Search Results

Search found 1746 results on 70 pages for 'expressions'.

Page 27/70 | < Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >

  • Architecture for a template-building, WYSIWIG application

    - by Sam Selikoff
    I'm building a WYSIWYG designer in Ember.js. The designer will allow users to create campaigns - think MailChimp. To build a campaign, users will choose an existing template. The template will have a defined layout. The user will then be taken to the designer, where he will be able to edit the text and style, and additionally change some layout options. I've been thinking about how best to go about structuring this app, and there are a few hurdles. Specifically, the output of the campaign will be dynamic: eventually, it will be published somewhere, and when the consumers (not my users, but the people clicking on the campaign that my user created) visit the campaign, certain pieces of data will change, depending on the type of consumer viewing the campaign. That means the ultimate output of the designer will be a dynamic site. The data that is dynamic for this site - the end product - will not be manipulated by the user in the designer. However, the data that will be manipulated by the user in the designer are things like copy, styles, layout options, etc. I'll call the first set of variables server-side data, and the second client-side data. It seems, then, that the process will go something like this: I'll need to create templates for this designer that have two dynamic segments. For instance, the server-side data could be Liquid expressions, and the client-side data Handlebars expressions. When the user creates a campaign, I would compile the template on the back end using some dummy data for the server-side variables, and serve up a handlebars template to the Ember app. The user would then edit the template, and the Ember app would save all his edits to the JS variables that were powering the template. This way he'd be able to preview the template. When he saves, he'll send back the selected template, along with all the data and options he's made. When it comes time to publish, the back-end system will have to do two things: compile the template with Handlebars using the campaign data, and then compile the template with Liquid using the server-side data Is my thinking roughly accurate about this, or is there a simpler way?

    Read the article

  • Why don't languages include implication as a logical operator?

    - by Maciej Piechotka
    It might be a strange question, but why there is no implication as a logical operator in many languages (Java, C, C++, Python Haskell - although as last one have user defined operators its trivial to add it)? I find logical implication much clearer to write (particularly in asserts or assert-like expressions) then negation with or: encrypt(buf, key, mode, iv = null) { assert (mode != ECB --> iv != null); assert (mode == ECB || iv != null); assert (implies(mode != ECB, iv != null)); // User-defined function }

    Read the article

  • How to get better at solving Dynamic programming problems

    - by newbie
    I recently came across this question: "You are given a boolean expression consisting of a string of the symbols 'true', 'false', 'and', 'or', and 'xor'. Count the number of ways to parenthesize the expression such that it will evaluate to true. For example, there is only 1 way to parenthesize 'true and false xor true' such that it evaluates to true." I knew it is a dynamic programming problem so i tried to come up with a solution on my own which is as follows. Suppose we have a expression as A.B.C.....D where '.' represents any of the operations and, or, xor and the capital letters represent true or false. Lets say the number of ways for this expression of size K to produce a true is N. when a new boolean value E is added to this expression there are 2 ways to parenthesize this new expression 1. ((A.B.C.....D).E) ie. with all possible parenthesizations of A.B.C.....D we add E at the end. 2. (A.B.C.(D.E)) ie. evaluate D.E first and then find the number of ways this expression of size K can produce true. suppose T[K] is the number of ways the expression with size K produces true then T[k]=val1+val2+val3 where val1,val2,val3 are calculated as follows. 1)when E is grouped with D. i)It does not change the value of D ii)it inverses the value of D in the first case val1=T[K]=N.( As this reduces to the initial A.B.C....D expression ). In the second case re-evaluate dp[K] with value of D reversed and that is val1. 2)when E is grouped with the whole expression. //val2 contains the number of 'true' E will produce with expressions which gave 'true' among all parenthesized instances of A.B.C.......D i) if true.E = true then val2 = N ii) if true.E = false then val2 = 0 //val3 contains the number of 'true' E will produce with expressions which gave 'false' among all parenthesized instances of A.B.C.......D iii) if false.E=true then val3=( 2^(K-2) - N ) = M ie. number of ways the expression with size K produces a false [ 2^(K-2) is the number of ways to parenthesize an expression of size K ]. iv) if false.E=false then val3 = 0 This is the basic idea i had in mind but when i checked for its solution http://people.csail.mit.edu/bdean/6.046/dp/dp_9.swf the approach there was completely different. Can someone tell me what am I doing wrong and how can i get better at solving DP so that I can come up with solutions like the one given above myself. Thanks in advance.

    Read the article

  • Looking for terminology for the relation of a subject and a predicate

    - by kostja
    While writing some predicates for collection filtering I have stumbled over the choice of the right words for the relation of the subject and the predicate (English is a foreign language for me). What I ended up writing was "Subjects matching this predicate..." This seems to be incorrect, since predicates are functions and not regular expressions. But saying "Subjects for which this predicate returns true..." sounds awkward to me as well.. So what would be the correct term?

    Read the article

  • Perl like regular expression in Oracle DB

    - by user13136722
    There's regular expression support in Oracle DB Using Regular Expressions in Database Applications Oracle SQL PERL-Influenced Extensions to POSIX Standard But '\b' is not supported which I believe is quite wideliy used in perl and/or other tools perlre - perldoc.perl.org \b Match a word boundary So, I experimented with '\W' which is non-"word" character When combined with beginning-of-line and end-of-line like below, I think it works exactly the same as '\b' SELECT * FROM TAB1 WHERE regexp_like(TEXTCOL1, '(^|\W)a_word($|\W)', 'i')

    Read the article

  • JSR Updates

    - by heathervc
    JSR 349, Bean Validation 1.1, has published a Public Review. The review closes on 12 November. JSR 331, Constraint Programming API, has published a Maintenance Release. JSR 335, Lambda Expressions for the Java Programming Language, has moved to JCP 2.8!  Check out their java.net project. JSR 107, JCACHE - Java Temporary Caching API, has posted their Early Draft Release.  The review closes on 22 November.

    Read the article

  • Are there any good Java/JVM libraries for my Expression Tree architecture?

    - by Snuggy
    My team and I are developing an enterprise-level application and I have devised an architecture for it that's best described as an "Expression Tree". The basic idea is that the leaf nodes of the tree are very simple expressions (perhaps simple values or strings). Nodes closer to the trunk will get more and more complex, taking the simpler nodes as their inputs and returning more complex results for their parents. Looking at it the other way, the application performs some task, and for this it creates a root expression. The root expression divides its input into smaller units and creates child expressions, which when evaluated it can use to build it's own result. The subdividing process continues until the simplest leaf nodes. There are two very important aspects of this architecture: It must be possible to manipulate nodes of the tree after it is built. The nodes may be given new input values to work with and any change in result for that node needs to be propagated back up the tree to the root node. The application must make best use of available processors and ultimately be scalable to other computers in a grid or in the cloud. Nodes in the tree will often be updating concurrently and notifying other interested nodes in the tree when they get a new value. Unfortunately, I'm not at liberty to discuss my actual application, but to aid understanding a little bit, you might imagine a kind of spreadsheet application being implemented with a similar architecture, where changes to cells in the table are propagated all over the place to other cells that need the result. The spreadsheet could get so massive that applying multi-core multi-computer distributed system to solve it would be of benefit. I've got my prototype "Expression Engine" working nicely on a single multi-core PC but I've started to run into a few concurrency issues (as expected because I haven't been taking too much care so far) so it's now time to start thinking about migrating the Engine to a more robust library, and that leads to a number of related questions: Is there any precedent for my "Expression Tree" architecture that I could research? What programming concepts should I consider. I realise this approach has many similarities to a functional programming style, and I'm already aware of the concepts of using futures and actors. Are there any others? Are there any languages or libraries that I should study? This question is inspired by my accidental discovery of Scala and the Akka library (which has good support for Actors, Futures, Distributed workloads etc.) and I'm wondering if there is anything else I should be looking at as well?

    Read the article

  • DAX Statistical Functions

    Following on from his first four articles on using Data Analysis Expressions (DAX) with tabular databases, Robert Sheldon dives into some of the DAX statistical functions available, demonstrating which are the most useful and examples of how they work. The seven tools in the SQL DBA Bundle support your core SQL Server database administration tasks.Make backups a breeze! Enjoy trouble-free troubleshooting! Make the most of monitoring! Download a free trial now.

    Read the article

  • XPath execution utility

    - by TATWORTH
    I have written an XPath test utility at http://commonxpath.codeplex.com/releases/view/96687This is a WPF application that allows you to enter some test XML and and an XPath expression. When writing such expressions it is important to get the XPath expression correct before embedding it into a program.The program is available as source under LGPL so you can run it both on your office and home PCs. There is a link to help on XPATH syntax.

    Read the article

  • Overused or abused programming techniques

    - by Anto
    Are there any techniques in programming that you find to be overused (IE used way more excessively than what they should be) or abused, or used a bit for everything, while not being a really good solution to many of the problems which people attempt to solve with it. It could be regular expressions, some kind of design pattern or maybe an algorithm, or something completely different. Maybe you think people abuse multiple inheritance etc.

    Read the article

  • Customizable Method Bodies in NetBeans IDE 7.3

    - by Geertjan
    In NetBeans IDE 7.3, bodies of newly created methods can now be customized in Tools/Templates/Java/Code Snippets, see below: The content of the first of the two above, "Generated Method Body", is like this: <#-- A built-in Freemarker template (see http://freemarker.sourceforge.net) used for filling the body of methods generated by the IDE. When editing the template, the following predefined variables, that will be then expanded into the corresponding values, could be used together with Java expressions and comments: ${method_return_type}       a return type of a created method ${default_return_value}     a value returned by the method by default ${method_name}              name of the created method ${class_name}               qualified name of the enclosing class ${simple_class_name}        simple name of the enclosing class --> throw new java.lang.UnsupportedOperationException("Not supported yet."); //To change body of generated methods, choose Tools | Templates. The second one, "Overriden Methody Body", is as follows: <#-- A built-in Freemarker template (see http://freemarker.sourceforge.net) used for filling the body of overridden methods generated by the IDE. When editing the template, the following predefined variables, that will be then expanded into the corresponding values, could be used together with Java expressions and comments: ${super_method_call}        a super method call ${method_return_type}       a return type of a created method ${default_return_value}     a value returned by the method by default ${method_name}              name of the created method ${class_name}               qualified name of the enclosing class ${simple_class_name}        simple name of the enclosing class --> <#if method_return_type?? && method_return_type != "void"> return ${super_method_call}; //To change body of generated methods, choose Tools | Templates. <#else> ${super_method_call}; //To change body of generated methods, choose Tools | Templates. </#if>

    Read the article

  • JavaOne 2012 : Oracle présente la spécification JSR 353, l'API Java pour la manipulation avec souplesse du format JSON

    JavaOne 2012 : Oracle présente la spécification JSR 353 l'API Java pour rendre la manipulation des données JSON plus propre et cohérente JavaOne 2012 s'est achevé hier. L'événement Java le plus important de l'année a levé le voile sur un nombre impressionnant de nouveautés, innovations et ambitions pour l'écosystème Java. Oracle pendant ses sessions a présenté sa feuille de route pour le langage et les points sur lesquels l'entreprise travaille actuellement pour la prochaine version de Java, dont l'intégration des expressions lambda, du moteur JavaScript Nashorn, les annotations, la nouvelle API « date and time » et bien ...

    Read the article

  • Zenoss No space left on device Error

    - by Pastelinux
    Site Error An error was encountered while publishing this resource. Sorry, a site error occurred. Traceback (innermost last): Module ZPublisher.Publish, line 231, in publish_module_standard Module ZPublisher.Publish, line 165, in publish Module Zope2.App.startup, line 211, in __call__ Module Products.ZenUI3.browser, line 105, in __call__ Module Products.Five.browser.pagetemplatefile, line 60, in __call__ Module zope.pagetemplate.pagetemplate, line 115, in pt_render Module zope.tal.talinterpreter, line 271, in __call__ Module zope.tal.talinterpreter, line 343, in interpret Module zope.tal.talinterpreter, line 858, in do_defineMacro Module zope.tal.talinterpreter, line 343, in interpret Module zope.tal.talinterpreter, line 533, in do_optTag_tal Module zope.tal.talinterpreter, line 518, in do_optTag Module zope.tal.talinterpreter, line 513, in no_tag Module zope.tal.talinterpreter, line 343, in interpret Module zope.tal.talinterpreter, line 620, in do_insertText_tal Module Products.PageTemplates.Expressions, line 203, in evaluateText Module Products.PageTemplates.Expressions, line 222, in _handleText Module zope.component._api, line 174, in queryUtility Module zope.component.registry, line 165, in queryUtility Module ZODB.Connection, line 834, in setstate Module ZODB.Connection, line 884, in _setstate Module ZEO.ClientStorage, line 815, in load Module ZEO.cache, line 143, in call Module ZEO.cache, line 607, in store IOError: [Errno 28] No space left on device Went in to check my server through zenoss today and it looks like somehow my server is full. Which when i look at my server its only 85% full: unclebob:~# df -h Filesystem Size Used Avail Use% Mounted on /dev/mapper/unclebob--vg0-unclebob--root 1.9G 1.5G 335M 82% / tmpfs 471M 0 471M 0% /lib/init/rw udev 10M 820K 9.2M 9% /dev tmpfs 471M 0 471M 0% /dev/shm overflow 1.0M 1.0M 0 100% /tmp /dev/hde1 942M 36M 859M 5% /boot unclebob:/tmp# df -i Filesystem Inodes IUsed IFree IUse% Mounted on /dev/mapper/unclebob--vg0-unclebob--root 121920 54844 67076 45% / tmpfs 120489 3 120486 1% /lib/init/rw udev 120489 1520 118969 2% /dev tmpfs 120489 1 120488 1% /dev/shm overflow 120489 14 120475 1% /tmp /dev/hde1 61312 33 61279 1% /boot It looks like theres these two files: .ICE-unix/ .X11-unix/ They had been hidden. I'll remove those. Any idea upon what they maybe? Any ideas on a fix? Probably has something to do with Zenoss

    Read the article

  • Can I sort files A-Z and at the same time Z-A?

    - by The_Buff
    I am trying to sort and rename a large number of files that are labeled #####_## The LEFT side of the underscore are numbers (e.g., 32956715, 32956810, etc.) that do not repeat. The RIGHT side of the underscore are also numbers (e.g., 1, 2, 3, etc.) and they do repeat. (The left side is the number of a scan and the right side is the page of that particular scan.) I would like to be able to sort the left side of the underscore Z-A and the right side A-Z. Example: 3_1 3_2 3_3 2_1 2_2 2_3 1_1 1_2 1_3 I am using ReNamer by den4b (easily the best free renamer out there). It supports regular expressions so I believe there should be an easy way to do this, but I don't know how. (I've been trying to learn regular expressions but I don't use them enough to retain anything.) I'm open for any suggestions that achieve the same result. I've spent enough time trying to figure it out that I could have probably just sorted them myself already but this is a reccuring problem so hopefully someone has a solution that will save me lots of time in the long run. Thank You!

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • Running ASP.NET Webforms and ASP.NET MVC side by side

    - by rajbk
    One of the nice things about ASP.NET MVC and its older brother ASP.NET WebForms is that they are both built on top of the ASP.NET runtime environment. The advantage of this is that, you can still run them side by side even though MVC and WebForms are different frameworks. Another point to note is that with the release of the ASP.NET routing in .NET 3.5 SP1, we are able to create SEO friendly URLs that do not map to specific files on disk. The routing is part of the core runtime environment and therefore can be used by both WebForms and MVC. To run both frameworks side by side, we could easily create a separate folder in your MVC project for all our WebForm files and be good to go. What this post shows you instead, is how to have an MVC application with WebForm pages  that both use a common master page and common routing for SEO friendly URLs.  A sample project that shows WebForms and MVC running side by side is attached at the bottom of this post. So why would we want to run WebForms and MVC in the same project?  WebForms come with a lot of nice server controls that provide a lot of functionality. One example is the ReportViewer control. Using this control and client report definition files (RDLC), we can create rich interactive reports (with charting controls). I show you how to use the ReportViewer control in a WebForm project here :  Creating an ASP.NET report using Visual Studio 2010. We can create even more advanced reports by using SQL reporting services that can also be rendered by the ReportViewer control. Now, consider the sample MVC application I blogged about called ASP.NET MVC Paging/Sorting/Filtering using the MVCContrib Grid and Pager. Assume you were given the requirement to add a UI to the MVC application where users could interact with a report and be given the option to export the report to Excel, PDF or Word. How do you go about doing it?   This is a perfect scenario to use the ReportViewer control and RDLCs. As you saw in the post on creating the ASP.NET report, the ReportViewer control is a Web Control and is designed to be run in a WebForm project with dependencies on, amongst others, a ScriptManager control and the beloved Viewstate.  Since MVC and WebForm both run under the same runtime, the easiest thing to is to add the WebForm application files (index.aspx, rdlc, related class files) into our MVC project. You can copy the files over from the WebForm project into the MVC project. Create a new folder in our MVC application called CommonReports. Add the index.aspx and rdlc file from the Webform project   Right click on the Index.aspx file and convert it to a web application. This will add the index.aspx.designer.cs file (this step is not required if you are manually adding a WebForm aspx file into the MVC project).    Verify that all the type names for the ObjectDataSources in code behind to point to the correct ProductRepository and fix any compiler errors. Right click on Index.aspx and select “View in browser”. You should see a screen like the one below:   There are two issues with our page. It does not use our site master page and the URL is not SEO friendly. Common Master Page The easiest way to use master pages with both MVC and WebForm pages is to have a common master page that each inherits from as shown below. The reason for this is most WebForm controls require them to be inside a Form control and require ControlState or ViewState. ViewMasterPages used in MVC, on the other hand, are designed to be used with content pages that derive from ViewPage with Viewstate turned off. By having a separate master page for MVC and WebForm that inherit from the Root master page,, we can set properties that are specific to each. For example, in the Webform master, we can turn on ViewState, add a form tag etc. Another point worth noting is that if you set a WebForm page to use a MVC site master page, you may run into errors like the following: A ViewMasterPage can be used only with content pages that derive from ViewPage or ViewPage<TViewItem> or Control 'MainContent_MyButton' of type 'Button' must be placed inside a form tag with runat=server. Since the ViewMasterPage inherits from MasterPage as seen below, we make our Root.master inherit from MasterPage, MVC.master inherit from ViewMasterPage and Webform.master inherits from MasterPage. We define the attributes on the master pages like so: Root.master <%@ Master Inherits="System.Web.UI.MasterPage"  … %> MVC.master <%@ Master MasterPageFile="~/Views/Shared/Root.Master" Inherits="System.Web.Mvc.ViewMasterPage" … %> WebForm.master <%@ Master MasterPageFile="~/Views/Shared/Root.Master" Inherits="NorthwindSales.Views.Shared.Webform" %> Code behind: public partial class Webform : System.Web.UI.MasterPage {} We make changes to our reports aspx file to use the Webform.master. See the source of the master pages in the sample project for a better understanding of how they are connected. SEO friendly links We want to create SEO friendly links that point to our report. A request to /Reports/Products should render the report located in ~/CommonReports/Products.aspx. Simillarly to support future reports, a request to /Reports/Sales should render a report in ~/CommonReports/Sales.aspx. Lets start by renaming our index.aspx file to Products.aspx to be consistent with our routing criteria above. As mentioned earlier, since routing is part of the core runtime environment, we ca easily create a custom route for our reports by adding an entry in Global.asax. public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}");   //Custom route for reports routes.MapPageRoute( "ReportRoute", // Route name "Reports/{reportname}", // URL "~/CommonReports/{reportname}.aspx" // File );     routes.MapRoute( "Default", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Parameter defaults ); } With our custom route in place, a request to Reports/Employees will render the page at ~/CommonReports/Employees.aspx. We make this custom route the first entry since the routing system walks the table from top to bottom, and the first route to match wins. Note that it is highly recommended that you write unit tests for your routes to ensure that the mappings you defined are correct. Common Menu Structure The master page in our original MVC project had a menu structure like so: <ul id="menu"> <li> <%=Html.ActionLink("Home", "Index", "Home") %></li> <li> <%=Html.ActionLink("Products", "Index", "Products") %></li> <li> <%=Html.ActionLink("Help", "Help", "Home") %></li> </ul> We want this menu structure to be common to all pages/views and hence should reside in Root.master. Unfortunately the Html.ActionLink helpers will not work since Root.master inherits from MasterPage which does not have the helper methods available. The quickest way to resolve this issue is to use RouteUrl expressions. Using  RouteUrl expressions, we can programmatically generate URLs that are based on route definitions. By specifying parameter values and a route name if required, we get back a URL string that corresponds to a matching route. We move our menu structure to Root.master and change it to use RouteUrl expressions: <ul id="menu"> <li> <asp:HyperLink ID="hypHome" runat="server" NavigateUrl="<%$RouteUrl:routename=default,controller=home,action=index%>">Home</asp:HyperLink></li> <li> <asp:HyperLink ID="hypProducts" runat="server" NavigateUrl="<%$RouteUrl:routename=default,controller=products,action=index%>">Products</asp:HyperLink></li> <li> <asp:HyperLink ID="hypReport" runat="server" NavigateUrl="<%$RouteUrl:routename=ReportRoute,reportname=products%>">Product Report</asp:HyperLink></li> <li> <asp:HyperLink ID="hypHelp" runat="server" NavigateUrl="<%$RouteUrl:routename=default,controller=home,action=help%>">Help</asp:HyperLink></li> </ul> We are done adding the common navigation to our application. The application now uses a common theme, routing and navigation structure. Conclusion We have seen how to do the following through this post Add a WebForm page from a WebForm project to an existing ASP.NET MVC application Use a common master page for both WebForm and MVC pages Use routing for SEO friendly links Use a common menu structure for both WebForm and MVC. The sample project is attached below. Version: VS 2010 RTM Remember to change your connection string to point to your Northwind database NorthwindSalesMVCWebform.zip

    Read the article

  • jQuery Templates and Data Linking (and Microsoft contributing to jQuery)

    - by ScottGu
    The jQuery library has a passionate community of developers, and it is now the most widely used JavaScript library on the web today. Two years ago I announced that Microsoft would begin offering product support for jQuery, and that we’d be including it in new versions of Visual Studio going forward. By default, when you create new ASP.NET Web Forms and ASP.NET MVC projects with VS 2010 you’ll find jQuery automatically added to your project. A few weeks ago during my second keynote at the MIX 2010 conference I announced that Microsoft would also begin contributing to the jQuery project.  During the talk, John Resig -- the creator of the jQuery library and leader of the jQuery developer team – talked a little about our participation and discussed an early prototype of a new client templating API for jQuery. In this blog post, I’m going to talk a little about how my team is starting to contribute to the jQuery project, and discuss some of the specific features that we are working on such as client-side templating and data linking (data-binding). Contributing to jQuery jQuery has a fantastic developer community, and a very open way to propose suggestions and make contributions.  Microsoft is following the same process to contribute to jQuery as any other member of the community. As an example, when working with the jQuery community to improve support for templating to jQuery my team followed the following steps: We created a proposal for templating and posted the proposal to the jQuery developer forum (http://forum.jquery.com/topic/jquery-templates-proposal and http://forum.jquery.com/topic/templating-syntax ). After receiving feedback on the forums, the jQuery team created a prototype for templating and posted the prototype at the Github code repository (http://github.com/jquery/jquery-tmpl ). We iterated on the prototype, creating a new fork on Github of the templating prototype, to suggest design improvements. Several other members of the community also provided design feedback by forking the templating code. There has been an amazing amount of participation by the jQuery community in response to the original templating proposal (over 100 posts in the jQuery forum), and the design of the templating proposal has evolved significantly based on community feedback. The jQuery team is the ultimate determiner on what happens with the templating proposal – they might include it in jQuery core, or make it an official plugin, or reject it entirely.  My team is excited to be able to participate in the open source process, and make suggestions and contributions the same way as any other member of the community. jQuery Template Support Client-side templates enable jQuery developers to easily generate and render HTML UI on the client.  Templates support a simple syntax that enables either developers or designers to declaratively specify the HTML they want to generate.  Developers can then programmatically invoke the templates on the client, and pass JavaScript objects to them to make the content rendered completely data driven.  These JavaScript objects can optionally be based on data retrieved from a server. Because the jQuery templating proposal is still evolving in response to community feedback, the final version might look very different than the version below. This blog post gives you a sense of how you can try out and use templating as it exists today (you can download the prototype by the jQuery core team at http://github.com/jquery/jquery-tmpl or the latest submission from my team at http://github.com/nje/jquery-tmpl).  jQuery Client Templates You create client-side jQuery templates by embedding content within a <script type="text/html"> tag.  For example, the HTML below contains a <div> template container, as well as a client-side jQuery “contactTemplate” template (within the <script type="text/html"> element) that can be used to dynamically display a list of contacts: The {{= name }} and {{= phone }} expressions are used within the contact template above to display the names and phone numbers of “contact” objects passed to the template. We can use the template to display either an array of JavaScript objects or a single object. The JavaScript code below demonstrates how you can render a JavaScript array of “contact” object using the above template. The render() method renders the data into a string and appends the string to the “contactContainer” DIV element: When the page is loaded, the list of contacts is rendered by the template.  All of this template rendering is happening on the client-side within the browser:   Templating Commands and Conditional Display Logic The current templating proposal supports a small set of template commands - including if, else, and each statements. The number of template commands was deliberately kept small to encourage people to place more complicated logic outside of their templates. Even this small set of template commands is very useful though. Imagine, for example, that each contact can have zero or more phone numbers. The contacts could be represented by the JavaScript array below: The template below demonstrates how you can use the if and each template commands to conditionally display and loop the phone numbers for each contact: If a contact has one or more phone numbers then each of the phone numbers is displayed by iterating through the phone numbers with the each template command: The jQuery team designed the template commands so that they are extensible. If you have a need for a new template command then you can easily add new template commands to the default set of commands. Support for Client Data-Linking The ASP.NET team recently submitted another proposal and prototype to the jQuery forums (http://forum.jquery.com/topic/proposal-for-adding-data-linking-to-jquery). This proposal describes a new feature named data linking. Data Linking enables you to link a property of one object to a property of another object - so that when one property changes the other property changes.  Data linking enables you to easily keep your UI and data objects synchronized within a page. If you are familiar with the concept of data-binding then you will be familiar with data linking (in the proposal, we call the feature data linking because jQuery already includes a bind() method that has nothing to do with data-binding). Imagine, for example, that you have a page with the following HTML <input> elements: The following JavaScript code links the two INPUT elements above to the properties of a JavaScript “contact” object that has a “name” and “phone” property: When you execute this code, the value of the first INPUT element (#name) is set to the value of the contact name property, and the value of the second INPUT element (#phone) is set to the value of the contact phone property. The properties of the contact object and the properties of the INPUT elements are also linked – so that changes to one are also reflected in the other. Because the contact object is linked to the INPUT element, when you request the page, the values of the contact properties are displayed: More interesting, the values of the linked INPUT elements will change automatically whenever you update the properties of the contact object they are linked to. For example, we could programmatically modify the properties of the “contact” object using the jQuery attr() method like below: Because our two INPUT elements are linked to the “contact” object, the INPUT element values will be updated automatically (without us having to write any code to modify the UI elements): Note that we updated the contact object above using the jQuery attr() method. In order for data linking to work, you must use jQuery methods to modify the property values. Two Way Linking The linkBoth() method enables two-way data linking. The contact object and INPUT elements are linked in both directions. When you modify the value of the INPUT element, the contact object is also updated automatically. For example, the following code adds a client-side JavaScript click handler to an HTML button element. When you click the button, the property values of the contact object are displayed using an alert() dialog: The following demonstrates what happens when you change the value of the Name INPUT element and click the Save button. Notice that the name property of the “contact” object that the INPUT element was linked to was updated automatically: The above example is obviously trivially simple.  Instead of displaying the new values of the contact object with a JavaScript alert, you can imagine instead calling a web-service to save the object to a database. The benefit of data linking is that it enables you to focus on your data and frees you from the mechanics of keeping your UI and data in sync. Converters The current data linking proposal also supports a feature called converters. A converter enables you to easily convert the value of a property during data linking. For example, imagine that you want to represent phone numbers in a standard way with the “contact” object phone property. In particular, you don’t want to include special characters such as ()- in the phone number - instead you only want digits and nothing else. In that case, you can wire-up a converter to convert the value of an INPUT element into this format using the code below: Notice above how a converter function is being passed to the linkFrom() method used to link the phone property of the “contact” object with the value of the phone INPUT element. This convertor function strips any non-numeric characters from the INPUT element before updating the phone property.  Now, if you enter the phone number (206) 555-9999 into the phone input field then the value 2065559999 is assigned to the phone property of the contact object: You can also use a converter in the opposite direction also. For example, you can apply a standard phone format string when displaying a phone number from a phone property. Combining Templating and Data Linking Our goal in submitting these two proposals for templating and data linking is to make it easier to work with data when building websites and applications with jQuery. Templating makes it easier to display a list of database records retrieved from a database through an Ajax call. Data linking makes it easier to keep the data and user interface in sync for update scenarios. Currently, we are working on an extension of the data linking proposal to support declarative data linking. We want to make it easy to take advantage of data linking when using a template to display data. For example, imagine that you are using the following template to display an array of product objects: Notice the {{link name}} and {{link price}} expressions. These expressions enable declarative data linking between the SPAN elements and properties of the product objects. The current jQuery templating prototype supports extending its syntax with custom template commands. In this case, we are extending the default templating syntax with a custom template command named “link”. The benefit of using data linking with the above template is that the SPAN elements will be automatically updated whenever the underlying “product” data is updated.  Declarative data linking also makes it easier to create edit and insert forms. For example, you could create a form for editing a product by using declarative data linking like this: Whenever you change the value of the INPUT elements in a template that uses declarative data linking, the underlying JavaScript data object is automatically updated. Instead of needing to write code to scrape the HTML form to get updated values, you can instead work with the underlying data directly – making your client-side code much cleaner and simpler. Downloading Working Code Examples of the Above Scenarios You can download this .zip file to get with working code examples of the above scenarios.  The .zip file includes 4 static HTML page: Listing1_Templating.htm – Illustrates basic templating. Listing2_TemplatingConditionals.htm – Illustrates templating with the use of the if and each template commands. Listing3_DataLinking.htm – Illustrates data linking. Listing4_Converters.htm – Illustrates using a converter with data linking. You can un-zip the file to the file-system and then run each page to see the concepts in action. Summary We are excited to be able to begin participating within the open-source jQuery project.  We’ve received lots of encouraging feedback in response to our first two proposals, and we will continue to actively contribute going forward.  These features will hopefully make it easier for all developers (including ASP.NET developers) to build great Ajax applications. Hope this helps, Scott P.S. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu]

    Read the article

  • Implementing a generic repository for WCF data services

    - by cibrax
    The repository implementation I am going to discuss here is not exactly what someone would call repository in terms of DDD, but it is an abstraction layer that becomes handy at the moment of unit testing the code around this repository. In other words, you can easily create a mock to replace the real repository implementation. The WCF Data Services update for .NET 3.5 introduced a nice feature to support two way data bindings, which is very helpful for developing WPF or Silverlight based application but also for implementing the repository I am going to talk about. As part of this feature, the WCF Data Services Client library introduced a new collection DataServiceCollection<T> that implements INotifyPropertyChanged to notify the data context (DataServiceContext) about any change in the association links. This means that it is not longer necessary to manually set or remove the links in the data context when an item is added or removed from a collection. Before having this new collection, you basically used the following code to add a new item to a collection. Order order = new Order {   Name = "Foo" }; OrderItem item = new OrderItem {   Name = "bar",   UnitPrice = 10,   Qty = 1 }; var context = new OrderContext(); context.AddToOrders(order); context.AddToOrderItems(item); context.SetLink(item, "Order", order); context.SaveChanges(); Now, thanks to this new collection, everything is much simpler and similar to what you have in other ORMs like Entity Framework or L2S. Order order = new Order {   Name = "Foo" }; OrderItem item = new OrderItem {   Name = "bar",   UnitPrice = 10,   Qty = 1 }; order.Items.Add(item); var context = new OrderContext(); context.AddToOrders(order); context.SaveChanges(); In order to use this new feature, you first need to enable V2 in the data service, and then use some specific arguments in the datasvcutil tool (You can find more information about this new feature and how to use it in this post). DataSvcUtil /uri:"http://localhost:3655/MyDataService.svc/" /out:Reference.cs /dataservicecollection /version:2.0 Once you use those two arguments, the generated proxy classes will use DataServiceCollection<T> rather than a simple ObjectCollection<T>, which was the default collection in V1. There are some aspects that you need to know to use this feature correctly. 1. All the entities retrieved directly from the data context with a query track the changes and report those to the data context automatically. 2. A entity created with “new” does not track any change in the properties or associations. In order to enable change tracking in this entity, you need to do the following trick. public Order CreateOrder() {   var collection = new DataServiceCollection<Order>(this.context);   var order = new Order();   collection.Add(order);   return order; } You basically need to create a collection, and add the entity to that collection with the “Add” method to enable change tracking on that entity. 3. If you need to attach an existing entity (For example, if you created the entity with the “new” operator rather than retrieving it from the data context with a query) to a data context for tracking changes, you can use the “Load” method in the DataServiceCollection. var order = new Order {   Id = 1 }; var collection = new DataServiceCollection<Order>(this.context); collection.Load(order); In this case, the order with Id = 1 must exist on the data source exposed by the Data service. Otherwise, you will get an error because the entity did not exist. These cool extensions methods discussed by Stuart Leeks in this post to replace all the magic strings in the “Expand” operation with Expression Trees represent another feature I am going to use to implement this generic repository. Thanks to these extension methods, you could replace the following query with magic strings by a piece of code that only uses expressions. Magic strings, var customers = dataContext.Customers .Expand("Orders")         .Expand("Orders/Items") Expressions, var customers = dataContext.Customers .Expand(c => c.Orders.SubExpand(o => o.Items)) That query basically returns all the customers with their orders and order items. Ok, now that we have the automatic change tracking support and the expression support for explicitly loading entity associations, we are ready to create the repository. The interface for this repository looks like this,public interface IRepository { T Create<T>() where T : new(); void Update<T>(T entity); void Delete<T>(T entity); IQueryable<T> RetrieveAll<T>(params Expression<Func<T, object>>[] eagerProperties); IQueryable<T> Retrieve<T>(Expression<Func<T, bool>> predicate, params Expression<Func<T, object>>[] eagerProperties); void Attach<T>(T entity); void SaveChanges(); } The Retrieve and RetrieveAll methods are used to execute queries against the data service context. While both methods receive an array of expressions to load associations explicitly, only the Retrieve method receives a predicate representing the “where” clause. The following code represents the final implementation of this repository.public class DataServiceRepository: IRepository { ResourceRepositoryContext context; public DataServiceRepository() : this (new DataServiceContext()) { } public DataServiceRepository(DataServiceContext context) { this.context = context; } private static string ResolveEntitySet(Type type) { var entitySetAttribute = (EntitySetAttribute)type.GetCustomAttributes(typeof(EntitySetAttribute), true).FirstOrDefault(); if (entitySetAttribute != null) return entitySetAttribute.EntitySet; return null; } public T Create<T>() where T : new() { var collection = new DataServiceCollection<T>(this.context); var entity = new T(); collection.Add(entity); return entity; } public void Update<T>(T entity) { this.context.UpdateObject(entity); } public void Delete<T>(T entity) { this.context.DeleteObject(entity); } public void Attach<T>(T entity) { var collection = new DataServiceCollection<T>(this.context); collection.Load(entity); } public IQueryable<T> Retrieve<T>(Expression<Func<T, bool>> predicate, params Expression<Func<T, object>>[] eagerProperties) { var entitySet = ResolveEntitySet(typeof(T)); var query = context.CreateQuery<T>(entitySet); foreach (var e in eagerProperties) { query = query.Expand(e); } return query.Where(predicate); } public IQueryable<T> RetrieveAll<T>(params Expression<Func<T, object>>[] eagerProperties) { var entitySet = ResolveEntitySet(typeof(T)); var query = context.CreateQuery<T>(entitySet); foreach (var e in eagerProperties) { query = query.Expand(e); } return query; } public void SaveChanges() { this.context.SaveChanges(SaveChangesOptions.Batch); } } For instance, you can use the following code to retrieve customers with First name equal to “John”, and all their orders in a single call. repository.Retrieve<Customer>(    c => c.FirstName == “John”, //Where    c => c.Orders.SubExpand(o => o.Items)); In case, you want to have some pre-defined queries that you are going to use across several places, you can put them in an specific class. public static class CustomerQueries {   public static Expression<Func<Customer, bool>> LastNameEqualsTo(string lastName)   {     return c => c.LastName == lastName;   } } And then, use it with the repository. repository.Retrieve<Customer>(    CustomerQueries.LastNameEqualsTo("foo"),    c => c.Orders.SubExpand(o => o.Items));

    Read the article

  • Demystifying Silverlight Dependency Properties

    - by dwahlin
    I have the opportunity to teach a lot of people about Silverlight (amongst other technologies) and one of the topics that definitely confuses people initially is the concept of dependency properties. I confess that when I first heard about them my initial thought was “Why do we need a specialized type of property?” While you can certainly use standard CLR properties in Silverlight applications, Silverlight relies heavily on dependency properties for just about everything it does behind the scenes. In fact, dependency properties are an essential part of the data binding, template, style and animation functionality available in Silverlight. They simply back standard CLR properties. In this post I wanted to put together a (hopefully) simple explanation of dependency properties and why you should care about them if you’re currently working with Silverlight or looking to move to it.   What are Dependency Properties? XAML provides a great way to define layout controls, user input controls, shapes, colors and data binding expressions in a declarative manner. There’s a lot that goes on behind the scenes in order to make XAML work and an important part of that magic is the use of dependency properties. If you want to bind data to a property, style it, animate it or transform it in XAML then the property involved has to be a dependency property to work properly. If you’ve ever positioned a control in a Canvas using Canvas.Left or placed a control in a specific Grid row using Grid.Row then you’ve used an attached property which is a specialized type of dependency property. Dependency properties play a key role in XAML and the overall Silverlight framework. Any property that you bind, style, template, animate or transform must be a dependency property in Silverlight applications. You can programmatically bind values to controls and work with standard CLR properties, but if you want to use the built-in binding expressions available in XAML (one of my favorite features) or the Binding class available through code then dependency properties are a necessity. Dependency properties aren’t needed in every situation, but if you want to customize your application very much you’ll eventually end up needing them. For example, if you create a custom user control and want to expose a property that consumers can use to change the background color, you have to define it as a dependency property if you want bindings, styles and other features to be available for use. Now that the overall purpose of dependency properties has been discussed let’s take a look at how you can create them. Creating Dependency Properties When .NET first came out you had to write backing fields for each property that you defined as shown next: Brush _ScheduleBackground; public Brush ScheduleBackground { get { return _ScheduleBackground; } set { _ScheduleBackground = value; } } Although .NET 2.0 added auto-implemented properties (for example: public Brush ScheduleBackground { get; set; }) where the compiler would automatically generate the backing field used by get and set blocks, the concept is still the same as shown in the above code; a property acts as a wrapper around a field. Silverlight dependency properties replace the _ScheduleBackground field shown in the previous code and act as the backing store for a standard CLR property. The following code shows an example of defining a dependency property named ScheduleBackgroundProperty: public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null);   Looking through the code the first thing that may stand out is that the definition for ScheduleBackgroundProperty is marked as static and readonly and that the property appears to be of type DependencyProperty. This is a standard pattern that you’ll use when working with dependency properties. You’ll also notice that the property explicitly adds the word “Property” to the name which is another standard you’ll see followed. In addition to defining the property, the code also makes a call to the static DependencyProperty.Register method and passes the name of the property to register (ScheduleBackground in this case) as a string. The type of the property, the type of the class that owns the property and a null value (more on the null value later) are also passed. In this example a class named Scheduler acts as the owner. The code handles registering the property as a dependency property with the call to Register(), but there’s a little more work that has to be done to allow a value to be assigned to and retrieved from the dependency property. The following code shows the complete code that you’ll typically use when creating a dependency property. You can find code snippets that greatly simplify the process of creating dependency properties out on the web. The MVVM Light download available from http://mvvmlight.codeplex.com comes with built-in dependency properties snippets as well. public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null); public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } The standard CLR property code shown above should look familiar since it simply wraps the dependency property. However, you’ll notice that the get and set blocks call GetValue and SetValue methods respectively to perform the appropriate operation on the dependency property. GetValue and SetValue are members of the DependencyObject class which is another key component of the Silverlight framework. Silverlight controls and classes (TextBox, UserControl, CompositeTransform, DataGrid, etc.) ultimately derive from DependencyObject in their inheritance hierarchy so that they can support dependency properties. Dependency properties defined in Silverlight controls and other classes tend to follow the pattern of registering the property by calling Register() and then wrapping the dependency property in a standard CLR property (as shown above). They have a standard property that wraps a registered dependency property and allows a value to be assigned and retrieved. If you need to expose a new property on a custom control that supports data binding expressions in XAML then you’ll follow this same pattern. Dependency properties are extremely useful once you understand why they’re needed and how they’re defined. Detecting Changes and Setting Defaults When working with dependency properties there will be times when you want to assign a default value or detect when a property changes so that you can keep the user interface in-sync with the property value. Silverlight’s DependencyProperty.Register() method provides a fourth parameter that accepts a PropertyMetadata object instance. PropertyMetadata can be used to hook a callback method to a dependency property. The callback method is called when the property value changes. PropertyMetadata can also be used to assign a default value to the dependency property. By assigning a value of null for the final parameter passed to Register() you’re telling the property that you don’t care about any changes and don’t have a default value to apply. Here are the different constructor overloads available on the PropertyMetadata class: PropertyMetadata Constructor Overload Description PropertyMetadata(Object) Used to assign a default value to a dependency property. PropertyMetadata(PropertyChangedCallback) Used to assign a property changed callback method. PropertyMetadata(Object, PropertyChangedCalback) Used to assign a default property value and a property changed callback.   There are many situations where you need to know when a dependency property changes or where you want to apply a default. Performing either task is easily accomplished by creating a new instance of the PropertyMetadata class and passing the appropriate values to its constructor. The following code shows an enhanced version of the initial dependency property code shown earlier that demonstrates these concepts: public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), new PropertyMetadata(new SolidColorBrush(Colors.LightGray), ScheduleBackgroundChanged)); private static void ScheduleBackgroundChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var scheduler = d as Scheduler; scheduler.Background = e.NewValue as Brush; } The code wires ScheduleBackgroundProperty to a property change callback method named ScheduleBackgroundChanged. What’s interesting is that this callback method is static (as is the dependency property) so it gets passed the instance of the object that owns the property that has changed (otherwise we wouldn’t be able to get to the object instance). In this example the dependency object is cast to a Scheduler object and its Background property is assigned to the new value of the dependency property. The code also handles assigning a default value of LightGray to the dependency property by creating a new instance of a SolidColorBrush. To Sum Up In this post you’ve seen the role of dependency properties and how they can be defined in code. They play a big role in XAML and the overall Silverlight framework. You can think of dependency properties as being replacements for fields that you’d normally use with standard CLR properties. In addition to a discussion on how dependency properties are created, you also saw how to use the PropertyMetadata class to define default dependency property values and hook a dependency property to a callback method. The most important thing to understand with dependency properties (especially if you’re new to Silverlight) is that they’re needed if you want a property to support data binding, animations, transformations and styles properly. Any time you create a property on a custom control or user control that has these types of requirements you’ll want to pick a dependency property over of a standard CLR property with a backing field. There’s more that can be covered with dependency properties including a related property called an attached property….more to come.

    Read the article

  • Building Queries Systematically

    - by Jeremy Smyth
    The SQL language is a bit like a toolkit for data. It consists of lots of little fiddly bits of syntax that, taken together, allow you to build complex edifices and return powerful results. For the uninitiated, the many tools can be quite confusing, and it's sometimes difficult to decide how to go about the process of building non-trivial queries, that is, queries that are more than a simple SELECT a, b FROM c; A System for Building Queries When you're building queries, you could use a system like the following:  Decide which fields contain the values you want to use in our output, and how you wish to alias those fields Values you want to see in your output Values you want to use in calculations . For example, to calculate margin on a product, you could calculate price - cost and give it the alias margin. Values you want to filter with. For example, you might only want to see products that weigh more than 2Kg or that are blue. The weight or colour columns could contain that information. Values you want to order by. For example you might want the most expensive products first, and the least last. You could use the price column in descending order to achieve that. Assuming the fields you've picked in point 1 are in multiple tables, find the connections between those tables Look for relationships between tables and identify the columns that implement those relationships. For example, The Orders table could have a CustomerID field referencing the same column in the Customers table. Sometimes the problem doesn't use relationships but rests on a different field; sometimes the query is looking for a coincidence of fact rather than a foreign key constraint. For example you might have sales representatives who live in the same state as a customer; this information is normally not used in relationships, but if your query is for organizing events where sales representatives meet customers, it's useful in that query. In such a case you would record the names of columns at either end of such a connection. Sometimes relationships require a bridge, a junction table that wasn't identified in point 1 above but is needed to connect tables you need; these are used in "many-to-many relationships". In these cases you need to record the columns in each table that connect to similar columns in other tables. Construct a join or series of joins using the fields and tables identified in point 2 above. This becomes your FROM clause. Filter using some of the fields in point 1 above. This becomes your WHERE clause. Construct an ORDER BY clause using values from point 1 above that are relevant to the desired order of the output rows. Project the result using the remainder of the fields in point 1 above. This becomes your SELECT clause. A Worked Example   Let's say you want to query the world database to find a list of countries (with their capitals) and the change in GNP, using the difference between the GNP and GNPOld columns, and that you only want to see results for countries with a population greater than 100,000,000. Using the system described above, we could do the following:  The Country.Name and City.Name columns contain the name of the country and city respectively.  The change in GNP comes from the calculation GNP - GNPOld. Both those columns are in the Country table. This calculation is also used to order the output, in descending order To see only countries with a population greater than 100,000,000, you need the Population field of the Country table. There is also a Population field in the City table, so you'll need to specify the table name to disambiguate. You can also represent a number like 100 million as 100e6 instead of 100000000 to make it easier to read. Because the fields come from the Country and City tables, you'll need to join them. There are two relationships between these tables: Each city is hosted within a country, and the city's CountryCode column identifies that country. Also, each country has a capital city, whose ID is contained within the country's Capital column. This latter relationship is the one to use, so the relevant columns and the condition that uses them is represented by the following FROM clause:  FROM Country JOIN City ON Country.Capital = City.ID The statement should only return countries with a population greater than 100,000,000. Country.Population is the relevant column, so the WHERE clause becomes:  WHERE Country.Population > 100e6  To sort the result set in reverse order of difference in GNP, you could use either the calculation, or the position in the output (it's the third column): ORDER BY GNP - GNPOld or ORDER BY 3 Finally, project the columns you wish to see by constructing the SELECT clause: SELECT Country.Name AS Country, City.Name AS Capital,        GNP - GNPOld AS `Difference in GNP`  The whole statement ends up looking like this:  mysql> SELECT Country.Name AS Country, City.Name AS Capital, -> GNP - GNPOld AS `Difference in GNP` -> FROM Country JOIN City ON Country.Capital = City.ID -> WHERE Country.Population > 100e6 -> ORDER BY 3 DESC; +--------------------+------------+-------------------+ | Country            | Capital    | Difference in GNP | +--------------------+------------+-------------------+ | United States | Washington | 399800.00 | | China | Peking | 64549.00 | | India | New Delhi | 16542.00 | | Nigeria | Abuja | 7084.00 | | Pakistan | Islamabad | 2740.00 | | Bangladesh | Dhaka | 886.00 | | Brazil | Brasília | -27369.00 | | Indonesia | Jakarta | -130020.00 | | Russian Federation | Moscow | -166381.00 | | Japan | Tokyo | -405596.00 | +--------------------+------------+-------------------+ 10 rows in set (0.00 sec) Queries with Aggregates and GROUP BY While this system might work well for many queries, it doesn't cater for situations where you have complex summaries and aggregation. For aggregation, you'd start with choosing which columns to view in the output, but this time you'd construct them as aggregate expressions. For example, you could look at the average population, or the count of distinct regions.You could also perform more complex aggregations, such as the average of GNP per head of population calculated as AVG(GNP/Population). Having chosen the values to appear in the output, you must choose how to aggregate those values. A useful way to think about this is that every aggregate query is of the form X, Y per Z. The SELECT clause contains the expressions for X and Y, as already described, and Z becomes your GROUP BY clause. Ordinarily you would also include Z in the query so you see how you are grouping, so the output becomes Z, X, Y per Z.  As an example, consider the following, which shows a count of  countries and the average population per continent:  mysql> SELECT Continent, COUNT(Name), AVG(Population)     -> FROM Country     -> GROUP BY Continent; +---------------+-------------+-----------------+ | Continent     | COUNT(Name) | AVG(Population) | +---------------+-------------+-----------------+ | Asia          |          51 |   72647562.7451 | | Europe        |          46 |   15871186.9565 | | North America |          37 |   13053864.8649 | | Africa        |          58 |   13525431.0345 | | Oceania       |          28 |    1085755.3571 | | Antarctica    |           5 |          0.0000 | | South America |          14 |   24698571.4286 | +---------------+-------------+-----------------+ 7 rows in set (0.00 sec) In this case, X is the number of countries, Y is the average population, and Z is the continent. Of course, you could have more fields in the SELECT clause, and  more fields in the GROUP BY clause as you require. You would also normally alias columns to make the output more suited to your requirements. More Complex Queries  Queries can get considerably more interesting than this. You could also add joins and other expressions to your aggregate query, as in the earlier part of this post. You could have more complex conditions in the WHERE clause. Similarly, you could use queries such as these in subqueries of yet more complex super-queries. Each technique becomes another tool in your toolbox, until before you know it you're writing queries across 15 tables that take two pages to write out. But that's for another day...

    Read the article

  • MVC2 and MVC Futures causing RedirectToAction issues

    - by Darragh
    I've been trying to get the strongly typed version of RedirectToAction from the MVC Futures project to work, but I've been getting no where. Below are the steps I've followed, and the errors I've encountered. Any help is much appreciated. I created a new MVC2 app and changed the About action on the HomeController to redirect to the Index page. Return RedirectToAction("Index") However, I wanted to use the strongly typed extensions, so I downloaded the MVC Futures from CodePlex and added a reference to Microsoft.Web.Mvc to my project. I addded the following "import" statement to the top of HomeContoller.vb Imports Microsoft.Web.Mvc I commented out the above RedirectToAction and added the following line: Return RedirectToAction(Of HomeController)(Function(c) c.Index()) So far, so good. However, I noticed if I uncomment out the first (non Generic) RedirectToAction, it was now causing the following compile error: Error 1 Overload resolution failed because no accessible 'RedirectToAction' can be called with these arguments: Extension method 'Public Function RedirectToAction(Of TController)(action As System.Linq.Expressions.Expression(Of System.Action(Of TController))) As System.Web.Mvc.RedirectToRouteResult' defined in 'Microsoft.Web.Mvc.ControllerExtensions': Data type(s) of the type parameter(s) cannot be inferred from these arguments. Specifying the data type(s) explicitly might correct this error. Extension method 'Public Function RedirectToAction(action As System.Linq.Expressions.Expression(Of System.Action(Of HomeController))) As System.Web.Mvc.RedirectToRouteResult' defined in 'Microsoft.Web.Mvc.ControllerExtensions': Value of type 'String' cannot be converted to 'System.Linq.Expressions.Expression(Of System.Action(Of mvc2test1.HomeController))'. Even though intelli-sense was showing 8 overloads (the original 6 non-generic overloads, plus the 2 new generic overloads from the Futures assembly), it seems when trying to complie the code, the compiler would only 'find' the 2 non-gneneric extension methods from the Futures assessmbly. I thought this might be an issue that I was using conflicting versions of the MVC2 assembly, and the futures assembly, so I added MvcDiaganotics.aspx from the Futures download to my project and everytyhing looked correct: ASP.NET MVC Assembly Information (System.Web.Mvc.dll) Assembly version: ASP.NET MVC 2 RTM (2.0.50217.0) Full name: System.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35 Code base: file:///C:/WINDOWS/assembly/GAC_MSIL/System.Web.Mvc/2.0.0.0__31bf3856ad364e35/System.Web.Mvc.dll Deployment: GAC-deployed ASP.NET MVC Futures Assembly Information (Microsoft.Web.Mvc.dll) Assembly version: ASP.NET MVC 2 RTM Futures (2.0.50217.0) Full name: Microsoft.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null Code base: file:///xxxx/bin/Microsoft.Web.Mvc.DLL Deployment: bin-deployed This is driving me crazy! Becuase I thought this might be some VB issue, I created a new MVC2 project using C# and tried the same as above. I added the following "using" statement to the top of HomeController.cs using Microsoft.Web.Mvc; This time, in the About action method, I could only manage to call the non-generic RedirectToAction by typing the full commmand as follows: return Microsoft.Web.Mvc.ControllerExtensions.RedirectToAction<HomeController>(this, c => c.Index()); Even though I had a "using" statement at the top of the class, if I tried to call the non-generic RedirectToAction as follows: return RedirectToAction<HomeController>(c => c.Index()); I would get the following compile error: Error 1 The non-generic method 'System.Web.Mvc.Controller.RedirectToAction(string)' cannot be used with type arguments What gives? It's not like I'm trying to do anything out of the ordinary. It's a simple vanilla MVC2 project with only a reference to the Futures assembly. I'm hoping that I've missed out something obvious, but I've been scratching my head for too long, so I figured I'd seek some assisstance. If anyone's managed to get this simple scenario working (in VB and/or C#) could they please let me know what, if anything, they did differently? Thanks!

    Read the article

  • FluentPath: a fluent wrapper around System.IO

    - by Bertrand Le Roy
    .NET is now more than eight years old, and some of its APIs got old with more grace than others. System.IO in particular has always been a little awkward. It’s mostly static method calls (Path.*, Directory.*, etc.) and some stateful classes (DirectoryInfo, FileInfo). In these APIs, paths are plain strings. Since .NET v1, lots of good things happened to C#: lambda expressions, extension methods, optional parameters to name just a few. Outside of .NET, other interesting things happened as well. For example, you might have heard about this JavaScript library that had some success introducing a fluent API to handle the hierarchical structure of the HTML DOM. You know? jQuery. Knowing all that, every time I need to use the stuff in System.IO, I cringe. So I thought I’d just build a more modern wrapper around it. I used a fluent API based on an essentially immutable Path type and an enumeration of such path objects. To achieve the fluent style, a healthy dose of lambda expressions is being used to act on the objects. Without further ado, here’s an example of what you can do with the new API. In that example, I’m using a Media Center extension that wants all video files to be in their own folder. For that, I need a small tool that creates directories for each video file and moves the files in there. Here’s the code for it: Path.Get(args[0]) .Select(p => p.Extension == ".avi" || p.Extension == ".m4v" || p.Extension == ".wmv" || p.Extension == ".mp4" || p.Extension == ".dvr-ms" || p.Extension == ".mpg" || p.Extension == ".mkv") .CreateDirectory(p => p.Parent .Combine(p.FileNameWithoutExtension)) .Previous() .Move(p => p.Parent .Combine(p.FileNameWithoutExtension) .Combine(p.FileName)); This code creates a Path object pointing at the path pointed to by the first command line argument of my executable. It then selects all video files. After that, it creates directories that have the same names as each of the files, but without their extension. The result of that operation is the set of created directories. We can now get back to the previous set using the Previous method, and finally we can move each of the files in the set to the corresponding freshly created directory, whose name is the combination of the parent directory and the filename without extension. The new fluent path library covers a fair part of what’s in System.IO in a single, convenient API. Check it out, I hope you’ll enjoy it. Suggestions are more than welcome. For example, should I make this its own project on CodePlex or is this informal style just OK? Anything missing that you’d like to see? Is there a specific example you’d like to see expressed with the new API? Bugs? The code can be downloaded from here (this is under a new BSD license): http://weblogs.asp.net/blogs/bleroy/Samples/FluentPath.zip

    Read the article

  • Announcement: Employee Info Starter Kit (v5.0) is Released

    - by Mohammad Ashraful Alam
    Ever wanted to have a simple jQuery menu bound with ASP.NET web site map file? Ever wanted to have cool css design stuffs implemented on your ASP.NET data bound controls? Ever wanted to let Visual Studio generate logical layers for you, which can be easily tested, customized and bound with ASP.NET data controls? If your answers with respect to above questions are ‘yes’, then you will probably happy to try out latest release (v5.0) of Employee Starter Kit, which is intended to address different types of real world challenges faced by web application developers when performing common CRUD operations. Using a single database table ‘Employee’, the current release illustrates how to utilize Microsoft ASP.NET 4.0 Web Form Data Controls, Entity Framework 4.0 and Visual Studio 2010 effectively in that context. Employee Info Starter Kit is an open source ASP.NET project template that is highly influenced by the concept ‘Pareto Principle’ or 80-20 rule, where it is targeted to enable a web developer to gain 80% productivity with 20% of effort with respect to learning curve and production. This project template is titled as “Employee Info Starter Kit”, which was initially hosted on Microsoft Code Gallery and been downloaded 1, 50,000+ of copies afterword.  The latest version of this starter kit is hosted in Codeplex. Release Highlights User End Functional Specification The user end functionalities of this starter kit are pretty simple and straight forward that are focused in to perform CRUD operation on employee records as described below. Creating a new employee record Read existing employee records Update an existing employee record Delete existing employee records Architectural Overview Simple 3 layer architecture (presentation, business logic and data access layer) ASP.NET web form based user interface Built-in code generators for logical layers, implemented in Visual Studio default template engine (T4) Built-in Entity Framework entities as business entities (aka: data containers) Data Mapper design pattern based Data Access Layer, implemented in C# and Entity Framework Domain Model design pattern based Business Logic Layer, implemented in C# Object Model for Cross Cutting Concerns (such as validation, logging, exception management) Minimum System Requirements Visual Studio 2010 (Web Developer Express Edition) or higher Sql Server 2005 (Express Edition) or higher Technology Utilized Programming Languages/Scripts Browser side: JavaScript Web server side: C# Code Generation Template: T-4 Template Frameworks .NET Framework 4.0 JavaScript Framework: jQuery 1.5.1 CSS Framework: 960 grid system .NET Framework Components .NET Entity Framework .NET Optional/Named Parameters (new in .net 4.0) .NET Tuple (new in .net 4.0) .NET Extension Method .NET Lambda Expressions .NET Anonymous Type .NET Query Expressions .NET Automatically Implemented Properties .NET LINQ .NET Partial Classes and Methods .NET Generic Type .NET Nullable Type ASP.NET Meta Description and Keyword Support (new in .net 4.0) ASP.NET Routing (new in .net 4.0) ASP.NET Grid View (CSS support for sorting - (new in .net 4.0)) ASP.NET Repeater ASP.NET Form View ASP.NET Login View ASP.NET Site Map Path ASP.NET Skin ASP.NET Theme ASP.NET Master Page ASP.NET Object Data Source ASP.NET Role Based Security Getting Started Guide To see Employee Info Starter Kit in action is pretty easy! Download the latest version. Extract the file. From the extracted folder click the C# project file (Eisk.Web.csproj) to open it in Visual Studio 2010 Hit Ctrl+F5! The current release (v5.0) of Employee Info Starter Kit is properly packaged, fully documented and well tested. If you want to learn more about it in details, just check the following links: Release Home Page Installation Walkthrough Hand on Coding Walkthrough Technical Reference Enjoy!

    Read the article

< Previous Page | 23 24 25 26 27 28 29 30 31 32 33 34  | Next Page >