Search Results

Search found 21008 results on 841 pages for 'chuzein part ii'.

Page 27/841 | < Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >

  • Improving WIF&rsquo;s Claims-based Authorization - Part 3 (Usage)

    - by Your DisplayName here!
    In the previous posts I showed off some of the additions I made to WIF’s authorization infrastructure. I now want to show some samples how I actually use these extensions. The following code snippets are from Thinktecture.IdentityServer on Codeplex. The following shows the MVC attribute on the WS-Federation controller: [ClaimsAuthorize(Constants.Actions.Issue, Constants.Resources.WSFederation)] public class WSFederationController : Controller or… [ClaimsAuthorize(Constants.Actions.Administration, Constants.Resources.RelyingParty)] public class RelyingPartiesAdminController : Controller In other places I used the imperative approach (e.g. the WRAP endpoint): if (!ClaimsAuthorize.CheckAccess(principal, Constants.Actions.Issue, Constants.Resources.WRAP)) {     Tracing.Error("User not authorized");     return new UnauthorizedResult("WRAP", true); } For the WCF WS-Trust endpoints I decided to use the per-request approach since the SOAP actions are well defined here. The corresponding authorization manager roughly looks like this: public class AuthorizationManager : ClaimsAuthorizationManager {     public override bool CheckAccess(AuthorizationContext context)     {         var action = context.Action.First();         var id = context.Principal.Identities.First();         // if application authorization request         if (action.ClaimType.Equals(ClaimsAuthorize.ActionType))         {             return AuthorizeCore(action, context.Resource, context.Principal.Identity as IClaimsIdentity);         }         // if ws-trust issue request         if (action.Value.Equals(WSTrust13Constants.Actions.Issue))         {             return AuthorizeTokenIssuance(new Collection<Claim> { new Claim(ClaimsAuthorize.ResourceType, Constants.Resources.WSTrust) }, id);         }         return base.CheckAccess(context);     } } You see that it is really easy now to distinguish between per-request and application authorization which makes the overall design much easier. HTH

    Read the article

  • Cartoon Games and Arcade Games SEO Part 2

    Now students, today we will be talking about SEO. But not just some regular, plain, old SEO. I'm talking arcades here, and that means we gotta put a little spin on it and change things up just a bit. Isn't that exciting! Learning new techniques are great, so let's start.

    Read the article

  • Using Unity – Part 6

    - by nmarun
    This is the last of the ‘Unity’ series and I’ll be talking about generics here. If you’ve been following the previous articles, you must have noticed that I’m just adding more and more ‘Product’ classes to the project. I’ll change that trend in this blog where I’ll be adding an ICaller interface and a Caller class. 1: public interface ICaller<T> where T : IProduct 2: { 3: string CallMethod<T>(string typeName); 4: } 5:  6: public class Caller<T> : ICaller<T> where T:IProduct 7: { 8: public string CallMethod<T>(string typeName) 9: { 10: //... 11: } 12: } We’ll fill-in the implementation of the CallMethod in a few, but first, here’s what we’re going to do: create an instance of the Caller class pass it the IProduct as a generic parameter in the CallMethod method, we’ll use Unity to dynamically create an instance of IProduct implemented object I need to add the config information for ICaller and Caller types. 1: <typeAlias alias="ICaller`1" type="ProductModel.ICaller`1, ProductModel" /> 2: <typeAlias alias="Caller`1" type="ProductModel.Caller`1, ProductModel" /> The .NET Framework’s convention to express generic types is ICaller`1, where the digit following the "`" matches the number of types contained in the generic type. So a generic type that contains 4 types contained in the generic type would be declared as: 1: <typeAlias alias="Caller`4" type="ProductModel.Caller`4, ProductModel" /> On my .aspx page, I have the following UI design: 1: <asp:RadioButton ID="LegacyProduct" Text="Product" runat="server" GroupName="ProductWeb" 2: AutoPostBack="true" OnCheckedChanged="RadioButton_CheckedChanged" /> 3: <br /> 4: <asp:RadioButton ID="NewProduct" Text="Product 2" runat="server" GroupName="ProductWeb" 5: AutoPostBack="true" OnCheckedChanged="RadioButton_CheckedChanged" /> 6: <br /> 7: <asp:RadioButton ID="ComplexProduct" Text="Product 3" runat="server" GroupName="ProductWeb" 8: AutoPostBack="true" OnCheckedChanged="RadioButton_CheckedChanged" /> 9: <br /> 10: <asp:RadioButton ID="ArrayConstructor" Text="Product 4" runat="server" GroupName="ProductWeb" 11: AutoPostBack="true" OnCheckedChanged="RadioButton_CheckedChanged" /> Things to note here are that all these radio buttons belong to the same GroupName => only one of these four can be clicked. Next, all four controls postback to the same ‘OnCheckedChanged’ event and lastly the ID’s point to named types of IProduct (already added to the web.config file). 1: <type type="IProduct" mapTo="Product" name="LegacyProduct" /> 2:  3: <type type="IProduct" mapTo="Product2" name="NewProduct" /> 4:  5: <type type="IProduct" mapTo="Product3" name="ComplexProduct"> 6: ... 7: </type> 8:  9: <type type="IProduct" mapTo="Product4" name="ArrayConstructor"> 10: ... 11: </type> In my calling code, I see which radio button was clicked, pass that as an argument to the CallMethod method. 1: protected void RadioButton_CheckedChanged(object sender, EventArgs e) 2: { 3: string typeName = ((RadioButton)sender).ID; 4: ICaller<IProduct> caller = unityContainer.Resolve<ICaller<IProduct>>(); 5: productDetailsLabel.Text = caller.CallMethod<IProduct>(typeName); 6: } What’s basically happening here is that the ID of the control gets passed on to the typeName which will be one of “LegacyProduct”, “NewProduct”, “ComplexProduct” or “ArrayConstructor”. I then create an instance of an ICaller and pass the typeName to it. Now, we’ll fill in the blank for the CallMethod method (sorry for the naming guys). 1: public string CallMethod<T>(string typeName) 2: { 3: IUnityContainer unityContainer = HttpContext.Current.Application["UnityContainer"] as IUnityContainer; 4: T productInstance = unityContainer.Resolve<T>(typeName); 5: return ((IProduct)productInstance).WriteProductDetails(); 6: } This is where I’ll resolve the IProduct by passing the type name and calling the WriteProductDetails() method. With all things in place, when I run the application and choose different radio buttons, the output should look something like below:          Basically this is how generics come to play in Unity. Please see the code I’ve used for this here. This marks the end of the ‘Unity’ series. I’ll definitely post any updates that I find, but for now I don’t have anything planned.

    Read the article

  • Parallelism in .NET – Part 17, Think Continuations, not Callbacks

    - by Reed
    In traditional asynchronous programming, we’d often use a callback to handle notification of a background task’s completion.  The Task class in the Task Parallel Library introduces a cleaner alternative to the traditional callback: continuation tasks. Asynchronous programming methods typically required callback functions.  For example, MSDN’s Asynchronous Delegates Programming Sample shows a class that factorizes a number.  The original method in the example has the following signature: public static bool Factorize(int number, ref int primefactor1, ref int primefactor2) { //... .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, calling this is quite “tricky”, even if we modernize the sample to use lambda expressions via C# 3.0.  Normally, we could call this method like so: int primeFactor1 = 0; int primeFactor2 = 0; bool answer = Factorize(10298312, ref primeFactor1, ref primeFactor2); Console.WriteLine("{0}/{1} [Succeeded {2}]", primeFactor1, primeFactor2, answer); If we want to make this operation run in the background, and report to the console via a callback, things get tricker.  First, we need a delegate definition: public delegate bool AsyncFactorCaller( int number, ref int primefactor1, ref int primefactor2); Then we need to use BeginInvoke to run this method asynchronously: int primeFactor1 = 0; int primeFactor2 = 0; AsyncFactorCaller caller = new AsyncFactorCaller(Factorize); caller.BeginInvoke(10298312, ref primeFactor1, ref primeFactor2, result => { int factor1 = 0; int factor2 = 0; bool answer = caller.EndInvoke(ref factor1, ref factor2, result); Console.WriteLine("{0}/{1} [Succeeded {2}]", factor1, factor2, answer); }, null); This works, but is quite difficult to understand from a conceptual standpoint.  To combat this, the framework added the Event-based Asynchronous Pattern, but it isn’t much easier to understand or author. Using .NET 4’s new Task<T> class and a continuation, we can dramatically simplify the implementation of the above code, as well as make it much more understandable.  We do this via the Task.ContinueWith method.  This method will schedule a new Task upon completion of the original task, and provide the original Task (including its Result if it’s a Task<T>) as an argument.  Using Task, we can eliminate the delegate, and rewrite this code like so: var background = Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }); background.ContinueWith(task => Console.WriteLine("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result)); This is much simpler to understand, in my opinion.  Here, we’re explicitly asking to start a new task, then continue the task with a resulting task.  In our case, our method used ref parameters (this was from the MSDN Sample), so there is a little bit of extra boiler plate involved, but the code is at least easy to understand. That being said, this isn’t dramatically shorter when compared with our C# 3 port of the MSDN code above.  However, if we were to extend our requirements a bit, we can start to see more advantages to the Task based approach.  For example, supposed we need to report the results in a user interface control instead of reporting it to the Console.  This would be a common operation, but now, we have to think about marshaling our calls back to the user interface.  This is probably going to require calling Control.Invoke or Dispatcher.Invoke within our callback, forcing us to specify a delegate within the delegate.  The maintainability and ease of understanding drops.  However, just as a standard Task can be created with a TaskScheduler that uses the UI synchronization context, so too can we continue a task with a specific context.  There are Task.ContinueWith method overloads which allow you to provide a TaskScheduler.  This means you can schedule the continuation to run on the UI thread, by simply doing: Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }).ContinueWith(task => textBox1.Text = string.Format("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result), TaskScheduler.FromCurrentSynchronizationContext()); This is far more understandable than the alternative.  By using Task.ContinueWith in conjunction with TaskScheduler.FromCurrentSynchronizationContext(), we get a simple way to push any work onto a background thread, and update the user interface on the proper UI thread.  This technique works with Windows Presentation Foundation as well as Windows Forms, with no change in methodology.

    Read the article

  • NoSQL with MongoDB, NoRM and ASP.NET MVC - Part 2

    - by shiju
     In my last post, I have given an introduction to MongoDB and NoRM using an ASP.NET MVC demo app. I have updated the demo ASP.NET MVC app and a created a new drop at codeplex. You can download the demo at http://mongomvc.codeplex.com/In my last post, we have discussed to doing basic CRUD operations against a simple domain entity. In this post, let’s discuss on domain entity with deep object graph.The below is our domain entities  public class Category {       [MongoIdentifier]     public ObjectId Id { get; set; }       [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public List<Expense> Expenses { get; set; }       public Category()     {         Expenses = new List<Expense>();     } }    public class Expense {     [MongoIdentifier]     public ObjectId Id { get; set; }     public Category Category { get; set; }     public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }   }   We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category.The MongoSession class  internal class MongoSession : IDisposable {     private readonly MongoQueryProvider provider;       public MongoSession()     {         this.provider = new MongoQueryProvider("Expense");     }       public IQueryable<Category> Categories     {         get { return new MongoQuery<Category>(this.provider); }     }     public IQueryable<Expense> Expenses     {         get { return new MongoQuery<Expense>(this.provider); }     }     public MongoQueryProvider Provider     {         get { return this.provider; }     }       public void Add<T>(T item) where T : class, new()     {         this.provider.DB.GetCollection<T>().Insert(item);     }       public void Dispose()     {         this.provider.Server.Dispose();     }     public void Delete<T>(T item) where T : class, new()     {         this.provider.DB.GetCollection<T>().Delete(item);     }       public void Drop<T>()     {         this.provider.DB.DropCollection(typeof(T).Name);     }       public void Save<T>(T item) where T : class,new()     {         this.provider.DB.GetCollection<T>().Save(item);                }     }     ASP.NET MVC view model  for Expense transaction  public class ExpenseViewModel {     public ObjectId Id { get; set; }       public ObjectId CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]            public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]            public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]        public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } }  Let's create action method for Insert and Update a expense transaction   [HttpPost] public ActionResult Save(ExpenseViewModel expenseViewModel) {     try     {         if (!ModelState.IsValid)         {             using (var session = new MongoSession())             {                 var categories = session.Categories.AsEnumerable<Category>();                 expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);                }             return View("Save", expenseViewModel);         }           var expense=new Expense();         ModelCopier.CopyModel(expenseViewModel, expense);           using (var session = new MongoSession())         {             ObjectId Id = expenseViewModel.CategoryId;             var category = session.Categories                 .Where(c => c.Id ==Id  )                 .FirstOrDefault();             expense.Category = category;             session.Save(expense);         }         return RedirectToAction("Index");     }     catch     {         return View();     } } Query with Expenses  using (var session = new MongoSession()) {     var expenses = session.Expenses.         Where(exp => exp.Date >= StartDate && exp.Date <= EndDate)         .AsEnumerable<Expense>(); }  We are doing a LINQ query expression with a Date filter. We can easily work with MongoDB using NoRM driver and can managing object graph of domain entities are pretty cool. Download the Source - You can download the source code form http://mongomvc.codeplex.com

    Read the article

  • Part 2: The Customization Lifecycle

    - by volker.eckardt(at)oracle.com
    To understand the challenges when working with Customizations better, please allow me to explain my understanding from the Customization Lifecycle.  The starting point is the functional GAP list. Any GAP can lead to a customization (but not have to). The decision is driven by priority, gain, costs, future functionality, accepted workarounds etc. Let's assume the customization has been accepted as such - including estimation. (Otherwise this blog would not have any value)Now the customization life-cycle starts and could look like this:-    Functional specification-    Technical specification-    Technical development-    Functional setup-    Module Test-    System Test-    Integration Test (if required)-    Acceptance Test-    Production mode-    Usage-    10 x Rework-    10 x Retest -    2 x Upgrade-    2 x Upgrade Test-    Usage-    10 x Rework-    10 x Retest -    1 x Upgrade-    1 x Upgrade Test-    Usage-    Review for Retirement-    Accepted Retirement-    De-installationWhat I like to highlight herewith is that any material and documentation you create upfront or during the first phases will usually be used multiple times, partial or complete, will be enhanced, reviewed, retested. The better the quality right from the beginning is, the better we can perform the next steps.What I see very often is the wish to remove a customization, our customers are upgrading and they like to get at least some of the customizations replaced with standard functionality. To be able to support this process best, the customization documentation should contain at least the following key information: What is/are the business process(es) where this customization is used or linked to?Who was involved in the different customization phases?What are the objects comprising the customization?What is the setup necessary for the customization?What setup comes with the customization, what has to be done via other tools or manually?What are the test steps and test results (in all test areas)?What are linked customizations? What is the customization complexity?How is this customization classified?Which technologies were used?How many days were needed to create/test/upgrade the customization?Etc.If all this is available, a replacement / retirement can be done much more efficient and precise, or an estimation and upgrade itself can be executed with much better support.In the following blog entries I will explain in more detail why we suggest tracking such information, by whom this task shall be done and how.Volker Eckardt

    Read the article

  • Antenna Aligner Part 8: It’s Alive!!!

    - by Chris George
    Finally the day has come, Antenna Aligner v1.0.1 has been uploaded to the AppStore and . “Waiting for review” .. . fast forward 7 days and much checking of emails later WOO HOO! Now what? So I set my facebook page to go live  https://www.facebook.com/AntennaAligner, and started by sending messages to my mates that have iphones! Amazingly a few of them bought it! Similarly some of my colleagues were also kind enough to support me and downloaded it too! Unfortunately the only way I knew they had bought is was from them telling me, as the iTunes connect data is only updated daily at about midday GMT. This is a shame, surely they could provide more granular updates throughout the day? Although I suppose once an app has been out in the wild for a while, daily updates are enough. It would, however, be nice to get a ping when you make your first sale! I would have expected more feedback on my facebook page as well, maybe I’m just expecting too much, or perhaps I’ve configured the page wrong. The new facebook timeline layout is just confusing, and I’m not sure it’s all public, I’ll check that! So please take a look and see what you think! I would love to get some more feedback/reviews/suggestions… Oh and watch out for the Android version coming soon!

    Read the article

  • What's new in ASP.Net 4.5 and VS 2012 - part 1

    - by nikolaosk
    I have downloaded .Net framework 4.5 and Visual Studio 2012 since it was released to MSDN subscribers on the 15th of August.For people that do not know about that yet please have a look at Jason Zander's excellent blog post .Since then I have been investigating the many new features that have been introduced in this release.In this post I will be looking into new features available in ASP.Net 4.5 and VS 2012.In order to follow along this post you must have Visual Studio 2012 and .Net Framework 4.5 installed in your machine.Download and install VS 2012 using this link.My machine runs on Windows 8 and Visual Studio 2012 works just fine. Please find all my posts regarding VS 2012, here .Well I have not exactly kept my promise for writing short blog posts, so I will try to keep this one short. 1) Launch VS 2012 and create a new Web Forms application by going to File - >New Web Site - > ASP.Net Web Forms Site.2) Choose an appropriate name for your web site.3) Build and run your site (CTRL+F5). Then go to View - > Source to see the HTML markup (Javascript e.t.c) that is rendered through the browser.You will see that the ASP.Net team has done a good job to make the markup cleaner and more readable. The ViewState size is significantly smaller compared to its size to earlier versions.Have a look at the picture below 4) Another thing that you must notice is that the new template makes good use of HTML 5 elements.When you view the application through the browser and then go to View Page Source you will see HTML 5 elements like nav,header,section.Have a look at the picture below  5) In VS 2012 we can browse with multiple browsers. There is a very handy dropdown that shows all the browsers available for viewing the website.Have a look at the picture below When I select the option Browse With... I see another window and I can select any of the installed browsers I want and also set the default browser. Have a look at the picture below  When I click Browse, all the selected browsers fire up and I can view the website in all of them.Have a look at the picture below There will be more posts soon looking into new features of ASP.Net 4.5 and VS 2012Hope it helps!!!

    Read the article

  • Exchange 2010 DAG Creation and Configuration – Part 1

    If you’re using Exchange 2010, then you’re probably interested in using the new Database Availability Group feature for your High Availability needs. The DAG is superbly powerful technology, but you’d better make sure yours is 100% correctly configured. Neil Hobson walks us through what we need to know, using a two-node DAG as an example.

    Read the article

  • F# and ArcObjects, Part 3

    - by Marko Apfel
    Today i played a little bit with IFeature-sequences and piping data. The result was a calculator of the bounding box around all features in a feature class. Maybe a little bit dirty, but for learning was it OK. ;-) open System;; #I "C:\Program Files\ArcGIS\DotNet";; #r "ESRI.ArcGIS.System.dll";; #r "ESRI.ArcGIS.DataSourcesGDB.dll";; #r "ESRI.ArcGIS.Geodatabase.dll";; #r "ESRI.ArcGIS.Geometry.dll";; open ESRI.ArcGIS.esriSystem;; open ESRI.ArcGIS.DataSourcesGDB;; open ESRI.ArcGIS.Geodatabase;; open ESRI.ArcGIS.Geometry; let aoInitialize = new AoInitializeClass();; let status = aoInitialize.Initialize(esriLicenseProductCode.esriLicenseProductCodeArcEditor);; let workspacefactory = new SdeWorkspaceFactoryClass();; let connection = "SERVER=okul;DATABASE=p;VERSION=sde.default;INSTANCE=sde:sqlserver:okul;USER=s;PASSWORD=g";; let workspace = workspacefactory.OpenFromString(connection, 0);; let featureWorkspace = (box workspace) :?> IFeatureWorkspace;; let featureClass = featureWorkspace.OpenFeatureClass("Praxair.SFG.BP_L_ROHR");; let queryFilter = new QueryFilterClass();; let featureCursor = featureClass.Search(queryFilter, true);; let featureCursorSeq (featureCursor : IFeatureCursor) = let actualFeature = ref (featureCursor.NextFeature()) seq { while (!actualFeature) <> null do yield actualFeature do actualFeature := featureCursor.NextFeature() };; let min x y = if x < y then x else y;; let max x y = if x > y then x else y;; let info s (x : IEnvelope) = printfn "%s xMin:{%f} xMax: {%f} yMin:{%f} yMax: {%f}" s x.XMin x.XMax x.YMin x.YMax;; let con (env1 : IEnvelope) (env2 : IEnvelope) = let env = (new EnvelopeClass()) :> IEnvelope env.XMin <- min env1.XMin env2.XMin env.XMax <- max env1.XMax env2.XMax env.YMin <- min env1.YMin env2.YMin env.YMax <- max env1.YMax env2.YMax info "Intermediate" env env;; let feature = featureClass.GetFeature(100);; let ext = feature.Extent;; let BoundingBox featureClassName = let featureClass = featureWorkspace.OpenFeatureClass(featureClassName) let queryFilter = new QueryFilterClass() let featureCursor = featureClass.Search(queryFilter, true) let featureCursorSeq (featureCursor : IFeatureCursor) = let actualFeature = ref (featureCursor.NextFeature()) seq { while (!actualFeature) <> null do yield actualFeature do actualFeature := featureCursor.NextFeature() } featureCursorSeq featureCursor |> Seq.map (fun feature -> (!feature).Extent) |> Seq.fold (fun (acc : IEnvelope) a -> info "Intermediate" acc (con acc a)) ext ;; let boundingBox = BoundingBox "Praxair.SFG.BP_L_ROHR";; info "Ende-Info:" boundingBox;;

    Read the article

  • What's up with LDoms: Part 1 - Introduction & Basic Concepts

    - by Stefan Hinker
    LDoms - the correct name is Oracle VM Server for SPARC - have been around for quite a while now.  But to my surprise, I get more and more requests to explain how they work or to give advise on how to make good use of them.  This made me think that writing up a few articles discussing the different features would be a good idea.  Now - I don't intend to rewrite the LDoms Admin Guide or to copy and reformat the (hopefully) well known "Beginners Guide to LDoms" by Tony Shoumack from 2007.  Those documents are very recommendable - especially the Beginners Guide, although based on LDoms 1.0, is still a good place to begin with.  However, LDoms have come a long way since then, and I hope to contribute to their adoption by discussing how they work and what features there are today.  In this and the following posts, I will use the term "LDoms" as a common abbreviation for Oracle VM Server for SPARC, just because it's a lot shorter and easier to type (and presumably, read). So, just to get everyone on the same baseline, lets briefly discuss the basic concepts of virtualization with LDoms.  LDoms make use of a hypervisor as a layer of abstraction between real, physical hardware and virtual hardware.  This virtual hardware is then used to create a number of guest systems which each behave very similar to a system running on bare metal:  Each has its own OBP, each will install its own copy of the Solaris OS and each will see a certain amount of CPU, memory, disk and network resources available to it.  Unlike some other type 1 hypervisors running on x86 hardware, the SPARC hypervisor is embedded in the system firmware and makes use both of supporting functions in the sun4v SPARC instruction set as well as the overall CPU architecture to fulfill its function. The CMT architecture of the supporting CPUs (T1 through T4) provide a large number of cores and threads to the OS.  For example, the current T4 CPU has eight cores, each running 8 threads, for a total of 64 threads per socket.  To the OS, this looks like 64 CPUs.  The SPARC hypervisor, when creating guest systems, simply assigns a certain number of these threads exclusively to one guest, thus avoiding the overhead of having to schedule OS threads to CPUs, as do typical x86 hypervisors.  The hypervisor only assigns CPUs and then steps aside.  It is not involved in the actual work being dispatched from the OS to the CPU, all it does is maintain isolation between different guests. Likewise, memory is assigned exclusively to individual guests.  Here,  the hypervisor provides generic mappings between the physical hardware addresses and the guest's views on memory.  Again, the hypervisor is not involved in the actual memory access, it only maintains isolation between guests. During the inital setup of a system with LDoms, you start with one special domain, called the Control Domain.  Initially, this domain owns all the hardware available in the system, including all CPUs, all RAM and all IO resources.  If you'd be running the system un-virtualized, this would be what you'd be working with.  To allow for guests, you first resize this initial domain (also called a primary domain in LDoms speak), assigning it a small amount of CPU and memory.  This frees up most of the available CPU and memory resources for guest domains.  IO is a little more complex, but very straightforward.  When LDoms 1.0 first came out, the only way to provide IO to guest systems was to create virtual disk and network services and attach guests to these services.  In the meantime, several different ways to connect guest domains to IO have been developed, the most recent one being SR-IOV support for network devices released in version 2.2 of Oracle VM Server for SPARC. I will cover these more advanced features in detail later.  For now, lets have a short look at the initial way IO was virtualized in LDoms: For virtualized IO, you create two services, one "Virtual Disk Service" or vds, and one "Virtual Switch" or vswitch.  You can, of course, also create more of these, but that's more advanced than I want to cover in this introduction.  These IO services now connect real, physical IO resources like a disk LUN or a networt port to the virtual devices that are assigned to guest domains.  For disk IO, the normal case would be to connect a physical LUN (or some other storage option that I'll discuss later) to one specific guest.  That guest would be assigned a virtual disk, which would appear to be just like a real LUN to the guest, while the IO is actually routed through the virtual disk service down to the physical device.  For network, the vswitch acts very much like a real, physical ethernet switch - you connect one physical port to it for outside connectivity and define one or more connections per guest, just like you would plug cables between a real switch and a real system. For completeness, there is another service that provides console access to guest domains which mimics the behavior of serial terminal servers. The connections between the virtual devices on the guest's side and the virtual IO services in the primary domain are created by the hypervisor.  It uses so called "Logical Domain Channels" or LDCs to create point-to-point connections between all of these devices and services.  These LDCs work very similar to high speed serial connections and are configured automatically whenever the Control Domain adds or removes virtual IO. To see all this in action, now lets look at a first example.  I will start with a newly installed machine and configure the control domain so that it's ready to create guest systems. In a first step, after we've installed the software, let's start the virtual console service and downsize the primary domain.  root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-c-- UART 512 261632M 0.3% 2d 13h 58m root@sun # ldm add-vconscon port-range=5000-5100 \ primary-console primary root@sun # svcadm enable vntsd root@sun # svcs vntsd STATE STIME FMRI online 9:53:21 svc:/ldoms/vntsd:default root@sun # ldm set-vcpu 16 primary root@sun # ldm set-mau 1 primary root@sun # ldm start-reconf primary root@sun # ldm set-memory 7680m primary root@sun # ldm add-config initial root@sun # shutdown -y -g0 -i6 So what have I done: I've defined a range of ports (5000-5100) for the virtual network terminal service and then started that service.  The vnts will later provide console connections to guest systems, very much like serial NTS's do in the physical world. Next, I assigned 16 vCPUs (on this platform, a T3-4, that's two cores) to the primary domain, freeing the rest up for future guest systems.  I also assigned one MAU to this domain.  A MAU is a crypto unit in the T3 CPU.  These need to be explicitly assigned to domains, just like CPU or memory.  (This is no longer the case with T4 systems, where crypto is always available everywhere.) Before I reassigned the memory, I started what's called a "delayed reconfiguration" session.  That avoids actually doing the change right away, which would take a considerable amount of time in this case.  Instead, I'll need to reboot once I'm all done.  I've assigned 7680MB of RAM to the primary.  That's 8GB less the 512MB which the hypervisor uses for it's own private purposes.  You can, depending on your needs, work with less.  I'll spend a dedicated article on sizing, discussing the pros and cons in detail. Finally, just before the reboot, I saved my work on the ILOM, to make this configuration available after a powercycle of the box.  (It'll always be available after a simple reboot, but the ILOM needs to know the configuration of the hypervisor after a power-cycle, before the primary domain is booted.) Now, lets create a first disk service and a first virtual switch which is connected to the physical network device igb2. We will later use these to connect virtual disks and virtual network ports of our guest systems to real world storage and network. root@sun # ldm add-vds primary-vds root@sun # ldm add-vswitch net-dev=igb2 switch-primary primary You are free to choose whatever names you like for the virtual disk service and the virtual switch.  I strongly recommend that you choose names that make sense to you and describe the function of each service in the context of your implementation.  For the vswitch, for example, you could choose names like "admin-vswitch" or "production-network" etc. This already concludes the configuration of the control domain.  We've freed up considerable amounts of CPU and RAM for guest systems and created the necessary infrastructure - console, vts and vswitch - so that guests systems can actually interact with the outside world.  The system is now ready to create guests, which I'll describe in the next section. For further reading, here are some recommendable links: The LDoms 2.2 Admin Guide The "Beginners Guide to LDoms" The LDoms Information Center on MOS LDoms on OTN

    Read the article

  • How to write PowerShell code part 1 (Using external xml configuration file)

    - by ybbest
    In this post, I will show you how to use external xml file with PowerShell. The advantage for doing so is that you can avoid other people to open up your PowerShell code to make the configuration changes; instead all they need to do is to change the xml file. I will refactor my site creation script as an example; you can download the script here and refactored code here. 1. As you can see below, I hard code all the variables in the script itself. $url = "http://ybbest" $WebsiteName = "Ybbest" $WebsiteDesc = "Ybbest test site" $Template = "STS#0" $PrimaryLogin = "contoso\administrator" $PrimaryDisplay = "administrator" $PrimaryEmail = "[email protected]" $MembersGroup = "$WebsiteName Members" $ViewersGroup = "$WebsiteName Viewers" 2. Next, I will show you how to manipulate xml file using PowerShell. You can use the get-content to grab the content of the file. [xml] $xmlconfigurations=get-content .\SiteCollection.xml 3. Then you can set it to variable (the variable has to be typed [xml] after that you can read the content of the xml content, PowerShell also give you nice IntelliSense by press the Tab key. [xml] $xmlconfigurations=get-content .\SiteCollection.xml $xmlconfigurations.SiteCollection $xmlconfigurations.SiteCollection.SiteName 4. After refactoring my code, I can set the variables using the xml file as below. #Set the parameters $siteInformation=$xmlinput.SiteCollection $url = $siteInformation.URL $siteName = $siteInformation.SiteName $siteDesc = $siteInformation.SiteDescription $Template = $siteInformation.SiteTemplate $PrimaryLogin = $siteInformation.PrimaryLogin $PrimaryDisplay = $siteInformation.PrimaryDisplayName $PrimaryEmail = $siteInformation.PrimaryLoginEmail $MembersGroup = "$WebsiteName Members" $ViewersGroup = "$WebsiteName Viewers"

    Read the article

  • New Release Overview Part 2

    - by brian.harrison
    To continue our discussion of the next release of WCI, lets take a look at a few other new features that have been developed and tested. Password Management With customer implementations starting to go more external, we were finding that these customers wanted to use the native users within the portal because the customer did not want to provide an LDAP server that is externally facing. However, the portal does not provide anything close to the same level of password policy that a standard LDAP environment would provide. With that being the case, we made the decision to provide the same kind of password policies directly within WCI that a standard LDAP environment would have. Password Expiration - In how many days will a password expire which will force the user to change their password? Also, in how many days prior to expiration with the user be notified that their password is about the expire? Password Rotation - How many of your previous passwords will you not be able to use when changing your password? Password Policies - What are the requirements for the password that is being created by the user? Number of Characters Numbers Required Symbols Required Capitalization Required Easily Configurable - Configuration is handled through the Portal Settings utility within Administration. All options are available on the main page of the utility. In addition to the configuration options that were mention above, there has also been a complete rewrite of the Change Password screen to provide better information to the user when they are changing their password. The Change Password will now provide a red light/green light listing of all the policies the user must meet for the changed password to be successful. As the user is typing the password, the red lights will change to green lights as the policies as met. In addition, text will show next to the password text box stating what policy has not been met yet. NOTE: The password policy functionality is not held within the User Editor page within Administration. We did not want to remove the option for Administrators to change a user's password on the fly in the case of a password reset situation. Miscellaneous Features In addition to the Password Management feature, there are a few other features that are related to WCI that should be mentioned. Consolidated Installer - Instead of having up to 12 or 13 different installers, one for each of the main products and separate services, we are going to only provide two installers. One that will be used for Collaboration and its respective images. The second will contain WCI and all of the relevant services required for a WCI architecture as well as the IDK, .NET App Accelerator, SharePoint Console as well as all Content Web Services and Identity Services. Updated Documentation - Most of us are aware that the documentation hasn't been properly kept up to date with the last couple of releases. We are doing everything that we can to remedy this with the next release by consolidating and reviewing everything that is available. We are making sure to fill in the gaps that are already there, add in all documentation for the functionality as well as clearing anything that is no longer valid based on the newly released version. I hope that you enjoyed reading through this new release information. Next time we will start to talk about the new functionality that will be available within the next release of Collaboration. If there is anything in particular that you would like to get more detail about, then please don't hesitate to send me a comment.

    Read the article

  • Unity – Part 5: Injecting Values

    - by Ricardo Peres
    Introduction This is the fifth post on Unity. You can find the introductory post here, the second post, on dependency injection here, a third one on Aspect Oriented Programming (AOP) here and the latest so far, on writing custom extensions, here. This time we will talk about injecting simple values. An Inversion of Control (IoC) / Dependency Injector (DI) container like Unity can be used for things other than injecting complex class dependencies. It can also be used for setting property values or method/constructor parameters whenever a class is built. The main difference is that these values do not have a lifetime manager associated with them and do not come from the regular IoC registration store. Unlike, for instance, MEF, Unity won’t let you register as a dependency a string or an integer, so you have to take a different approach, which I will describe in this post. Scenario Let’s imagine we have a base interface that describes a logger – the same as in previous examples: 1: public interface ILogger 2: { 3: void Log(String message); 4: } And a concrete implementation that writes to a file: 1: public class FileLogger : ILogger 2: { 3: public String Filename 4: { 5: get; 6: set; 7: } 8:  9: #region ILogger Members 10:  11: public void Log(String message) 12: { 13: using (Stream file = File.OpenWrite(this.Filename)) 14: { 15: Byte[] data = Encoding.Default.GetBytes(message); 16: 17: file.Write(data, 0, data.Length); 18: } 19: } 20:  21: #endregion 22: } And let’s say we want the Filename property to come from the application settings (appSettings) section on the Web/App.config file. As usual with Unity, there is an extensibility point that allows us to automatically do this, both with code configuration or statically on the configuration file. Extending Injection We start by implementing a class that will retrieve a value from the appSettings by inheriting from ValueElement: 1: sealed class AppSettingsParameterValueElement : ValueElement, IDependencyResolverPolicy 2: { 3: #region Private methods 4: private Object CreateInstance(Type parameterType) 5: { 6: Object configurationValue = ConfigurationManager.AppSettings[this.AppSettingsKey]; 7:  8: if (parameterType != typeof(String)) 9: { 10: TypeConverter typeConverter = this.GetTypeConverter(parameterType); 11:  12: configurationValue = typeConverter.ConvertFromInvariantString(configurationValue as String); 13: } 14:  15: return (configurationValue); 16: } 17: #endregion 18:  19: #region Private methods 20: private TypeConverter GetTypeConverter(Type parameterType) 21: { 22: if (String.IsNullOrEmpty(this.TypeConverterTypeName) == false) 23: { 24: return (Activator.CreateInstance(TypeResolver.ResolveType(this.TypeConverterTypeName)) as TypeConverter); 25: } 26: else 27: { 28: return (TypeDescriptor.GetConverter(parameterType)); 29: } 30: } 31: #endregion 32:  33: #region Public override methods 34: public override InjectionParameterValue GetInjectionParameterValue(IUnityContainer container, Type parameterType) 35: { 36: Object value = this.CreateInstance(parameterType); 37: return (new InjectionParameter(parameterType, value)); 38: } 39: #endregion 40:  41: #region IDependencyResolverPolicy Members 42:  43: public Object Resolve(IBuilderContext context) 44: { 45: Type parameterType = null; 46:  47: if (context.CurrentOperation is ResolvingPropertyValueOperation) 48: { 49: ResolvingPropertyValueOperation op = (context.CurrentOperation as ResolvingPropertyValueOperation); 50: PropertyInfo prop = op.TypeBeingConstructed.GetProperty(op.PropertyName); 51: parameterType = prop.PropertyType; 52: } 53: else if (context.CurrentOperation is ConstructorArgumentResolveOperation) 54: { 55: ConstructorArgumentResolveOperation op = (context.CurrentOperation as ConstructorArgumentResolveOperation); 56: String args = op.ConstructorSignature.Split('(')[1].Split(')')[0]; 57: Type[] types = args.Split(',').Select(a => Type.GetType(a.Split(' ')[0])).ToArray(); 58: ConstructorInfo ctor = op.TypeBeingConstructed.GetConstructor(types); 59: parameterType = ctor.GetParameters().Where(p => p.Name == op.ParameterName).Single().ParameterType; 60: } 61: else if (context.CurrentOperation is MethodArgumentResolveOperation) 62: { 63: MethodArgumentResolveOperation op = (context.CurrentOperation as MethodArgumentResolveOperation); 64: String methodName = op.MethodSignature.Split('(')[0].Split(' ')[1]; 65: String args = op.MethodSignature.Split('(')[1].Split(')')[0]; 66: Type[] types = args.Split(',').Select(a => Type.GetType(a.Split(' ')[0])).ToArray(); 67: MethodInfo method = op.TypeBeingConstructed.GetMethod(methodName, types); 68: parameterType = method.GetParameters().Where(p => p.Name == op.ParameterName).Single().ParameterType; 69: } 70:  71: return (this.CreateInstance(parameterType)); 72: } 73:  74: #endregion 75:  76: #region Public properties 77: [ConfigurationProperty("appSettingsKey", IsRequired = true)] 78: public String AppSettingsKey 79: { 80: get 81: { 82: return ((String)base["appSettingsKey"]); 83: } 84:  85: set 86: { 87: base["appSettingsKey"] = value; 88: } 89: } 90: #endregion 91: } As you can see from the implementation of the IDependencyResolverPolicy.Resolve method, this will work in three different scenarios: When it is applied to a property; When it is applied to a constructor parameter; When it is applied to an initialization method. The implementation will even try to convert the value to its declared destination, for example, if the destination property is an Int32, it will try to convert the appSettings stored string to an Int32. Injection By Configuration If we want to configure injection by configuration, we need to implement a custom section extension by inheriting from SectionExtension, and registering our custom element with the name “appSettings”: 1: sealed class AppSettingsParameterInjectionElementExtension : SectionExtension 2: { 3: public override void AddExtensions(SectionExtensionContext context) 4: { 5: context.AddElement<AppSettingsParameterValueElement>("appSettings"); 6: } 7: } And on the configuration file, for setting a property, we use it like this: 1: <appSettings> 2: <add key="LoggerFilename" value="Log.txt"/> 3: </appSettings> 4: <unity xmlns="http://schemas.microsoft.com/practices/2010/unity"> 5: <container> 6: <register type="MyNamespace.ILogger, MyAssembly" mapTo="MyNamespace.ConsoleLogger, MyAssembly"/> 7: <register type="MyNamespace.ILogger, MyAssembly" mapTo="MyNamespace.FileLogger, MyAssembly" name="File"> 8: <lifetime type="singleton"/> 9: <property name="Filename"> 10: <appSettings appSettingsKey="LoggerFilename"/> 11: </property> 12: </register> 13: </container> 14: </unity> If we would like to inject the value as a constructor parameter, it would be instead: 1: <unity xmlns="http://schemas.microsoft.com/practices/2010/unity"> 2: <sectionExtension type="MyNamespace.AppSettingsParameterInjectionElementExtension, MyAssembly" /> 3: <container> 4: <register type="MyNamespace.ILogger, MyAssembly" mapTo="MyNamespace.ConsoleLogger, MyAssembly"/> 5: <register type="MyNamespace.ILogger, MyAssembly" mapTo="MyNamespace.FileLogger, MyAssembly" name="File"> 6: <lifetime type="singleton"/> 7: <constructor> 8: <param name="filename" type="System.String"> 9: <appSettings appSettingsKey="LoggerFilename"/> 10: </param> 11: </constructor> 12: </register> 13: </container> 14: </unity> Notice the appSettings section, where we add a LoggerFilename entry, which is the same as the one referred by our AppSettingsParameterInjectionElementExtension extension. For more advanced behavior, you can add a TypeConverterName attribute to the appSettings declaration, where you can pass an assembly qualified name of a class that inherits from TypeConverter. This class will be responsible for converting the appSettings value to a destination type. Injection By Attribute If we would like to use attributes instead, we need to create a custom attribute by inheriting from DependencyResolutionAttribute: 1: [Serializable] 2: [AttributeUsage(AttributeTargets.Parameter | AttributeTargets.Property, AllowMultiple = false, Inherited = true)] 3: public sealed class AppSettingsDependencyResolutionAttribute : DependencyResolutionAttribute 4: { 5: public AppSettingsDependencyResolutionAttribute(String appSettingsKey) 6: { 7: this.AppSettingsKey = appSettingsKey; 8: } 9:  10: public String TypeConverterTypeName 11: { 12: get; 13: set; 14: } 15:  16: public String AppSettingsKey 17: { 18: get; 19: private set; 20: } 21:  22: public override IDependencyResolverPolicy CreateResolver(Type typeToResolve) 23: { 24: return (new AppSettingsParameterValueElement() { AppSettingsKey = this.AppSettingsKey, TypeConverterTypeName = this.TypeConverterTypeName }); 25: } 26: } As for file configuration, there is a mandatory property for setting the appSettings key and an optional TypeConverterName  for setting the name of a TypeConverter. Both the custom attribute and the custom section return an instance of the injector AppSettingsParameterValueElement that we implemented in the first place. Now, the attribute needs to be placed before the injected class’ Filename property: 1: public class FileLogger : ILogger 2: { 3: [AppSettingsDependencyResolution("LoggerFilename")] 4: public String Filename 5: { 6: get; 7: set; 8: } 9:  10: #region ILogger Members 11:  12: public void Log(String message) 13: { 14: using (Stream file = File.OpenWrite(this.Filename)) 15: { 16: Byte[] data = Encoding.Default.GetBytes(message); 17: 18: file.Write(data, 0, data.Length); 19: } 20: } 21:  22: #endregion 23: } Or, if we wanted to use constructor injection: 1: public class FileLogger : ILogger 2: { 3: public String Filename 4: { 5: get; 6: set; 7: } 8:  9: public FileLogger([AppSettingsDependencyResolution("LoggerFilename")] String filename) 10: { 11: this.Filename = filename; 12: } 13:  14: #region ILogger Members 15:  16: public void Log(String message) 17: { 18: using (Stream file = File.OpenWrite(this.Filename)) 19: { 20: Byte[] data = Encoding.Default.GetBytes(message); 21: 22: file.Write(data, 0, data.Length); 23: } 24: } 25:  26: #endregion 27: } Usage Just do: 1: ILogger logger = ServiceLocator.Current.GetInstance<ILogger>("File"); And off you go! A simple way do avoid hardcoded values in component registrations. Of course, this same concept can be applied to registry keys, environment values, XML attributes, etc, etc, just change the implementation of the AppSettingsParameterValueElement class. Next stop: custom lifetime managers.

    Read the article

  • New Features in ASP.NET Web API 2 - Part I

    - by dwahlin
    I’m a big fan of ASP.NET Web API. It provides a quick yet powerful way to build RESTful HTTP services that can easily be consumed by a variety of clients. While it’s simple to get started using, it has a wealth of features such as filters, formatters, and message handlers that can be used to extend it when needed. In this post I’m going to provide a quick walk-through of some of the key new features in version 2. I’ll focus on some two of my favorite features that are related to routing and HTTP responses and cover additional features in a future post.   Attribute Routing Routing has been a core feature of Web API since it’s initial release and something that’s built into new Web API projects out-of-the-box. However, there are a few scenarios where defining routes can be challenging such as nested routes (more on that in a moment) and any situation where a lot of custom routes have to be defined. For this example, let’s assume that you’d like to define the following nested route:   /customers/1/orders   This type of route would select a customer with an Id of 1 and then return all of their orders. Defining this type of route in the standard WebApiConfig class is certainly possible, but it isn’t the easiest thing to do for people who don’t understand routing well. Here’s an example of how the route shown above could be defined:   public static class WebApiConfig { public static void Register(HttpConfiguration config) { config.Routes.MapHttpRoute( name: "CustomerOrdersApiGet", routeTemplate: "api/customers/{custID}/orders", defaults: new { custID = 0, controller = "Customers", action = "Orders" } ); config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); GlobalConfiguration.Configuration.Formatters.Insert(0, new JsonpFormatter()); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   With attribute based routing, defining these types of nested routes is greatly simplified. To get started you first need to make a call to the new MapHttpAttributeRoutes() method in the standard WebApiConfig class (or a custom class that you may have created that defines your routes) as shown next:   public static class WebApiConfig { public static void Register(HttpConfiguration config) { // Allow for attribute based routes config.MapHttpAttributeRoutes(); config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); } } Once attribute based routes are configured, you can apply the Route attribute to one or more controller actions. Here’s an example:   [HttpGet] [Route("customers/{custId:int}/orders")] public List<Order> Orders(int custId) { var orders = _Repository.GetOrders(custId); if (orders == null) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.NotFound)); } return orders; }   This example maps the custId route parameter to the custId parameter in the Orders() method and also ensures that the route parameter is typed as an integer. The Orders() method can be called using the following route: /customers/2/orders   While this is extremely easy to use and gets the job done, it doesn’t include the default “api” string on the front of the route that you might be used to seeing. You could add “api” in front of the route and make it “api/customers/{custId:int}/orders” but then you’d have to repeat that across other attribute-based routes as well. To simply this type of task you can add the RoutePrefix attribute above the controller class as shown next so that “api” (or whatever the custom starting point of your route is) is applied to all attribute routes: [RoutePrefix("api")] public class CustomersController : ApiController { [HttpGet] [Route("customers/{custId:int}/orders")] public List<Order> Orders(int custId) { var orders = _Repository.GetOrders(custId); if (orders == null) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.NotFound)); } return orders; } }   There’s much more that you can do with attribute-based routing in ASP.NET. Check out the following post by Mike Wasson for more details.   Returning Responses with IHttpActionResult The first version of Web API provided a way to return custom HttpResponseMessage objects which were pretty easy to use overall. However, Web API 2 now wraps some of the functionality available in version 1 to simplify the process even more. A new interface named IHttpActionResult (similar to ActionResult in ASP.NET MVC) has been introduced which can be used as the return type for Web API controller actions. To return a custom response you can use new helper methods exposed through ApiController such as: Ok NotFound Exception Unauthorized BadRequest Conflict Redirect InvalidModelState Here’s an example of how IHttpActionResult and the helper methods can be used to cleanup code. This is the typical way to return a custom HTTP response in version 1:   public HttpResponseMessage Delete(int id) { var status = _Repository.DeleteCustomer(id); if (status) { return new HttpResponseMessage(HttpStatusCode.OK); } else { throw new HttpResponseException(HttpStatusCode.NotFound); } } With version 2 we can replace HttpResponseMessage with IHttpActionResult and simplify the code quite a bit:   public IHttpActionResult Delete(int id) { var status = _Repository.DeleteCustomer(id); if (status) { //return new HttpResponseMessage(HttpStatusCode.OK); return Ok(); } else { //throw new HttpResponseException(HttpStatusCode.NotFound); return NotFound(); } } You can also cleanup post (insert) operations as well using the helper methods. Here’s a version 1 post action:   public HttpResponseMessage Post([FromBody]Customer cust) { var newCust = _Repository.InsertCustomer(cust); if (newCust != null) { var msg = new HttpResponseMessage(HttpStatusCode.Created); msg.Headers.Location = new Uri(Request.RequestUri + newCust.ID.ToString()); return msg; } else { throw new HttpResponseException(HttpStatusCode.Conflict); } } This is what the code looks like in version 2:   public IHttpActionResult Post([FromBody]Customer cust) { var newCust = _Repository.InsertCustomer(cust); if (newCust != null) { return Created<Customer>(Request.RequestUri + newCust.ID.ToString(), newCust); } else { return Conflict(); } } More details on IHttpActionResult and the different helper methods provided by the ApiController base class can be found here. Conclusion Although there are several additional features available in Web API 2 that I could cover (CORS support for example), this post focused on two of my favorites features. If you have .NET 4.5.1 available then I definitely recommend checking the new features out. Additional articles that cover features in ASP.NET Web API 2 can be found here.

    Read the article

  • How to write PowerShell code part 1 (Using external xml configuration file)

    - by ybbest
    In this post, I will show you how to use external xml file with PowerShell. The advantage for doing so is that you can avoid other people to open up your PowerShell code to make the configuration changes; instead all they need to do is to change the xml file. I will refactor my site creation script as an example; you can download the script here and refactored code here. 1. As you can see below, I hard code all the variables in the script itself. $url = "http://ybbest" $WebsiteName = "Ybbest" $WebsiteDesc = "Ybbest test site" $Template = "STS#0" $PrimaryLogin = "contoso\administrator" $PrimaryDisplay = "administrator" $PrimaryEmail = "[email protected]" $MembersGroup = "$WebsiteName Members" $ViewersGroup = "$WebsiteName Viewers" 2. Next, I will show you how to manipulate xml file using PowerShell. You can use the get-content to grab the content of the file. [xml] $xmlconfigurations=get-content .\SiteCollection.xml 3. Then you can set it to variable (the variable has to be typed [xml] after that you can read the content of the xml content, PowerShell also give you nice IntelliSense by press the Tab key. [xml] $xmlconfigurations=get-content .\SiteCollection.xml $xmlconfigurations.SiteCollection $xmlconfigurations.SiteCollection.SiteName 4. After refactoring my code, I can set the variables using the xml file as below. #Set the parameters $siteInformation=$xmlinput.SiteCollection $url = $siteInformation.URL $siteName = $siteInformation.SiteName $siteDesc = $siteInformation.SiteDescription $Template = $siteInformation.SiteTemplate $PrimaryLogin = $siteInformation.PrimaryLogin $PrimaryDisplay = $siteInformation.PrimaryDisplayName $PrimaryEmail = $siteInformation.PrimaryLoginEmail $MembersGroup = "$WebsiteName Members" $ViewersGroup = "$WebsiteName Viewers"

    Read the article

  • MYSQL – Identifying Current Version of MySQL Server Installation – Part 2

    - by Pinal Dave
    Earlier I wrote an article about Detecting Current Version of MySQL Server Installation. After the post quite a few emails I received where various users suggested that there are many more ways to figure out the version of MySQL. Here are few of the methods which I received in the email. Method 1: This method retrieves value with the help of Information Functions. SELECT VERSION(); Method 2: This method is very similar to SQL Server. SELECT @@Version Method 3: You can connect to MySQL with command prompt and type following command: STATUS; Method 4: Please refer my earlier blog post. SHOW VARIABLES LIKE "%version%"; Let me know if you know any more method and I will extend this blog post. Reference : Pinal Dave (http://blog.SQLAuthority.com)Filed under: MySQL, PostADay, SQL, SQL Authority, SQL Query, SQL Tips and Tricks, T SQL

    Read the article

  • Autoscaling in a modern world&hellip;. Part 3

    - by Steve Loethen
    The Wasabi Hands on Labs give you a good look at the basic mechanics, but I don’t find the setup too practical.  Using a local console application to host the Autoscaler and rules files is probably the (IMHO) least likely architecture.  Far more common would be hosting in a service on premise (if you want to have the Autoscaler local) or most likely, host it in a Azure role of it’s own.  I chose to go the Azure route. First step was to get the rules.xml and the services.xml files into the cloud.  I tend to be a “one step at a time” sort of guy, so running the console application with the rules sitting in a Azure hosted set of blobs seemed to be the logical first step.  Here are the steps: 1) Create a container in the storage account you wish to use.  Name does not matter, you will get a chance to set the container name (as well as the file names) in the app.config 2) Copy the two files from where you created them to your  container.  I used the same files I had locally.  I made the container public to eliminate security issues, but in the final application, a bit of security needs to be applied (one problem at a time).  The content type was set to text/xml.  I found one reference claiming the importance of this step, and it makes sense. 3) Adjust the app.config to set the location of the files.  This will let you set all the storage account and key information needed to reach into the cloud form your console application.  The sections of your app.config will look like this: <rulesStores> <add name="Blob Rules Store" type="Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling.Rules.Configuration.BlobXmlFileRulesStore, Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling, Version=5.0.1118.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" blobContainerName="[ContainerName]" blobName="rules.xml" storageAccount="DefaultEndpointsProtocol=https;AccountName=[StorageAccount];AccountKey=[AccountKey]" monitoringRate="00:00:30" certificateThumbprint="" certificateStoreLocation="LocalMachine" checkCertificateValidity="false" /> </rulesStores> <serviceInformationStores> <add name="Blob Service Information Store" type="Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling.ServiceModel.Configuration.BlobXmlFileServiceInformationStore, Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling, Version=5.0.1118.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" blobContainerName="[ContainerName]" blobName="services.xml" storageAccount="DefaultEndpointsProtocol=https;AccountName=[StorageAccount];AccountKey=[AccountKey]" monitoringRate="00:00:30" certificateThumbprint="" certificateStoreLocation="LocalMachine" checkCertificateValidity="false" /> </serviceInformationStores> Once I had the files up in the sky, I renamed the local copies to just to make my self feel better about the application using the correct set of rules and services.  Deploy the web role to the cloud.  Once it is up and running, start the console application.  You should find the application scales up and down in response to the buttons on the web site.  Tune in next time for moving the hosting of the Autoscaler to a worker role, discussions on getting the logging information into diagnostics into storage, and a set of discussions about certs and how they play a role.

    Read the article

< Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >