharpCodeProvider().CompileAssemblyFromSource(parameters, callerCode); } static void Main() { // Example class - Foo uses overloading while Bar uses C# 4.0 default parameters string exampleCode = String.Concat( "using System;", "public class Example", "{{", " public static string Foo() {{ return Foo(\"{0}\"); }}", " public static string Foo(string key) {{ return \"FOO-\" + key; }}", " public static string Bar(string key = \"{0}\") {{ return \"BAR-\" + key; }}", "}}"); var compiler = new CSharpCodeProvider(); var parameters = new CompilerParameters(new[] { "system.dll" }, "Common.dll"); // Build Common.dll with default value of "V1" compiler.CompileAssemblyFromSource(parameters, String.Format(exampleCode, "V1")); // Caller1 built against Common.dll that uses a default of "V1" CreateCallerAssembly("Caller1.dll"); // Rebuild Common.dll with default value of "V2" compiler.CompileAssemblyFromSource(parameters, String.Format(exampleCode, "V2")); // Caller2 built against Common.dll that uses a default of "V2" CreateCallerAssembly("Caller2.dll"); dynamic caller1 = Assembly.LoadFrom("Caller1.dll").CreateInstance("Caller"); dynamic caller2 = Assembly.LoadFrom("Caller2.dll").CreateInstance("Caller"); Console.WriteLine("Caller1.dll:"); caller1.Print(); Console.WriteLine("Caller2.dll:"); caller2.Print(); } And if you run this code you will get the following output: // Caller1.dll: // FOO-V2 // BAR-V1 // Caller2.dll: // FOO-V2 // BAR-V2 You see that even though Caller1.dll runs against the current Common.dll assembly where method Bar defines a default value of “V2″ the output show us the default value defined at the time Caller1.dll compiled against the first version of Common.dll. This happens because the compiler will copy the current default value to each method call, much in the same way a constant value (const keyword) is copied to a calling assembly and changes to it’s value will only be reflected if you rebuild the calling assembly again. The use of default parameters is also discouraged by Microsoft in public API’s as stated in (CA1026: Default parameters should not be used) code analysis rule.

    Read the article

  • C#, Delegates and LINQ

    - by JustinGreenwood
    One of the topics many junior programmers struggle with is delegates. And today, anonymous delegates and lambda expressions are profuse in .net APIs.  To help some VB programmers adapt to C# and the many equivalent flavors of delegates, I walked through some simple samples to show them the different flavors of delegates. using System; using System.Collections.Generic; using System.Linq; namespace DelegateExample { class Program { public delegate string ProcessStringDelegate(string data); public static string ReverseStringStaticMethod(string data) { return new String(data.Reverse().ToArray()); } static void Main(string[] args) { var stringDelegates = new List<ProcessStringDelegate> { //========================================================== // Declare a new delegate instance and pass the name of the method in new ProcessStringDelegate(ReverseStringStaticMethod), //========================================================== // A shortcut is to just and pass the name of the method in ReverseStringStaticMethod, //========================================================== // You can create an anonymous delegate also delegate (string inputString) //Scramble { var outString = inputString; if (!string.IsNullOrWhiteSpace(inputString)) { var rand = new Random(); var chs = inputString.ToCharArray(); for (int i = 0; i < inputString.Length * 3; i++) { int x = rand.Next(chs.Length), y = rand.Next(chs.Length); char c = chs[x]; chs[x] = chs[y]; chs[y] = c; } outString = new string(chs); } return outString; }, //========================================================== // yet another syntax would be the lambda expression syntax inputString => { // ROT13 var array = inputString.ToCharArray(); for (int i = 0; i < array.Length; i++) { int n = (int)array[i]; n += (n >= 'a' && n <= 'z') ? ((n > 'm') ? 13 : -13) : ((n >= 'A' && n <= 'Z') ? ((n > 'M') ? 13 : -13) : 0); array[i] = (char)n; } return new string(array); } //========================================================== }; // Display the results of the delegate calls var stringToTransform = "Welcome to the jungle!"; System.Console.ForegroundColor = ConsoleColor.Cyan; System.Console.Write("String to Process: "); System.Console.ForegroundColor = ConsoleColor.Yellow; System.Console.WriteLine(stringToTransform); stringDelegates.ForEach(delegatePointer => { System.Console.WriteLine(); System.Console.ForegroundColor = ConsoleColor.Cyan; System.Console.Write("Delegate Method Name: "); System.Console.ForegroundColor = ConsoleColor.Magenta; System.Console.WriteLine(delegatePointer.Method.Name); System.Console.ForegroundColor = ConsoleColor.Cyan; System.Console.Write("Delegate Result: "); System.Console.ForegroundColor = ConsoleColor.White; System.Console.WriteLine(delegatePointer(stringToTransform)); }); System.Console.ReadKey(); } } } The output of the program is below: String to Process: Welcome to the jungle! Delegate Method Name: ReverseStringStaticMethod Delegate Result: !elgnuj eht ot emocleW Delegate Method Name: ReverseStringStaticMethod Delegate Result: !elgnuj eht ot emocleW Delegate Method Name: b__1 Delegate Result: cg ljotWotem!le une eh Delegate Method Name: b__2 Delegate Result: dX_V|`X ?| ?[X ]?{Z_X!

    Read the article

  • Where should instantiated classes be stored?

    - by Eric C.
    I'm having a bit of a design dilemma here. I'm writing a library that consists of a bunch of template classes that are designed to be used as a base for creating content. For example: public class Template { public string Name {get; set;} public string Description {get; set;} public string Attribute1 {get; set;} public string Attribute2 {get; set;} public Template() { //constructor } public void DoSomething() { //does something } ... } The problem is, not only is the library providing the templates, it will also supply quite a few predefined templates which are instances of these template classes. The question is, where do I put these instances of the templates? The three solutions I've come up with so far are: 1) Provide serialized instances of the templates as files. On the one hand, this solution would keep the instances separated from the library itself, which is nice, but it would also potentially add complexity for the user. Even if we provided methods for loading/deserializing the files, they'd still have to deal with a bunch of files, and some kind of config file so the app knows where to look for those files. Plus, creating the template files would probably require a separate app, so if the user wanted to stick with the files method of storing templates, we'd have to provide some kind of app for creating the template files. Also, this requires external dependencies for testing the templates in the user's code. 2) Add readonly instances to the template class Example: public class Template { public string Name {get; set;} public string Description {get; set;} public string Attribute1 {get; set;} public string Attribute2 {get; set;} public Template PredefinedTemplate { get { Template templateInstance = new Template(); templateInstance.Name = "Some Name"; templateInstance.Description = "A description"; ... return templateInstance; } } public Template() { //constructor } public void DoSomething() { //does something } ... } This method would be convenient for users, as they would be able to access the predefined templates in code directly, and would be able to unit test code that used them. The drawback here is that the predefined templates pollute the Template type namespace with a bunch of extra stuff. I suppose I could put the predefined templates in a different namespace to get around this drawback. The only other problem with this approach is that I'd have to basically duplicate all the namespaces in the library in the predefined namespace (e.g. Templates.SubTemplates and Predefined.Templates.SubTemplates) which would be a pain, and would also make refactoring more difficult. 3) Make the templates abstract classes and make the predefined templates inherit from those classes. For example: public abstract class Template { public string Name {get; set;} public string Description {get; set;} public string Attribute1 {get; set;} public string Attribute2 {get; set;} public Template() { //constructor } public void DoSomething() { //does something } ... } and public class PredefinedTemplate : Template { public PredefinedTemplate() { this.Name = "Some Name"; this.Description = "A description"; this.Attribute1 = "Some Value"; ... } } This solution is pretty similar to #2, but it ends up creating a lot of classes that don't really do anything (none of our predefined templates are currently overriding behavior), and don't have any methods, so I'm not sure how good a practice this is. Has anyone else had any experience with something like this? Is there a best practice of some kind, or a different/better approach that I haven't thought of? I'm kind of banging my head against a wall trying to figure out the best way to go. Thanks!

    Read the article

  • Boost tuple + transform

    - by JH
    Is it possible to do the following. Say my boost tuple has <String, int> I would like to use std::transform + mem_fun to insert only the String element in a corresponding vector. Is it possible or are we required to use a loop and push_back(get<0) Ie the following doesn't like to compile... (unknown types...) result.resize(storage.size()) std::transform(storage.begin(), storage.end(), result.begin(), std::mem_fun(&boost::get<0>)); Here is an example (trying one of the comments): #include <boost/tuple/tuple.hpp> #include <vector> #include <string> #include <algorithm> int main(int argc, char**argv) { std::vector< boost::tuple<std::string, int> > storage; std::vector< std::string> result; result.resize(storage.size()); std::transform(storage.begin(), storage.end(), result.begin(), &boost::get<0, boost::tuple<std::string, int> >); return 0; } Output: g++ test.cpp /usr/include/boost/tuple/detail/tuple_basic.hpp: In instantiation of `boost::tuples::cons<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>, TT>': /usr/include/boost/tuple/detail/tuple_basic.hpp:151: instantiated from `boost::tuples::element<0, boost::tuples::cons<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>, TT> >' test.cpp:14: instantiated from here /usr/include/boost/tuple/detail/tuple_basic.hpp:329: error: `boost::tuples::cons<HT, TT>::tail' has incomplete type /usr/include/boost/tuple/detail/tuple_basic.hpp:329: error: invalid use of template type parameter test.cpp: In function `int main(int, char**)': test.cpp:14: error: no matching function for call to `transform(__gnu_cxx::__normal_iterator<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>*, std::vector<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>, std::allocator<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type> > > >, __gnu_cxx::__normal_iterator<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>*, std::vector<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>, std::allocator<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type> > > >, __gnu_cxx::__normal_iterator<std::string*, std::vector<std::string, std::allocator<std::string> > >, <unresolved overloaded function type>)'

    Read the article

  • OAuth Consumer request for token from ServiceProvider returns InternalServerError

    - by chridam
    I'm playing around with DevDefined.OAuth - an OAuth consumer and provider implementation for .Net http://code.google.com/p/devdefined-tools/wiki/OAuth and on launching the ExampleConsumerSite project after configuring the service endpoints on my IIS 7 web server, I'm receiving the following error: Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.Exception: Request for uri: http://localhost%3A8080/RequestToken.aspx?oauth%5Fcallback=oob&oauth%5Fnonce=94efde0b-dd45-4cee-8253-7496cef0b877&oauth%5Fconsumer%5Fkey=key&oauth%5Fsignature%5Fmethod=PLAINTEXT&oauth%5Ftimestamp=1252512419&oauth%5Fversion=1.0&oauth%5Ftoken=&oauth%5Fsignature=secret%2526 failed. status code: InternalServerError An error occurred during the parsing of a resource required to service this request. Please review the following specific parse error details and modify your source file appropriately. Source Error: [HttpException]: 'RequestToken' is not allowed here because it does not extend class 'System.Web.UI.Page'. at System.Web.UI.TemplateParser.ProcessError(String message) at System.Web.UI.TemplateParser.ProcessInheritsAttribute(String baseTypeName, String codeFileBaseTypeName, String src, Assembly assembly) at System.Web.UI.TemplateParser.PostProcessMainDirectiveAttributes(IDictionary parseData) [HttpParseException]: 'RequestToken' is not allowed here because it does not extend class 'System.Web.UI.Page'. at System.Web.UI.TemplateParser.ProcessException(Exception ex) at System.Web.UI.TemplateParser.ParseStringInternal(String text, Encoding fileEncoding) at System.Web.UI.TemplateParser.ParseString(String text, VirtualPath virtualPath, Encoding fileEncoding) [HttpParseException]: 'RequestToken' is not allowed here because it does not extend class 'System.Web.UI.Page'. at System.Web.UI.TemplateParser.ParseString(String text, VirtualPath virtualPath, Encoding fileEncoding) at System.Web.UI.TemplateParser.ParseReader(StreamReader reader, VirtualPath virtualPath) at System.Web.UI.TemplateParser.ParseFile(String physicalPath, VirtualPath virtualPath) at System.Web.UI.TemplateParser.ParseInternal() at System.Web.UI.TemplateParser.Parse() at System.Web.UI.TemplateParser.Parse(ICollection referencedAssemblies, VirtualPath virtualPath) at System.Web.Compilation.BaseTemplateBuildProvider.get_CodeCompilerType() at System.Web.Compilation.BuildProvider.GetCompilerTypeFromBuildProvider(BuildProvider buildProvider) at System.Web.Compilation.BuildProvidersCompiler.ProcessBuildProviders() at System.Web.Compilation.BuildProvidersCompiler.PerformBuild() at System.Web.Compilation.BuildManager.CompileWebFile(VirtualPath virtualPath) at System.Web.Compilation.BuildManager.GetVPathBuildResultInternal(VirtualPath virtualPath, Boolean noBuild, Boolean allowCrossApp, Boolean allowBuildInPrecompile) at System.Web.Compilation.BuildManager.GetVPathBuildResultWithNoAssert(HttpContext context, VirtualPath virtualPath, Boolean noBuild, Boolean allowCrossApp, Boolean allowBuildInPrecompile) at System.Web.Compilation.BuildManager.GetVirtualPathObjectFactory(VirtualPath virtualPath, HttpContext context, Boolean allowCrossApp, Boolean noAssert) at System.Web.Compilation.BuildManager.CreateInstanceFromVirtualPath(VirtualPath virtualPath, Type requiredBaseType, HttpContext context, Boolean allowCrossApp, Boolean noAssert) at System.Web.UI.PageHandlerFactory.GetHandlerHelper(HttpContext context, String requestType, VirtualPath virtualPath, String physicalPath) at System.Web.UI.PageHandlerFactory.System.Web.IHttpHandlerFactory2.GetHandler(HttpContext context, String requestType, VirtualPath virtualPath, String physicalPath) at System.Web.HttpApplication.MapHttpHandler(HttpContext context, String requestType, VirtualPath path, String pathTranslated, Boolean useAppConfig) at System.Web.HttpApplication.MapHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() at System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) I've noticed the oauth_token GET parameter is empty. On tracing this, the error source is from the line 12 of Default.aspx.cs page: IToken requestToken = session.GetRequestToken(); protected void oauthRequest_Click(object sender, EventArgs e) { OAuthSession session = CreateSession(); IToken requestToken = session.GetRequestToken(); if (string.IsNullOrEmpty(requestToken.Token)) { throw new Exception("The request token was null or empty"); } Session[requestToken.Token] = requestToken; string callBackUrl = "http://localhost:" + HttpContext.Current.Request.Url.Port + "/Callback.aspx"; string authorizationUrl = session.GetUserAuthorizationUrlForToken(requestToken, callBackUrl); Response.Redirect(authorizationUrl, true); } While I'm not sure if this has to do with configuring the service endpoints but I'm running the consumer project from VS2008 and hosting the service on IIS. Please advice.

    Read the article

  • Exporting to XML, including embedded classes

    - by Andy
    I have an object config which has some properties. I can export this ok, however, it also has an ArrayList which relates to embedded classes which I can't get to appear when I export to XML. Any pointers would be helpful. Export Method public String exportXML(config conf, String path) { String success = ""; try { FileOutputStream fstream = new FileOutputStream(path); try { XMLEncoder ostream = new XMLEncoder(fstream); try { ostream.writeObject(conf); ostream.flush(); } finally { ostream.close(); } } finally { fstream.close(); } } catch (Exception ex) { success = ex.getLocalizedMessage(); } return success; } Config Class (some detail stripped to keep size down) public class config { protected String author = ""; protected String website = ""; private ArrayList questions = new ArrayList(); public config(){ } public void addQuestion(String name) { questions.add(new question(questions.size(), name)); } public void removeQuestion(int id) { questions.remove(id); for (int c = 0; c <= questions.size(); c++) { question q = (question) (questions.get(id)); q.setId(c); } questions.trimToSize(); } public config.question getQuestion(int id){ return (question)questions.get(id); } /** * There can be multiple questions per config. * Questions store all the information regarding what questions are * asked of the user, including images, descriptions, and answers. */ public class question { protected int id; protected String title; protected ArrayList answers; public question(int id, String title) { this.id = id; this.title = title; } public int getId() { return id; } public void setId(int id) { this.id = id; } public void addAnswer(String name) { answers.add(new answer(answers.size(), name)); } public void removeAnswer(int id) { answers.remove(id); for (int c = 0; c <= answers.size(); c++) { answer a = (answer) (answers.get(id)); a.setId(c); } answers.trimToSize(); } public config.question.answer getAnswer(int id){ return (answer)answers.get(id); } public class answer { protected int id; protected String title; public answer(int id, String title) { this.id = id; this.title = title; } public int getId() { return id; } public void setId(int id) { this.id = id; } } } } Resultant XML File <?xml version="1.0" encoding="UTF-8"?> <java version="1.6.0_18" class="java.beans.XMLDecoder"> <object class="libConfig.config"> <void property="appName"> <string>xxx</string> </void> <void property="author"> <string>Andy</string> </void> <void property="website"> <string>www.example.com/dsx.xml</string> </void> </object> </java>

    Read the article

  • C#, AES encryption check!

    - by Data-Base
    I have this code for AES encryption, can some one verify that this code is good and not wrong? it works fine, but I'm more concern about the implementation of the algorithm // Plaintext value to be encrypted. //Passphrase from which a pseudo-random password will be derived. //The derived password will be used to generate the encryption key. //Password can be any string. In this example we assume that this passphrase is an ASCII string. //Salt value used along with passphrase to generate password. //Salt can be any string. In this example we assume that salt is an ASCII string. //HashAlgorithm used to generate password. Allowed values are: "MD5" and "SHA1". //SHA1 hashes are a bit slower, but more secure than MD5 hashes. //PasswordIterations used to generate password. One or two iterations should be enough. //InitialVector (or IV). This value is required to encrypt the first block of plaintext data. //For RijndaelManaged class IV must be exactly 16 ASCII characters long. //KeySize. Allowed values are: 128, 192, and 256. //Longer keys are more secure than shorter keys. //Encrypted value formatted as a base64-encoded string. public static string Encrypt(string PlainText, string Password, string Salt, string HashAlgorithm, int PasswordIterations, string InitialVector, int KeySize) { byte[] InitialVectorBytes = Encoding.ASCII.GetBytes(InitialVector); byte[] SaltValueBytes = Encoding.ASCII.GetBytes(Salt); byte[] PlainTextBytes = Encoding.UTF8.GetBytes(PlainText); PasswordDeriveBytes DerivedPassword = new PasswordDeriveBytes(Password, SaltValueBytes, HashAlgorithm, PasswordIterations); byte[] KeyBytes = DerivedPassword.GetBytes(KeySize / 8); RijndaelManaged SymmetricKey = new RijndaelManaged(); SymmetricKey.Mode = CipherMode.CBC; ICryptoTransform Encryptor = SymmetricKey.CreateEncryptor(KeyBytes, InitialVectorBytes); MemoryStream MemStream = new MemoryStream(); CryptoStream CryptoStream = new CryptoStream(MemStream, Encryptor, CryptoStreamMode.Write); CryptoStream.Write(PlainTextBytes, 0, PlainTextBytes.Length); CryptoStream.FlushFinalBlock(); byte[] CipherTextBytes = MemStream.ToArray(); MemStream.Close(); CryptoStream.Close(); return Convert.ToBase64String(CipherTextBytes); } public static string Decrypt(string CipherText, string Password, string Salt, string HashAlgorithm, int PasswordIterations, string InitialVector, int KeySize) { byte[] InitialVectorBytes = Encoding.ASCII.GetBytes(InitialVector); byte[] SaltValueBytes = Encoding.ASCII.GetBytes(Salt); byte[] CipherTextBytes = Convert.FromBase64String(CipherText); PasswordDeriveBytes DerivedPassword = new PasswordDeriveBytes(Password, SaltValueBytes, HashAlgorithm, PasswordIterations); byte[] KeyBytes = DerivedPassword.GetBytes(KeySize / 8); RijndaelManaged SymmetricKey = new RijndaelManaged(); SymmetricKey.Mode = CipherMode.CBC; ICryptoTransform Decryptor = SymmetricKey.CreateDecryptor(KeyBytes, InitialVectorBytes); MemoryStream MemStream = new MemoryStream(CipherTextBytes); CryptoStream cryptoStream = new CryptoStream(MemStream, Decryptor, CryptoStreamMode.Read); byte[] PlainTextBytes = new byte[CipherTextBytes.Length]; int ByteCount = cryptoStream.Read(PlainTextBytes, 0, PlainTextBytes.Length); MemStream.Close(); cryptoStream.Close(); return Encoding.UTF8.GetString(PlainTextBytes, 0, ByteCount); } Thank you

    Read the article

  • JavaMail - javax.mail.MessagingException

    - by legendofawesomeness
    I am trying to write a simple mail sender class that would receive a bunch of arguments and using those will send an email out using our Exchange 2010 server. While authentication etc. seem to work fine, I am getting the following exception when the code is actually trying to send the email (I think). I have ensured that the authentication is working and I get a transport back from the session, but still it fails. Could anyone shed some like on what I am doing wrong or missing? Thanks. Exception: javax.mail.MessagingException: [EOF] at com.sun.mail.smtp.SMTPTransport.issueCommand(SMTPTransport.java:1481) at com.sun.mail.smtp.SMTPTransport.issueSendCommand(SMTPTransport.java:1512) at com.sun.mail.smtp.SMTPTransport.mailFrom(SMTPTransport.java:1054) at com.sun.mail.smtp.SMTPTransport.sendMessage(SMTPTransport.java:634) at javax.mail.Transport.send0(Transport.java:189) at javax.mail.Transport.send(Transport.java:140) at com.ri.common.mail.util.MailSender.sendHTMLEmail(MailSender.java:75) at com.ri.common.mail.util.MailSender.main(MailSender.java:106) Relevant code: import java.util.Properties; import javax.mail.Authenticator; import javax.mail.Message; import javax.mail.MessagingException; import javax.mail.PasswordAuthentication; import javax.mail.Session; import javax.mail.Transport; import javax.mail.internet.InternetAddress; import javax.mail.internet.MimeMessage; public class MailSender { public static void sendHTMLEmail( String fromEmailId, String toEmailId, String host, String hostUserName, String hostPassword, String mailSubject, String mailBody ) { // Get system properties. Properties props = System.getProperties(); // Setup mail server props.put( "mail.transport.protocol", "smtp" ); props.put( "mail.smtp.host", host ); props.put( "mail.smtp.auth", "true" ); final String hostUName = hostUserName; final String hPassword = hostPassword; Authenticator authenticator = new Authenticator() { protected PasswordAuthentication getPasswordAuthentication() { return new PasswordAuthentication( hostUName, hPassword ); } }; // Get the default Session object. Session session = Session.getDefaultInstance( props, authenticator ); try { // Create a default MimeMessage object. MimeMessage message = new MimeMessage( session ); // Set From: header field of the header. message.setFrom( new InternetAddress( fromEmailId ) ); // Set To: header field of the header. message.addRecipient( Message.RecipientType.TO, new InternetAddress( toEmailId ) ); // Set Subject: header field message.setSubject( mailSubject ); // Send the actual HTML message, as big as you like message.setContent( mailBody, "text/html" ); // Send message Transport.send( message, message.getAllRecipients() ); System.out.println( "Sent message successfully...." ); } catch( Exception mex ) { mex.printStackTrace(); } } public static void main( String[] args ) { String to = "[email protected]"; String from = "[email protected]"; String host = "correctHostForExch2010"; String user = "correctUser"; String password = "CorrectPassword"; String subject = "Test Email"; String body = "Hi there. This is a test email!"; MailSender.sendHTMLEmail( from, to, host, user, password, subject, body ); } } EDIT: I turned on debugging and it says MAIL FROM:<[email protected]> 530 5.7.1 Client was not authenticated DEBUG SMTP: got response code 530, with response: 530 5.7.1 Client was not authenticated. Why would that be when the session authentication succeded?

    Read the article

  • Checkbox values to varchar via Spring

    - by iowatiger08
    I am trying to get a varchar message from a database to display the selected values of a checkbox field in a jsp for patient's medication's dosage frequency. The possible values will be saved in comma-delimited string in the varchar. For most form fields there is simply a one form value to one database field ratio, but in this case, I am needing to merge the values that would come as a string[] into the comma-delimited string and then when retrieving that record for that medication of that patient, display the selected values from the comma-delimited string as selected from the selectableDosageFrequencyList. You assistance in this is greatly appreciated as I am not sure what I am missing here. In the application context, I created the list of possible values as part of the ServiceBean. <property name="selectableDosageFrequencyList"> <set> <value>On an empty stomach</value> <value>Every other day</value> <value>4 times daily</value> <value>3 times daily</value> <value>Twice daily</value> <value>At bedtime</value> <value>With meal</value> <value>As needed</value> <value>Once daily</value> </set> </property> This is set up in the flow as requestscope. <view-state id="addEditMedication" model="medication"> <on-render> <set name="requestScope.selectableDosageFrequencyList" value="memberService.buildSelectableDosageFrequencyList(patient)" /> </on-render> ... <transition on="next" to="assessment" > <evaluate expression="memberService.updateMedication(patient, medication)" /> </transition> </view-state> I have helper methods in the memberService that need to be executed when the form is init and then when the form is completed. //get the form fields selected and build the new string for db public String setSelectedDosageFrequency(String [] dosageFrequencies){ String frequencies = null; if (dosageFrequencies != null){ for (String s : dosageFrequencies){ frequencies = frequencies + "," + s; } } return frequencies; } //get value from database and build selected Set public LinkedHashSet<String> getSelectedDosageFrequencyList(String dosageFrequency){ String copyOfDosages =dosageFrequency;//may not need to do this LinkedHashSet<String> setofSelectedDosageFrequency = new LinkedHashSet<String> (); while (copyOfDosages!= null && copyOfDosages.length()>0){ for (String aFrequency: selectableDosageFrequencyList){ if (copyOfDosages.contains(aFrequency)){ setofSelectedDosageFrequency.add(aFrequency); if (!copyOfDosages.equals(aFrequency) && copyOfDosages.endsWith(aFrequency)){ copyOfDosages.replaceAll(","+aFrequency, ""); }else if (!copyOfDosages.equals(aFrequency) && copyOfDosages.contains(aFrequency=",")){ copyOfDosages.replaceAll(aFrequency+",", ""); }else copyOfDosages.replaceAll(aFrequency, ""); copyOfDosages.trim(); } } } return setofSelectedDosageFrequency; } The Medication class that backs the form will have a variable for dosage-frequency as a string. private String dosageFrequency; The jsp I currently am doing this. <div class="formField"> <form:label path="dosageFrequency">Dosage Frequency</form:label> <ul class="multi-column double" style="width: 550px;"> <form:checkboxes path="dosageFrequency" items="${selectableDosageFrequencyList}" itemLabel="${selectableDosageFrequencyList}" element="li" /> </ul> </div>

    Read the article

  • Advantage database throws an exception when attempting to delete a record with a like statement used

    - by ChrisR
    The code below shows that a record is deleted when the sql statement is: select * from test where qty between 50 and 59 but the sql statement: select * from test where partno like 'PART/005%' throws the exception: Advantage.Data.Provider.AdsException: Error 5072: Action requires read-write access to the table How can you reliably delete a record with a where clause applied? Note: I'm using Advantage Database v9.10.1.9, VS2008, .Net Framework 3.5 and WinXP 32 bit using System.IO; using Advantage.Data.Provider; using AdvantageClientEngine; using NUnit.Framework; namespace NetworkEidetics.Core.Tests.Dbf { [TestFixture] public class AdvantageDatabaseTests { private const string DefaultConnectionString = @"data source={0};ServerType=local;TableType=ADS_CDX;LockMode=COMPATIBLE;TrimTrailingSpaces=TRUE;ShowDeleted=FALSE"; private const string TestFilesDirectory = "./TestFiles"; [SetUp] public void Setup() { const string createSql = @"CREATE TABLE [{0}] (ITEM_NO char(4), PARTNO char(20), QTY numeric(6,0), QUOTE numeric(12,4)) "; const string insertSql = @"INSERT INTO [{0}] (ITEM_NO, PARTNO, QTY, QUOTE) VALUES('{1}', '{2}', {3}, {4})"; const string filename = "test.dbf"; var connectionString = string.Format(DefaultConnectionString, TestFilesDirectory); using (var connection = new AdsConnection(connectionString)) { connection.Open(); using (var transaction = connection.BeginTransaction()) { using (var command = connection.CreateCommand()) { command.CommandText = string.Format(createSql, filename); command.Transaction = transaction; command.ExecuteNonQuery(); } transaction.Commit(); } using (var transaction = connection.BeginTransaction()) { for (var i = 0; i < 1000; ++i) { using (var command = connection.CreateCommand()) { var itemNo = string.Format("{0}", i); var partNumber = string.Format("PART/{0:d4}", i); var quantity = i; var quote = i * 10; command.CommandText = string.Format(insertSql, filename, itemNo, partNumber, quantity, quote); command.Transaction = transaction; command.ExecuteNonQuery(); } } transaction.Commit(); } connection.Close(); } } [TearDown] public void TearDown() { File.Delete("./TestFiles/test.dbf"); } [Test] public void CanDeleteRecord() { const string sqlStatement = @"select * from test"; Assert.AreEqual(1000, GetRecordCount(sqlStatement)); DeleteRecord(sqlStatement, 3); Assert.AreEqual(999, GetRecordCount(sqlStatement)); } [Test] public void CanDeleteRecordBetween() { const string sqlStatement = @"select * from test where qty between 50 and 59"; Assert.AreEqual(10, GetRecordCount(sqlStatement)); DeleteRecord(sqlStatement, 3); Assert.AreEqual(9, GetRecordCount(sqlStatement)); } [Test] public void CanDeleteRecordWithLike() { const string sqlStatement = @"select * from test where partno like 'PART/005%'"; Assert.AreEqual(10, GetRecordCount(sqlStatement)); DeleteRecord(sqlStatement, 3); Assert.AreEqual(9, GetRecordCount(sqlStatement)); } public int GetRecordCount(string sqlStatement) { var connectionString = string.Format(DefaultConnectionString, TestFilesDirectory); using (var connection = new AdsConnection(connectionString)) { connection.Open(); using (var command = connection.CreateCommand()) { command.CommandText = sqlStatement; var reader = command.ExecuteExtendedReader(); return reader.GetRecordCount(AdsExtendedReader.FilterOption.RespectFilters); } } } public void DeleteRecord(string sqlStatement, int rowIndex) { var connectionString = string.Format(DefaultConnectionString, TestFilesDirectory); using (var connection = new AdsConnection(connectionString)) { connection.Open(); using (var command = connection.CreateCommand()) { command.CommandText = sqlStatement; var reader = command.ExecuteExtendedReader(); reader.GotoBOF(); reader.Read(); if (rowIndex != 0) { ACE.AdsSkip(reader.AdsActiveHandle, rowIndex); } reader.DeleteRecord(); } connection.Close(); } } } }

    Read the article

  • Syntax error in INSERT INTO statement

    - by user454563
    I wrote a program that connects to MS Access. When I fill in the fields and add a new item to Access the program fails. The exception is "Syntax error in INSERT INTO statement" Here is the relevant code. **************************************************************** AdoHelper.cs **************************************************************** using System; using System.Collections.Generic; using System.Text; using System.Data; using System.Data.OleDb; namespace Yad2 { class AdoHelper { //get the connection string from the app.config file //Provider=Microsoft.ACE.OLEDB.12.0;Data Source=|DataDirectory|\Yad2.accdb static string connectionString = Properties.Settings.Default.DBConnection.ToString(); //declare the db connection static OleDbConnection con = new OleDbConnection(connectionString); /// <summary> /// To Execute queries which returns result set (table / relation) /// </summary> /// <param name="query">the query string</param> /// <returns></returns> public static DataTable ExecuteDataTable(string query) { try { con.Open(); OleDbCommand command = new OleDbCommand(query, con); System.Data.OleDb.OleDbDataAdapter tableAdapter = new System.Data.OleDb.OleDbDataAdapter(command); DataTable dt = new DataTable(); tableAdapter.Fill(dt); return dt; } catch (Exception ex) { throw ex; } finally { con.Close(); } } /// <summary> /// To Execute update / insert / delete queries /// </summary> /// <param name="query">the query string</param> public static void ExecuteNonQuery(string query) { try { con.Open(); System.Data.OleDb.OleDbCommand command = new System.Data.OleDb.OleDbCommand(query, con); command.ExecuteNonQuery(); } catch (Exception ex) { throw ex; } finally { con.Close(); } } /// <summary> /// To Execute queries which return scalar value /// </summary> /// <param name="query">the query string</param> public static object ExecuteScalar(string query) { try { con.Open(); System.Data.OleDb.OleDbCommand command = new System.Data.OleDb.OleDbCommand(query, con); /// here is the Excaption !!!!!!!!! return command.ExecuteScalar(); } catch { throw; } finally { con.Close(); } } } } **************************************************************************** **************************************************************************** DataQueries.cs **************************************************************************** using System; using System.Collections.Generic; using System.Text; using System.Data; namespace Yad2 { class DataQueries { public static DataTable GetAllItems() { try { string query = "Select * from Messages"; DataTable dt = AdoHelper.ExecuteDataTable(query); return dt; } catch (Exception ex) { throw ex; } } public static void AddNewItem(string mesNumber, string title , string mesDate , string contactMail , string mesType , string Details ) { string query = "Insert into Messages values(" + mesNumber + " , '" + title + "' , '" + mesDate + "' , '" + contactMail + "' , , '" + mesType + "' , '" + Details + "')"; AdoHelper.ExecuteNonQuery(query); } public static void DeleteDept(int mesNumber) { string query = "Delete from Item where MessageNumber=" + mesNumber; AdoHelper.ExecuteNonQuery(query); } } } *********************************************************************************************** plase help me .... why the program falls ?

    Read the article

  • What is a good java data structure for storing nested items (like cities in states)?

    - by anotherAlan
    I'm just getting started in Java and am looking for advice on a good way to store nested sets of data. For example, I'm interested in storing city population data that can be accessed by looking up the city in a given state. (Note: eventually, other data will be stored with each city as well, this is just the first attempt at getting started.) The current approach I'm using is to have a StateList Object which contains a HashMap that stores State Objects via a string key (i.e. HashMap<String, State>). Each State Object contains its own HashMap of City Objects keyed off the city name (i.e. HashMap<String, City>). A cut down version of what I've come up with looks like this: // TestPopulation.java public class TestPopulation { public static void main(String [] args) { // build the stateList Object StateList sl = new StateList(); // get a test state State stateAl = sl.getState("AL"); // make sure it's there. if(stateAl != null) { // add a city stateAl.addCity("Abbeville"); // now grab the city City cityAbbevilleAl = stateAl.getCity("Abbeville"); cityAbbevilleAl.setPopulation(2987); System.out.print("The city has a pop of: "); System.out.println(Integer.toString(cityAbbevilleAl.getPopulation())); } // otherwise, print an error else { System.out.println("That was an invalid state"); } } } // StateList.java import java.util.*; public class StateList { // define hash map to hold the states private HashMap<String, State> theStates = new HashMap<String, State>(); // setup constructor that loads the states public StateList() { String[] stateCodes = {"AL","AK","AZ","AR","CA","CO"}; // etc... for (String s : stateCodes) { State newState = new State(s); theStates.put(s, newState); } } // define method for getting a state public State getState(String stateCode) { if(theStates.containsKey(stateCode)) { return theStates.get(stateCode); } else { return null; } } } // State.java import java.util.*; public class State { // Setup the state code String stateCode; // HashMap for cities HashMap<String, City> cities = new HashMap<String, City>(); // define the constructor public State(String newStateCode) { System.out.println("Creating State: " + newStateCode); stateCode = newStateCode; } // define the method for adding a city public void addCity(String newCityName) { City newCityObj = new City(newCityName); cities.put(newCityName, newCityObj); } // define the method for getting a city public City getCity(String cityName) { if(cities.containsKey(cityName)) { return cities.get(cityName); } else { return null; } } } // City.java public class City { // Define the instance vars String cityName; int cityPop; // setup the constructor public City(String newCityName) { cityName = newCityName; System.out.println("Created City: " + newCityName); } public void setPopulation(int newPop) { cityPop = newPop; } public int getPopulation() { return cityPop; } } This is working for me, but I'm wondering if there are gotchas that I haven't run into, or if there are alternate/better ways to do the same thing. (P.S. I know that I need to add some more error checking in, but right now, I'm focused on trying to figure out a good data structure.) (NOTE: Edited to change setPop() and getPop() to setPopulation() and getPopulation() respectively to avoid confucsion)

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • WSDL-world vs CLR-world – some differences

    - by nmarun
    A change in mindset is required when switching between a typical CLR application and a web service application. There are some things in a CLR environment that just don’t add-up in a WSDL arena (and vice-versa). I’m listing some of them here. When I say WSDL-world, I’m mostly talking with respect to a WCF Service and / or a Web Service. No (direct) Method Overloading: You definitely can have overloaded methods in a, say, Console application, but when it comes to a WCF / Web Services application, you need to adorn these overloaded methods with a special attribute so the service knows which specific method to invoke. When you’re working with WCF, use the Name property of the OperationContract attribute to provide unique names. 1: [OperationContract(Name = "AddInt")] 2: int Add(int arg1, int arg2); 3:  4: [OperationContract(Name = "AddDouble")] 5: double Add(double arg1, double arg2); By default, the proxy generates the code for this as: 1: [System.ServiceModel.OperationContractAttribute( 2: Action="http://tempuri.org/ILearnWcfService/AddInt", 3: ReplyAction="http://tempuri.org/ILearnWcfService/AddIntResponse")] 4: int AddInt(int arg1, int arg2); 5: 6: [System.ServiceModel.OperationContractAttribute( 7: Action="http://tempuri.org/ILearnWcfServiceExtend/AddDouble", 8: ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/AddDoubleResponse")] 9: double AddDouble(double arg1, double arg2); With Web Services though the story is slightly different. Even after setting the MessageName property of the WebMethod attribute, the proxy does not change the name of the method, but only the underlying soap message changes. 1: [WebMethod] 2: public string HelloGalaxy() 3: { 4: return "Hello Milky Way!"; 5: } 6:  7: [WebMethod(MessageName = "HelloAnyGalaxy")] 8: public string HelloGalaxy(string galaxyName) 9: { 10: return string.Format("Hello {0}!", galaxyName); 11: } The one thing you need to remember is to set the WebServiceBinding accordingly. 1: [WebServiceBinding(ConformsTo = WsiProfiles.None)] The proxy is: 1: [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://tempuri.org/HelloGalaxy", 2: RequestNamespace="http://tempuri.org/", 3: ResponseNamespace="http://tempuri.org/", 4: Use=System.Web.Services.Description.SoapBindingUse.Literal, 5: ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 6: public string HelloGalaxy() 7:  8: [System.Web.Services.WebMethodAttribute(MessageName="HelloGalaxy1")] 9: [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://tempuri.org/HelloAnyGalaxy", 10: RequestElementName="HelloAnyGalaxy", 11: RequestNamespace="http://tempuri.org/", 12: ResponseElementName="HelloAnyGalaxyResponse", 13: ResponseNamespace="http://tempuri.org/", 14: Use=System.Web.Services.Description.SoapBindingUse.Literal, 15: ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 16: [return: System.Xml.Serialization.XmlElementAttribute("HelloAnyGalaxyResult")] 17: public string HelloGalaxy(string galaxyName) 18:  You see the calling method name is the same in the proxy, however the soap message that gets generated is different. Using interchangeable data types: See details on this here. Type visibility: In a CLR-based application, if you mark a field as private, well we all know, it’s ‘private’. Coming to a WSDL side of things, in a Web Service, private fields and web methods will not get generated in the proxy. In WCF however, all your operation contracts will be public as they get implemented from an interface. Even in case your ServiceContract interface is declared internal/private, you will see it as a public interface in the proxy. This is because type visibility is a CLR concept and has no bearing on WCF. Also if a private field has the [DataMember] attribute in a data contract, it will get emitted in the proxy class as a public property for the very same reason. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: private int _x; 6:  7: [DataMember] 8: public int Id { get; set; } 9:  10: [DataMember] 11: public string FirstName { get; set; } 12:  13: [DataMember] 14: public string Header { get; set; } 15: } 16: } See the ‘_x’ field is a private member with the [DataMember] attribute, but the proxy class shows as below: 1: [System.Runtime.Serialization.DataMemberAttribute()] 2: public int _x { 3: get { 4: return this._xField; 5: } 6: set { 7: if ((this._xField.Equals(value) != true)) { 8: this._xField = value; 9: this.RaisePropertyChanged("_x"); 10: } 11: } 12: } Passing derived types to web methods / operation contracts: Once again, in a CLR application, I can have a derived class be passed as a parameter where a base class is expected. I have the following set up for my WCF service. 1: [DataContract] 2: public class Employee 3: { 4: [DataMember(Name = "Id")] 5: public int EmployeeId { get; set; } 6:  7: [DataMember(Name="FirstName")] 8: public string FName { get; set; } 9:  10: [DataMember] 11: public string Header { get; set; } 12: } 13:  14: [DataContract] 15: public class Manager : Employee 16: { 17: [DataMember] 18: private int _x; 19: } 20:  21: // service contract 22: [OperationContract] 23: Manager SaveManager(Employee employee); 24:  25: // in my calling code 26: Manager manager = new Manager {_x = 1, FirstName = "abc"}; 27: manager = LearnWcfServiceClient.SaveManager(manager); The above will throw an exception saying: In short, this is saying, that a Manager type was found where an Employee type was expected! Hierarchy flattening of interfaces in WCF: See details on this here. In CLR world, you’ll see the entire hierarchy as is. That’s another difference. Using ref parameters: * can use ref for parameters, but operation contract should not be one-way (gives an error when you do an update service reference)   => bad programming; create a return object that is composed of everything you need! This one kind of stumped me. Not sure why I tried this, but you can pass parameters prefixed with ref keyword* (* terms and conditions apply). The main issue is this, how would we know the changes that were made to a ‘ref’ input parameter are returned back from the service and updated to the local variable? Turns out both Web Services and WCF make this tracking happen by passing the input parameter in the response soap. This way when the deserializer does its magic, it maps all the elements of the response xml thereby updating our local variable. Here’s what I’m talking about. 1: [WebMethod(MessageName = "HelloAnyGalaxy")] 2: public string HelloGalaxy(ref string galaxyName) 3: { 4: string output = string.Format("Hello {0}", galaxyName); 5: if (galaxyName == "Andromeda") 6: { 7: galaxyName = string.Format("{0} (2.5 million light-years away)", galaxyName); 8: } 9: return output; 10: } This is how the request and response look like in soapUI. As I said above, the behavior is quite similar for WCF as well. But the catch comes when you have a one-way web methods / operation contracts. If you have an operation contract whose return type is void, is marked one-way and that has ref parameters then you’ll get an error message when you try to reference such a service. 1: [OperationContract(Name = "Sum", IsOneWay = true)] 2: void Sum(ref double arg1, ref double arg2); 3:  4: public void Sum(ref double arg1, ref double arg2) 5: { 6: arg1 += arg2; 7: } This is what I got when I did an update to my service reference: Makes sense, because a OneWay operation is… one-way – there’s no returning from this operation. You can also have a one-way web method: 1: [SoapDocumentMethod(OneWay = true)] 2: [WebMethod(MessageName = "HelloAnyGalaxy")] 3: public void HelloGalaxy(ref string galaxyName) This will throw an exception message similar to the one above when you try to update your web service reference. In the CLR space, there’s no such concept of a ‘one-way’ street! Yes, there’s void, but you very well can have ref parameters returned through such a method. Just a point here; although the ref/out concept sounds cool, it’s generally is a code-smell. The better approach is to always return an object that is composed of everything you need returned from a method. These are some of the differences that we need to bear when dealing with services that are different from our daily ‘CLR’ life.

    Read the article

< Previous Page | 263 264 265 266 267 268 269 270 271 272 273 274  | Next Page >