Search Results

Search found 24922 results on 997 pages for 'programming real life'.

Page 273/997 | < Previous Page | 269 270 271 272 273 274 275 276 277 278 279 280  | Next Page >

  • 27 vidéos techniques des Qt DevDays 2005, 2006 et 2008 sont désormais rendues publiques par Qt eLear

    L'équipe eLearning de Qt a depuis quelques temps cherché à récupérer des vidéos techniques issues des conférences des anciens QtDevDays dans l'optique de les faire partager à tout le monde. C'est aujourd'hui chose faite avec la publication en ligne de 27 présentations techniques ce qui correspond à 22h30min de vidéos. Les sujets traités sont toujours valides aujourd'hui, même si le framework a évolué au fil des années. 2005 :All About Qt Widgets Effective Graphics Programming Practical Model/View Programming Threaded Programming with Qt - Good Practise Writing Custom Styles with QStyle Writing plugin applications with Qt 2006 :Advanced Item Views...

    Read the article

  • Windows Phone App with 4SQ

    - by Nuttanon Pornpipak
    I'm want to create a my own Coffee shop app for semester's project. It's Windows Phone App. The App can i.e. view who is check-in here now , view menu , view photo by using 4SQ Endpoint APIs. And my problem is I don't know how to start it...which book i should read about C# and I don't know which knowledge (keyword) should i google it i.e. GET POST METHOD , JSON I ever used 4SQ Endpoint APIs once with javascript (jquery) $.ajax{(.....)} to get data from 4SQ Endpoint APIs So I googled and found JSON.NET Class but I don't know how to use it because i never programming in C# I'm just begin programming. I can programming in C only. Thank you Sorry for my bad grammar

    Read the article

  • For asp.net mvc is this a three tiered solution?

    - by bbb
    I am a asp.net mvc programmer and if I want to start a project I do this: I make a class library named Model for my models. I make a class library named Infrastructure.Repository for database processes I make a class library named Application for business logic layer And finally I make a MVC project for the UI. But now some things are confusing me. Am I using 3-tier programming? If yes so what is n-tier programming and which one is better? If no so what is 3-tier programming? Some where I see that the tiers namings are DAL and BIZ. Which one is correct according to the naming convention?

    Read the article

  • Which C# Book to take?

    - by Fischkopf
    I was searching for a book to learn C#, but now i'm kinda stuck. I found many people asking the same question, and many people gave answers, but there are so many books about C# that it is really hard to decide which one to take. Now i reduced my choice on two books, but I just can't decide between them. Namely, there are: Programming C# 4.0 and C# 4.0 In A Nutshell The first thing I want to know, are these good choices? I'm not completely new to programming, but I just didn't find the right language until know, but i think C# is the one I was searching for. I know all the bassic stuff from Delphi/Java/Python so I think i'm not a complete beginner in programming. Is there anyone out there that read both books and can cleary explain whats the difference between them? I haven't found many reviews and sort of, so I just don't know which one to chose. Or is there any book that is better suiting me?

    Read the article

  • "Windows detected a hard drive" issue in Windows 7 x64

    - by Jasiu
    I upgraded to the OCZ-Agility3 120GB from a 60 OCZ Vertex2 SSD. I cloned the drive from the Vertex to the new Agility. Everything seemed to have gone well and have not had any problems. Recently in the passed month I have gotten this error: I downloaded teh OCZToolboxMP and ran the SMART utility and don't see anything wrong: SMART READ DATA ModelNumber : OCZ-AGILITY3 Serial Number : OCZ-Y1945X77438P4NU6 WWN : 5-e8-3a-97 ebea5ba76 Revision: 10 Attributes List 1: SSD Raw Read Error Rate Normalized Rate: 70 total ECC and RAISE errors 5: SSD Retired Block Count Reserve blocks remaining: 100% 9: SSD Power-On Hours Total hours power on: 968 12: SSD Power Cycle Count Count of power on/off cycles: 28 171: SSD Program Fail Count Total number of Flash program operation failures: 0 172: SSD Erase Fail Count Total number of Flash erase operation failures: 0 174: SSD Unexpected power loss count Total number of unexpected power loss: 11 177: SSD Wear Range Delta Delta between most-worn and least-worn Flash blocks: 0 181: SSD Program Fail Count Total number of Flash program operation failures: 0 182: SSD Erase Fail Count Total number of Flash erase operation failures: 0 187: SSD Reported Uncorrectable Errors Uncorrectable RAISE errors reported to the host for all data access: 4145 194: SSD Temperature Monitoring Current: 30 High: 30 Low: 30 195: SSD ECC On-the-fly Count Normalized Rate: 120 196: SSD Reallocation Event Count Total number of reallocated Flash blocks: 100 201: SSD Uncorrectable Soft Read Error Rate Normalized Rate: 120 204: SSD Soft ECC Correction Rate (RAISE) Normalized Rate: 120 230: SSD Life Curve Status Current state of drive operation based upon the Life Curve: 100 231: SSD Life Left Approximate SDD life Remaining: 100% 241: SSD Lifetime writes from host lifetime writes 893 GB 242: SSD Lifetime reads from host lifetime reads 968 GB Does anyone have any ideas of what might be wrong and or how I can go about fixing this? Please let me know if there is other information I can provide. Thanks for your help Windows 7 x64 SP1 AMD Phenom II X4 940 8GB RAM

    Read the article

  • 2011 The Year of Awesomesauce

    - by MOSSLover
    So I was talking to one of my friends, Cathy Dew, and I’m wondering how to start out this post.  What kind of title should I put?  Somehow we’re just randomly throwing things out and this title pops into my head the one you see above. I woke up today to the buzz of a text message.  I spent New Years laying around until 3 am watching Warehouse 13 Episodes and drinking champagne.  It was one of the best New Year’s I spent with my boyfriend and my cat.  I figured I would sleep in until Noon, but ended up waking up around 11:15 to that text message buzz.  I guess my DE, Rachel Appel, had texted me “Happy New Years”, because Rachel is that kind of person.  I immediately proceeded to check my email.  I noticed my live account had a hit.  The account I rarely ever use had an email.  I sort of had that sinking suspicion I was going to get Silverlight MVP right?  So I open the email and something out of the blue happens it says “blah blah blah SharePoint Server MVP blah blah…”.  I’m sitting here a little confused what?  Really?  Just about when you give up on something the unexplained happens.  I am grateful for what I have every day. So let me tell you a story.  I was a senior in high school and it was December 31st, 1999.  A couple days prior my grandmother was complaining she had a cold and her assisted living facility was not going to let her see a doctor.  She claimed to be very sick.  New Year’s Eve Day 1999 my grandmother was rushed to the hospital sometime very early in the morning.  My uncle, my little brother, and myself were sitting in the waiting room eagerly awaiting news.  The Sydney Opera House was playing in the background as New Years 2000 for Australia was ringing in.  They come out and they tell us my grandmother has pneumonia.  She is in the ICU in critical condition.  Eventually time passes in the day and my parents take my brother and I home.  So in the car we had a huge fight that ended in the worst new years of my life.  The next 30 days were the worst 30 days of my life.  I went to the hospital every single day to do my homework and watch my grandmother.  Each day was a challenge mentally and physically as my grandmother berated me in her demented state.  On the 30th day my grandmother ended up in critical condition in the ICU maxed out on painkillers.  At approximately 3 am I hear my parents telling me they don’t want to wake me up and that my grandmother had passed away.  I must have cried more collectively that day than any other day in my life.  Every New Years Even since I have cried thinking about who she was and what she represented.  She was human looking back she wasn’t anything great, but she was one of the positive lights in my life.  Her and my dad and my other grandmother constantly tried to make me feel great when my mother was telling me the opposite.  I’d like to think since 2000 the past 11 years have been the best 11 years of my life.  I got out of a bad situation by using the tools that I had in front of me.  Good grades and getting into a college so I could aspire to be the person that I wanted to be.  I had some great people along the way to help me out. So getting to the point I like to help people further there lives somehow in the best way I can possibly help out.  This New Years was one of the great years that helped me forget the past and focus on the present.  It makes me realize how far I’ve come since high school and even since college.  The one thing I’ve been grappling with over the years is how do you feel good about making money while helping others out.  I’d to think I try really hard to give back to my community.  I could not have done what I did without other people’s help.  I sent out an email prior to even announcing I got the award today.  I can’t say I did everything on my own.  It’s not possible.  I had the help of others every step of the way.  I’m not sure if this makes sense but the award can’t just be mine.  This award is really owned by each and everyone who helped me get here.  From my dad to my grandmother to Rachel Appel to Bob Hunt to Jason Gallicchio to Cathy Dew to Mark Rackley to Johnny Ennion to Lee Brandt to Jeff Julian to John Alexander to Lori Gowin and to many others.  Thank you guys for all the help and support. Technorati Tags: SharePoint Community,MVP Award,Microsoft Community

    Read the article

  • Lesi, from Graduate Trainee to Territory Manager

    - by Maria Sandu
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 It’s the final year, University is now coming to an end. A new chapter now awaits my arrival. This part of my life is called “Looking for a Job”. With no form of experience whatsoever, getting a job at a well renowned IT company is something that every IT student dreams about. CV: v, Application form: v, interviews: v. Acceptance Call, “Lesi I’m pleased to inform you that you have been accepted to be part of the Oracle Graduate Program for 2012”. Life would never again be the same. Being Part of the Graduate Program Going into the Graduate program, I felt like a baby seeing candy for the first time. The Program gave me the platform to not only break in to the workplace but also to help launch my career. Over the next 3 months, I went through various trainings / workshops / events / coaching / mentorship sessions. Like a construction worker building a solid foundation for a beautifully designed architecture, a clear path to build my career was set. With training out the way, it was now time to start working closely with my team. For the rest of the year, it was all about selling. Sales, Pipeline, Forecasting and numbers soon became the common words in my career. As the saying goes, “once a sales man, always a sales man”. There was no turning back now, a career in sales was the new hustle in my life. I worked closely with my mentor & coach (Ibrahim) who was heading up Zambia and Malawi. This was to be one of my best moments in the program as I started engaging with customers and getting some hands on experience in the field. By the end of the program all the experience, hard work, training and resources came in handy as I was now ready and fully groomed to be a sales rep. Life after the Graduate Program I’m proud to say that now I’m a Territory Manager, heading up Malawi, selling Technology, Middleware & Applications across all industries. I’m part of the Transition Cluster Team, a powerful team headed by the seasoned Senior Director. As a Territory Manager my role is to push for coverage, to penetrate the market by selling Oracle from end- to- end to all accounts in Malawi. I now spend my days living out of a suitcase, moving from hotel to hotel, chasing after business in all areas of Malawi. It’s the life of a Sales Man and I’m enjoying every minute of it. I’m truly fortunate and grateful to have been part of such a wonderful graduate program. I owe my Sales career to the graduate program, and I truly hope that the program will continue to develop and to groom new talent amongst the youth of this world. If you're interested in joining the Graduate Program in South Africa keep an eye on our CampusatOracle Facebook Page page to get the latest updates! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Fast Data: Go Big. Go Fast.

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 For those of you who may have missed it, today’s second full day of Oracle OpenWorld 2012 started with a rumpus. Joe Tucci, from EMC outlined the human face of big data with real examples of how big data is transforming our world. And no not the usual tried-and-true weblog examples, but real stories about taxi cab drivers in Singapore using big data to better optimize their routes as well as folks just trying to get a better hair cut. Next we heard from Thomas Kurian who talked at length about the important platform characteristics of Oracle’s Cloud and more specifically Oracle’s expanded Cloud Services portfolio. Especially interesting to our integration customers are the messaging support for Oracle’s Cloud applications. What this means is that now Oracle’s Cloud applications have a lightweight integration fabric that on-premise applications can communicate to it via REST-APIs using Oracle SOA Suite. It’s an important element to our strategy at Oracle that supports this idea that whether your requirements are for private or public, Oracle has a solution in the Cloud for all of your applications and we give you more deployment choice than any vendor. If this wasn’t enough to get the juices flowing, later that morning we heard from Hasan Rizvi who outlined in his Fusion Middleware session the four most important enterprise imperatives: Social, Mobile, Cloud, and a brand new one: Fast Data. Today, Rizvi made an important step in the definition of this term to explain that he believes it’s a convergence of four essential technology elements: Event Processing for event filtering, business rules – with Oracle Event Processing Data Transformation and Loading - with Oracle Data Integrator Real-time replication and integration – with Oracle GoldenGate Analytics and data discovery – with Oracle Business Intelligence Each of these four elements can be considered (and architect-ed) together on a single integrated platform that can help customers integrate any type of data (structured, semi-structured) leveraging new styles of big data technologies (MapReduce, HDFS, Hive, NoSQL) to process more volume and variety of data at a faster velocity with greater results.  Fast data processing (and especially real-time) has always been our credo at Oracle with each one of these products in Fusion Middleware. For example, Oracle GoldenGate continues to be made even faster with the recent 11g R2 Release of Oracle GoldenGate which gives us some even greater optimization to Oracle Database with Integrated Capture, as well as some new heterogeneity capabilities. With Oracle Data Integrator with Big Data Connectors, we’re seeing much improved performance by running MapReduce transformations natively on Hadoop systems. And with Oracle Event Processing we’re seeing some remarkable performance with customers like NTT Docomo. Check out their upcoming session at Oracle OpenWorld on Wednesday to hear more how this customer is using Event processing and Big Data together. If you missed any of these sessions and keynotes, not to worry. There's on-demand versions available on the Oracle OpenWorld website. You can also checkout our upcoming webcast where we will outline some of these new breakthroughs in Data Integration technologies for Big Data, Cloud, and Real-time in more details. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";}

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Oracle Products Reflect Key Trends Shaping Enterprise 2.0

    - by kellsey.ruppel(at)oracle.com
    Following up on his predictions for 2011, we asked Enterprise 2.0 veteran Andy MacMillan to map out the ways Oracle solutions are at the forefront of industry trends--and how Oracle customers can benefit in the coming year. 1. Increase organizational awareness | Oracle WebCenter Suite Oracle WebCenter Suite provides a unique set of capabilities to drive organizational awareness. In particular, the expansive activity graph connects users directly to key enterprise applications, activities, and interests. In this way, applicable and critical business information is automatically and immediately visible--in the context of key tasks--via real-time dashboards and comprehensive reporting. Oracle WebCenter Suite also integrates key E2.0 services, such as blogs, wikis, and RSS feeds, into critical business processes, including back-office systems of records such as ERP and CRM systems. 2. Drive online customer engagement | Oracle Real-Time Decisions With more and more business being conducted on the Web, driving increased online customer engagement becomes a critical key to success. This effort is usually spearheaded by an increasingly important executive role, the Head of Online, who usually reports directly to the CMO. To help manage the Web experience online, Oracle solutions are driving a new kind of intelligent social commerce by combining Oracle Universal Content Management, Oracle WebCenter Services, and Oracle Real-Time Decisions with leading e-commerce and product recommendations. Oracle Real-Time Decisions provides multichannel recommendations for content, products, and services--including seamless integration across Web, mobile, and social channels. The result: happier customers, increased customer acquisition and retention, and improved critical success metrics such as shopping cart abandonment. 3. Easily build composite applications | Oracle Application Development Framework Thanks to the shared user experience strategy across Oracle Fusion Middleware, Oracle Fusion Applications and many other Oracle Applications, customers can easily create real, customer-specific composite applications using Oracle WebCenter Suite and Oracle Application Development Framework. Oracle Application Development Framework components provide modular user interface components that can build rich, social composite applications. In addition, a broad set of components spanning BPM, SOA, ECM, and beyond can be quickly and easily incorporated into composite applications. 4. Integrate records management into a global content platform | Oracle Enterprise Content Management 11g Oracle Enterprise Content Management 11g provides leading records management capabilities as part of a unified ECM platform for managing records, documents, Web content, digital assets, enterprise imaging, and application imaging. This unique strategy provides comprehensive records management in a consistent, cost-effective way, and enables organizations to consolidate ECM repositories and connect ECM to critical business applications. 5. Achieve ECM at extreme scale | Oracle WebLogic Server and Oracle Exadata To support the high-performance demands of a unified and rationalized content platform, Oracle has pioneered highly scalable and high-performing ECM infrastructures. Two innovations in particular helped make this happen. The core ECM platform itself moved to an Enterprise Java architecture, so organizations can now use Oracle WebLogic Server for enhanced scalability and manageability. Oracle Enterprise Content Management 11g can leverage Oracle Exadata for extreme performance and scale. Likewise, Oracle Exalogic--Oracle's foundation for cloud computing--enables extreme performance for processor-intensive capabilities such as content conversion or dynamic Web page delivery. Learn more about Oracle's Enterprise 2.0 solutions.

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Exposed: Fake Social Marketing

    - by Mike Stiles
    Brands and marketers who want to build their social popularity on a foundation of lies are starting to face more of an uphill climb. Fake social is starting to get exposed, and there are a lot of emperors getting caught without any clothes. Facebook is getting ready to do a purge of “Likes” on Pages that were a result of bots, fake accounts, and even real users who were duped or accidentally Liked a Page. Most of those accidental Likes occur on mobile, where it’s easy for large fingers to hit the wrong space. Depending on the degree to which your Page has been the subject of such activity, you may see your number of Likes go down. But don’t sweat it, that’s a good thing. The social world has turned the corner and assessed the value of a Like. And the verdict is that a Like is valuable as an opportunity to build a real relationship with a real customer. Its value pales immensely compared to a user who’s actually engaged with the brand. Those fake Likes aren’t doing you any good. Huge numbers may once have impressed, but it’s not fooling anybody anymore. Facebook’s selling point to marketers is the ability to use a brand’s fans to reach friends of those fans. Consequently, there has to be validity and legitimacy to a fan count. Speaking of mobile, Trademob recently reported 40% of clicks are essentially worthless, because 22% of them are accidental (again with the fat fingers), while 18% are trickery. Publishers will but huge banner ads next to tiny app buttons to increase the odds of an accident. Others even hide a banner behind another to score 2 clicks instead of 1. Pontiflex and Harris Interactive last year found 47% of users were more likely to click a mobile ad accidentally than deliberately. Beyond that, hijacked devices are out there manipulating click data. But to what end for a marketer? What’s the value of a click on something a user never even saw? What’s the value of a seen but accidentally clicked ad if there’s no resulting transaction? Back to fake Likes, followers and views; they’re definitely for sale on numerous sites, none of which I’ll promote. $5 can get you 1,000 Twitter followers. You can even get followers targeted by interests. One site was set up by an unemployed accountant out of his house in England. He gets them from a wholesaler in Brooklyn, who gets them from a 19-year-old supplier in India. The unemployed accountant is making $10,000 a day. That means a lot of brands, celebrities and organizations are playing the fake social game, apparently not coming to grips with the slim value of the numbers they’re buying. But now, in addition to having paid good money for non-ROI numbers, there’s the embarrassment factor. At least a couple of sites have popped up allowing anyone to see just how many fake and inactive followers you have. Britain’s Fake Follower Check and StatusPeople are the two getting the most attention. Enter any Twitter handle and the results are there for all to see. Fake isn’t good, period. “Inactive” could be real followers, but if they’re real, they’re just watching, not engaging. If someone runs a check on your Twitter handle and turns up fake followers, does that mean you’re suspect or have purchased followers? No. Anyone can follow anyone, so most accounts will have some fakes. Even account results like Barack Obama’s (70% fake according to StatusPeople) and Lady Gaga’s (71% fake) don’t mean these people knew about all those fakes or initiated them. Regardless, brands should realize they’re now being watched, and users are judging the legitimacy of their social channels. Use one of any number of tools available to assess and clean out fake Likes and followers so that your numbers are as genuine as possible. And obviously, skip the “buying popularity” route of social marketing strategy. It doesn’t work and it gets you busted…a losing combination.

    Read the article

  • Using Live Data in Database Development Work

    - by Phil Factor
    Guest Editorial for Simple-Talk Newsletter... in which Phil Factor reacts with some exasperation when coming across a report that a majority of companies were still using financial and personal data for both developing and testing database applications. If you routinely test your development work using real production data that contains personal or financial information, you are probably being irresponsible, and at worst, risking a heavy financial penalty for your company. Surprisingly, over 80% of financial companies still do this. Plenty of data breaches and fraud have happened from the use of real data for testing, and a data breach is a nightmare for any organisation that suffers one. The cost of each data breach averages out at around $7.2 million in the US in notification, escalation, credit monitoring, fines, litigation, legal costs, and lost business due to customer churn, £1.9 million in the UK. 70% of data breaches are done from within the organisation. Real data can be exploited in a number of ways for malicious or criminal purposes. It isn't just the obvious use of items such as name and address, date of birth, social security number, and credit card and bank account numbers: Data can be exploited in many subtle ways, so there are excellent reasons to ensure that a high priority is given to the detection and prevention of any data breaches. You'll never successfully guess all the ways that real data can be exploited maliciously, or the ease with which it can be accessed. It would be silly to argue that developers never need access to a copy of the database containing live data. Developers sometimes need to track a bug that can only be replicated on the data from the live database. However, it has to be done in a very restrictive harness. The law makes no distinction between development and production databases when a data breach occurs, so the data has to be held with all appropriate security measures in place. In Europe, the use of personal data for testing requires the explicit consent of the people whose data is being held. There are federal standards such as GLBA, PCI DSS and HIPAA, and most US States have privacy legislation. The task of ensuring compliance and tight security in such circumstances is an expensive and time-consuming overhead. The developer is likely to suffer investigation if a data breach occurs, even if the company manages to stay in business. Ironically, the use of copies of live data isn't usually the most effective way to develop or test your data. Data is usually time-specific and isn't usually current by the time it is used for testing, Existing data doesn't help much for new functionality, and every time the data is refreshed from production, any test data is likely to be overwritten. Also, it is not always going to test all the 'edge' conditions that are likely to flush out bugs. You still have the task of simulating the dynamics of actual usage of the database, and here you have no alternative to creating 'spoofed' data. Because of the complexities of relational data, It used to be that there was no realistic alternative to developing and testing with live data. However, this is no longer the case. Real data can be obfuscated, or it can be created entirely from scratch. The latter process used to be impractical, now that there are plenty of third-party tools to choose from. The process of obfuscation isn't risk free. The process must access the live data, and the success of the obfuscation process has to be carefully monitored. Database data security isn't an exciting topic to you or I, but to a hacker it can be an all-consuming obsession, especially if there is financial or political gain involved. This is not the sort of adversary one would wish for and it is far better to accept, and work with, security restrictions that exist for using live data in database development work, especially when the tools exist to create large realistic database test data that can be better for several aspects of testing.

    Read the article

  • #OOW 2012: Big Data and The Social Revolution

    - by Eric Bezille
    As what was saying Cognizant CSO Malcolm Frank about the "Futur of Work", and how the Business should prepare in the face of the new generation  not only of devices and "internet of things" but also due to their users ("The Millennials"), moving from "consumers" to "prosumers" :  we are at a turning point today which is bringing us to the next IT Architecture Wave. So this is no more just about putting Big Data, Social Networks and Customer Experience (CxM) on top of old existing processes, it is about embracing the next curve, by identifying what processes need to be improve, but also and more importantly what processes are obsolete and need to be get ride of, and new processes put in place. It is about managing both the hierarchical and structured Enterprise and its social connections and influencers inside and outside of the Enterprise. And this does apply everywhere, up to the Utilities and Smart Grids, where it is no more just about delivering (faster) the same old 300 reports that have grown over time with those new technologies but to understand what need to be looked at, in real-time, down to an hand full relevant reports with the KPI relevant to the business. It is about how IT can anticipate the next wave, and is able to answers Business questions, and give those capabilities in real-time right at the hand of the decision makers... This is the turning curve, where IT is really moving from the past decade "Cost Center" to "Value for the Business", as Corporate Stakeholders will be able to touch the value directly at the tip of their fingers. It is all about making Data Driven Strategic decisions, encompassed and enriched by ALL the Data, and connected to customers/prosumers influencers. This brings to stakeholders the ability to make informed decisions on question like : “What would be the best Olympic Gold winner to represent my automotive brand ?”... in a few clicks and in real-time, based on social media analysis (twitter, Facebook, Google+...) and connections link to my Enterprise data. A true example demonstrated by Larry Ellison in real-time during his yesterday’s key notes, where “Hardware and Software Engineered to Work Together” is not only about extreme performances but also solutions that Business can touch thanks to well integrated Customer eXperience Management and Social Networking : bringing the capabilities to IT to move to the IT Architecture Next wave. An example, illustrated also todays in 2 others sessions, that I had the opportunity to attend. The first session bringing the “Internet of Things” in Oil&Gaz into actionable decisions thanks to Complex Event Processing capturing sensors data with the ready to run IT infrastructure leveraging Exalogic for the CEP side, Exadata for the enrich datasets and Exalytics to provide the informed decision interface up to end-user. The second session showing Real Time Decision engine in action for ACCOR hotels, with Eric Wyttynck, VP eCommerce, and his Technical Director Pascal Massenet. I have to close my post here, as I have to go to run our practical hands-on lab, cooked with Olivier Canonge, Christophe Pauliat and Simon Coter, illustrating in practice the Oracle Infrastructure Private Cloud recently announced last Sunday by Larry, and developed through many examples this morning by John Folwer. John also announced today Solaris 11.1 with a range of network innovation and virtualization at the OS level, as well as many optimizations for applications, like for Oracle RAC, with the introduction of the lock manager inside Solaris Kernel. Last but not least, he introduced Xsigo Datacenter Fabric for highly simplified networks and storage virtualization for your Cloud Infrastructure. Hoping you will get ready to jump on the next wave, we are here to help...

    Read the article

  • Is a university education really worth it for a good programmer?

    - by Jon Purdy
    The title says it all, but here's the personal side of it: I've been doing design and programming for about as long as I can remember. If there's a programming problem, I can figure it out. (Though admittedly StackOverflow has allowed me to skip the figuring out and get straight to the doing in many instances.) I've made games, esoteric programming languages, and widgets and gizmos galore. I'm currently working on a general-purpose programming language. There's nothing I do better than programming. However, I'm just as passionate about design. Thus when I felt leaving high school that my design skills were lacking, I decided to attend university for New Media Design and Imaging, a digital design-related major. For a year, I diligently studied art and programmed in my free time. As the next year progressed, however, I was obligated to take fewer art and design classes and more technical classes. The trouble was of course that these classes were geared toward non-technical students, and were far beneath my skill level at the time. No amount of petitioning could overcome the institution's reluctance to allow me to test out of such classes, and the major offered no promise for any greater challenge in the future, so I took the extreme route: I switched into the technical equivalent of the major, New Media Interactive Development. A lot of my credits moved over into the new major, but many didn't. It would have been infeasible to switch to a more rigorous technical major such as Computer Science, and having tutored Computer Science students at every level here, I doubt I would be exposed to anything that I haven't already or won't eventually find out on my own, since I'm so involved in the field. I'm now on track to graduate perhaps a year later than I had planned, which puts a significant financial strain on my family and my future self. My schedule continues to be bogged down with classes that are wholly unnecessary for me to take. I'm being re-introduced to subjects that I've covered a thousand times over, simply because I've always been interested in it all. And though I succeed in avoiding the cynical and immature tactic of failing to complete work out of some undeserved sense of superiority, I'm becoming increasingly disillusioned by the lack of intellectual stimulation. Further, my school requires students to complete a number of quarters of co-op work experience proportional to their major. My original major required two quarters, but my current requires three, delaying my graduation even more. To top it all off, college is putting a severe strain on my relationship with my very close partner of a few years, so I've searched diligently for co-op jobs in my area, alas to no avail. I'm now in my third year, and approaching that point past which I can no longer handle this. Either I keep my head down, get a degree no matter what it takes, and try to get a job with a company that will pay me enough to do what I love that I can eventually pay off my loans; or I cut my losses now, move wherever there is work, and in six months start paying off what debt I've accumulated thus far. So the real question is: is a university education really more than just a formality? It's a big decision, and one I can't make lightly. I think this is the appropriate venue for this kind of question, and I hope it sticks around for the sake of others who might someday find themselves in similar situations. My heartfelt thanks for reading, and in advance for your help.

    Read the article

  • Why is there no service-oriented language?

    - by Wolfgang
    Edit: To avoid further confusion: I am not talking about web services and such. I am talking about structuring applications internally, it's not about how computers communicate. It's about programming languages, compilers and how the imperative programming paradigm is extended. Original: In the imperative programming field, we saw two paradigms in the past 20 years (or more): object-oriented (OO), and service-oriented (SO) aka. component-based (CB). Both paradigms extend the imperative programming paradigm by introducing their own notion of modules. OO calls them objects (and classes) and lets them encapsulates both data (fields) and procedures (methods) together. SO, in contrast, separates data (records, beans, ...) from code (components, services). However, only OO has programming languages which natively support its paradigm: Smalltalk, C++, Java and all other JVM-compatibles, C# and all other .NET-compatibles, Python etc. SO has no such native language. It only comes into existence on top of procedural languages or OO languages: COM/DCOM (binary, C, C++), CORBA, EJB, Spring, Guice (all Java), ... These SO frameworks clearly suffer from the missing native language support of their concepts. They start using OO classes to represent services and records. This leads to designs where there is a clear distinction between classes that have methods only (services) and those that have fields only (records). Inheritance between services or records is then simulated by inheritance of classes. Technically, its not kept so strictly but in general programmers are adviced to make classes to play only one of the two roles. They use additional, external languages to represent the missing parts: IDL's, XML configurations, Annotations in Java code, or even embedded DSL like in Guice. This is especially needed, but not limited to, since the composition of services is not part of the service code itself. In OO, objects create other objects so there is no need for such facilities but for SO there is because services don't instantiate or configure other services. They establish an inner-platform effect on top of OO (early EJB, CORBA) where the programmer has to write all the code that is needed to "drive" SO. Classes represent only a part of the nature of a service and lots of classes have to be written to form a service together. All that boiler plate is necessary because there is no SO compiler which would do it for the programmer. This is just like some people did it in C for OO when there was no C++. You just pass the record which holds the data of the object as a first parameter to the procedure which is the method. In a OO language this parameter is implicit and the compiler produces all the code that we need for virtual functions etc. For SO, this is clearly missing. Especially the newer frameworks extensively use AOP or introspection to add the missing parts to a OO language. This doesn't bring the necessary language expressiveness but avoids the boiler platform code described in the previous point. Some frameworks use code generation to produce the boiler plate code. Configuration files in XML or annotations in OO code is the source of information for this. Not all of the phenomena that I mentioned above can be attributed to SO but I hope it clearly shows that there is a need for a SO language. Since this paradigm is so popular: why isn't there one? Or maybe there are some academic ones but at least the industry doesn't use one.

    Read the article

  • C# Winforms vs WPF

    - by m0s
    Hi pros, I am a student and I do freelance here and there when I have opportunity. I believe my strongest language is C#. I don't really know what is going on in real programming world, so I was wondering if WPF did take over WinForms? I know the differences between two and how two can be used simultaneously but, I just don't want to invest my time in learning dying technologies, I hope you understand. So, for windows desktop programming what would you recommend to master WinForms, WPF or maybe both? I also get a lot that desktop programming is dead already and one should only care about learning web programming. Thanks for attention, any comments are greatly appreciated.

    Read the article

  • Emacs X11 autocompletion (intellisense)

    - by JC
    Hi everyone, I use visual studio for day to day programming (read putting food in my mouth) but for personal programming (read c/c++ hacking) I use Emacs. Right now I am doing a programming exercise involving the X11 API. I am continually referring to the programming API manual to find the signature of function calls. What would be really nice would be if there was an emacs alternative to the visual studio intellisense. I know there is autocompletion for the language specifics. Is there such an extension available to Emacs? Or if not, is there way of creating one, maybe using the language specifics mechanism already used for auto completion?

    Read the article

  • Tricks to avoid losing motivation?

    - by AareP
    Motivation is a tricky thing to upkeep. Once I thought that ambitious projects will keep programmer motivated, and too simple tasks will hinder his motivation. Now I have plenty of experience with small and large projects, desktop/web/database programming, c++/c#/java/php languages, oop/non-oop paradigms, day-job/free-time programming.. but I still can't answer the question of motivation. Which programming tasks I like, and which don't? It seems to depend on too many variables. One thing remains constant though. It's that starting everything from scratch is always more motivating than extending some existing system. Unfortunately it's hard to use this trick in productive programming. :) So my question is, what tricks programmer can use to stay motivated? For example should we use pen and paper as much as possible, in order not to get fed up with monitor and keyboard?

    Read the article

  • What should programmers practice every day?

    - by Jacinda S
    Musicians practice scales, arpeggios, etc. every day before they begin playing "real" music. The top sports players spend time every day practicing fundamentals like dribbling before playing the "real" game. Are there fundamentals that programmers should practice every day before writing "real" code?

    Read the article

  • good books on numerical computation with C

    - by yCalleecharan
    Hi, I've read the post "What is the best book on numerical methods?" and I wish to ask more or less the same question but in relation to C programming. Most of the time, C programming books on numerical methods are just another version of the author's previous Fortran book on the same subject. I've seen Applied numerical methods in C by Nakamura, Shoichiro and the C codes are not good programming practice. I've heard bad comments about Numerical Recipes by Press. Do you know good books on C that discusses numerical methods. It's seem better for me to ask about good books on C discussing numerical methods than rather asking books on numerical methods that discusses C. I've heard about Numerical Algorithms with C by Giesela Engeln-Müllges and A Numerical Library in C for Scientists and Engineers bu Lau but haven't read them. Good books will always have algorithms implemented in the programming language in a smart way. Thanks a lot...

    Read the article

  • What should I learn after HTML and CSS?

    - by Ryan B
    I am 5 days into learning how to make my website, flying through my HTML & CSS book and having fun. I’m starting to consider what to order next. I’m not sure what to study next, so please give me some advice if you can. My end goal is to create a site that has a lot of the functionality that www.edufire.com and similar sites have, just for example. I think I’m learning well with the Head First Series, and the style will probably serve me well as an intro to programming. However, I don't think the books dive too deeply into any 1 subject. I could order: A: Head First Programming: A Learner’s Guide to Programming Using the Python Language B: Head First Javascript C: Head First PHP & MySQL D: a different programming book or E: another CSS or design book to solidify my basic HTML & CSS skills Any guidance would be appreciated. Thanks!

    Read the article

  • Flex: Push the Button

    - by Rachel
    For what real time scenarios/use cases one should go to Flex Technology ? What real time problems you have solved using Flex Technology ? What real time problems have you faced because of using Flex Technology and what was your work around for that use case ?

    Read the article

< Previous Page | 269 270 271 272 273 274 275 276 277 278 279 280  | Next Page >