Search Results

Search found 6945 results on 278 pages for 'azure use cases'.

Page 277/278 | < Previous Page | 273 274 275 276 277 278  | Next Page >

  • Impossible to do POSTs with appengine-jruby/RoR: Reflection is not allowed

    - by Joel Cuevas
    I'm trying to build a site with RoR on Google App Engine. I'm using the google-appengine gem (http://appengine-jruby.googlecode.com) and following the instructions in (http://gist.github.com/268192). The problem is that I can't submit ANY form! I've already tried this in two diferent clean Win 7 Pro envs and the result is the same. After install Ruby 1.8.6 (One-Click Installer): 1. gem update --system 2. gem install rails 3. gem install google-appengine 4. gem install rails_dm_datastore 5. gem install activerecord-nulldb-adapter 6. curl -O http://appengine-jruby.googlecode.com/hg/demos/rails2/rails2_appengine.rb 7. ruby rails2_appengine.rb (previously downloaded) 8. rails myproj 9. chmod myproj 10. ruby script/generate dd_model MyModel f1:string f2:float f3:float f4:float f5:integer f6:integer f7:integer -f 11. ruby script/generate scaffold MyModel f1:string f2:float f3:float f4:float f5:integer f6:integer f7:integer -f --skip-migration 12. dev_appserver.rb -p 3000 . At this point, I manually test the scaffold in (http://localhost:3000/my_models). The index is OK, then I create a new registry with the generated form, everything's fine, but when I try to create a second one, I get a "java.lang.RuntimeException: DummyDynamicScope should never be used for backref storage" in the console. As far as I read this is a won't-fix behavior in JRuby 1.4.1, but it's converted to a debug only warning in 1.5.0, so I proceed to install the pre release. 13. gem install appengine-jruby-jars --pre With this, that exception is solved and everything works great... until I move the project to the GAE server. 14. ruby appcfg.rb update . And now, in (http://myproj.appspot.com/my_models), again, the index is fine, also the new form, but in the moment that I submit it with valid data, I get a 500 error: "java.lang.IllegalAccessException: Reflection is not allowed on public int". As I said, this behavior is not present in the local SDK. In both cases, I'm completely unable to post anything. This is what I have right now in the GAE environment: Ruby version 1.8.7 (java) RubyGems disabled Rack version 1.1 Rails version 2.3.5 Action Pack version 2.3.5 Active Support version 2.3.5 DataMapper version 0.10.2 Environment production JRuby Runtime version 1.5.0.pre JRuby-Rack version 0.9.7 AppEngine SDK version Google App Engine/1.3.3 AppEngine APIs version 0.0.15 And this are my intalled gems: actionmailer (2.3.5) actionpack (2.3.5) activerecord (2.3.5) activerecord-nulldb-adapter (0.2.0) activeresource (2.3.5) activesupport (2.3.5) addressable (2.1.2) appengine-apis (0.0.15) appengine-jruby-jars (0.0.8.pre, 0.0.7) appengine-rack (0.0.8) appengine-sdk (1.3.3.1) appengine-tools (0.0.12) bundler08 (0.8.5) dm-appengine (0.0.8) dm-ar-finders (0.10.2) dm-core (0.10.2) dm-timestamps (0.10.2) dm-validations (0.10.2) extlib (0.9.14) fxri (0.3.7, 0.3.6) google-appengine (0.0.12) hpricot (0.8.2 x86-mswin32, 0.6 mswin32) jruby-rack (0.9.8, 0.9.7) log4r (1.1.7, 1.0.5) rack (1.1.0, 1.0.1) rails (2.3.5) rails_appengine (0.0.3) rails_dm_datastore (0.2.9) rake (0.8.7, 0.7.3) rubygems-update (1.3.7, 1.3.6) rubyzip (0.9.4) sources (0.0.1) win32-api (1.4.6 x86-mswin32-60, 1.0.4 mswin32) win32-clipboard (0.5.2, 0.4.3) win32-dir (0.3.6, 0.3.2) win32-eventlog (0.5.2, 0.4.6) win32-file (0.6.3, 0.5.4) win32-file-stat (1.3.4, 1.2.7) win32-process (0.6.2, 0.5.3) win32-sapi (0.1.5, 0.1.4) win32-sound (0.4.2, 0.4.1) windows-api (0.4.0, 0.2.0) windows-pr (1.0.9, 0.7.2) I'm unable to attach the full logs of the exceptions because of the character limits, but I can provide them under request. Here's an abstract of them: DummyDynamicScope (dev and prod envs): 14-may-2010 7:18:40 com.google.appengine.tools.development.ApiProxyLocalImpl log SEVERE: [1273821520195000] javax.servlet.ServletContext log: Application Error java.lang.RuntimeException: DummyDynamicScope should never be used for backref storage at org.jruby.runtime.scope.DummyDynamicScope.getBackRef(DummyDynamicScope.java:49) at org.jruby.RubyRegexp.updateBackRef(RubyRegexp.java:1404) at org.jruby.RubyRegexp.updateBackRef(RubyRegexp.java:1396) at org.jruby.RubyRegexp.search(RubyRegexp.java:1386) at org.jruby.RubyRegexp.op_match(RubyRegexp.java:1301) at org.jruby.RubyString.op_match(RubyString.java:1446) at org.jruby.RubyString$i_method_1_0$RUBYINVOKER$op_match.call(org/jruby/RubyString$i_method_1_0$RUBYINVOKER$op_match.gen) at org.jruby.internal.runtime.methods.JavaMethod$JavaMethodOneOrN.call(JavaMethod.java:721) at org.jruby.RubyClass.finvoke(RubyClass.java:472) at org.jruby.RubyObject.send(RubyObject.java:1442) at org.jruby.RubyObject$i_method_multi$RUBYINVOKER$send.call(org/jruby/RubyObject$i_method_multi$RUBYINVOKER$send.gen) at org.jruby.internal.runtime.methods.JavaMethod$JavaMethodZeroOrOneOrTwoOrNBlock.call(JavaMethod.java:276) at org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:330) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:189) at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with_comparison at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with_comparison at org.jruby.internal.runtime.methods.JittedMethod.call(JittedMethod.java:102) at org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:144) at org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:280) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:69) at org.jruby.ast.FCallManyArgsNode.interpret(FCallManyArgsNode.java:60) at org.jruby.ast.NewlineNode.interpret(NewlineNode.java:104) at org.jruby.internal.runtime.methods.InterpretedMethod.call(InterpretedMethod.java:229) at org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:193) at org.jruby.RubyClass.finvoke(RubyClass.java:491) at org.jruby.RubyObject.send(RubyObject.java:1448) at org.jruby.RubyObject$i_method_multi$RUBYINVOKER$send.call(org/jruby/RubyObject$i_method_multi$RUBYINVOKER$send.gen) at org.jruby.internal.runtime.methods.JavaMethod$JavaMethodZeroOrOneOrTwoOrThreeOrNBlock.call(JavaMethod.java:293) at org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:350) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:229) at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with28985350_50 at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with28985350_50 at org.jruby.internal.runtime.methods.JittedMethod.call(JittedMethod.java:221) at org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:201) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:227) at org.jruby.ast.FCallThreeArgNode.interpret(FCallThreeArgNode.java:40) Reflection (only prod env): Java::JavaLang::SecurityException (java.lang.IllegalAccessException: Reflection is not allowed on public int java.lang.String$CaseInsensitiveComparator.compare(java.lang.String,java.lang.String)): com.google.appengine.runtime.Request.process-92563a0605f433ea(Request.java) java.lang.reflect.AccessibleObject.setAccessible(AccessibleObject.java:40) org.jruby.javasupport.JavaMethod.<init>(JavaMethod.java:176) org.jruby.javasupport.JavaMethod.create(JavaMethod.java:183) org.jruby.java.invokers.MethodInvoker.createCallable(MethodInvoker.java:23) org.jruby.java.invokers.RubyToJavaInvoker.<init>(RubyToJavaInvoker.java:63) org.jruby.java.invokers.MethodInvoker.<init>(MethodInvoker.java:13) org.jruby.java.invokers.InstanceMethodInvoker.<init>(InstanceMethodInvoker.java:15) org.jruby.javasupport.JavaClass$InstanceMethodInvokerInstaller.install(JavaClass.java:339) org.jruby.javasupport.JavaClass.installClassMethods(JavaClass.java:723) org.jruby.javasupport.JavaClass.setupProxy(JavaClass.java:586) org.jruby.javasupport.Java.createProxyClass(Java.java:506) org.jruby.javasupport.Java.getProxyClass(Java.java:445) org.jruby.javasupport.Java.getInstance(Java.java:354) org.jruby.javasupport.JavaUtil.convertJavaToUsableRubyObject(JavaUtil.java:143) org.jruby.javasupport.JavaClass$ConstantField.install(JavaClass.java:360) org.jruby.javasupport.JavaClass.installClassFields(JavaClass.java:711) org.jruby.javasupport.JavaClass.setupProxy(JavaClass.java:585) org.jruby.javasupport.Java.createProxyClass(Java.java:506) org.jruby.javasupport.Java.getProxyClass(Java.java:445) org.jruby.javasupport.Java.getProxyOrPackageUnderPackage(Java.java:885) org.jruby.javasupport.Java.get_proxy_or_package_under_package(Java.java:918) org.jruby.javasupport.JavaUtilities.get_proxy_or_package_under_package(JavaUtilities.java:54) org.jruby.javasupport.JavaUtilities$s_method_2_0$RUBYINVOKER$get_proxy_or_package_under_package.call(org/jruby/javasupport/JavaUtilities$s_method_2_0$RUBYINVOKER$get_proxy_or_package_under_package.gen:65535) org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:329) org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:188) org.jruby.ast.CallTwoArgNode.interpret(CallTwoArgNode.java:59) org.jruby.ast.NewlineNode.interpret(NewlineNode.java:104) org.jruby.ast.BlockNode.interpret(BlockNode.java:71) org.jruby.internal.runtime.methods.InterpretedMethod.call(InterpretedMethod.java:113) org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:138) org.jruby.javasupport.util.RuntimeHelpers$MethodMissingMethod.call(RuntimeHelpers.java:389) org.jruby.internal.runtime.methods.DynamicMethod.call(DynamicMethod.java:182) What should I do now? Any hint would be wellcome. Thanks!

    Read the article

  • CoreData update problems

    - by kpower
    My app makes updates in background thread then saves context changes. And in main context there is a table view that works with NSFetchedResultsController. For some time updates work correctly, but then exception is thrown. To check this I've added NSLog(@"%@", [self.controller fetchedObjects]); to -controllerDidChangeContent:. Here is what I got: "<PRBattle: 0x6d30530> (entity: PRBattle; id: 0x6d319d0 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p2> ; data: {\n battleId = \"-1\";\n finishedAt = \"2012-11-06 11:37:36 +0000\";\n opponent = \"0x6d2f730 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p1>\";\n opponentScore = nil;\n score = nil;\n status = 4;\n})", "<PRBattle: 0x6d306f0> (entity: PRBattle; id: 0x6d319f0 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p1> ; data: {\n battleId = \"-1\";\n finishedAt = \"2012-11-06 11:37:36 +0000\";\n opponent = \"0x6d2ddb0 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p3>\";\n opponentScore = nil;\n score = nil;\n status = 4;\n})", "<PRBattle: 0x6d30830> (entity: PRBattle; id: 0x6d31650 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p11> ; data: <fault>)", "<PRBattle: 0x6d306b0> (entity: PRBattle; id: 0x6d319e0 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p5> ; data: {\n battleId = 325;\n finishedAt = nil;\n opponent = \"0x6d2f730 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p1>\";\n opponentScore = 91;\n score = 59;\n status = 3;\n})", "<PRBattle: 0x6d30730> (entity: PRBattle; id: 0x6d31a00 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p6> ; data: {\n battleId = 323;\n finishedAt = nil;\n opponent = \"0x6d2ddb0 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p3>\";\n opponentScore = 0;\n score = 0;\n status = 3;\n})", "<PRBattle: 0x6d307b0> (entity: PRBattle; id: 0x6d31630 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p9> ; data: {\n battleId = 370;\n finishedAt = \"2012-11-06 14:24:14 +0000\";\n opponent = \"0x79a8e90 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p2>\";\n opponentScore = 180;\n score = 180;\n status = 4;\n})", "<PRBattle: 0x6d307f0> (entity: PRBattle; id: 0x6d31640 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p10> ; data: {\n battleId = 309;\n finishedAt = \"2012-11-02 01:19:27 +0000\";\n opponent = \"0x79a8e90 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p2>\";\n opponentScore = 120;\n score = 240;\n status = 4;\n})", "<PRBattle: 0x6d30770> (entity: PRBattle; id: 0x6d31620 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p7> ; data: {\n battleId = 315;\n finishedAt = \"2012-11-02 02:26:24 +0000\";\n opponent = \"0x79a8e90 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PROpponent/p2>\";\n opponentScore = 119;\n score = 179;\n status = 4;\n})" ) Faulted object (0xe972610) here causes crash. I've logged data during update & before saving. This object is in updatedObjects only. Why can this method return "bad" object? (Moreover, during updates this object is affected almost each update. And only after some passes becomes "bad" one). P.S.: I use RestKit to manage CoreData. UPDATED: The exception was got, when I did smth. like this: for (PRBattle *battle in [self.controller fetchedObjects) { switch (battle.statusScalar) { case ... default: [battle willAccessValueForKey:nil]; NSAssert1(NO, @"Unexpected battle status found: %@", battle); } } The exception is on line with -willAccessValueForKey:. Scalar status for battle is enum, that is bind to integer values 1..4. I've mentioned all possible values in switch's cases (above default:). And the last one has break;. So this one is possible only when battle.statusScalar returns non-enum value. Status scalar implementation in PRBattle: - (PRBattleStatuses)statusScalar { [self willAccessValueForKey:@"statusScalar"]; PRBattleStatuses result = (PRBattleStatuses)[self.status integerValue]; [self didAccessValueForKey:@"statusScalar"]; return result; } And battle.status has validation rules: - min-value: 1 - max-value: 4 - default: no value And the last thing - debug log: objc[4664]: EXCEPTIONS: throwing 0x7d33f80 (object 0xe67d2a0, a _NSCoreDataException) objc[4664]: EXCEPTIONS: searching through frame [ip=0x97b401 sp=0xbfffd9b0] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: catch(id) objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x97b401 sp=0xbfffd9b0] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: handling exception 0x7d33f60 at 0x97b79f objc[4664]: EXCEPTIONS: rethrowing current exception objc[4664]: EXCEPTIONS: searching through frame [ip=0x97b911 sp=0xbfffd9b0] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0x9ac8b7 sp=0xbfffdc20] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0x97ee80 sp=0xbfffdc40] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0x361d0 sp=0xbfffdc70] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0xa701d8 sp=0xbfffde10] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: catch(id) objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x97b911 sp=0xbfffd9b0] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: finishing handler objc[4664]: EXCEPTIONS: searching through frame [ip=0x97b963 sp=0xbfffd9b0] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0x9ac8b7 sp=0xbfffdc20] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0x97ee80 sp=0xbfffdc40] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0x361d0 sp=0xbfffdc70] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: searching through frame [ip=0xa701d8 sp=0xbfffde10] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: catch(id) objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x97b963 sp=0xbfffd9b0] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x9ac8b7 sp=0xbfffdc20] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x97ee80 sp=0xbfffdc40] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x361d0 sp=0xbfffdc70] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: unwinding through frame [ip=0x3656f sp=0xbfffdc70] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: unwinding through frame [ip=0xa701d8 sp=0xbfffde10] for exception 0x7d33f60 objc[4664]: EXCEPTIONS: handling exception 0x7d33f60 at 0xa701f5 2012-11-07 13:37:55.463 TestApp[4664:fb03] CoreData: error: Serious application error. An exception was caught from the delegate of NSFetchedResultsController during a call to -controllerDidChangeContent:. CoreData could not fulfill a fault for '0x6d31650 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p10>' with userInfo { NSAffectedObjectsErrorKey = ( "<PRBattle: 0x6d30830> (entity: PRBattle; id: 0x6d31650 <x-coredata://882BD521-90CD-4682-B19A-000A4976E471/PRBattle/p10> ; data: <fault>)" ); }

    Read the article

  • Inverse Kinematics with OpenGL/Eigen3 : unstable jacobian pseudoinverse

    - by SigTerm
    I'm trying to implement simple inverse kinematics test using OpenGL, Eigen3 and "jacobian pseudoinverse" method. The system works fine using "jacobian transpose" algorithm, however, as soon as I attempt to use "pseudoinverse", joints become unstable and start jerking around (eventually they freeze completely - unless I use "jacobian transpose" fallback computation). I've investigated the issue and turns out that in some cases jacobian.inverse()*jacobian has zero determinant and cannot be inverted. However, I've seen other demos on the internet (youtube) that claim to use same method and they do not seem to have this problem. So I'm uncertain where is the cause of the issue. Code is attached below: *.h: struct Ik{ float targetAngle; float ikLength; VectorXf angles; Vector3f root, target; Vector3f jointPos(int ikIndex); size_t size() const; Vector3f getEndPos(int index, const VectorXf& vec); void resize(size_t size); void update(float t); void render(); Ik(): targetAngle(0), ikLength(10){ } }; *.cpp: size_t Ik::size() const{ return angles.rows(); } Vector3f Ik::getEndPos(int index, const VectorXf& vec){ Vector3f pos(0, 0, 0); while(true){ Eigen::Affine3f t; float radAngle = pi*vec[index]/180.0f; t = Eigen::AngleAxisf(radAngle, Vector3f(-1, 0, 0)) * Eigen::Translation3f(Vector3f(0, 0, ikLength)); pos = t * pos; if (index == 0) break; index--; } return pos; } void Ik::resize(size_t size){ angles.resize(size); angles.setZero(); } void drawMarker(Vector3f p){ glBegin(GL_LINES); glVertex3f(p[0]-1, p[1], p[2]); glVertex3f(p[0]+1, p[1], p[2]); glVertex3f(p[0], p[1]-1, p[2]); glVertex3f(p[0], p[1]+1, p[2]); glVertex3f(p[0], p[1], p[2]-1); glVertex3f(p[0], p[1], p[2]+1); glEnd(); } void drawIkArm(float length){ glBegin(GL_LINES); float f = 0.25f; glVertex3f(0, 0, length); glVertex3f(-f, -f, 0); glVertex3f(0, 0, length); glVertex3f(f, -f, 0); glVertex3f(0, 0, length); glVertex3f(f, f, 0); glVertex3f(0, 0, length); glVertex3f(-f, f, 0); glEnd(); glBegin(GL_LINE_LOOP); glVertex3f(f, f, 0); glVertex3f(-f, f, 0); glVertex3f(-f, -f, 0); glVertex3f(f, -f, 0); glEnd(); } void Ik::update(float t){ targetAngle += t * pi*2.0f/10.0f; while (t > pi*2.0f) t -= pi*2.0f; target << 0, 8 + 3*sinf(targetAngle), cosf(targetAngle)*4.0f+5.0f; Vector3f tmpTarget = target; Vector3f targetDiff = tmpTarget - root; float l = targetDiff.norm(); float maxLen = ikLength*(float)angles.size() - 0.01f; if (l > maxLen){ targetDiff *= maxLen/l; l = targetDiff.norm(); tmpTarget = root + targetDiff; } Vector3f endPos = getEndPos(size()-1, angles); Vector3f diff = tmpTarget - endPos; float maxAngle = 360.0f/(float)angles.size(); for(int loop = 0; loop < 1; loop++){ MatrixXf jacobian(diff.rows(), angles.rows()); jacobian.setZero(); float step = 1.0f; for (int i = 0; i < angles.size(); i++){ Vector3f curRoot = root; if (i) curRoot = getEndPos(i-1, angles); Vector3f axis(1, 0, 0); Vector3f n = endPos - curRoot; float l = n.norm(); if (l) n /= l; n = n.cross(axis); if (l) n *= l*step*pi/180.0f; //std::cout << n << "\n"; for (int j = 0; j < 3; j++) jacobian(j, i) = n[j]; } std::cout << jacobian << std::endl; MatrixXf jjt = jacobian.transpose()*jacobian; //std::cout << jjt << std::endl; float d = jjt.determinant(); MatrixXf invJ; float scale = 0.1f; if (!d /*|| true*/){ invJ = jacobian.transpose(); scale = 5.0f; std::cout << "fallback to jacobian transpose!\n"; } else{ invJ = jjt.inverse()*jacobian.transpose(); std::cout << "jacobian pseudo-inverse!\n"; } //std::cout << invJ << std::endl; VectorXf add = invJ*diff*step*scale; //std::cout << add << std::endl; float maxSpeed = 15.0f; for (int i = 0; i < add.size(); i++){ float& cur = add[i]; cur = std::max(-maxSpeed, std::min(maxSpeed, cur)); } angles += add; for (int i = 0; i < angles.size(); i++){ float& cur = angles[i]; if (i) cur = std::max(-maxAngle, std::min(maxAngle, cur)); } } } void Ik::render(){ glPushMatrix(); glTranslatef(root[0], root[1], root[2]); for (int i = 0; i < angles.size(); i++){ glRotatef(angles[i], -1, 0, 0); drawIkArm(ikLength); glTranslatef(0, 0, ikLength); } glPopMatrix(); drawMarker(target); for (int i = 0; i < angles.size(); i++) drawMarker(getEndPos(i, angles)); } Any help will be appreciated.

    Read the article

  • migrating Solaris to RH: network latency issue, tcp window size & other tcp parameters

    - by Bastien
    Hello I have a client/server app (Java) that I'm migrating from Solaris to RH Linux. since I started running it in RH, I noticed some issues related to latency. I managed to isolate the problem that looks like this: client sends 5 messages (32 bytes each) in a row (same application timestamp) to the server. server echos messages. client receives replies and prints round trip time for each msg. in Solaris, all is well: I get ALL 5 replies at the same time, roughly 80ms after having sent original messages (client & server are several thousands miles away from each other: my ping RTT is 80ms, all normal). in RH, first 3 messages are echoed normally (they arrive 80ms after they've been sent), however the following 2 arrive 80ms later (so total 160ms RTT). the pattern is always the same. clearly looked like a TCP problem. on my solaris box, I had previously configured the tcp stack with 2 specific options: disable nagle algorithm globally set tcp_deferred_acks_max to 0 on RH, it's not possible to disable nagle globally, but I disabled it on all of my apps' sockets (TCP_NODELAY). so I started playing with tcpdump (on the server machine), and compared both outputs: SOLARIS: 22 2.085645 client server TCP 56150 > 6006 [PSH, ACK] Seq=111 Ack=106 Win=66672 Len=22 "MSG_1 RCV" 23 2.085680 server client TCP 6006 > 56150 [ACK] Seq=106 Ack=133 Win=50400 Len=0 24 2.085908 client server TCP 56150 > 6006 [PSH, ACK] Seq=133 Ack=106 Win=66672 Len=22 "MSG_2 RCV" 25 2.085925 server client TCP 6006 > 56150 [ACK] Seq=106 Ack=155 Win=50400 Len=0 26 2.086175 client server TCP 56150 > 6006 [PSH, ACK] Seq=155 Ack=106 Win=66672 Len=22 "MSG_3 RCV" 27 2.086192 server client TCP 6006 > 56150 [ACK] Seq=106 Ack=177 Win=50400 Len=0 28 2.086243 server client TCP 6006 > 56150 [PSH, ACK] Seq=106 Ack=177 Win=50400 Len=21 "MSG_1 ECHO" 29 2.086440 client server TCP 56150 > 6006 [PSH, ACK] Seq=177 Ack=106 Win=66672 Len=22 "MSG_4 RCV" 30 2.086454 server client TCP 6006 > 56150 [ACK] Seq=127 Ack=199 Win=50400 Len=0 31 2.086659 server client TCP 6006 > 56150 [PSH, ACK] Seq=127 Ack=199 Win=50400 Len=21 "MSG_2 ECHO" 32 2.086708 client server TCP 56150 > 6006 [PSH, ACK] Seq=199 Ack=106 Win=66672 Len=22 "MSG_5 RCV" 33 2.086721 server client TCP 6006 > 56150 [ACK] Seq=148 Ack=221 Win=50400 Len=0 34 2.086947 server client TCP 6006 > 56150 [PSH, ACK] Seq=148 Ack=221 Win=50400 Len=21 "MSG_3 ECHO" 35 2.087196 server client TCP 6006 > 56150 [PSH, ACK] Seq=169 Ack=221 Win=50400 Len=21 "MSG_4 ECHO" 36 2.087500 server client TCP 6006 > 56150 [PSH, ACK] Seq=190 Ack=221 Win=50400 Len=21 "MSG_5 ECHO" 37 2.165390 client server TCP 56150 > 6006 [ACK] Seq=221 Ack=148 Win=66632 Len=0 38 2.166314 client server TCP 56150 > 6006 [ACK] Seq=221 Ack=190 Win=66588 Len=0 39 2.364135 client server TCP 56150 > 6006 [ACK] Seq=221 Ack=211 Win=66568 Len=0 REDHAT: 17 2.081163 client server TCP 55879 > 6006 [PSH, ACK] Seq=111 Ack=106 Win=66672 Len=22 "MSG_1 RCV" 18 2.081178 server client TCP 6006 > 55879 [ACK] Seq=106 Ack=133 Win=5888 Len=0 19 2.081297 server client TCP 6006 > 55879 [PSH, ACK] Seq=106 Ack=133 Win=5888 Len=21 "MSG_1 ECHO" 20 2.081711 client server TCP 55879 > 6006 [PSH, ACK] Seq=133 Ack=106 Win=66672 Len=22 "MSG_2 RCV" 21 2.081761 client server TCP 55879 > 6006 [PSH, ACK] Seq=155 Ack=106 Win=66672 Len=22 "MSG_3 RCV" 22 2.081846 server client TCP 6006 > 55879 [PSH, ACK] Seq=127 Ack=177 Win=5888 Len=21 "MSG_2 ECHO" 23 2.081995 server client TCP 6006 > 55879 [PSH, ACK] Seq=148 Ack=177 Win=5888 Len=21 "MSG_3 ECHO" 24 2.082011 client server TCP 55879 > 6006 [PSH, ACK] Seq=177 Ack=106 Win=66672 Len=22 "MSG_4 RCV" 25 2.082362 client server TCP 55879 > 6006 [PSH, ACK] Seq=199 Ack=106 Win=66672 Len=22 "MSG_5 RCV" 26 2.082377 server client TCP 6006 > 55879 [ACK] Seq=169 Ack=221 Win=5888 Len=0 27 2.171003 client server TCP 55879 > 6006 [ACK] Seq=221 Ack=148 Win=66632 Len=0 28 2.171019 server client TCP 6006 > 55879 [PSH, ACK] Seq=169 Ack=221 Win=5888 Len=42 "MSG_4 ECHO + MSG_5 ECHO" 29 2.257498 client server TCP 55879 > 6006 [ACK] Seq=221 Ack=211 Win=66568 Len=0 so, I got confirmation things are not working correctly for RH: packet 28 is sent TOO LATE, it looks like the server is waiting for packet 27's ACK before doing anything. seems to me it's the most likely reason... then I realized that the "Win" parameters are different on Solaris & RH dumps: 50400 on Solaris, only 5888 on RH. that's another hint... I read the doc about the slide window & buffer window, and played around with the rcvBuffer & sendBuffer in java on my sockets, but never managed to change this 5888 value to anything else (I checked each time directly with tcpdump). does anybody know how to do this ? I'm having a hard time getting definitive information, as in some cases there's "auto-negotiation" that I might need to bypass, etc... I eventually managed to get only partially rid of my initial problem by setting the "tcp_slow_start_after_idle" parameter to 0 on RH, but it did not change the "win" parameter at all. the same problem was there for the first 4 groups of 5 messages, with TCP retransmission & TCP Dup ACK in tcpdump, then the problem disappeared altogether for all following groups of 5 messages. It doesn't seem like a very clean and/or generic solution to me. I'd really like to reproduce the exact same conditions under both OSes. I'll keep researching, but any help from TCP gurus would be greatly appreciated ! thanks !

    Read the article

  • Getting java.lang.ClassNotFoundException: javax.servlet.ServletContext in junit

    - by coder
    I'm using spring mvc in my application and I'm writing junit test cases for a DAO. But when I run the test, I get an error java.lang.ClassNotFoundException: javax.servlet.ServletContext. In the stacktrace, I see that this error is caused during getApplicationContext. In my applicationContext, I havent defined any servlet. Servlet mapping is done only in web.xml so I dont understand why I'm getting this error. Here is my applicationContext.xml: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xmlns:context="http://www.springframework.org/schema/context" xmlns:mvc="http://www.springframework.org/schema/mvc" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.0.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.0.xsd http://www.springframework.org/schema/mvc http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd" xmlns:tx="http://www.springframework.org/schema/tx"> <bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource" destroy-method="close"> <property name="driverClass" value="com.mysql.jdbc.Driver"/> <property name="jdbcUrl" value="jdbc:mysql://localhost:3306/testdb"/> <property name="user" value="username"/> </bean> <bean id="sessionFactory" class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean"> <property name="dataSource" ref="dataSource"/> <property name="hibernateProperties"> <props> <prop key="hibernate.dialect">org.hibernate.dialect.MySQLDialect</prop> <prop key="hibernate.connection.driver_class">com.mysql.jdbc.Driver</prop> <prop key="hibernate.connection.url">jdbc:mysql://localhost:3306/myWorld_test</prop> <prop key="hibernate.connection.username">username</prop> </props> </property> <property name="packagesToScan"> <list> <value>com.myprojects.pojos</value> </list> </property> </bean> <bean id="hibernateTemplate" class="org.springframework.orm.hibernate3.HibernateTemplate"> <property name="sessionFactory" ref="sessionFactory"/> </bean> <tx:annotation-driven transaction-manager="transactionManager"/> <bean id="transactionManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager"> <property name="sessionFactory" ref="sessionFactory" /> </bean> <context:component-scan base-package="com.myprojects"/> <context:annotation-config/> <mvc:annotation-driven/> </beans> Here is the stacktrace: java.lang.NoClassDefFoundError: javax/servlet/ServletContext at java.lang.Class.getDeclaredMethods0(Native Method) at java.lang.Class.privateGetDeclaredMethods(Class.java:2521) at java.lang.Class.getDeclaredMethods(Class.java:1845) at org.springframework.core.type.StandardAnnotationMetadata.hasAnnotatedMethods(StandardAnnotationMetadata.java:161) at org.springframework.context.annotation.ConfigurationClassUtils.isLiteConfigurationCandidate(ConfigurationClassUtils.java:106) at org.springframework.context.annotation.ConfigurationClassUtils.checkConfigurationClassCandidate(ConfigurationClassUtils.java:88) at org.springframework.context.annotation.ConfigurationClassPostProcessor.processConfigBeanDefinitions(ConfigurationClassPostProcessor.java:253) at org.springframework.context.annotation.ConfigurationClassPostProcessor.postProcessBeanDefinitionRegistry(ConfigurationClassPostProcessor.java:223) at org.springframework.context.support.AbstractApplicationContext.invokeBeanFactoryPostProcessors(AbstractApplicationContext.java:630) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:461) at org.springframework.test.context.support.AbstractGenericContextLoader.loadContext(AbstractGenericContextLoader.java:120) at org.springframework.test.context.support.AbstractGenericContextLoader.loadContext(AbstractGenericContextLoader.java:60) at org.springframework.test.context.support.AbstractDelegatingSmartContextLoader.delegateLoading(AbstractDelegatingSmartContextLoader.java:100) at org.springframework.test.context.support.AbstractDelegatingSmartContextLoader.loadContext(AbstractDelegatingSmartContextLoader.java:248) at org.springframework.test.context.CacheAwareContextLoaderDelegate.loadContextInternal(CacheAwareContextLoaderDelegate.java:64) at org.springframework.test.context.CacheAwareContextLoaderDelegate.loadContext(CacheAwareContextLoaderDelegate.java:91) at org.springframework.test.context.TestContext.getApplicationContext(TestContext.java:122) at org.springframework.test.context.support.DependencyInjectionTestExecutionListener.injectDependencies(DependencyInjectionTestExecutionListener.java:109) at org.springframework.test.context.support.DependencyInjectionTestExecutionListener.prepareTestInstance(DependencyInjectionTestExecutionListener.java:75) at org.springframework.test.context.TestContextManager.prepareTestInstance(TestContextManager.java:312) at org.springframework.test.context.junit4.SpringJUnit4ClassRunner.createTest(SpringJUnit4ClassRunner.java:211) at org.springframework.test.context.junit4.SpringJUnit4ClassRunner$1.runReflectiveCall(SpringJUnit4ClassRunner.java:288) at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12) at org.springframework.test.context.junit4.SpringJUnit4ClassRunner.methodBlock(SpringJUnit4ClassRunner.java:284) at org.springframework.test.context.junit4.SpringJUnit4ClassRunner.runChild(SpringJUnit4ClassRunner.java:231) at org.springframework.test.context.junit4.SpringJUnit4ClassRunner.runChild(SpringJUnit4ClassRunner.java:88) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229) at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26) at org.springframework.test.context.junit4.statements.RunBeforeTestClassCallbacks.evaluate(RunBeforeTestClassCallbacks.java:61) at org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27) at org.springframework.test.context.junit4.statements.RunAfterTestClassCallbacks.evaluate(RunAfterTestClassCallbacks.java:71) at org.junit.runners.ParentRunner.run(ParentRunner.java:309) at org.springframework.test.context.junit4.SpringJUnit4ClassRunner.run(SpringJUnit4ClassRunner.java:174) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassExecuter.runTestClass(JUnitTestClassExecuter.java:80) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassExecuter.execute(JUnitTestClassExecuter.java:47) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassProcessor.processTestClass(JUnitTestClassProcessor.java:69) at org.gradle.api.internal.tasks.testing.SuiteTestClassProcessor.processTestClass(SuiteTestClassProcessor.java:49) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:35) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:24) at org.gradle.messaging.dispatch.ContextClassLoaderDispatch.dispatch(ContextClassLoaderDispatch.java:32) at org.gradle.messaging.dispatch.ProxyDispatchAdapter$DispatchingInvocationHandler.invoke(ProxyDispatchAdapter.java:93) at com.sun.proxy.$Proxy2.processTestClass(Unknown Source) at org.gradle.api.internal.tasks.testing.worker.TestWorker.processTestClass(TestWorker.java:103) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:35) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:24) at org.gradle.messaging.remote.internal.hub.MessageHub$Handler.run(MessageHub.java:355) at org.gradle.internal.concurrent.DefaultExecutorFactory$StoppableExecutorImpl$1.run(DefaultExecutorFactory.java:66) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:724) Caused by: java.lang.ClassNotFoundException: javax.servlet.ServletContext at java.net.URLClassLoader$1.run(URLClassLoader.java:366) at java.net.URLClassLoader$1.run(URLClassLoader.java:355) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:354) at java.lang.ClassLoader.loadClass(ClassLoader.java:424) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) ... 62 more Test class: import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import static org.junit.Assert.*; import org.junit.runner.RunWith; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.test.context.ContextConfiguration; import org.springframework.test.context.junit4.SpringJUnit4ClassRunner; @RunWith(SpringJUnit4ClassRunner.class) @ContextConfiguration(locations = {"classpath:applicationContext.xml"}) public class UserServiceTest { @Autowired private UserService service; public UserServiceTest() { } @BeforeClass public static void setUpClass() { } @AfterClass public static void tearDownClass() { } @Before public void setUp() { } @After public void tearDown() { } } Even before writing any test method, I got this error. Any idea why this error?

    Read the article

  • Implementing union of Set using basic java array

    - by lupindeterd
    Note: This is an assignment. Hi, Continuing with my Set implementation using Java basic array, I'm now struggling with the 3 to last function namely the union. import java.io.*; class Set { private int numberOfElements = 0; private String[] setElements = new String[5]; private int maxNumberOfElements = 5; // constructor for our Set class public Set(int numberOfE, int setE, int maxNumberOfE) { int numberOfElements = numberOfE; String[] setElements = new String[setE]; int maxNumberOfElements = maxNumberOfE; } // Helper method to shorten/remove element of array since we're using basic array instead of ArrayList or HashSet from collection interface :( static String[] removeAt(int k, String[] arr) { final int L = arr.length; String[] ret = new String[L - 1]; System.arraycopy(arr, 0, ret, 0, k); System.arraycopy(arr, k + 1, ret, k, L - k - 1); return ret; } int findElement(String element) { int retval = 0; for ( int i = 0; i < setElements.length; i++) { if ( setElements[i] != null && setElements[i].equals(element) ) { return retval = i; } retval = -1; } return retval; } void add(String newValue) { int elem = findElement(newValue); if( numberOfElements < maxNumberOfElements && elem == -1 ) { setElements[numberOfElements] = newValue; numberOfElements++; } } int getLength() { if ( setElements != null ) { return setElements.length; } else { return 0; } } String[] emptySet() { setElements = new String[0]; return setElements; } Boolean isFull() { Boolean True = new Boolean(true); Boolean False = new Boolean(false); if ( setElements.length == maxNumberOfElements ){ return True; } else { return False; } } Boolean isEmpty() { Boolean True = new Boolean(true); Boolean False = new Boolean(false); if ( setElements.length == 0 ) { return True; } else { return False; } } void remove(String newValue) { for ( int i = 0; i < setElements.length; i++) { if ( setElements[i].equals(newValue) ) { setElements = removeAt(i,setElements); } } } int isAMember(String element) { int retval = -1; for ( int i = 0; i < setElements.length; i++ ) { if (setElements[i] != null && setElements[i].equals(element)) { return retval = i; } } return retval; } void printSet() { for ( int i = 0; i < setElements.length; i++) { System.out.println("Member elements on index: "+ i +" " + setElements[i]); } } String[] getMember() { String[] tempArray = new String[setElements.length]; for ( int i = 0; i < setElements.length; i++) { if(setElements[i] != null) { tempArray[i] = setElements[i]; } } return tempArray; } Set union(Set x, Set y) { String[] newtemparray = new String[x.getLength]; newtemparray = x.getMember; return x; } } // This is the SetDemo class that will make use of our Set class class SetDemo { public static void main(String[] args) { //get input from keyboard BufferedReader keyboard; InputStreamReader reader; String temp = ""; reader = new InputStreamReader(System.in); keyboard = new BufferedReader(reader); try { System.out.println("Enter string element to be added" ); temp = keyboard.readLine( ); System.out.println("You entered " + temp ); } catch (IOException IOerr) { System.out.println("There was an error during input"); } /* ************************************************************************** * Test cases for our new created Set class. * ************************************************************************** */ Set setA = new Set(1,10,10); setA.add(temp); setA.add("b"); setA.add("b"); setA.add("hello"); setA.add("world"); setA.add("six"); setA.add("seven"); setA.add("b"); int size = setA.getLength(); System.out.println("Set size is: " + size ); Boolean isempty = setA.isEmpty(); System.out.println("Set is empty? " + isempty ); int ismember = setA.isAMember("sixb"); System.out.println("Element six is member of setA? " + ismember ); Boolean output = setA.isFull(); System.out.println("Set is full? " + output ); setA.printSet(); int index = setA.findElement("world"); System.out.println("Element b located on index: " + index ); setA.remove("b"); setA.emptySet(); int resize = setA.getLength(); System.out.println("Set size is: " + resize ); setA.printSet(); Set setB = new Set(0,10,10); Set SetA = setA.union(setB,setA); } } Ok the method in question will be the implementation of union. As such this: Set union(Set x, Set y) { String[] newtemparray = new String[x.getLength]; newtemparray = x.getMember; return x; } I got this error: symbol : variable getLength location: class Set String[] newtemparray = new String[x.getLength]; ^ d:\javaprojects\Set.java:122: cannot find symbol symbol : variable getMember location: class Set newtemparray = x.getMember; ^ 2 errors My approach for union would be: *) create temporary array of string with size of the object x length. *) store object x members to temporary array by looping the object and calling the getMember *) loop object y members and check if element exist against temporary array. *) discard if it exist/add if it is not there *) return obj x with the union array. thanks, lupin

    Read the article

  • Returning new object, overwrite the existing one in Java

    - by lupin
    Note: This is an assignment. Hi, Ok I have this method that will create a supposedly union of 2 sets. i mport java.io.*; class Set { public int numberOfElements; public String[] setElements; public int maxNumberOfElements; // constructor for our Set class public Set(int numberOfE, int setE, int maxNumberOfE) { this.numberOfElements = numberOfE; this.setElements = new String[setE]; this.maxNumberOfElements = maxNumberOfE; } // Helper method to shorten/remove element of array since we're using basic array instead of ArrayList or HashSet from collection interface :( static String[] removeAt(int k, String[] arr) { final int L = arr.length; String[] ret = new String[L - 1]; System.arraycopy(arr, 0, ret, 0, k); System.arraycopy(arr, k + 1, ret, k, L - k - 1); return ret; } int findElement(String element) { int retval = 0; for ( int i = 0; i < setElements.length; i++) { if ( setElements[i] != null && setElements[i].equals(element) ) { return retval = i; } retval = -1; } return retval; } void add(String newValue) { int elem = findElement(newValue); if( numberOfElements < maxNumberOfElements && elem == -1 ) { setElements[numberOfElements] = newValue; numberOfElements++; } } int getLength() { if ( setElements != null ) { return setElements.length; } else { return 0; } } String[] emptySet() { setElements = new String[0]; return setElements; } Boolean isFull() { Boolean True = new Boolean(true); Boolean False = new Boolean(false); if ( setElements.length == maxNumberOfElements ){ return True; } else { return False; } } Boolean isEmpty() { Boolean True = new Boolean(true); Boolean False = new Boolean(false); if ( setElements.length == 0 ) { return True; } else { return False; } } void remove(String newValue) { for ( int i = 0; i < setElements.length; i++) { if ( setElements[i] != null && setElements[i].equals(newValue) ) { setElements = removeAt(i,setElements); } } } int isAMember(String element) { int retval = -1; for ( int i = 0; i < setElements.length; i++ ) { if (setElements[i] != null && setElements[i].equals(element)) { return retval = i; } } return retval; } void printSet() { for ( int i = 0; i < setElements.length; i++) { if (setElements[i] != null) { System.out.println("Member elements on index: "+ i +" " + setElements[i]); } } } String[] getMember() { String[] tempArray = new String[setElements.length]; for ( int i = 0; i < setElements.length; i++) { if(setElements[i] != null) { tempArray[i] = setElements[i]; } } return tempArray; } Set union(Set x, Set y) { String[] newXtemparray = new String[x.getLength()]; String[] newYtemparray = new String[y.getLength()]; int len = newYtemparray.length + newXtemparray.length; Set temp = new Set(0,len,len); newXtemparray = x.getMember(); newYtemparray = x.getMember(); for(int i = 0; i < newYtemparray.length; i++) { temp.add(newYtemparray[i]); } for(int j = 0; j < newXtemparray.length; j++) { temp.add(newXtemparray[j]); } return temp; } Set difference(Set x, Set y) { String[] newXtemparray = new String[x.getLength()]; String[] newYtemparray = new String[y.getLength()]; int len = newYtemparray.length + newXtemparray.length; Set temp = new Set(0,len,len); newXtemparray = x.getMember(); newYtemparray = x.getMember(); for(int i = 0; i < newXtemparray.length; i++) { temp.add(newYtemparray[i]); } for(int j = 0; j < newYtemparray.length; j++) { int retval = temp.findElement(newYtemparray[j]); if( retval != -1 ) { temp.remove(newYtemparray[j]); } } return temp; } } // This is the SetDemo class that will make use of our Set class class SetDemo { public static void main(String[] args) { //get input from keyboard BufferedReader keyboard; InputStreamReader reader; String temp = ""; reader = new InputStreamReader(System.in); keyboard = new BufferedReader(reader); try { System.out.println("Enter string element to be added" ); temp = keyboard.readLine( ); System.out.println("You entered " + temp ); } catch (IOException IOerr) { System.out.println("There was an error during input"); } /* ************************************************************************** * Test cases for our new created Set class. * ************************************************************************** */ Set setA = new Set(0,10,10); setA.add(temp); setA.add("b"); setA.add("b"); setA.add("hello"); setA.add("world"); setA.add("six"); setA.add("seven"); setA.add("b"); int size = setA.getLength(); System.out.println("Set size is: " + size ); Boolean isempty = setA.isEmpty(); System.out.println("Set is empty? " + isempty ); int ismember = setA.isAMember("sixb"); System.out.println("Element sixb is member of setA? " + ismember ); Boolean output = setA.isFull(); System.out.println("Set is full? " + output ); //setA.printSet(); int index = setA.findElement("world"); System.out.println("Element b located on index: " + index ); setA.remove("b"); //setA.emptySet(); int resize = setA.getLength(); System.out.println("Set size is: " + resize ); //setA.printSet(); Set setB = new Set(0,10,10); setB.add("b"); setB.add("z"); setB.add("x"); setB.add("y"); Set setC = setA.union(setB,setA); System.out.println("Elements of setA"); setA.printSet(); System.out.println("Union of setA and setB"); setC.printSet(); } } The union method works a sense that somehow I can call another method on it but it doesn't do the job, i supposedly would create and union of all elements of setA and setB but it only return element of setB. Sample output follows: java SetDemo Enter string element to be added hello You entered hello Set size is: 10 Set is empty? false Element sixb is member of setA? -1 Set is full? true Element b located on index: 2 Set size is: 9 Elements of setA Member elements on index: 0 hello Member elements on index: 1 world Member elements on index: 2 six Member elements on index: 3 seven Union of setA and setB Member elements on index: 0 b Member elements on index: 1 z Member elements on index: 2 x Member elements on index: 3 y thanks, lupin

    Read the article

  • Java constructor and modify the object properties at runtime

    - by lupin
    Note: This is an assignment Hi, I have the following class/constructor. import java.io.*; class Set { public int numberOfElements = 0; public String[] setElements = new String[5]; public int maxNumberOfElements = 5; // constructor for our Set class public Set(int numberOfE, int setE, int maxNumberOfE) { int numberOfElements = numberOfE; String[] setElements = new String[setE]; int maxNumberOfElements = maxNumberOfE; } // Helper method to shorten/remove element of array since we're using basic array instead of ArrayList or HashSet from collection interface :( static String[] removeAt(int k, String[] arr) { final int L = arr.length; String[] ret = new String[L - 1]; System.arraycopy(arr, 0, ret, 0, k); System.arraycopy(arr, k + 1, ret, k, L - k - 1); return ret; } int findElement(String element) { int retval = 0; for ( int i = 0; i < setElements.length; i++) { if ( setElements[i] != null && setElements[i].equals(element) ) { return retval = i; } retval = -1; } return retval; } void add(String newValue) { int elem = findElement(newValue); if( numberOfElements < maxNumberOfElements && elem == -1 ) { setElements[numberOfElements] = newValue; numberOfElements++; } } int getLength() { if ( setElements != null ) { return setElements.length; } else { return 0; } } String[] emptySet() { setElements = new String[0]; return setElements; } Boolean isFull() { Boolean True = new Boolean(true); Boolean False = new Boolean(false); if ( setElements.length == maxNumberOfElements ){ return True; } else { return False; } } Boolean isEmpty() { Boolean True = new Boolean(true); Boolean False = new Boolean(false); if ( setElements.length == 0 ) { return True; } else { return False; } } void remove(String newValue) { for ( int i = 0; i < setElements.length; i++) { if ( setElements[i].equals(newValue) ) { setElements = removeAt(i,setElements); } } } int isAMember(String element) { int retval = -1; for ( int i = 0; i < setElements.length; i++ ) { if (setElements[i] != null && setElements[i].equals(element)) { return retval = i; } } return retval; } void printSet() { for ( int i = 0; i < setElements.length; i++) { System.out.println("Member elements on index: "+ i +" " + setElements[i]); } } String[] getMember() { String[] tempArray = new String[setElements.length]; for ( int i = 0; i < setElements.length; i++) { if(setElements[i] != null) { tempArray[i] = setElements[i]; } } return tempArray; } Set union(Set x, Set y) { String[] newXtemparray = new String[x.getLength()]; String[] newYtemparray = new String[y.getLength()]; Set temp = new Set(1,20,20); newXtemparray = x.getMember(); newYtemparray = x.getMember(); for(int i = 0; i < newXtemparray.length; i++) { temp.add(newYtemparray[i]); } for(int j = 0; j < newYtemparray.length; j++) { temp.add(newYtemparray[j]); } return temp; } } // This is the SetDemo class that will make use of our Set class class SetDemo { public static void main(String[] args) { //get input from keyboard BufferedReader keyboard; InputStreamReader reader; String temp = ""; reader = new InputStreamReader(System.in); keyboard = new BufferedReader(reader); try { System.out.println("Enter string element to be added" ); temp = keyboard.readLine( ); System.out.println("You entered " + temp ); } catch (IOException IOerr) { System.out.println("There was an error during input"); } /* ************************************************************************** * Test cases for our new created Set class. * ************************************************************************** */ Set setA = new Set(1,10,10); setA.add(temp); setA.add("b"); setA.add("b"); setA.add("hello"); setA.add("world"); setA.add("six"); setA.add("seven"); setA.add("b"); int size = setA.getLength(); System.out.println("Set size is: " + size ); Boolean isempty = setA.isEmpty(); System.out.println("Set is empty? " + isempty ); int ismember = setA.isAMember("sixb"); System.out.println("Element six is member of setA? " + ismember ); Boolean output = setA.isFull(); System.out.println("Set is full? " + output ); setA.printSet(); int index = setA.findElement("world"); System.out.println("Element b located on index: " + index ); setA.remove("b"); setA.emptySet(); int resize = setA.getLength(); System.out.println("Set size is: " + resize ); setA.printSet(); Set setB = new Set(0,10,10); Set SetA = setA.union(setB,setA); SetA.printSet(); } } I have two question here, why I when I change the class property declaration to: class Set { public int numberOfElements; public String[] setElements; public int maxNumberOfElements; // constructor for our Set class public Set(int numberOfE, int setE, int maxNumberOfE) { int numberOfElements = numberOfE; String[] setElements = new String[setE]; int maxNumberOfElements = maxNumberOfE; } I got this error: \ javaprojects>java SetDemo Enter string element to be added a You entered a Exception in thread "main" java.lang.NullPointerException at Set.findElement(Set.java:30) at Set.add(Set.java:43) at SetDemo.main(Set.java:169) Second, on the union method, why the result of SetA.printSet still printing null, isn't it getting back the return value from union method? Thanks in advance for any explaination. lupin

    Read the article

  • .Net 3.5 Asynchronous Socket Server Performance Problem

    - by iBrAaAa
    I'm developing an Asynchronous Game Server using .Net Socket Asynchronous Model( BeginAccept/EndAccept...etc.) The problem I'm facing is described like that: When I have only one client connected, the server response time is very fast but once a second client connects, the server response time increases too much. I've measured the time from a client sends a message to the server until it gets the reply in both cases. I found that the average time in case of one client is about 17ms and in case of 2 clients about 280ms!!! What I really see is that: When 2 clients are connected and only one of them is moving(i.e. requesting service from the server) it is equivalently equal to the case when only one client is connected(i.e. fast response). However, when the 2 clients move at the same time(i.e. requests service from the server at the same time) their motion becomes very slow (as if the server replies each one of them in order i.e. not simultaneously). Basically, what I am doing is that: When a client requests a permission for motion from the server and the server grants him the request, the server then broadcasts the new position of the client to all the players. So if two clients are moving in the same time, the server is eventually trying to broadcast to both clients the new position of each of them at the same time. EX: Client1 asks to go to position (2,2) Client2 asks to go to position (5,5) Server sends to each of Client1 & Client2 the same two messages: message1: "Client1 at (2,2)" message2: "Client2 at (5,5)" I believe that the problem comes from the fact that Socket class is thread safe according MSDN documentation http://msdn.microsoft.com/en-us/library/system.net.sockets.socket.aspx. (NOT SURE THAT IT IS THE PROBLEM) Below is the code for the server: /// /// This class is responsible for handling packet receiving and sending /// public class NetworkManager { /// /// An integer to hold the server port number to be used for the connections. Its default value is 5000. /// private readonly int port = 5000; /// /// hashtable contain all the clients connected to the server. /// key: player Id /// value: socket /// private readonly Hashtable connectedClients = new Hashtable(); /// /// An event to hold the thread to wait for a new client /// private readonly ManualResetEvent resetEvent = new ManualResetEvent(false); /// /// keeps track of the number of the connected clients /// private int clientCount; /// /// The socket of the server at which the clients connect /// private readonly Socket mainSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); /// /// The socket exception that informs that a client is disconnected /// private const int ClientDisconnectedErrorCode = 10054; /// /// The only instance of this class. /// private static readonly NetworkManager networkManagerInstance = new NetworkManager(); /// /// A delegate for the new client connected event. /// /// the sender object /// the event args public delegate void NewClientConnected(Object sender, SystemEventArgs e); /// /// A delegate for the position update message reception. /// /// the sender object /// the event args public delegate void PositionUpdateMessageRecieved(Object sender, PositionUpdateEventArgs e); /// /// The event which fires when a client sends a position message /// public PositionUpdateMessageRecieved PositionUpdateMessageEvent { get; set; } /// /// keeps track of the number of the connected clients /// public int ClientCount { get { return clientCount; } } /// /// A getter for this class instance. /// /// only instance. public static NetworkManager NetworkManagerInstance { get { return networkManagerInstance; } } private NetworkManager() {} /// Starts the game server and holds this thread alive /// public void StartServer() { //Bind the mainSocket to the server IP address and port mainSocket.Bind(new IPEndPoint(IPAddress.Any, port)); //The server starts to listen on the binded socket with max connection queue //1024 mainSocket.Listen(1024); //Start accepting clients asynchronously mainSocket.BeginAccept(OnClientConnected, null); //Wait until there is a client wants to connect resetEvent.WaitOne(); } /// /// Receives connections of new clients and fire the NewClientConnected event /// private void OnClientConnected(IAsyncResult asyncResult) { Interlocked.Increment(ref clientCount); ClientInfo newClient = new ClientInfo { WorkerSocket = mainSocket.EndAccept(asyncResult), PlayerId = clientCount }; //Add the new client to the hashtable and increment the number of clients connectedClients.Add(newClient.PlayerId, newClient); //fire the new client event informing that a new client is connected to the server if (NewClientEvent != null) { NewClientEvent(this, System.EventArgs.Empty); } newClient.WorkerSocket.BeginReceive(newClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), newClient); //Start accepting clients asynchronously again mainSocket.BeginAccept(OnClientConnected, null); } /// Waits for the upcoming messages from different clients and fires the proper event according to the packet type. /// /// private void WaitForData(IAsyncResult asyncResult) { ClientInfo sendingClient = null; try { //Take the client information from the asynchronous result resulting from the BeginReceive sendingClient = asyncResult.AsyncState as ClientInfo; // If client is disconnected, then throw a socket exception // with the correct error code. if (!IsConnected(sendingClient.WorkerSocket)) { throw new SocketException(ClientDisconnectedErrorCode); } //End the pending receive request sendingClient.WorkerSocket.EndReceive(asyncResult); //Fire the appropriate event FireMessageTypeEvent(sendingClient.ConvertBytesToPacket() as BasePacket); // Begin receiving data from this client sendingClient.WorkerSocket.BeginReceive(sendingClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), sendingClient); } catch (SocketException e) { if (e.ErrorCode == ClientDisconnectedErrorCode) { // Close the socket. if (sendingClient.WorkerSocket != null) { sendingClient.WorkerSocket.Close(); sendingClient.WorkerSocket = null; } // Remove it from the hash table. connectedClients.Remove(sendingClient.PlayerId); if (ClientDisconnectedEvent != null) { ClientDisconnectedEvent(this, new ClientDisconnectedEventArgs(sendingClient.PlayerId)); } } } catch (Exception e) { // Begin receiving data from this client sendingClient.WorkerSocket.BeginReceive(sendingClient.Buffer, 0, BasePacket.GetMaxPacketSize(), SocketFlags.None, new AsyncCallback(WaitForData), sendingClient); } } /// /// Broadcasts the input message to all the connected clients /// /// public void BroadcastMessage(BasePacket message) { byte[] bytes = message.ConvertToBytes(); foreach (ClientInfo client in connectedClients.Values) { client.WorkerSocket.BeginSend(bytes, 0, bytes.Length, SocketFlags.None, SendAsync, client); } } /// /// Sends the input message to the client specified by his ID. /// /// /// The message to be sent. /// The id of the client to receive the message. public void SendToClient(BasePacket message, int id) { byte[] bytes = message.ConvertToBytes(); (connectedClients[id] as ClientInfo).WorkerSocket.BeginSend(bytes, 0, bytes.Length, SocketFlags.None, SendAsync, connectedClients[id]); } private void SendAsync(IAsyncResult asyncResult) { ClientInfo currentClient = (ClientInfo)asyncResult.AsyncState; currentClient.WorkerSocket.EndSend(asyncResult); } /// Fires the event depending on the type of received packet /// /// The received packet. void FireMessageTypeEvent(BasePacket packet) { switch (packet.MessageType) { case MessageType.PositionUpdateMessage: if (PositionUpdateMessageEvent != null) { PositionUpdateMessageEvent(this, new PositionUpdateEventArgs(packet as PositionUpdatePacket)); } break; } } } The events fired are handled in a different class, here are the event handling code for the PositionUpdateMessage (Other handlers are irrelevant): private readonly Hashtable onlinePlayers = new Hashtable(); /// /// Constructor that creates a new instance of the GameController class. /// private GameController() { //Start the server server = new Thread(networkManager.StartServer); server.Start(); //Create an event handler for the NewClientEvent of networkManager networkManager.PositionUpdateMessageEvent += OnPositionUpdateMessageReceived; } /// /// this event handler is called when a client asks for movement. /// private void OnPositionUpdateMessageReceived(object sender, PositionUpdateEventArgs e) { Point currentLocation = ((PlayerData)onlinePlayers[e.PositionUpdatePacket.PlayerId]).Position; Point locationRequested = e.PositionUpdatePacket.Position; ((PlayerData)onlinePlayers[e.PositionUpdatePacket.PlayerId]).Position = locationRequested; // Broadcast the new position networkManager.BroadcastMessage(new PositionUpdatePacket { Position = locationRequested, PlayerId = e.PositionUpdatePacket.PlayerId }); }

    Read the article

  • g++ SSE intrinsics dilemma - value from intrinsic "saturates"

    - by Sriram
    Hi, I wrote a simple program to implement SSE intrinsics for computing the inner product of two large (100000 or more elements) vectors. The program compares the execution time for both, inner product computed the conventional way and using intrinsics. Everything works out fine, until I insert (just for the fun of it) an inner loop before the statement that computes the inner product. Before I go further, here is the code: //this is a sample Intrinsics program to compute inner product of two vectors and compare Intrinsics with traditional method of doing things. #include <iostream> #include <iomanip> #include <xmmintrin.h> #include <stdio.h> #include <time.h> #include <stdlib.h> using namespace std; typedef float v4sf __attribute__ ((vector_size(16))); double innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume len1 = len2. float result = 0.0; for(int i = 0; i < len1; i++) { for(int j = 0; j < len1; j++) { result += (arr1[i] * arr2[i]); } } //float y = 1.23e+09; //cout << "y = " << y << endl; return result; } double sse_v4sf_innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume that len1 = len2. if(len1 != len2) { cout << "Lengths not equal." << endl; exit(1); } /*steps: * 1. load a long-type (4 float) into a v4sf type data from both arrays. * 2. multiply the two. * 3. multiply the same and store result. * 4. add this to previous results. */ v4sf arr1Data, arr2Data, prevSums, multVal, xyz; //__builtin_ia32_xorps(prevSums, prevSums); //making it equal zero. //can explicitly load 0 into prevSums using loadps or storeps (Check). float temp[4] = {0.0, 0.0, 0.0, 0.0}; prevSums = __builtin_ia32_loadups(temp); float result = 0.0; for(int i = 0; i < (len1 - 3); i += 4) { for(int j = 0; j < len1; j++) { arr1Data = __builtin_ia32_loadups(&arr1[i]); arr2Data = __builtin_ia32_loadups(&arr2[i]); //store the contents of two arrays. multVal = __builtin_ia32_mulps(arr1Data, arr2Data); //multiply. xyz = __builtin_ia32_addps(multVal, prevSums); prevSums = xyz; } } //prevSums will hold the sums of 4 32-bit floating point values taken at a time. Individual entries in prevSums also need to be added. __builtin_ia32_storeups(temp, prevSums); //store prevSums into temp. cout << "Values of temp:" << endl; for(int i = 0; i < 4; i++) cout << temp[i] << endl; result += temp[0] + temp[1] + temp[2] + temp[3]; return result; } int main() { clock_t begin, end; int length = 100000; float *arr1, *arr2; double result_Conventional, result_Intrinsic; // printStats("Allocating memory."); arr1 = new float[length]; arr2 = new float[length]; // printStats("End allocation."); srand(time(NULL)); //init random seed. // printStats("Initializing array1 and array2"); begin = clock(); for(int i = 0; i < length; i++) { // for(int j = 0; j < length; j++) { // arr1[i] = rand() % 10 + 1; arr1[i] = 2.5; // arr2[i] = rand() % 10 - 1; arr2[i] = 2.5; // } } end = clock(); cout << "Time to initialize array1 and array2 = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("Finished initialization."); // printStats("Begin inner product conventionally."); begin = clock(); result_Conventional = innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product conventionally = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("End inner product conventionally."); // printStats("Begin inner product using Intrinsics."); begin = clock(); result_Intrinsic = sse_v4sf_innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product with intrinsics = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; //printStats("End inner product using Intrinsics."); cout << "Results: " << endl; cout << " result_Conventional = " << result_Conventional << endl; cout << " result_Intrinsics = " << result_Intrinsic << endl; return 0; } I use the following g++ invocation to build this: g++ -W -Wall -O2 -pedantic -march=i386 -msse intrinsics_SSE_innerProduct.C -o innerProduct Each of the loops above, in both the functions, runs a total of N^2 times. However, given that arr1 and arr2 (the two floating point vectors) are loaded with a value 2.5, the length of the array is 100,000, the result in both cases should be 6.25e+10. The results I get are: Results: result_Conventional = 6.25e+10 result_Intrinsics = 5.36871e+08 This is not all. It seems that the value returned from the function that uses intrinsics "saturates" at the value above. I tried putting other values for the elements of the array and different sizes too. But it seems that any value above 1.0 for the array contents and any size above 1000 meets with the same value we see above. Initially, I thought it might be because all operations within SSE are in floating point, but floating point should be able to store a number that is of the order of e+08. I am trying to see where I could be going wrong but cannot seem to figure it out. I am using g++ version: g++ (GCC) 4.4.1 20090725 (Red Hat 4.4.1-2). Any help on this is most welcome. Thanks, Sriram.

    Read the article

  • Null-free "maps": Is a callback solution slower than tryGet()?

    - by David Moles
    In comments to "How to implement List, Set, and Map in null free design?", Steven Sudit and I got into a discussion about using a callback, with handlers for "found" and "not found" situations, vs. a tryGet() method, taking an out parameter and returning a boolean indicating whether the out parameter had been populated. Steven maintained that the callback approach was more complex and almost certain to be slower; I maintained that the complexity was no greater and the performance at worst the same. But code speaks louder than words, so I thought I'd implement both and see what I got. The original question was fairly theoretical with regard to language ("And for argument sake, let's say this language don't even have null") -- I've used Java here because that's what I've got handy. Java doesn't have out parameters, but it doesn't have first-class functions either, so style-wise, it should suck equally for both approaches. (Digression: As far as complexity goes: I like the callback design because it inherently forces the user of the API to handle both cases, whereas the tryGet() design requires callers to perform their own boilerplate conditional check, which they could forget or get wrong. But having now implemented both, I can see why the tryGet() design looks simpler, at least in the short term.) First, the callback example: class CallbackMap<K, V> { private final Map<K, V> backingMap; public CallbackMap(Map<K, V> backingMap) { this.backingMap = backingMap; } void lookup(K key, Callback<K, V> handler) { V val = backingMap.get(key); if (val == null) { handler.handleMissing(key); } else { handler.handleFound(key, val); } } } interface Callback<K, V> { void handleFound(K key, V value); void handleMissing(K key); } class CallbackExample { private final Map<String, String> map; private final List<String> found; private final List<String> missing; private Callback<String, String> handler; public CallbackExample(Map<String, String> map) { this.map = map; found = new ArrayList<String>(map.size()); missing = new ArrayList<String>(map.size()); handler = new Callback<String, String>() { public void handleFound(String key, String value) { found.add(key + ": " + value); } public void handleMissing(String key) { missing.add(key); } }; } void test() { CallbackMap<String, String> cbMap = new CallbackMap<String, String>(map); for (int i = 0, count = map.size(); i < count; i++) { String key = "key" + i; cbMap.lookup(key, handler); } System.out.println(found.size() + " found"); System.out.println(missing.size() + " missing"); } } Now, the tryGet() example -- as best I understand the pattern (and I might well be wrong): class TryGetMap<K, V> { private final Map<K, V> backingMap; public TryGetMap(Map<K, V> backingMap) { this.backingMap = backingMap; } boolean tryGet(K key, OutParameter<V> valueParam) { V val = backingMap.get(key); if (val == null) { return false; } valueParam.value = val; return true; } } class OutParameter<V> { V value; } class TryGetExample { private final Map<String, String> map; private final List<String> found; private final List<String> missing; public TryGetExample(Map<String, String> map) { this.map = map; found = new ArrayList<String>(map.size()); missing = new ArrayList<String>(map.size()); } void test() { TryGetMap<String, String> tgMap = new TryGetMap<String, String>(map); for (int i = 0, count = map.size(); i < count; i++) { String key = "key" + i; OutParameter<String> out = new OutParameter<String>(); if (tgMap.tryGet(key, out)) { found.add(key + ": " + out.value); } else { missing.add(key); } } System.out.println(found.size() + " found"); System.out.println(missing.size() + " missing"); } } And finally, the performance test code: public static void main(String[] args) { int size = 200000; Map<String, String> map = new HashMap<String, String>(); for (int i = 0; i < size; i++) { String val = (i % 5 == 0) ? null : "value" + i; map.put("key" + i, val); } long totalCallback = 0; long totalTryGet = 0; int iterations = 20; for (int i = 0; i < iterations; i++) { { TryGetExample tryGet = new TryGetExample(map); long tryGetStart = System.currentTimeMillis(); tryGet.test(); totalTryGet += (System.currentTimeMillis() - tryGetStart); } System.gc(); { CallbackExample callback = new CallbackExample(map); long callbackStart = System.currentTimeMillis(); callback.test(); totalCallback += (System.currentTimeMillis() - callbackStart); } System.gc(); } System.out.println("Avg. callback: " + (totalCallback / iterations)); System.out.println("Avg. tryGet(): " + (totalTryGet / iterations)); } On my first attempt, I got 50% worse performance for callback than for tryGet(), which really surprised me. But, on a hunch, I added some garbage collection, and the performance penalty vanished. This fits with my instinct, which is that we're basically talking about taking the same number of method calls, conditional checks, etc. and rearranging them. But then, I wrote the code, so I might well have written a suboptimal or subconsicously penalized tryGet() implementation. Thoughts?

    Read the article

  • Handling inheritance with overriding efficiently

    - by Fyodor Soikin
    I have the following two data structures. First, a list of properties applied to object triples: Object1 Object2 Object3 Property Value O1 O2 O3 P1 "abc" O1 O2 O3 P2 "xyz" O1 O3 O4 P1 "123" O2 O4 O5 P1 "098" Second, an inheritance tree: O1 O2 O4 O3 O5 Or viewed as a relation: Object Parent O2 O1 O4 O2 O3 O1 O5 O3 O1 null The semantics of this being that O2 inherits properties from O1; O4 - from O2 and O1; O3 - from O1; and O5 - from O3 and O1, in that order of precedence. NOTE 1: I have an efficient way to select all children or all parents of a given object. This is currently implemented with left and right indexes, but hierarchyid could also work. This does not seem important right now. NOTE 2: I have tiggers in place that make sure that the "Object" column always contains all possible objects, even when they do not really have to be there (i.e. have no parent or children defined). This makes it possible to use inner joins rather than severely less effiecient outer joins. The objective is: Given a pair of (Property, Value), return all object triples that have that property with that value either defined explicitly or inherited from a parent. NOTE 1: An object triple (X,Y,Z) is considered a "parent" of triple (A,B,C) when it is true that either X = A or X is a parent of A, and the same is true for (Y,B) and (Z,C). NOTE 2: A property defined on a closer parent "overrides" the same property defined on a more distant parent. NOTE 3: When (A,B,C) has two parents - (X1,Y1,Z1) and (X2,Y2,Z2), then (X1,Y1,Z1) is considered a "closer" parent when: (a) X2 is a parent of X1, or (b) X2 = X1 and Y2 is a parent of Y1, or (c) X2 = X1 and Y2 = Y1 and Z2 is a parent of Z1 In other words, the "closeness" in ancestry for triples is defined based on the first components of the triples first, then on the second components, then on the third components. This rule establishes an unambigous partial order for triples in terms of ancestry. For example, given the pair of (P1, "abc"), the result set of triples will be: O1, O2, O3 -- Defined explicitly O1, O2, O5 -- Because O5 inherits from O3 O1, O4, O3 -- Because O4 inherits from O2 O1, O4, O5 -- Because O4 inherits from O2 and O5 inherits from O3 O2, O2, O3 -- Because O2 inherits from O1 O2, O2, O5 -- Because O2 inherits from O1 and O5 inherits from O3 O2, O4, O3 -- Because O2 inherits from O1 and O4 inherits from O2 O3, O2, O3 -- Because O3 inherits from O1 O3, O2, O5 -- Because O3 inherits from O1 and O5 inherits from O3 O3, O4, O3 -- Because O3 inherits from O1 and O4 inherits from O2 O3, O4, O5 -- Because O3 inherits from O1 and O4 inherits from O2 and O5 inherits from O3 O4, O2, O3 -- Because O4 inherits from O1 O4, O2, O5 -- Because O4 inherits from O1 and O5 inherits from O3 O4, O4, O3 -- Because O4 inherits from O1 and O4 inherits from O2 O5, O2, O3 -- Because O5 inherits from O1 O5, O2, O5 -- Because O5 inherits from O1 and O5 inherits from O3 O5, O4, O3 -- Because O5 inherits from O1 and O4 inherits from O2 O5, O4, O5 -- Because O5 inherits from O1 and O4 inherits from O2 and O5 inherits from O3 Note that the triple (O2, O4, O5) is absent from this list. This is because property P1 is defined explicitly for the triple (O2, O4, O5) and this prevents that triple from inheriting that property from (O1, O2, O3). Also note that the triple (O4, O4, O5) is also absent. This is because that triple inherits its value of P1="098" from (O2, O4, O5), because it is a closer parent than (O1, O2, O3). The straightforward way to do it is the following. First, for every triple that a property is defined on, select all possible child triples: select Children1.Id as O1, Children2.Id as O2, Children3.Id as O3, tp.Property, tp.Value from TriplesAndProperties tp -- Select corresponding objects of the triple inner join Objects as Objects1 on Objects1.Id = tp.O1 inner join Objects as Objects2 on Objects2.Id = tp.O2 inner join Objects as Objects3 on Objects3.Id = tp.O3 -- Then add all possible children of all those objects inner join Objects as Children1 on Objects1.Id [isparentof] Children1.Id inner join Objects as Children2 on Objects2.Id [isparentof] Children2.Id inner join Objects as Children3 on Objects3.Id [isparentof] Children3.Id But this is not the whole story: if some triple inherits the same property from several parents, this query will yield conflicting results. Therefore, second step is to select just one of those conflicting results: select * from ( select Children1.Id as O1, Children2.Id as O2, Children3.Id as O3, tp.Property, tp.Value, row_number() over( partition by Children1.Id, Children2.Id, Children3.Id, tp.Property order by Objects1.[depthInTheTree] descending, Objects2.[depthInTheTree] descending, Objects3.[depthInTheTree] descending ) as InheritancePriority from ... (see above) ) where InheritancePriority = 1 The window function row_number() over( ... ) does the following: for every unique combination of objects triple and property, it sorts all values by the ancestral distance from the triple to the parents that the value is inherited from, and then I only select the very first of the resulting list of values. A similar effect can be achieved with a GROUP BY and ORDER BY statements, but I just find the window function semantically cleaner (the execution plans they yield are identical). The point is, I need to select the closest of contributing ancestors, and for that I need to group and then sort within the group. And finally, now I can simply filter the result set by Property and Value. This scheme works. Very reliably and predictably. It has proven to be very powerful for the business task it implements. The only trouble is, it is awfuly slow. One might point out the join of seven tables might be slowing things down, but that is actually not the bottleneck. According to the actual execution plan I'm getting from the SQL Management Studio (as well as SQL Profiler), the bottleneck is the sorting. The problem is, in order to satisfy my window function, the server has to sort by Children1.Id, Children2.Id, Children3.Id, tp.Property, Parents1.[depthInTheTree] descending, Parents2.[depthInTheTree] descending, Parents3.[depthInTheTree] descending, and there can be no indexes it can use, because the values come from a cross join of several tables. EDIT: Per Michael Buen's suggestion (thank you, Michael), I have posted the whole puzzle to sqlfiddle here. One can see in the execution plan that the Sort operation accounts for 32% of the whole query, and that is going to grow with the number of total rows, because all the other operations use indexes. Usually in such cases I would use an indexed view, but not in this case, because indexed views cannot contain self-joins, of which there are six. The only way that I can think of so far is to create six copies of the Objects table and then use them for the joins, thus enabling an indexed view. Did the time come that I shall be reduced to that kind of hacks? The despair sets in.

    Read the article

  • Numpy zero rank array indexing/broadcasting

    - by Lemming
    I'm trying to write a function that supports broadcasting and is fast at the same time. However, numpy's zero-rank arrays are causing trouble as usual. I couldn't find anything useful on google, or by searching here. So, I'm asking you. How should I implement broadcasting efficiently and handle zero-rank arrays at the same time? This whole post became larger than anticipated, sorry. Details: To clarify what I'm talking about I'll give a simple example: Say I want to implement a Heaviside step-function. I.e. a function that acts on the real axis, which is 0 on the negative side, 1 on the positive side, and from case to case either 0, 0.5, or 1 at the point 0. Implementation Masking The most efficient way I found so far is the following. It uses boolean arrays as masks to assign the correct values to the corresponding slots in the output vector. from numpy import * def step_mask(x, limit=+1): """Heaviside step-function. y = 0 if x < 0 y = 1 if x > 0 See below for x == 0. Arguments: x Evaluate the function at these points. limit Which limit at x == 0? limit > 0: y = 1 limit == 0: y = 0.5 limit < 0: y = 0 Return: The values corresponding to x. """ b = broadcast(x, limit) out = zeros(b.shape) out[x>0] = 1 mask = (limit > 0) & (x == 0) out[mask] = 1 mask = (limit == 0) & (x == 0) out[mask] = 0.5 mask = (limit < 0) & (x == 0) out[mask] = 0 return out List Comprehension The following-the-numpy-docs way is to use a list comprehension on the flat iterator of the broadcast object. However, list comprehensions become absolutely unreadable for such complicated functions. def step_comprehension(x, limit=+1): b = broadcast(x, limit) out = empty(b.shape) out.flat = [ ( 1 if x_ > 0 else ( 0 if x_ < 0 else ( 1 if l_ > 0 else ( 0.5 if l_ ==0 else ( 0 ))))) for x_, l_ in b ] return out For Loop And finally, the most naive way is a for loop. It's probably the most readable option. However, Python for-loops are anything but fast. And hence, a really bad idea in numerics. def step_for(x, limit=+1): b = broadcast(x, limit) out = empty(b.shape) for i, (x_, l_) in enumerate(b): if x_ > 0: out[i] = 1 elif x_ < 0: out[i] = 0 elif l_ > 0: out[i] = 1 elif l_ < 0: out[i] = 0 else: out[i] = 0.5 return out Test First of all a brief test to see if the output is correct. >>> x = array([-1, -0.1, 0, 0.1, 1]) >>> step_mask(x, +1) array([ 0., 0., 1., 1., 1.]) >>> step_mask(x, 0) array([ 0. , 0. , 0.5, 1. , 1. ]) >>> step_mask(x, -1) array([ 0., 0., 0., 1., 1.]) It is correct, and the other two functions give the same output. Performance How about efficiency? These are the timings: In [45]: xl = linspace(-2, 2, 500001) In [46]: %timeit step_mask(xl) 10 loops, best of 3: 19.5 ms per loop In [47]: %timeit step_comprehension(xl) 1 loops, best of 3: 1.17 s per loop In [48]: %timeit step_for(xl) 1 loops, best of 3: 1.15 s per loop The masked version performs best as expected. However, I'm surprised that the comprehension is on the same level as the for loop. Zero Rank Arrays But, 0-rank arrays pose a problem. Sometimes you want to use a function scalar input. And preferably not have to worry about wrapping all scalars in at least 1-D arrays. >>> step_mask(1) Traceback (most recent call last): File "<ipython-input-50-91c06aa4487b>", line 1, in <module> step_mask(1) File "script.py", line 22, in step_mask out[x>0] = 1 IndexError: 0-d arrays can't be indexed. >>> step_for(1) Traceback (most recent call last): File "<ipython-input-51-4e0de4fcb197>", line 1, in <module> step_for(1) File "script.py", line 55, in step_for out[i] = 1 IndexError: 0-d arrays can't be indexed. >>> step_comprehension(1) array(1.0) Only the list comprehension can handle 0-rank arrays. The other two versions would need special case handling for 0-rank arrays. Numpy gets a bit messy when you want to use the same code for arrays and scalars. However, I really like to have functions that work on as arbitrary input as possible. Who knows which parameters I'll want to iterate over at some point. Question: What is the best way to implement a function as the one above? Is there a way to avoid if scalar then like special cases? I'm not looking for a built-in Heaviside. It's just a simplified example. In my code the above pattern appears in many places to make parameter iteration as simple as possible without littering the client code with for loops or comprehensions. Furthermore, I'm aware of Cython, or weave & Co., or implementation directly in C. However, the performance of the masked version above is sufficient for the moment. And for the moment I would like to keep things as simple as possible.

    Read the article

  • Tips on how to refactor this unwieldy upvote/downvote code

    - by bob_cobb
    Basically this code is for an upvote/downvote system and I'm basically Incrementing the count by 1 when voting up Decrementing the count by 1 when voting down If the number of downvotes upvotes, we'll assume it's a negative score, so the count stays 0 Reverting the count back to what it originally was when clicking upvote twice or downvote twice Never go below 0 (by showing negative numbers); Basically it's the same scoring scheme reddit uses, and I tried to get some ideas from the source which was minified and kind of hard to grok: a.fn.vote = function(b, c, e, j) { if (reddit.logged && a(this).hasClass("arrow")) { var k = a(this).hasClass("up") ? 1 : a(this).hasClass("down") ? -1 : 0, v = a(this).all_things_by_id(), p = v.children().not(".child").find(".arrow"), q = k == 1 ? "up" : "upmod"; p.filter("." + q).removeClass(q).addClass(k == 1 ? "upmod" : "up"); q = k == -1 ? "down" : "downmod"; p.filter("." + q).removeClass(q).addClass(k == -1 ? "downmod" : "down"); reddit.logged && (v.each(function() { var b = a(this).find(".entry:first, .midcol:first"); k > 0 ? b.addClass("likes").removeClass("dislikes unvoted") : k < 0 ? b.addClass("dislikes").removeClass("likes unvoted") : b.addClass("unvoted").removeClass("likes dislikes") }), a.defined(j) || (j = v.filter(":first").thing_id(), b += e ? "" : "-" + j, a.request("vote", {id: j,dir: k,vh: b}))); c && c(v, k) } }; I'm trying to look for a pattern, but there are a bunch of edge cases that I've been adding in, and it's still a little off. My code (and fiddle): $(function() { var down = $('.vote-down'); var up = $('.vote-up'); var direction = up.add(down); var largeCount = $('#js-large-count'); var totalUp = $('#js-total-up'); var totalDown = $('#js-total-down'); var totalUpCount = parseInt(totalUp.text(), 10); var totalDownCount = parseInt(totalDown.text(), 10); var castVote = function(submissionId, voteType) { /* var postURL = '/vote'; $.post(postURL, { submissionId : submissionId, voteType : voteType } , function (data){ if (data.response === 'success') { totalDown.text(data.downvotes); totalUp.text(data.upvotes); } }, 'json'); */ alert('voted!'); }; $(direction).on('click', direction, function () { // The submission ID var $that = $(this), submissionId = $that.attr('id'), voteType = $that.attr('dir'), // what direction was voted? [up or down] isDown = $that.hasClass('down'), isUp = $that.hasClass('up'), curVotes = parseInt($that.parent().find('div.count').text(), 10); // current vote castVote(submissionId, voteType); // Voted up on submission if (voteType === 'up') { var alreadyVotedUp = $that.hasClass('likes'), upCount = $that.next('div.count'), dislikes = $that.nextAll('a').first(); // next anchor attr if (alreadyVotedUp) { // Clicked the up arrow and previously voted up $that.toggleClass('likes up'); if (totalUpCount > totalDownCount) { upCount.text(curVotes - 1); largeCount.text(curVotes - 1); } else { upCount.text(0); largeCount.text(0); } upCount.css('color', '#555').hide().fadeIn(); largeCount.hide().fadeIn(); } else if (dislikes.hasClass('dislikes')) { // Voted down now are voting up if (totalDownCount > totalUpCount) { upCount.text(0); largeCount.text(0); } else if (totalUpCount > totalDownCount) { console.log(totalDownCount); console.log(totalUpCount); if (totalDownCount === 0) { upCount.text(curVotes + 1); largeCount.text(curVotes + 1); } else { upCount.text(curVotes + 2); largeCount.text(curVotes + 2); } } else { upCount.text(curVotes + 1); largeCount.text(curVotes + 1); } dislikes.toggleClass('down dislikes'); upCount.css('color', '#296394').hide().fadeIn(200); largeCount.hide().fadeIn(); } else { if (totalDownCount > totalUpCount) { upCount.text(0); largeCount.text(0); } else { // They clicked the up arrow and haven't voted up yet upCount.text(curVotes + 1); largeCount.text(curVotes + 1).hide().fadeIn(200); upCount.css('color', '#296394').hide().fadeIn(200); } } // Change arrow to dark blue if (isUp) { $that.toggleClass('up likes'); } } // Voted down on submission if (voteType === 'down') { var alreadyVotedDown = $that.hasClass('dislikes'), downCount = $that.prev('div.count'); // Get previous anchor attribute var likes = $that.prevAll('a').first(); if (alreadyVotedDown) { if (curVotes === 0) { if (totalDownCount > totalUp) { downCount.text(curVotes); largeCount.text(curVotes); } else { if (totalUpCount < totalDownCount || totalUpCount == totalDownCount) { downCount.text(0); largeCount.text(0); } else { downCount.text((totalUpCount - totalUpCount) + 1); largeCount.text((totalUpCount - totalUpCount) + 1); } } } else { downCount.text(curVotes + 1); largeCount.text(curVotes + 1); } $that.toggleClass('down dislikes'); downCount.css('color', '#555').hide().fadeIn(200); largeCount.hide().fadeIn(); } else if (likes.hasClass('likes')) { // They voted up from 0, and now are voting down if (curVotes <= 1) { downCount.text(0); largeCount.text(0); } else { // They voted up, now they are voting down (from a number > 0) downCount.text(curVotes - 2); largeCount.text(curVotes - 2); } likes.toggleClass('up likes'); downCount.css('color', '#ba2a2a').hide().fadeIn(200); largeCount.hide().fadeIn(200); } else { if (curVotes > 0) { downCount.text(curVotes - 1); largeCount.text(curVotes - 1); } else { downCount.text(curVotes); largeCount.text(curVotes); } downCount.css('color', '#ba2a2a').hide().fadeIn(200); largeCount.hide().fadeIn(200); } // Change the arrow to red if (isDown) { $that.toggleClass('down dislikes'); } } return false; }); });? Pretty convoluted, right? Is there a way to do something similar but in about 1/3 of the code I've written? After attempting to re-write it, I find myself doing the same thing so I just gave up halfway through and decided to ask for some help (fiddle of most recent).

    Read the article

  • A free standing ASP.NET Pager Web Control

    - by Rick Strahl
    Paging in ASP.NET has been relatively easy with stock controls supporting basic paging functionality. However, recently I built an MVC application and one of the things I ran into was that I HAD TO build manual paging support into a few of my pages. Dealing with list controls and rendering markup is easy enough, but doing paging is a little more involved. I ended up with a small but flexible component that can be dropped anywhere. As it turns out the task of creating a semi-generic Pager control for MVC was fairly easily. Now I’m back to working in Web Forms and thought to myself that the way I created the pager in MVC actually would also work in ASP.NET – in fact quite a bit easier since the whole thing can be conveniently wrapped up into an easily reusable control. A standalone pager would provider easier reuse in various pages and a more consistent pager display regardless of what kind of 'control’ the pager is associated with. Why a Pager Control? At first blush it might sound silly to create a new pager control – after all Web Forms has pretty decent paging support, doesn’t it? Well, sort of. Yes the GridView control has automatic paging built in and the ListView control has the related DataPager control. The built in ASP.NET paging has several issues though: Postback and JavaScript requirements If you look at paging links in ASP.NET they are always postback links with javascript:__doPostback() calls that go back to the server. While that works fine and actually has some benefit like the fact that paging saves changes to the page and post them back, it’s not very SEO friendly. Basically if you use javascript based navigation nosearch engine will follow the paging links which effectively cuts off list content on the first page. The DataPager control does support GET based links via the QueryStringParameter property, but the control is effectively tied to the ListView control (which is the only control that implements IPageableItemContainer). DataSource Controls required for Efficient Data Paging Retrieval The only way you can get paging to work efficiently where only the few records you display on the page are queried for and retrieved from the database you have to use a DataSource control - only the Linq and Entity DataSource controls  support this natively. While you can retrieve this data yourself manually, there’s no way to just assign the page number and render the pager based on this custom subset. Other than that default paging requires a full resultset for ASP.NET to filter the data and display only a subset which can be very resource intensive and wasteful if you’re dealing with largish resultsets (although I’m a firm believer in returning actually usable sets :-}). If you use your own business layer that doesn’t fit an ObjectDataSource you’re SOL. That’s a real shame too because with LINQ based querying it’s real easy to retrieve a subset of data that is just the data you want to display but the native Pager functionality doesn’t support just setting properties to display just the subset AFAIK. DataPager is not Free Standing The DataPager control is the closest thing to a decent Pager implementation that ASP.NET has, but alas it’s not a free standing component – it works off a related control and the only one that it effectively supports from the stock ASP.NET controls is the ListView control. This means you can’t use the same data pager formatting for a grid and a list view or vice versa and you’re always tied to the control. Paging Events In order to handle paging you have to deal with paging events. The events fire at specific time instances in the page pipeline and because of this you often have to handle data binding in a way to work around the paging events or else end up double binding your data sources based on paging. Yuk. Styling The GridView pager is a royal pain to beat into submission for styled rendering. The DataPager control has many more options and template layout and it renders somewhat cleaner, but it too is not exactly easy to get a decent display for. Not a Generic Solution The problem with the ASP.NET controls too is that it’s not generic. GridView, DataGrid use their own internal paging, ListView can use a DataPager and if you want to manually create data layout – well you’re on your own. IOW, depending on what you use you likely have very different looking Paging experiences. So, I figured I’ve struggled with this once too many and finally sat down and built a Pager control. The Pager Control My goal was to create a totally free standing control that has no dependencies on other controls and certainly no requirements for using DataSource controls. The idea is that you should be able to use this pager control without any sort of data requirements at all – you should just be able to set properties and be able to display a pager. The Pager control I ended up with has the following features: Completely free standing Pager control – no control or data dependencies Complete manual control – Pager can render without any data dependency Easy to use: Only need to set PageSize, ActivePage and TotalItems Supports optional filtering of IQueryable for efficient queries and Pager rendering Supports optional full set filtering of IEnumerable<T> and DataTable Page links are plain HTTP GET href Links Control automatically picks up Page links on the URL and assigns them (automatic page detection no page index changing events to hookup) Full CSS Styling support On the downside there’s no templating support for the control so the layout of the pager is relatively fixed. All elements however are stylable and there are options to control the text, and layout options such as whether to display first and last pages and the previous/next buttons and so on. To give you an idea what the pager looks like, here are two differently styled examples (all via CSS):   The markup for these two pagers looks like this: <ww:Pager runat="server" id="ItemPager" PageSize="5" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PagesTextCssClass="gridpagertext" CssClass="gridpager" RenderContainerDiv="true" ContainerDivCssClass="gridpagercontainer" MaxPagesToDisplay="6" PagesText="Item Pages:" NextText="next" PreviousText="previous" /> <ww:Pager runat="server" id="ItemPager2" PageSize="5" RenderContainerDiv="true" MaxPagesToDisplay="6" /> The latter example uses default style settings so it there’s not much to set. The first example on the other hand explicitly assigns custom styles and overrides a few of the formatting options. Styling The styling is based on a number of CSS classes of which the the main pager, pagerbutton and pagerbutton-selected classes are the important ones. Other styles like pagerbutton-next/prev/first/last are based on the pagerbutton style. The default styling shown for the red outlined pager looks like this: .pagercontainer { margin: 20px 0; background: whitesmoke; padding: 5px; } .pager { float: right; font-size: 10pt; text-align: left; } .pagerbutton,.pagerbutton-selected,.pagertext { display: block; float: left; text-align: center; border: solid 2px maroon; min-width: 18px; margin-left: 3px; text-decoration: none; padding: 4px; } .pagerbutton-selected { font-size: 130%; font-weight: bold; color: maroon; border-width: 0px; background: khaki; } .pagerbutton-first { margin-right: 12px; } .pagerbutton-last,.pagerbutton-prev { margin-left: 12px; } .pagertext { border: none; margin-left: 30px; font-weight: bold; } .pagerbutton a { text-decoration: none; } .pagerbutton:hover { background-color: maroon; color: cornsilk; } .pagerbutton-prev { background-image: url(images/prev.png); background-position: 2px center; background-repeat: no-repeat; width: 35px; padding-left: 20px; } .pagerbutton-next { background-image: url(images/next.png); background-position: 40px center; background-repeat: no-repeat; width: 35px; padding-right: 20px; margin-right: 0px; } Yup that’s a lot of styling settings although not all of them are required. The key ones are pagerbutton, pager and pager selection. The others (which are implicitly created by the control based on the pagerbutton style) are for custom markup of the ‘special’ buttons. In my apps I tend to have two kinds of pages: Those that are associated with typical ‘grid’ displays that display purely tabular data and those that have a more looser list like layout. The two pagers shown above represent these two views and the pager and gridpager styles in my standard style sheet reflect these two styles. Configuring the Pager with Code Finally lets look at what it takes to hook up the pager. As mentioned in the highlights the Pager control is completely independent of other controls so if you just want to display a pager on its own it’s as simple as dropping the control and assigning the PageSize, ActivePage and either TotalPages or TotalItems. So for this markup: <ww:Pager runat="server" id="ItemPagerManual" PageSize="5" MaxPagesToDisplay="6" /> I can use code as simple as: ItemPagerManual.PageSize = 3; ItemPagerManual.ActivePage = 4;ItemPagerManual.TotalItems = 20; Note that ActivePage is not required - it will automatically use any Page=x query string value and assign it, although you can override it as I did above. TotalItems can be any value that you retrieve from a result set or manually assign as I did above. A more realistic scenario based on a LINQ to SQL IQueryable result is even easier. In this example, I have a UserControl that contains a ListView control that renders IQueryable data. I use a User Control here because there are different views the user can choose from with each view being a different user control. This incidentally also highlights one of the nice features of the pager: Because the pager is independent of the control I can put the pager on the host page instead of into each of the user controls. IOW, there’s only one Pager control, but there are potentially many user controls/listviews that hold the actual display data. The following code demonstrates how to use the Pager with an IQueryable that loads only the records it displays: protected voidPage_Load(objectsender, EventArgs e) {     Category = Request.Params["Category"] ?? string.Empty;     IQueryable<wws_Item> ItemList = ItemRepository.GetItemsByCategory(Category);     // Update the page and filter the list down     ItemList = ItemPager.FilterIQueryable<wws_Item>(ItemList); // Render user control with a list view Control ulItemList = LoadControl("~/usercontrols/" + App.Configuration.ItemListType + ".ascx"); ((IInventoryItemListControl)ulItemList).InventoryItemList = ItemList; phItemList.Controls.Add(ulItemList); // placeholder } The code uses a business object to retrieve Items by category as an IQueryable which means that the result is only an expression tree that hasn’t execute SQL yet and can be further filtered. I then pass this IQueryable to the FilterIQueryable() helper method of the control which does two main things: Filters the IQueryable to retrieve only the data displayed on the active page Sets the Totaltems property and calculates TotalPages on the Pager and that’s it! When the Pager renders it uses those values, plus the PageSize and ActivePage properties to render the Pager. In addition to IQueryable there are also filter methods for IEnumerable<T> and DataTable, but these versions just filter the data by removing rows/items from the entire already retrieved data. Output Generated and Paging Links The output generated creates pager links as plain href links. Here’s what the output looks like: <div id="ItemPager" class="pagercontainer"> <div class="pager"> <span class="pagertext">Pages: </span><a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=1" class="pagerbutton" />1</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=2" class="pagerbutton" />2</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton" />3</a> <span class="pagerbutton-selected">4</span> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton" />5</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=6" class="pagerbutton" />6</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=20" class="pagerbutton pagerbutton-last" />20</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton pagerbutton-prev" />Prev</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton pagerbutton-next" />Next</a></div> <br clear="all" /> </div> </div> The links point back to the current page and simply append a Page= page link into the page. When the page gets reloaded with the new page number the pager automatically detects the page number and automatically assigns the ActivePage property which results in the appropriate page to be displayed. The code shown in the previous section is all that’s needed to handle paging. Note that HTTP GET based paging is different than the Postback paging ASP.NET uses by default. Postback paging preserves modified page content when clicking on pager buttons, but this control will simply load a new page – no page preservation at this time. The advantage of not using Postback paging is that the URLs generated are plain HTML links that a search engine can follow where __doPostback() links are not. Pager with a Grid The pager also works in combination with grid controls so it’s easy to bypass the grid control’s paging features if desired. In the following example I use a gridView control and binds it to a DataTable result which is also filterable by the Pager control. The very basic plain vanilla ASP.NET grid markup looks like this: <div style="width: 600px; margin: 0 auto;padding: 20px; "> <asp:DataGrid runat="server" AutoGenerateColumns="True" ID="gdItems" CssClass="blackborder" style="width: 600px;"> <AlternatingItemStyle CssClass="gridalternate" /> <HeaderStyle CssClass="gridheader" /> </asp:DataGrid> <ww:Pager runat="server" ID="Pager" CssClass="gridpager" ContainerDivCssClass="gridpagercontainer" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PageSize="8" RenderContainerDiv="true" MaxPagesToDisplay="6" /> </div> and looks like this when rendered: using custom set of CSS styles. The code behind for this code is also very simple: protected void Page_Load(object sender, EventArgs e) { string category = Request.Params["category"] ?? ""; busItem itemRep = WebStoreFactory.GetItem(); var items = itemRep.GetItemsByCategory(category) .Select(itm => new {Sku = itm.Sku, Description = itm.Description}); // run query into a DataTable for demonstration DataTable dt = itemRep.Converter.ToDataTable(items,"TItems"); // Remove all items not on the current page dt = Pager.FilterDataTable(dt,0); // bind and display gdItems.DataSource = dt; gdItems.DataBind(); } A little contrived I suppose since the list could already be bound from the list of elements, but this is to demonstrate that you can also bind against a DataTable if your business layer returns those. Unfortunately there’s no way to filter a DataReader as it’s a one way forward only reader and the reader is required by the DataSource to perform the bindings.  However, you can still use a DataReader as long as your business logic filters the data prior to rendering and provides a total item count (most likely as a second query). Control Creation The control itself is a pretty brute force ASP.NET control. Nothing clever about this other than some basic rendering logic and some simple calculations and update routines to determine which buttons need to be shown. You can take a look at the full code from the West Wind Web Toolkit’s Repository (note there are a few dependencies). To give you an idea how the control works here is the Render() method: /// <summary> /// overridden to handle custom pager rendering for runtime and design time /// </summary> /// <param name="writer"></param> protected override void Render(HtmlTextWriter writer) { base.Render(writer); if (TotalPages == 0 && TotalItems > 0) TotalPages = CalculateTotalPagesFromTotalItems(); if (DesignMode) TotalPages = 10; // don't render pager if there's only one page if (TotalPages < 2) return; if (RenderContainerDiv) { if (!string.IsNullOrEmpty(ContainerDivCssClass)) writer.AddAttribute("class", ContainerDivCssClass); writer.RenderBeginTag("div"); } // main pager wrapper writer.WriteBeginTag("div"); writer.AddAttribute("id", this.ClientID); if (!string.IsNullOrEmpty(CssClass)) writer.WriteAttribute("class", this.CssClass); writer.Write(HtmlTextWriter.TagRightChar + "\r\n"); // Pages Text writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(PagesTextCssClass)) writer.WriteAttribute("class", PagesTextCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(this.PagesText); writer.WriteEndTag("span"); // if the base url is empty use the current URL FixupBaseUrl(); // set _startPage and _endPage ConfigurePagesToRender(); // write out first page link if (ShowFirstAndLastPageLinks && _startPage != 1) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-first"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write("1"); writer.WriteEndTag("a"); writer.Write("&nbsp;"); } // write out all the page links for (int i = _startPage; i < _endPage + 1; i++) { if (i == ActivePage) { writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(SelectedPageCssClass)) writer.WriteAttribute("class", SelectedPageCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(i.ToString()); writer.WriteEndTag("span"); } else { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, i.ToString()).TrimEnd('&'); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(i.ToString()); writer.WriteEndTag("a"); } writer.Write("\r\n"); } // write out last page link if (ShowFirstAndLastPageLinks && _endPage < TotalPages) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, TotalPages.ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-last"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(TotalPages.ToString()); writer.WriteEndTag("a"); } // Previous link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(PreviousText) && ActivePage > 1) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage - 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-prev"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(PreviousText); writer.WriteEndTag("a"); } // Next link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(NextText) && ActivePage < TotalPages) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage + 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-next"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(NextText); writer.WriteEndTag("a"); } writer.WriteEndTag("div"); if (RenderContainerDiv) { if (RenderContainerDivBreak) writer.Write("<br clear=\"all\" />\r\n"); writer.WriteEndTag("div"); } } As I said pretty much brute force rendering based on the control’s property settings of which there are quite a few: You can also see the pager in the designer above. unfortunately the VS designer (both 2010 and 2008) fails to render the float: left CSS styles properly and starts wrapping after margins are applied in the special buttons. Not a big deal since VS does at least respect the spacing (the floated elements overlay). Then again I’m not using the designer anyway :-}. Filtering Data What makes the Pager easy to use is the filter methods built into the control. While this functionality is clearly not the most politically correct design choice as it violates separation of concerns, it’s very useful for typical pager operation. While I actually have filter methods that do something similar in my business layer, having it exposed on the control makes the control a lot more useful for typical databinding scenarios. Of course these methods are optional – if you have a business layer that can provide filtered page queries for you can use that instead and assign the TotalItems property manually. There are three filter method types available for IQueryable, IEnumerable and for DataTable which tend to be the most common use cases in my apps old and new. The IQueryable version is pretty simple as it can simply rely on on .Skip() and .Take() with LINQ: /// <summary> /// <summary> /// Queries the database for the ActivePage applied manually /// or from the Request["page"] variable. This routine /// figures out and sets TotalPages, ActivePage and /// returns a filtered subset IQueryable that contains /// only the items from the ActivePage. /// </summary> /// <param name="query"></param> /// <param name="activePage"> /// The page you want to display. Sets the ActivePage property when passed. /// Pass 0 or smaller to use ActivePage setting. /// </param> /// <returns></returns> public IQueryable<T> FilterIQueryable<T>(IQueryable<T> query, int activePage) where T : class, new() { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = query.Count(); if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return query; } int skip = ActivePage - 1; if (skip > 0) query = query.Skip(skip * PageSize); _TotalPages = CalculateTotalPagesFromTotalItems(); return query.Take(PageSize); } The IEnumerable<T> version simply  converts the IEnumerable to an IQuerable and calls back into this method for filtering. The DataTable version requires a little more work to manually parse and filter records (I didn’t want to add the Linq DataSetExtensions assembly just for this): /// <summary> /// Filters a data table for an ActivePage. /// /// Note: Modifies the data set permanently by remove DataRows /// </summary> /// <param name="dt">Full result DataTable</param> /// <param name="activePage">Page to display. 0 to use ActivePage property </param> /// <returns></returns> public DataTable FilterDataTable(DataTable dt, int activePage) { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = dt.Rows.Count; if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return dt; } int skip = ActivePage - 1; if (skip > 0) { for (int i = 0; i < skip * PageSize; i++ ) dt.Rows.RemoveAt(0); } while(dt.Rows.Count > PageSize) dt.Rows.RemoveAt(PageSize); return dt; } Using the Pager Control The pager as it is is a first cut I built a couple of weeks ago and since then have been tweaking a little as part of an internal project I’m working on. I’ve replaced a bunch of pagers on various older pages with this pager without any issues and have what now feels like a more consistent user interface where paging looks and feels the same across different controls. As a bonus I’m only loading the data from the database that I need to display a single page. With the preset class tags applied too adding a pager is now as easy as dropping the control and adding the style sheet for styling to be consistent – no fuss, no muss. Schweet. Hopefully some of you may find this as useful as I have or at least as a baseline to build ontop of… Resources The Pager is part of the West Wind Web & Ajax Toolkit Pager.cs Source Code (some toolkit dependencies) Westwind.css base stylesheet with .pager and .gridpager styles Pager Example Page © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Building applications with WPF, MVVM and Prism(aka CAG)

    - by skjagini
    In this article I am going to walk through an application using WPF and Prism (aka composite application guidance, CAG) which simulates engaging a taxi (cab).  The rules are simple, the app would have3 screens A login screen to authenticate the user An information screen. A screen to engage the cab and roam around and calculating the total fare Metered Rate of Fare The meter is required to be engaged when a cab is occupied by anyone $3.00 upon entry $0.35 for each additional unit The unit fare is: one-fifth of a mile, when the cab is traveling at 6 miles an hour or more; or 60 seconds when not in motion or traveling at less than 12 miles per hour. Night surcharge of $.50 after 8:00 PM & before 6:00 AM Peak hour Weekday Surcharge of $1.00 Monday - Friday after 4:00 PM & before 8:00 PM New York State Tax Surcharge of $.50 per ride. Example: Friday (2010-10-08) 5:30pm Start at Lexington Ave & E 57th St End at Irving Pl & E 15th St Start = $3.00 Travels 2 miles at less than 6 mph for 15 minutes = $3.50 Travels at more than 12 mph for 5 minutes = $1.75 Peak hour Weekday Surcharge = $1.00 (ride started at 5:30 pm) New York State Tax Surcharge = $0.50 Before we dive into the app, I would like to give brief description about the framework.  If you want to jump on to the source code, scroll all the way to the end of the post. MVVM MVVM pattern is in no way related to the usage of PRISM in your application and should be considered if you are using WPF irrespective of PRISM or not. Lets say you are not familiar with MVVM, your typical UI would involve adding some UI controls like text boxes, a button, double clicking on the button,  generating event handler, calling a method from business layer and updating the user interface, it works most of the time for developing small scale applications. The problem with this approach is that there is some amount of code specific to business logic wrapped in UI specific code which is hard to unit test it, mock it and MVVM helps to solve the exact problem. MVVM stands for Model(M) – View(V) – ViewModel(VM),  based on the interactions with in the three parties it should be called VVMM,  MVVM sounds more like MVC (Model-View-Controller) so the name. Why it should be called VVMM: View – View Model - Model WPF allows to create user interfaces using XAML and MVVM takes it to the next level by allowing complete separation of user interface and business logic. In WPF each view will have a property, DataContext when set to an instance of a class (which happens to be your view model) provides the data the view is interested in, i.e., view interacts with view model and at the same time view model interacts with view through DataContext. Sujith, if view and view model are interacting directly with each other how does MVVM is helping me separation of concerns? Well, the catch is DataContext is of type Object, since it is of type object view doesn’t know exact type of view model allowing views and views models to be loosely coupled. View models aggregate data from models (data access layer, services, etc) and make it available for views through properties, methods etc, i.e., View Models interact with Models. PRISM Prism is provided by Microsoft Patterns and Practices team and it can be downloaded from codeplex for source code,  samples and documentation on msdn.  The name composite implies, to compose user interface from different modules (views) without direct dependencies on each other, again allowing  loosely coupled development. Well Sujith, I can already do that with user controls, why shall I learn another framework?  That’s correct, you can decouple using user controls, but you still have to manage some amount of coupling, like how to do you communicate between the controls, how do you subscribe/unsubscribe, loading/unloading views dynamically. Prism is not a replacement for user controls, provides the following features which greatly help in designing the composite applications. Dependency Injection (DI)/ Inversion of Control (IoC) Modules Regions Event Aggregator  Commands Simply put, MVVM helps building a single view and Prism helps building an application using the views There are other open source alternatives to Prism, like MVVMLight, Cinch, take a look at them as well. Lets dig into the source code.  1. Solution The solution is made of the following projects Framework: Holds the common functionality in building applications using WPF and Prism TaxiClient: Start up project, boot strapping and app styling TaxiCommon: Helps with the business logic TaxiModules: Holds the meat of the application with views and view models TaxiTests: To test the application 2. DI / IoC Dependency Injection (DI) as the name implies refers to injecting dependencies and Inversion of Control (IoC) means the calling code has no direct control on the dependencies, opposite of normal way of programming where dependencies are passed by caller, i.e inversion; aside from some differences in terminology the concept is same in both the cases. The idea behind DI/IoC pattern is to reduce the amount of direct coupling between different components of the application, the higher the dependency the more tightly coupled the application resulting in code which is hard to modify, unit test and mock.  Initializing Dependency Injection through BootStrapper TaxiClient is the starting project of the solution and App (App.xaml)  is the starting class that gets called when you run the application. From the App’s OnStartup method we will invoke BootStrapper.   namespace TaxiClient { /// <summary> /// Interaction logic for App.xaml /// </summary> public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { base.OnStartup(e);   (new BootStrapper()).Run(); } } } BootStrapper is your contact point for initializing the application including dependency injection, creating Shell and other frameworks. We are going to use Unity for DI and there are lot of open source DI frameworks like Spring.Net, StructureMap etc with different feature set  and you can choose a framework based on your preferences. Note that Prism comes with in built support for Unity, for example we are deriving from UnityBootStrapper in our case and for any other DI framework you have to extend the Prism appropriately   namespace TaxiClient { public class BootStrapper: UnityBootstrapper { protected override IModuleCatalog CreateModuleCatalog() { return new ConfigurationModuleCatalog(); } protected override DependencyObject CreateShell() { Framework.FrameworkBootStrapper.Run(Container, Application.Current.Dispatcher);   Shell shell = new Shell(); shell.ResizeMode = ResizeMode.NoResize; shell.Show();   return shell; } } } Lets take a look into  FrameworkBootStrapper to check out how to register with unity container. namespace Framework { public class FrameworkBootStrapper { public static void Run(IUnityContainer container, Dispatcher dispatcher) { UIDispatcher uiDispatcher = new UIDispatcher(dispatcher); container.RegisterInstance<IDispatcherService>(uiDispatcher);   container.RegisterType<IInjectSingleViewService, InjectSingleViewService>( new ContainerControlledLifetimeManager());   . . . } } } In the above code we are registering two components with unity container. You shall observe that we are following two different approaches, RegisterInstance and RegisterType.  With RegisterInstance we are registering an existing instance and the same instance will be returned for every request made for IDispatcherService   and with RegisterType we are requesting unity container to create an instance for us when required, i.e., when I request for an instance for IInjectSingleViewService, unity will create/return an instance of InjectSingleViewService class and with RegisterType we can configure the life time of the instance being created. With ContaienrControllerLifetimeManager, the unity container caches the instance and reuses for any subsequent requests, without recreating a new instance. Lets take a look into FareViewModel.cs and it’s constructor. The constructor takes one parameter IEventAggregator and if you try to find all references in your solution for IEventAggregator, you will not find a single location where an instance of EventAggregator is passed directly to the constructor. The compiler still finds an instance and works fine because Prism is already configured when used with Unity container to return an instance of EventAggregator when requested for IEventAggregator and in this particular case it is called constructor injection. public class FareViewModel:ObservableBase, IDataErrorInfo { ... private IEventAggregator _eventAggregator;   public FareViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; InitializePropertyNames(); InitializeModel(); PropertyChanged += OnPropertyChanged; } ... 3. Shell Shells are very similar in operation to Master Pages in asp.net or MDI in Windows Forms. And shells contain regions which display the views, you can have as many regions as you wish in a given view. You can also nest regions. i.e, one region can load a view which in itself may contain other regions. We have to create a shell at the start of the application and are doing it by overriding CreateShell method from BootStrapper From the following Shell.xaml you shall notice that we have two content controls with Region names as ‘MenuRegion’ and ‘MainRegion’.  The idea here is that you can inject any user controls into the regions dynamically, i.e., a Menu User Control for MenuRegion and based on the user action you can load appropriate view into MainRegion.    <Window x:Class="TaxiClient.Shell" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Regions="clr-namespace:Microsoft.Practices.Prism.Regions;assembly=Microsoft.Practices.Prism" Title="Taxi" Height="370" Width="800"> <Grid Margin="2"> <ContentControl Regions:RegionManager.RegionName="MenuRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" />   <ContentControl Grid.Row="1" Regions:RegionManager.RegionName="MainRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" /> <!--<Border Grid.ColumnSpan="2" BorderThickness="2" CornerRadius="3" BorderBrush="LightBlue" />-->   </Grid> </Window> 4. Modules Prism provides the ability to build composite applications and modules play an important role in it. For example if you are building a Mortgage Loan Processor application with 3 components, i.e. customer’s credit history,  existing mortgages, new home/loan information; and consider that the customer’s credit history component involves gathering data about his/her address, background information, job details etc. The idea here using Prism modules is to separate the implementation of these 3 components into their own visual studio projects allowing to build components with no dependency on each other and independently. If we need to add another component to the application, the component can be developed by in house team or some other team in the organization by starting with a new Visual Studio project and adding to the solution at the run time with very little knowledge about the application. Prism modules are defined by implementing the IModule interface and each visual studio project to be considered as a module should implement the IModule interface.  From the BootStrapper.cs you shall observe that we are overriding the method by returning a ConfiguratingModuleCatalog which returns the modules that are registered for the application using the app.config file  and you can also add module using code. Lets take a look into configuration file.   <?xml version="1.0"?> <configuration> <configSections> <section name="modules" type="Microsoft.Practices.Prism.Modularity.ModulesConfigurationSection, Microsoft.Practices.Prism"/> </configSections> <modules> <module assemblyFile="TaxiModules.dll" moduleType="TaxiModules.ModuleInitializer, TaxiModules" moduleName="TaxiModules"/> </modules> </configuration> Here we are adding TaxiModules project to our solution and TaxiModules.ModuleInitializer implements IModule interface   5. Module Mapper With Prism modules you can dynamically add or remove modules from the regions, apart from that Prism also provides API to control adding/removing the views from a region within the same module. Taxi Information Screen: Engage the Taxi Screen: The sample application has two screens, ‘Taxi Information’ and ‘Engage the Taxi’ and they both reside in same module, TaxiModules. ‘Engage the Taxi’ is again made of two user controls, FareView on the left and TotalView on the right. We have created a Shell with two regions, MenuRegion and MainRegion with menu loaded into MenuRegion. We can create a wrapper user control called EngageTheTaxi made of FareView and TotalView and load either TaxiInfo or EngageTheTaxi into MainRegion based on the user action. Though it will work it tightly binds the user controls and for every combination of user controls, we need to create a dummy wrapper control to contain them. Instead we can apply the principles we learned so far from Shell/regions and introduce another template (LeftAndRightRegionView.xaml) made of two regions Region1 (left) and Region2 (right) and load  FareView and TotalView dynamically.  To help with loading of the views dynamically I have introduce an helper an interface, IInjectSingleViewService,  idea suggested by Mike Taulty, a must read blog for .Net developers. using System; using System.Collections.Generic; using System.ComponentModel;   namespace Framework.PresentationUtility.Navigation {   public interface IInjectSingleViewService : INotifyPropertyChanged { IEnumerable<CommandViewDefinition> Commands { get; } IEnumerable<ModuleViewDefinition> Modules { get; }   void RegisterViewForRegion(string commandName, string viewName, string regionName, Type viewType); void ClearViewFromRegion(string viewName, string regionName); void RegisterModule(string moduleName, IList<ModuleMapper> moduleMappers); } } The Interface declares three methods to work with views: RegisterViewForRegion: Registers a view with a particular region. You can register multiple views and their regions under one command.  When this particular command is invoked all the views registered under it will be loaded into their regions. ClearViewFromRegion: To unload a specific view from a region. RegisterModule: The idea is when a command is invoked you can load the UI with set of controls in their default position and based on the user interaction, you can load different contols in to different regions on the fly.  And it is supported ModuleViewDefinition and ModuleMappers as shown below. namespace Framework.PresentationUtility.Navigation { public class ModuleViewDefinition { public string ModuleName { get; set; } public IList<ModuleMapper> ModuleMappers; public ICommand Command { get; set; } }   public class ModuleMapper { public string ViewName { get; set; } public string RegionName { get; set; } public Type ViewType { get; set; } } } 6. Event Aggregator Prism event aggregator enables messaging between components as in Observable pattern, Notifier notifies the Observer which receives notification it is interested in. When it comes to Observable pattern, Observer has to unsubscribes for notifications when it no longer interested in notifications, which allows the Notifier to remove the Observer’s reference from it’s local cache. Though .Net has managed garbage collection it cannot remove inactive the instances referenced by an active instance resulting in memory leak, keeping the Observers in memory as long as Notifier stays in memory.  Developers have to be very careful to unsubscribe when necessary and it often gets overlooked, to overcome these problems Prism Event Aggregator uses weak references to cache the reference (Observer in this case)  and releases the reference (memory) once the instance goes out of scope. Using event aggregator is very simple, declare a generic type of CompositePresenationEvent by inheriting from it. using Microsoft.Practices.Prism.Events; using TaxiCommon.BAO;   namespace TaxiCommon.CompositeEvents { public class TaxiOnMoveEvent:CompositePresentationEvent<TaxiOnMove> { } }   TaxiOnMove.cs includes the properties which we want to exchange between the parties, FareView and TotalView. using System;   namespace TaxiCommon.BAO { public class TaxiOnMove { public TimeSpan MinutesAtTweleveMPH { get; set; } public double MilesAtSixMPH { get; set; } } }   Lets take a look into FareViewodel (Notifier) and how it raises the event.  Here we are raising the event by getting the event through GetEvent<..>() and publishing it with the payload private void OnAddMinutes(object obj) { TaxiOnMove payload = new TaxiOnMove(); if(MilesAtSixMPH != null) payload.MilesAtSixMPH = MilesAtSixMPH.Value; if(MinutesAtTweleveMPH != null) payload.MinutesAtTweleveMPH = new TimeSpan(0,0,MinutesAtTweleveMPH.Value,0);   _eventAggregator.GetEvent<TaxiOnMoveEvent>().Publish(payload); ResetMinutesAndMiles(); } And TotalViewModel(Observer) subscribes to notifications by getting the event through GetEvent<..>() namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { .... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; ... }   private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>() .Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>() .Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>() .Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   ... private void OnTaxiMove(TaxiOnMove taxiOnMove) { OnMoveFare fare = new OnMoveFare(taxiOnMove); Fares.Add(fare); SetTotalFare(new []{fare}); }   .... 7. MVVM through example In this section we are going to look into MVVM implementation through example.  I have all the modules declared in a single project, TaxiModules, again it is not necessary to have them into one project. Once the user logs into the application, will be greeted with the ‘Engage the Taxi’ screen which is made of two user controls, FareView.xaml and TotalView.Xaml. As you can see from the solution explorer, each of them have their own code behind files and  ViewModel classes, FareViewMode.cs, TotalViewModel.cs Lets take a look in to the FareView and how it interacts with FareViewModel using MVVM implementation. FareView.xaml acts as a view and FareViewMode.cs is it’s view model. The FareView code behind class   namespace TaxiModules.Views { /// <summary> /// Interaction logic for FareView.xaml /// </summary> public partial class FareView : UserControl { public FareView(FareViewModel viewModel) { InitializeComponent(); this.Loaded += (s, e) => { this.DataContext = viewModel; }; } } } The FareView is bound to FareViewModel through the data context  and you shall observe that DataContext is of type Object, i.e. the FareView doesn’t really know the type of ViewModel (FareViewModel). This helps separation of View and ViewModel as View and ViewModel are independent of each other, you can bind FareView to FareViewModel2 as well and the application compiles just fine. Lets take a look into FareView xaml file  <UserControl x:Class="TaxiModules.Views.FareView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Toolkit="clr-namespace:Microsoft.Windows.Controls;assembly=WPFToolkit" xmlns:Commands="clr-namespace:Microsoft.Practices.Prism.Commands;assembly=Microsoft.Practices.Prism"> <Grid Margin="10" > ....   <Border Style="{DynamicResource innerBorder}" Grid.Row="0" Grid.Column="0" Grid.RowSpan="11" Grid.ColumnSpan="2" Panel.ZIndex="1"/>   <Label Grid.Row="0" Content="Engage the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="1" Content="Select the State"/> <ComboBox Grid.Row="1" Grid.Column="1" ItemsSource="{Binding States}" Height="auto"> <ComboBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Name}"/> </DataTemplate> </ComboBox.ItemTemplate> <ComboBox.SelectedItem> <Binding Path="SelectedState" Mode="TwoWay"/> </ComboBox.SelectedItem> </ComboBox> <Label Grid.Row="2" Content="Select the Date of Entry"/> <Toolkit:DatePicker Grid.Row="2" Grid.Column="1" SelectedDate="{Binding DateOfEntry, ValidatesOnDataErrors=true}" /> <Label Grid.Row="3" Content="Enter time 24hr format"/> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding TimeOfEntry, TargetNullValue=''}"/> <Button Grid.Row="4" Grid.Column="1" Content="Start the Meter" Commands:Click.Command="{Binding StartMeterCommand}" />   <Label Grid.Row="5" Content="Run the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="6" Content="Number of Miles &lt;@6mph"/> <TextBox Grid.Row="6" Grid.Column="1" Text="{Binding MilesAtSixMPH, TargetNullValue='', ValidatesOnDataErrors=true}"/> <Label Grid.Row="7" Content="Number of Minutes @12mph"/> <TextBox Grid.Row="7" Grid.Column="1" Text="{Binding MinutesAtTweleveMPH, TargetNullValue=''}"/> <Button Grid.Row="8" Grid.Column="1" Content="Add Minutes and Miles " Commands:Click.Command="{Binding AddMinutesCommand}"/> <Label Grid.Row="9" Content="Other Operations" Style="{DynamicResource innerHeader}"/> <Button Grid.Row="10" Grid.Column="1" Content="Reset the Meter" Commands:Click.Command="{Binding ResetCommand}"/>   </Grid> </UserControl> The highlighted code from the above code shows data binding, for example ComboBox which displays list of states has it’s ItemsSource bound to States property, with DataTemplate bound to Name and SelectedItem  to SelectedState. You might be wondering what are all these properties and how it is able to bind to them.  The answer lies in data context, i.e., when you bound a control, WPF looks for data context on the root object (Grid in this case) and if it can’t find data context it will look into root’s root, i.e. FareView UserControl and it is bound to FareViewModel.  Each of those properties have be declared on the ViewModel for the View to bind correctly. To put simply, View is bound to ViewModel through data context of type object and every control that is bound on the View actually binds to the public property on the ViewModel. Lets look into the ViewModel code (the following code is not an exact copy of FareViewMode.cs, pasted relevant code for this section)   namespace TaxiModules.ViewModels { public class FareViewModel:ObservableBase, IDataErrorInfo { public List<USState> States { get { return USStates.StateList; } }   public USState SelectedState { get { return _selectedState; } set { _selectedState = value; RaisePropertyChanged(_selectedStatePropertyName); } }   public DateTime? DateOfEntry { get { return _dateOfEntry; } set { _dateOfEntry = value; RaisePropertyChanged(_dateOfEntryPropertyName); } }   public TimeSpan? TimeOfEntry { get { return _timeOfEntry; } set { _timeOfEntry = value; RaisePropertyChanged(_timeOfEntryPropertyName); } }   public double? MilesAtSixMPH { get { return _milesAtSixMPH; } set { _milesAtSixMPH = value; RaisePropertyChanged(_distanceAtSixMPHPropertyName); } }   public int? MinutesAtTweleveMPH { get { return _minutesAtTweleveMPH; } set { _minutesAtTweleveMPH = value; RaisePropertyChanged(_minutesAtTweleveMPHPropertyName); } }   public ICommand StartMeterCommand { get { if(_startMeterCommand == null) { _startMeterCommand = new DelegateCommand<object>(OnStartMeter, CanStartMeter); } return _startMeterCommand; } }   public ICommand AddMinutesCommand { get { if(_addMinutesCommand == null) { _addMinutesCommand = new DelegateCommand<object>(OnAddMinutes, CanAddMinutes); } return _addMinutesCommand; } }   public ICommand ResetCommand { get { if(_resetCommand == null) { _resetCommand = new DelegateCommand<object>(OnResetCommand); } return _resetCommand; } }   } private void OnStartMeter(object obj) { _eventAggregator.GetEvent<TaxiStartedEvent>().Publish( new TaxiStarted() { EngagedOn = DateOfEntry.Value.Date + TimeOfEntry.Value, EngagedState = SelectedState.Value });   _isMeterStarted = true; OnPropertyChanged(this,null); } And views communicate user actions like button clicks, tree view item selections, etc using commands. When user clicks on ‘Start the Meter’ button it invokes the method StartMeterCommand, which calls the method OnStartMeter which publishes the event to TotalViewModel using event aggregator  and TaxiStartedEvent. namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { ... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator;   InitializePropertyNames(); InitializeModel(); SubscribeToEvents(); }   public decimal? TotalFare { get { return _totalFare; } set { _totalFare = value; RaisePropertyChanged(_totalFarePropertyName); } } .... private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>().Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>().Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>().Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   private void OnTaxiStarted(TaxiStarted taxiStarted) { Fares.Add(new EntryFare()); Fares.Add(new StateTaxFare(taxiStarted)); Fares.Add(new NightSurchargeFare(taxiStarted)); Fares.Add(new PeakHourWeekdayFare(taxiStarted));   SetTotalFare(Fares); }   private void SetTotalFare(IEnumerable<IFare> fares) { TotalFare = (_totalFare ?? 0) + TaxiFareHelper.GetTotalFare(fares); } ....   } }   TotalViewModel subscribes to events, TaxiStartedEvent and rest. When TaxiStartedEvent gets invoked it calls the OnTaxiStarted method which sets the total fare which includes entry fee, state tax, nightly surcharge, peak hour weekday fare.   Note that TotalViewModel derives from ObservableBase which implements the method RaisePropertyChanged which we are invoking in Set of TotalFare property, i.e, once we update the TotalFare property it raises an the event that  allows the TotalFare text box to fetch the new value through the data context. ViewModel is communicating with View through data context and it has no knowledge about View, helping in loose coupling of ViewModel and View.   I have attached the source code (.Net 4.0, Prism 4.0, VS 2010) , download and play with it and don’t forget to leave your comments.  

    Read the article

  • 26 Days: Countdown to Oracle OpenWorld 2012

    - by Michael Snow
    Welcome to our countdown to Oracle OpenWorld! Oracle OpenWorld 2012 is just around the corner. In less than 26 days, San Francisco will be invaded by an expected 50,000 people from all over the world. Here on the Oracle WebCenter team, we’ve all been working to help make the experience a great one for all our WebCenter customers. For a sneak peak  – we’ll be spending this week giving you a teaser of what to look forward to if you are joining us in San Francisco from September 30th through October 4th. We have Oracle WebCenter sessions covering all topics imaginable. Take a look and use the tools we provide to build out your schedule in advance and reserve your seats in your favorite sessions.  That gives you plenty of time to plan for your week with us in San Francisco. If unfortunately, your boss denied your request to attend - there are still some ways that you can join in the experience virtually On-Demand. This year - we are expanding even more up North of Market Street and will be taking over Union Square as well. Check out this map of San Francisco to get a sense of how much of a footprint Oracle OpenWorld has grown to this year. With so much to see and so many sessions to learn from - its no wonder that people get excited. Add to that a good mix of fun and all of the possible WebCenter sessions you could attend - you won't want to sleep at all to take full advantage of such an opportunity. We'll also have our annual WebCenter Customer Appreciation reception - stay tuned this week for some more info on registration to make sure you'll be able to join us. If you've been following the America's Cup at all and believe in EXTREME PERFORMANCE you'll definitely want to take a look at this video from last year's OpenWorld Keynote. 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Important OpenWorld Links:  Attendee / Presenters Toolkit Oracle Schedule Builder WebCenter Sessions (listed in the catalog under Fusion Middleware as "Portals, Sites, Content, and Collaboration" ) Oracle Music Festival - AMAZING Line up!!  Oracle Customer Appreciation Night -LOOK HERE!! Oracle OpenWorld LIVE On-Demand Here are all the WebCenter sessions broken down by day for your viewing pleasure. Monday, October 1st CON8885 - Simplify CRM Engagement with Contextual Collaboration Are your sales teams disconnected and disengaged? Do you want a tool for easily connecting expertise across your organization and providing visibility into the complete sales process? Do you want a way to enhance and retain organization knowledge? Oracle Social Network is the answer. Attend this session to learn how to make CRM easy, effective, and efficient for use across virtual sales teams. Also learn how Oracle Social Network can drive sales force collaboration with natural conversations throughout the sales cycle, promote sales team productivity through purposeful social networking without the noise, and build cross-team knowledge by integrating conversations with CRM and other business applications. CON8268 - Oracle WebCenter Strategy: Engaging Your Customers. Empowering Your Business Oracle WebCenter is a user engagement platform for social business, connecting people and information. Attend this session to learn about the Oracle WebCenter strategy, and understand where Oracle is taking the platform to help companies engage customers, empower employees, and enable partners. Business success starts with ensuring that everyone is engaged with the right people and the right information and can access what they need through the channel of their choice—Web, mobile, or social. Are you giving customers, employees, and partners the best-possible experience? Come learn how you can! ¶ HOL10208 - Add Social Capabilities to Your Enterprise Applications Oracle Social Network enables you to add real-time collaboration capabilities into your enterprise applications, so that conversations can happen directly within your business systems. In this hands-on lab, you will try out the Oracle Social Network product to collaborate with other attendees, using real-time conversations with document sharing capabilities. Next you will embed social capabilities into a sample Web-based enterprise application, using embedded UI components. Experts will also write simple REST-based integrations, using the Oracle Social Network API to programmatically create social interactions. ¶ CON8893 - Improve Employee Productivity with Intuitive and Social Work Environments Social technologies have already transformed the ways customers, employees, partners, and suppliers communicate and stay informed. Forward-thinking organizations today need technologies and infrastructures to help them advance to the next level and integrate social activities with business applications to deliver a user experience that simplifies business processes and enterprise application engagement. Attend this session to hear from an innovative Oracle Social Network customer and learn how you can improve productivity with intuitive and social work environments and empower your employees with innovative social tools to enable contextual access to content and dynamic personalization of solutions. ¶ CON8270 - Oracle WebCenter Content Strategy and Vision Oracle WebCenter provides a strategic content infrastructure for managing documents, images, e-mails, and rich media files. With a single repository, organizations can address any content use case, such as accounts payable, HR onboarding, document management, compliance, records management, digital asset management, or Website management. In this session, learn about future plans for how Oracle WebCenter will address new use cases as well as new integrations with Oracle Fusion Middleware and Oracle Applications, leveraging your investments by making your users more productive and error-free. ¶ CON8269 - Oracle WebCenter Sites Strategy and Vision Oracle’s Web experience management solution, Oracle WebCenter Sites, enables organizations to use the online channel to drive customer acquisition and brand loyalty. It helps marketers and business users easily create and manage contextually relevant, social, interactive online experiences across multiple channels on a global scale. In this session, learn about future plans for how Oracle WebCenter Sites will provide you with the tools, capabilities, and integrations you need in order to continue to address your customers’ evolving requirements for engaging online experiences and keep moving your business forward. ¶ CON8896 - Living with SharePoint SharePoint is a popular platform, but it’s not always the best fit for Oracle customers. In this session, you’ll discover the technical and nontechnical limitations and pitfalls of SharePoint and learn about Oracle alternatives for collaboration, portals, enterprise and Web content management, social computing, and application integration. The presentation shows you how to integrate with SharePoint when business or IT requirements dictate and covers cloud-based (Office 365) and on-premises versions of SharePoint. Presented by a former Microsoft director of SharePoint product management and backed by independent customer research, this session will prepare you to answer the question “Why don’t we just use SharePoint for that?’ the next time it comes up in your organization. ¶ CON7843 - Content-Enabling Enterprise Processes with Oracle WebCenter Organizations today continually strive to automate business processes, reduce costs, and improve efficiency. Many business processes are content-intensive and unstructured, requiring ad hoc collaboration, and distributed in nature, requiring many approvals and generating huge volumes of paper. In this session, learn how Oracle and SYSTIME have partnered to help a customer content-enable its enterprise with Oracle WebCenter Content and Oracle WebCenter Imaging 11g and integrate them with Oracle Applications. ¶ CON6114 - Tape Robotics’ Newest Superhero: Now Fueled by Oracle Software For small, midsize, and rapidly growing businesses that want the most energy-efficient, scalable storage infrastructure to meet their rapidly growing data demands, Oracle’s most recent addition to its award-winning tape portfolio leverages several pieces of Oracle software. With Oracle Linux, Oracle WebLogic, and Oracle Fusion Middleware tools, the library achieves a higher level of usability than previous products while offering customers a familiar interface for management, plus ease of use. This session examines the competitive advantages of the tape library and how Oracle software raises customer satisfaction. Learn how the combination of Oracle engineered systems, Oracle Secure Backup, and Oracle’s StorageTek tape libraries provide end-to-end coverage of your data. ¶ CON9437 - Mobile Access Management With more than five billion mobile devices on the planet and an increasing number of users using their own devices to access corporate data and applications, securely extending identity management to mobile devices has become a hot topic. This session focuses on how to extend your existing identity management infrastructure and policies to securely and seamlessly enable mobile user access. CON7815 - Customer Experience Online in Cloud: Oracle WebCenter Sites, Oracle ATG Apps, Oracle Exalogic Oracle WebCenter Sites and Oracle’s ATG product line together can provide a compelling marketing and e-commerce experience. When you couple them with the extreme performance of Oracle Exalogic, you’ll see unmatched scalability that provides you with a true cloud-based solution. In this session, you’ll learn how running Oracle WebCenter Sites and ATG applications on Oracle Exalogic delivers both a private and a public cloud experience. Find out what it takes to get these systems working together and delivering engaging Web experiences. Even if you aren’t considering Oracle Exalogic today, the rich Web experience of Oracle WebCenter, paired with the depth of the ATG product line, can provide your business full support, from merchandising through sale completion. ¶ CON8271 - Oracle WebCenter Portal Strategy and Vision To innovate and keep a competitive edge, organizations need to leverage the power of agile and responsive Web applications. Oracle WebCenter Portal enables you to do just that, by delivering intuitive user experiences for enterprise applications to drive innovation with composite applications and mashups. Attend this session to learn firsthand from customers how Oracle WebCenter Portal extends the value of existing enterprise applications, business processes, and content; delivers a superior business user experience; and maximizes limited IT resources. ¶ CON8880 - The Connected Customer Experience Begins with the Online Channel There’s a lot of talk these days about how to connect the customer journey across various touchpoints—from Websites and e-commerce to call centers and in-store—to provide experiences that are more relevant and engaging and ultimately gain competitive edge. Doing it all at once isn’t a realistic objective, so where do you start? Come to this session, and hear about three steps you can take that can help you begin your journey toward delivering the connected customer experience. You’ll hear how Oracle now has an integrated digital marketing platform for your corporate Website, your e-commerce site, your self-service portal, and your marketing and loyalty campaigns, and you’ll learn what you can do today to begin executing on your customer experience initiatives. ¶ GEN11451 - General Session: Building Mobile Applications with Oracle Cloud With the prevalence of smart mobile devices, companies are facing an increased demand to provide access to data and applications from new channels. However, developing applications for mobile devices poses some unique challenges. Come to this session to learn how Oracle addresses these challenges, offering a simpler way to develop and deploy cross-device mobile applications. See how Oracle Cloud enables you to access applications, data, and services from mobile channels in an easier way.  CON8272 - Oracle Social Network Strategy and Vision One key way of increasing employee productivity is by bringing people, processes, and information together—providing new social capabilities to enable business users to quickly correspond and collaborate on business activities. Oracle WebCenter provides a user engagement platform with social and collaborative technologies to empower business users to focus on their key business processes, applications, and content in the context of their role and process. Attend this session to hear how the latest social capabilities in Oracle Social Network are enabling organizations to transform themselves into social businesses.  --- Tuesday, October 2nd HOL10194 - Enterprise Content Management Simplified: Oracle WebCenter Content’s Next-Generation UI Regardless of the nature of your business, unstructured content underpins many of its daily functions. Whether you are working with traditional presentations, spreadsheets, or text documents—or even with digital assets such as images and multimedia files—your content needs to be accessible and manageable in convenient and intuitive ways to make working with the content easier. Additionally, you need the ability to easily share documents with coworkers to facilitate a collaborative working environment. Come to this session to see how Oracle WebCenter Content’s next-generation user interface helps modern knowledge workers easily manage personal and enterprise documents in a collaborative environment.¶ CON8877 - Develop a Mobile Strategy with Oracle WebCenter: Engage Customers, Employees, and Partners Mobile technology has gone from nice-to-have to a cornerstone of user engagement. Mobile access enables users to have information available at their fingertips, enabling them to take action the moment they make a decision, interact in the moment of convenience, and take advantage of new service offerings in their preferred channels. All your employees have your mobile applications in their pocket; now what are you going to do? It is a critical step for companies to think through what their employees, customers, and partners really need on their devices. Attend this session to see how Oracle WebCenter enables you to better engage your customers, employees, and partners by providing a unified experience across multiple channels. ¶ CON9447 - Enabling Access for Hundreds of Millions of Users How do you grow your business by identifying, authenticating, authorizing, and federating users on the Web, leveraging social identity and the open source OAuth protocol? How do you scale your access management solution to support hundreds of millions of users? With social identity support out of the box, Oracle’s access management solution is also benchmarked for 250-million-user deployment according to real-world customer scenarios. In this session, you will learn about the social identity capability and the 250-million-user benchmark testing of Oracle Access Manager and Oracle Adaptive Access Manager running on Oracle Exalogic and Oracle Exadata. ¶ HOL10207 - Build an Intranet Portal with Oracle WebCenter In this hands-on lab, you’ll work with Oracle WebCenter Portal and Oracle WebCenter Content to build out an enterprise portal that maximizes the productivity of teams and individual contributors. Using browser-based tools, you’ll manage site resources such as page styles, templates, and navigation. You’ll edit content stored in Oracle WebCenter Content directly from your portal. You’ll also experience the latest features that promote collaboration, social networking, and personal productivity. ¶ CON2906 - Get Proactive: Best Practices for Maintaining Oracle Fusion Middleware You chose Oracle Fusion Middleware products to help your organization deliver superior business results. Now learn how to take full advantage of your software with all the great tools, resources, and product updates you’re entitled to through Oracle Support. In this session, Oracle product experts provide proven best practices to help you work more efficiently, plan and prepare for upgrades and patching more effectively, and manage risk. Topics include configuration management tools, remote diagnostics, My Oracle Support Community, and My Oracle Support Lifecycle Advisors. New users and Oracle Fusion Middleware experts alike are guaranteed to leave with fresh ideas and practical, easy-to-implement next steps. ¶ CON8878 - Oracle WebCenter’s Cloud Strategy: From Social and Platform Services to Mashups Cloud computing represents a paradigm shift in how we build applications, automate processes, collaborate, and share and in how we secure our enterprise. Additionally, as you adopt cloud-based services in your organization, it’s likely that you will still have many critical on-premises applications running. With these mixed environments, multiple user interfaces, different security, and multiple datasources and content sources, how do you start evolving your strategy to account for these challenges? Oracle WebCenter offers a complete array of technologies enabling you to solve these challenges and prepare you for the cloud. Attend this session to learn how you can use Oracle WebCenter in the cloud as well as create on-premises and cloud application mash-ups. ¶ CON8901 - Optimize Enterprise Business Processes with Oracle WebCenter and Oracle BPM Do you have business processes that span multiple applications? Are you grappling with how to have visibility across these business processes; how to manage content that is associated with these processes; and, most importantly, how to model and optimize these business processes? Attend this session to hear how Oracle WebCenter and Oracle Business Process Management provide a unique set of integrated solutions to provide a composite application dashboard across these business processes and offer a solution for content-centric business processes. ¶ CON8883 - Deliver Engaging Interfaces to Oracle Applications with Oracle WebCenter Critical business processes live within enterprise applications, and application users need to manage and execute these processes as effectively as possible. Oracle provides a comprehensive user engagement platform to increase user productivity and optimize overall processes within Oracle Applications—Oracle E-Business Suite and Oracle’s Siebel, PeopleSoft, and JD Edwards product families—and third-party applications. Attend this session to learn how you can integrate these applications with Oracle WebCenter to deliver composite application dashboards to your end users—whether they are your customers, partners, or employees—for enhanced usability and Web 2.0–enabled enterprise portals.¶ Wednesday, October 3rd CON8895 - Future-Ready Intranets: How Aramark Re-engineered the Application Landscape There are essential techniques and technologies you can use to deliver employee portals that garner higher productivity, improve business efficiency, and increase user engagement. Attend this session to learn how you can leverage Oracle WebCenter Portal as a user engagement platform for bringing together business process management, enterprise content management, and business intelligence into a highly relevant and integrated experience. Hear how Aramark has leveraged Oracle WebCenter Portal and Oracle WebCenter Content to deliver a unified workspace providing simpler navigation and processing, consolidation of tools, easy access to information, integrated search, and single sign-on. ¶ CON8886 - Content Consolidation: Save Money, Increase Efficiency, and Eliminate Silos Organizations are looking for ways to save money and be more efficient. With content in many different places, it’s difficult to know where to look for a document and whether the document is the most current version. With Oracle WebCenter, content can be consolidated into one best-of-breed repository that is secure, scalable, and integrated with your business processes and applications. Users can find the content they need, where they need it, and ensure that it is the right content. This session covers content challenges that affect your business; content consolidation that can lead to savings in storage and administration costs and can lower risks; and how companies are realizing savings. ¶ CON8911 - Improve Online Experiences for Customers and Partners with Self-Service Portals Are you able to provide your customers and partners an easy-to-use online self-service experience? Are you processing high-volume transactions and struggling with call center bottlenecks or back-end systems that won’t integrate, causing order delays and customer frustration? Are you looking to target content such as product and service offerings to your end users? This session shares approaches to providing targeted delivery as well as strategies and best practices for transforming your business by providing an intuitive user experience for your customers and partners. ¶ CON6156 - Top 10 Ways to Integrate Oracle WebCenter Content This session covers 10 common ways to integrate Oracle WebCenter Content with other enterprise applications and middleware. It discusses out-of-the-box modules that provide expanded features in Oracle WebCenter Content—such as enterprise search, SOA, and BPEL—as well as developer tools you can use to create custom integrations. The presentation also gives guidance on which integration option may work best in your environment. ¶ HOL10207 - Build an Intranet Portal with Oracle WebCenter In this hands-on lab, you’ll work with Oracle WebCenter Portal and Oracle WebCenter Content to build out an enterprise portal that maximizes the productivity of teams and individual contributors. Using browser-based tools, you’ll manage site resources such as page styles, templates, and navigation. You’ll edit content stored in Oracle WebCenter Content directly from your portal. You’ll also experience the latest features that promote collaboration, social networking, and personal productivity. ¶ CON7817 - Migration to Oracle WebCenter Imaging 11g Customers today continually strive to automate business processes, reduce costs, and improve efficiency. The accounts payable process—which is often distributed in nature, requires many approvals, and generates huge volumes of paper invoices—is automated by many customers. In this session, learn how Oracle and SYSTIME have partnered to help a customer migrate its existing Oracle Imaging and Process Management Release 7.6 to the latest Oracle WebCenter Imaging 11g and integrate it with Oracle’s JD Edwards family of products. ¶ CON8910 - How to Engage Customers Across Web, Mobile, and Social Channels Whether on desktops at the office, on tablets at home, or on mobile phones when on the go, today’s customers are always connected. To engage today’s customers, you need to make the online customer experience connected and consistent across a host of devices and multiple channels, including Web, mobile, and social networks. Managing this multichannel environment can result in lots of headaches without the right tools. Attend this session to learn how Oracle WebCenter Sites solves the challenge of multichannel customer engagement. ¶ HOL10206 - Oracle WebCenter Sites 11g: Transforming the Content Contributor Experience Oracle WebCenter Sites 11g makes it easy for marketers and business users to contribute to and manage Websites with the new visual, contextual, and intuitive Web authoring interface. In this hands-on lab, you will create and manage content for a sports-themed Website, using many of the new and enhanced features of the 11g release. ¶ CON8900 - Building Next-Generation Portals: An Interactive Customer Panel Discussion Social and collaborative technologies have changed how people interact, learn, and collaborate, and providing a modern, social Web presence is imperative to remain competitive in today’s market. Can your business benefit from a more collaborative and interactive portal environment for employees, customers, and partners? Attend this session to hear from Oracle WebCenter Portal customers as they share their strategies and best practices for providing users with a modern experience that adapts to their needs and includes personalized access to content in context. The panel also addresses how customers have benefited from creating next-generation portals by migrating from older portal technologies to Oracle WebCenter Portal. ¶ CON9625 - Taking Control of Oracle WebCenter Security Organizations are increasingly looking to extend their Oracle WebCenter portal for social business, to serve external users and provide seamless access to the right information. In particular, many organizations are extending Oracle WebCenter in a business-to-business scenario requiring secure identification and authorization of business partners and their users. This session focuses on how customers are leveraging, securing, and providing access control to Oracle WebCenter portal and mobile solutions. You will learn best practices and hear real-world examples of how to provide flexible and granular access control for Oracle WebCenter deployments, using Oracle Platform Security Services and Oracle Access Management Suite product offerings. ¶ CON8891 - Extending Social into Enterprise Applications and Business Processes Oracle Social Network is an extensible social platform that enables contextual collaboration within enterprise applications and business processes, providing relevant data from across various enterprise systems in one place. Attend this session to see how an Oracle Social Network customer is integrating multiple applications—such as CRM, HCM, and business processes—into Oracle Social Network and Oracle WebCenter to enable individuals and teams to solve complex cross-organizational business problems more effectively by utilizing the social enterprise. ¶ Thursday, October 4th CON8899 - Becoming a Social Business: Stories from the Front Lines of Change What does it really mean to be a social business? How can you change our organization to embrace social approaches? What pitfalls do you need to avoid? In this lively panel discussion, customer and industry thought leaders in social business explore these topics and more as they share their stories of the good, the bad, and the ugly that can happen when embracing social methods and technologies to improve business success. Using moderated questions and open Q&A from the audience, the panel discusses vital topics such as the critical factors for success, the major issues to avoid, how to gain senior executive support for social efforts, how to handle undesired behavior, and how to measure business impact. It takes a thought-provoking look at becoming a social business from the inside. ¶ CON6851 - Oracle WebCenter and Oracle Business Intelligence Enterprise Edition to Create Vendor Portals Large manufacturers of grocery items routinely find themselves depending on the inventory management expertise of their wholesalers and distributors. Inventory costs can be managed more efficiently by the manufacturers if they have better insight into the inventory levels of items carried by their distributors. This creates a unique opportunity for distributors and wholesalers to leverage this knowledge into a revenue-generating subscription service. Oracle Business Intelligence Enterprise Edition and Oracle WebCenter Portal play a key part in enabling creation of business-managed business intelligence portals for vendors. This session discusses one customer that implemented this by leveraging Oracle WebCenter and Oracle Business Intelligence Enterprise Edition. ¶ CON8879 - Provide a Personalized and Consistent Customer Experience in Your Websites and Portals Your customers engage with your company online in different ways throughout their journey—from prospecting by acquiring information on your corporate Website to transacting through self-service applications on your customer portal—and then the cycle begins again when they look for new products and services. Ensuring that the customer experience is consistent and personalized across online properties—from branding and content to interactions and transactions—can be a daunting task. Oracle WebCenter enables you to speak and interact with your customers with one voice across your Websites and portals by providing an integrated platform for delivery of self-service and engagement that unifies and personalizes the online experience. Learn more in this session. ¶ CON8898 - Land Mines, Potholes, and Dirt Roads: Navigating the Way to ECM Nirvana Ten years ago, people were predicting that by this time in history, we’d be some kind of utopian paperless society. As we all know, we’re not there yet, but are we getting closer? What is keeping companies from driving down the road to enterprise content management bliss? Most people understand that using ECM as a central platform enables organizations to expedite document-centric processes, but most business processes in organizations are still heavily paper-based. Many of these processes could be automated and improved with an ECM platform infrastructure. In this panel discussion, you’ll hear from Oracle WebCenter customers that have already solved some of these challenges as they share their strategies for success and roads to avoid along your journey. ¶ CON8908 - Oracle WebCenter Portal: Creating and Using Content Presenter Templates Oracle WebCenter Portal applications use task flows to display and integrate content stored in the Oracle WebCenter Content server. Among the most flexible task flows is Content Presenter, which renders various types of content on an Oracle WebCenter Portal page. Although Oracle WebCenter Portal comes with a set of predefined Content Presenter templates, developers can create their own templates for specific rendering needs. This session shows the lifecycle of developing Content Presenter task flows, including how to create, package, import, modify at runtime, and use such templates. In addition to simple examples with Oracle Application Development Framework (Oracle ADF) UI elements to render the content, it shows how to use other UI technologies, CSS files, and JavaScript libraries. ¶ CON8897 - Using Web Experience Management to Drive Online Marketing Success Every year, the online channel becomes more imperative for driving organizational top-line revenue, but for many companies, mastering how to best market their products and services in a fast-evolving online world with high customer expectations for personalized experiences can be a complex proposition. Come to this panel discussion, and hear directly from online marketers how they are succeeding today by using Web experience management to drive marketing success, using capabilities such as targeting and optimization, user-generated content, mobile site publishing, and site visitor personalization to deliver engaging online experiences. ¶ CON8892 - Oracle’s Journey to Social Business Social business is a revolution, one that is causing rapidly accelerating change in how companies and customers engage with one another and how employees work together. Oracle’s goal in becoming a social business is to create a socially connected organization in which working collaboratively across geographical locations, lines of business, and management chains is second nature, enabling innovative solutions to business challenges. We can achieve this by connecting the right people, finding the right content, communicating with the right people, collaborating at the right time, and building the right communities in the right context—all ready in the CLOUD. Attend this session to see how Oracle is transforming itself into a social business. ¶  ------------ If you've read all the way to the end here - we are REALLY looking forward to seeing you in San Francisco.

    Read the article

  • Using the West Wind Web Toolkit to set up AJAX and REST Services

    - by Rick Strahl
    I frequently get questions about which option to use for creating AJAX and REST backends for ASP.NET applications. There are many solutions out there to do this actually, but when I have a choice - not surprisingly - I fall back to my own tools in the West Wind West Wind Web Toolkit. I've talked a bunch about the 'in-the-box' solutions in the past so for a change in this post I'll talk about the tools that I use in my own and customer applications to handle AJAX and REST based access to service resources using the West Wind West Wind Web Toolkit. Let me preface this by saying that I like things to be easy. Yes flexible is very important as well but not at the expense of over-complexity. The goal I've had with my tools is make it drop dead easy, with good performance while providing the core features that I'm after, which are: Easy AJAX/JSON Callbacks Ability to return any kind of non JSON content (string, stream, byte[], images) Ability to work with both XML and JSON interchangeably for input/output Access endpoints via POST data, RPC JSON calls, GET QueryString values or Routing interface Easy to use generic JavaScript client to make RPC calls (same syntax, just what you need) Ability to create clean URLS with Routing Ability to use standard ASP.NET HTTP Stack for HTTP semantics It's all about options! In this post I'll demonstrate most of these features (except XML) in a few simple and short samples which you can download. So let's take a look and see how you can build an AJAX callback solution with the West Wind Web Toolkit. Installing the Toolkit Assemblies The easiest and leanest way of using the Toolkit in your Web project is to grab it via NuGet: West Wind Web and AJAX Utilities (Westwind.Web) and drop it into the project by right clicking in your Project and choosing Manage NuGet Packages from anywhere in the Project.   When done you end up with your project looking like this: What just happened? Nuget added two assemblies - Westwind.Web and Westwind.Utilities and the client ww.jquery.js library. It also added a couple of references into web.config: The default namespaces so they can be accessed in pages/views and a ScriptCompressionModule that the toolkit optionally uses to compress script resources served from within the assembly (namely ww.jquery.js and optionally jquery.js). Creating a new Service The West Wind Web Toolkit supports several ways of creating and accessing AJAX services, but for this post I'll stick to the lower level approach that works from any plain HTML page or of course MVC, WebForms, WebPages. There's also a WebForms specific control that makes this even easier but I'll leave that for another post. So, to create a new standalone AJAX/REST service we can create a new HttpHandler in the new project either as a pure class based handler or as a generic .ASHX handler. Both work equally well, but generic handlers don't require any web.config configuration so I'll use that here. In the root of the project add a Generic Handler. I'm going to call this one StockService.ashx. Once the handler has been created, edit the code and remove all of the handler body code. Then change the base class to CallbackHandler and add methods that have a [CallbackMethod] attribute. Here's the modified base handler implementation now looks like with an added HelloWorld method: using System; using Westwind.Web; namespace WestWindWebAjax { /// <summary> /// Handler implements CallbackHandler to provide REST/AJAX services /// </summary> public class SampleService : CallbackHandler { [CallbackMethod] public string HelloWorld(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } } } Notice that the class inherits from CallbackHandler and that the HelloWorld service method is marked up with [CallbackMethod]. We're done here. Services Urlbased Syntax Once you compile, the 'service' is live can respond to requests. All CallbackHandlers support input in GET and POST formats, and can return results as JSON or XML. To check our fancy HelloWorld method we can now access the service like this: http://localhost/WestWindWebAjax/StockService.ashx?Method=HelloWorld&name=Rick which produces a default JSON response - in this case a string (wrapped in quotes as it's JSON): (note by default JSON will be downloaded by most browsers not displayed - various options are available to view JSON right in the browser) If I want to return the same data as XML I can tack on a &format=xml at the end of the querystring which produces: <string>Hello Rick. Time is: 11/1/2011 12:11:13 PM</string> Cleaner URLs with Routing Syntax If you want cleaner URLs for each operation you can also configure custom routes on a per URL basis similar to the way that WCF REST does. To do this you need to add a new RouteHandler to your application's startup code in global.asax.cs one for each CallbackHandler based service you create: protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); } With this code in place you can now add RouteUrl properties to any of your service methods. For the HelloWorld method that doesn't make a ton of sense but here is what a routed clean URL might look like in definition: [CallbackMethod(RouteUrl="stocks/HelloWorld/{name}")] public string HelloWorld(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } The same URL I previously used now becomes a bit shorter and more readable with: http://localhost/WestWindWebAjax/HelloWorld/Rick It's an easy way to create cleaner URLs and still get the same functionality. Calling the Service with $.getJSON() Since the result produced is JSON you can now easily consume this data using jQuery's getJSON method. First we need a couple of scripts - jquery.js and ww.jquery.js in the page: <!DOCTYPE html> <html> <head> <link href="Css/Westwind.css" rel="stylesheet" type="text/css" /> <script src="scripts/jquery.min.js" type="text/javascript"></script> <script src="scripts/ww.jquery.min.js" type="text/javascript"></script> </head> <body> Next let's add a small HelloWorld example form (what else) that has a single textbox to type a name, a button and a div tag to receive the result: <fieldset> <legend>Hello World</legend> Please enter a name: <input type="text" name="txtHello" id="txtHello" value="" /> <input type="button" id="btnSayHello" value="Say Hello (POST)" /> <input type="button" id="btnSayHelloGet" value="Say Hello (GET)" /> <div id="divHelloMessage" class="errordisplay" style="display:none;width: 450px;" > </div> </fieldset> Then to call the HelloWorld method a little jQuery is used to hook the document startup and the button click followed by the $.getJSON call to retrieve the data from the server. <script type="text/javascript"> $(document).ready(function () { $("#btnSayHelloGet").click(function () { $.getJSON("SampleService.ashx", { Method: "HelloWorld", name: $("#txtHello").val() }, function (result) { $("#divHelloMessage") .text(result) .fadeIn(1000); }); });</script> .getJSON() expects a full URL to the endpoint of our service, which is the ASHX file. We can either provide a full URL (SampleService.ashx?Method=HelloWorld&name=Rick) or we can just provide the base URL and an object that encodes the query string parameters for us using an object map that has a property that matches each parameter for the server method. We can also use the clean URL routing syntax, but using the object parameter encoding actually is safer as the parameters will get properly encoded by jQuery. The result returned is whatever the result on the server method is - in this case a string. The string is applied to the divHelloMessage element and we're done. Obviously this is a trivial example, but it demonstrates the basics of getting a JSON response back to the browser. AJAX Post Syntax - using ajaxCallMethod() The previous example allows you basic control over the data that you send to the server via querystring parameters. This works OK for simple values like short strings, numbers and boolean values, but doesn't really work if you need to pass something more complex like an object or an array back up to the server. To handle traditional RPC type messaging where the idea is to map server side functions and results to a client side invokation, POST operations can be used. The easiest way to use this functionality is to use ww.jquery.js and the ajaxCallMethod() function. ww.jquery wraps jQuery's AJAX functions and knows implicitly how to call a CallbackServer method with parameters and parse the result. Let's look at another simple example that posts a simple value but returns something more interesting. Let's start with the service method: [CallbackMethod(RouteUrl="stocks/{symbol}")] public StockQuote GetStockQuote(string symbol) { Response.Cache.SetExpires(DateTime.UtcNow.Add(new TimeSpan(0, 2, 0))); StockServer server = new StockServer(); var quote = server.GetStockQuote(symbol); if (quote == null) throw new ApplicationException("Invalid Symbol passed."); return quote; } This sample utilizes a small StockServer helper class (included in the sample) that downloads a stock quote from Yahoo's financial site via plain HTTP GET requests and formats it into a StockQuote object. Lets create a small HTML block that lets us query for the quote and display it: <fieldset> <legend>Single Stock Quote</legend> Please enter a stock symbol: <input type="text" name="txtSymbol" id="txtSymbol" value="msft" /> <input type="button" id="btnStockQuote" value="Get Quote" /> <div id="divStockDisplay" class="errordisplay" style="display:none; width: 450px;"> <div class="label-left">Company:</div> <div id="stockCompany"></div> <div class="label-left">Last Price:</div> <div id="stockLastPrice"></div> <div class="label-left">Quote Time:</div> <div id="stockQuoteTime"></div> </div> </fieldset> The final result looks something like this:   Let's hook up the button handler to fire the request and fill in the data as shown: $("#btnStockQuote").click(function () { ajaxCallMethod("SampleService.ashx", "GetStockQuote", [$("#txtSymbol").val()], function (quote) { $("#divStockDisplay").show().fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, HH:mm EST")); }, onPageError); }); So we point at SampleService.ashx and the GetStockQuote method, passing a single parameter of the input symbol value. Then there are two handlers for success and failure callbacks.  The success handler is the interesting part - it receives the stock quote as a result and assigns its values to various 'holes' in the stock display elements. The data that comes back over the wire is JSON and it looks like this: { "Symbol":"MSFT", "Company":"Microsoft Corpora", "OpenPrice":26.11, "LastPrice":26.01, "NetChange":0.02, "LastQuoteTime":"2011-11-03T02:00:00Z", "LastQuoteTimeString":"Nov. 11, 2011 4:20pm" } which is an object representation of the data. JavaScript can evaluate this JSON string back into an object easily and that's the reslut that gets passed to the success function. The quote data is then applied to existing page content by manually selecting items and applying them. There are other ways to do this more elegantly like using templates, but here we're only interested in seeing how the data is returned. The data in the object is typed - LastPrice is a number and QuoteTime is a date. Note about the date value: JavaScript doesn't have a date literal although the JSON embedded ISO string format used above  ("2011-11-03T02:00:00Z") is becoming fairly standard for JSON serializers. However, JSON parsers don't deserialize dates by default and return them by string. This is why the StockQuote actually returns a string value of LastQuoteTimeString for the same date. ajaxMethodCallback always converts dates properly into 'real' dates and the example above uses the real date value along with a .formatDate() data extension (also in ww.jquery.js) to display the raw date properly. Errors and Exceptions So what happens if your code fails? For example if I pass an invalid stock symbol to the GetStockQuote() method you notice that the code does this: if (quote == null) throw new ApplicationException("Invalid Symbol passed."); CallbackHandler automatically pushes the exception message back to the client so it's easy to pick up the error message. Regardless of what kind of error occurs: Server side, client side, protocol errors - any error will fire the failure handler with an error object parameter. The error is returned to the client via a JSON response in the error callback. In the previous examples I called onPageError which is a generic routine in ww.jquery that displays a status message on the bottom of the screen. But of course you can also take over the error handling yourself: $("#btnStockQuote").click(function () { ajaxCallMethod("SampleService.ashx", "GetStockQuote", [$("#txtSymbol").val()], function (quote) { $("#divStockDisplay").fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, hh:mmt")); }, function (error, xhr) { $("#divErrorDisplay").text(error.message).fadeIn(1000); }); }); The error object has a isCallbackError, message and  stackTrace properties, the latter of which is only populated when running in Debug mode, and this object is returned for all errors: Client side, transport and server side errors. Regardless of which type of error you get the same object passed (as well as the XHR instance optionally) which makes for a consistent error retrieval mechanism. Specifying HttpVerbs You can also specify HTTP Verbs that are allowed using the AllowedHttpVerbs option on the CallbackMethod attribute: [CallbackMethod(AllowedHttpVerbs=HttpVerbs.GET | HttpVerbs.POST)] public string HelloWorld(string name) { … } If you're building REST style API's this might be useful to force certain request semantics onto the client calling. For the above if call with a non-allowed HttpVerb the request returns a 405 error response along with a JSON (or XML) error object result. The default behavior is to allow all verbs access (HttpVerbs.All). Passing in object Parameters Up to now the parameters I passed were very simple. But what if you need to send something more complex like an object or an array? Let's look at another example now that passes an object from the client to the server. Keeping with the Stock theme here lets add a method called BuyOrder that lets us buy some shares for a stock. Consider the following service method that receives an StockBuyOrder object as a parameter: [CallbackMethod] public string BuyStock(StockBuyOrder buyOrder) { var server = new StockServer(); var quote = server.GetStockQuote(buyOrder.Symbol); if (quote == null) throw new ApplicationException("Invalid or missing stock symbol."); return string.Format("You're buying {0} shares of {1} ({2}) stock at {3} for a total of {4} on {5}.", buyOrder.Quantity, quote.Company, quote.Symbol, quote.LastPrice.ToString("c"), (quote.LastPrice * buyOrder.Quantity).ToString("c"), buyOrder.BuyOn.ToString("MMM d")); } public class StockBuyOrder { public string Symbol { get; set; } public int Quantity { get; set; } public DateTime BuyOn { get; set; } public StockBuyOrder() { BuyOn = DateTime.Now; } } This is a contrived do-nothing example that simply echoes back what was passed in, but it demonstrates how you can pass complex data to a callback method. On the client side we now have a very simple form that captures the three values on a form: <fieldset> <legend>Post a Stock Buy Order</legend> Enter a symbol: <input type="text" name="txtBuySymbol" id="txtBuySymbol" value="GLD" />&nbsp;&nbsp; Qty: <input type="text" name="txtBuyQty" id="txtBuyQty" value="10" style="width: 50px" />&nbsp;&nbsp; Buy on: <input type="text" name="txtBuyOn" id="txtBuyOn" value="<%= DateTime.Now.ToString("d") %>" style="width: 70px;" /> <input type="button" id="btnBuyStock" value="Buy Stock" /> <div id="divStockBuyMessage" class="errordisplay" style="display:none"></div> </fieldset> The completed form and demo then looks something like this:   The client side code that picks up the input values and assigns them to object properties and sends the AJAX request looks like this: $("#btnBuyStock").click(function () { // create an object map that matches StockBuyOrder signature var buyOrder = { Symbol: $("#txtBuySymbol").val(), Quantity: $("#txtBuyQty").val() * 1, // number Entered: new Date() } ajaxCallMethod("SampleService.ashx", "BuyStock", [buyOrder], function (result) { $("#divStockBuyMessage").text(result).fadeIn(1000); }, onPageError); }); The code creates an object and attaches the properties that match the server side object passed to the BuyStock method. Each property that you want to update needs to be included and the type must match (ie. string, number, date in this case). Any missing properties will not be set but also not cause any errors. Pass POST data instead of Objects In the last example I collected a bunch of values from form variables and stuffed them into object variables in JavaScript code. While that works, often times this isn't really helping - I end up converting my types on the client and then doing another conversion on the server. If lots of input controls are on a page and you just want to pick up the values on the server via plain POST variables - that can be done too - and it makes sense especially if you're creating and filling the client side object only to push data to the server. Let's add another method to the server that once again lets us buy a stock. But this time let's not accept a parameter but rather send POST data to the server. Here's the server method receiving POST data: [CallbackMethod] public string BuyStockPost() { StockBuyOrder buyOrder = new StockBuyOrder(); buyOrder.Symbol = Request.Form["txtBuySymbol"]; ; int qty; int.TryParse(Request.Form["txtBuyQuantity"], out qty); buyOrder.Quantity = qty; DateTime time; DateTime.TryParse(Request.Form["txtBuyBuyOn"], out time); buyOrder.BuyOn = time; // Or easier way yet //FormVariableBinder.Unbind(buyOrder,null,"txtBuy"); var server = new StockServer(); var quote = server.GetStockQuote(buyOrder.Symbol); if (quote == null) throw new ApplicationException("Invalid or missing stock symbol."); return string.Format("You're buying {0} shares of {1} ({2}) stock at {3} for a total of {4} on {5}.", buyOrder.Quantity, quote.Company, quote.Symbol, quote.LastPrice.ToString("c"), (quote.LastPrice * buyOrder.Quantity).ToString("c"), buyOrder.BuyOn.ToString("MMM d")); } Clearly we've made this server method take more code than it did with the object parameter. We've basically moved the parameter assignment logic from the client to the server. As a result the client code to call this method is now a bit shorter since there's no client side shuffling of values from the controls to an object. $("#btnBuyStockPost").click(function () { ajaxCallMethod("SampleService.ashx", "BuyStockPost", [], // Note: No parameters - function (result) { $("#divStockBuyMessage").text(result).fadeIn(1000); }, onPageError, // Force all page Form Variables to be posted { postbackMode: "Post" }); }); The client simply calls the BuyStockQuote method and pushes all the form variables from the page up to the server which parses them instead. The feature that makes this work is one of the options you can pass to the ajaxCallMethod() function: { postbackMode: "Post" }); which directs the function to include form variable POST data when making the service call. Other options include PostNoViewState (for WebForms to strip out WebForms crap vars), PostParametersOnly (default), None. If you pass parameters those are always posted to the server except when None is set. The above code can be simplified a bit by using the FormVariableBinder helper, which can unbind form variables directly into an object: FormVariableBinder.Unbind(buyOrder,null,"txtBuy"); which replaces the manual Request.Form[] reading code. It receives the object to unbind into, a string of properties to skip, and an optional prefix which is stripped off form variables to match property names. The component is similar to the MVC model binder but it's independent of MVC. Returning non-JSON Data CallbackHandler also supports returning non-JSON/XML data via special return types. You can return raw non-JSON encoded strings like this: [CallbackMethod(ReturnAsRawString=true,ContentType="text/plain")] public string HelloWorldNoJSON(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } Calling this method results in just a plain string - no JSON encoding with quotes around the result. This can be useful if your server handling code needs to return a string or HTML result that doesn't fit well for a page or other UI component. Any string output can be returned. You can also return binary data. Stream, byte[] and Bitmap/Image results are automatically streamed back to the client. Notice that you should set the ContentType of the request either on the CallbackMethod attribute or using Response.ContentType. This ensures the Web Server knows how to display your binary response. Using a stream response makes it possible to return any of data. Streamed data can be pretty handy to return bitmap data from a method. The following is a method that returns a stock history graph for a particular stock over a provided number of years: [CallbackMethod(ContentType="image/png",RouteUrl="stocks/history/graph/{symbol}/{years}")] public Stream GetStockHistoryGraph(string symbol, int years = 2,int width = 500, int height=350) { if (width == 0) width = 500; if (height == 0) height = 350; StockServer server = new StockServer(); return server.GetStockHistoryGraph(symbol,"Stock History for " + symbol,width,height,years); } I can now hook this up into the JavaScript code when I get a stock quote. At the end of the process I can assign the URL to the service that returns the image into the src property and so force the image to display. Here's the changed code: $("#btnStockQuote").click(function () { var symbol = $("#txtSymbol").val(); ajaxCallMethod("SampleService.ashx", "GetStockQuote", [symbol], function (quote) { $("#divStockDisplay").fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, hh:mmt")); // display a stock chart $("#imgStockHistory").attr("src", "stocks/history/graph/" + symbol + "/2"); },onPageError); }); The resulting output then looks like this: The charting code uses the new ASP.NET 4.0 Chart components via code to display a bar chart of the 2 year stock data as part of the StockServer class which you can find in the sample download. The ability to return arbitrary data from a service is useful as you can see - in this case the chart is clearly associated with the service and it's nice that the graph generation can happen off a handler rather than through a page. Images are common resources, but output can also be PDF reports, zip files for downloads etc. which is becoming increasingly more common to be returned from REST endpoints and other applications. Why reinvent? Obviously the examples I've shown here are pretty basic in terms of functionality. But I hope they demonstrate the core features of AJAX callbacks that you need to work through in most applications which is simple: return data, send back data and potentially retrieve data in various formats. While there are other solutions when it comes down to making AJAX callbacks and servicing REST like requests, I like the flexibility my home grown solution provides. Simply put it's still the easiest solution that I've found that addresses my common use cases: AJAX JSON RPC style callbacks Url based access XML and JSON Output from single method endpoint XML and JSON POST support, querystring input, routing parameter mapping UrlEncoded POST data support on callbacks Ability to return stream/raw string data Essentially ability to return ANYTHING from Service and pass anything All these features are available in various solutions but not together in one place. I've been using this code base for over 4 years now in a number of projects both for myself and commercial work and it's served me extremely well. Besides the AJAX functionality CallbackHandler provides, it's also an easy way to create any kind of output endpoint I need to create. Need to create a few simple routines that spit back some data, but don't want to create a Page or View or full blown handler for it? Create a CallbackHandler and add a method or multiple methods and you have your generic endpoints.  It's a quick and easy way to add small code pieces that are pretty efficient as they're running through a pretty small handler implementation. I can have this up and running in a couple of minutes literally without any setup and returning just about any kind of data. Resources Download the Sample NuGet: Westwind Web and AJAX Utilities (Westwind.Web) ajaxCallMethod() Documentation Using the AjaxMethodCallback WebForms Control West Wind Web Toolkit Home Page West Wind Web Toolkit Source Code © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  jQuery  AJAX   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Understanding Request Validation in ASP.NET MVC 3

    - by imran_ku07
         Introduction:             A fact that you must always remember "never ever trust user inputs". An application that trusts user inputs may be easily vulnerable to XSS, XSRF, SQL Injection, etc attacks. XSS and XSRF are very dangerous attacks. So to mitigate these attacks ASP.NET introduced request validation in ASP.NET 1.1. During request validation, ASP.NET will throw HttpRequestValidationException: 'A potentially dangerous XXX value was detected from the client', if he found, < followed by an exclamation(like <!) or < followed by the letters a through z(like <s) or & followed by a pound sign(like &#123) as a part of query string, posted form and cookie collection. In ASP.NET 4.0, request validation becomes extensible. This means that you can extend request validation. Also in ASP.NET 4.0, by default request validation is enabled before the BeginRequest phase of an HTTP request. ASP.NET MVC 3 moves one step further by making request validation granular. This allows you to disable request validation for some properties of a model while maintaining request validation for all other cases. In this article I will show you the use of request validation in ASP.NET MVC 3. Then I will briefly explain the internal working of granular request validation.       Description:             First of all create a new ASP.NET MVC 3 application. Then create a simple model class called MyModel,     public class MyModel { public string Prop1 { get; set; } public string Prop2 { get; set; } }             Then just update the index action method as follows,   public ActionResult Index(MyModel p) { return View(); }             Now just run this application. You will find that everything works just fine. Now just append this query string ?Prop1=<s to the url of this application, you will get the HttpRequestValidationException exception.           Now just decorate the Index action method with [ValidateInputAttribute(false)],   [ValidateInput(false)] public ActionResult Index(MyModel p) { return View(); }             Run this application again with same query string. You will find that your application run without any unhandled exception.           Up to now, there is nothing new in ASP.NET MVC 3 because ValidateInputAttribute was present in the previous versions of ASP.NET MVC. Any problem with this approach? Yes there is a problem with this approach. The problem is that now users can send html for both Prop1 and Prop2 properties and a lot of developers are not aware of it. This means that now everyone can send html with both parameters(e.g, ?Prop1=<s&Prop2=<s). So ValidateInput attribute does not gives you the guarantee that your application is safe to XSS or XSRF. This is the reason why ASP.NET MVC team introduced granular request validation in ASP.NET MVC 3. Let's see this feature.           Remove [ValidateInputAttribute(false)] on Index action and update MyModel class as follows,   public class MyModel { [AllowHtml] public string Prop1 { get; set; } public string Prop2 { get; set; } }             Note that AllowHtml attribute is only decorated on Prop1 property. Run this application again with ?Prop1=<s query string. You will find that your application run just fine. Run this application again with ?Prop1=<s&Prop2=<s query string, you will get HttpRequestValidationException exception. This shows that the granular request validation in ASP.NET MVC 3 only allows users to send html for properties decorated with AllowHtml attribute.            Sometimes you may need to access Request.QueryString or Request.Form directly. You may change your code as follows,   [ValidateInput(false)] public ActionResult Index() { var prop1 = Request.QueryString["Prop1"]; return View(); }             Run this application again, you will get the HttpRequestValidationException exception again even you have [ValidateInput(false)] on your Index action. The reason is that Request flags are still not set to unvalidate. I will explain this later. For making this work you need to use Unvalidated extension method,     public ActionResult Index() { var q = Request.Unvalidated().QueryString; var prop1 = q["Prop1"]; return View(); }             Unvalidated extension method is defined in System.Web.Helpers namespace . So you need to add using System.Web.Helpers; in this class file. Run this application again, your application run just fine.             There you have it. If you are not curious to know the internal working of granular request validation then you can skip next paragraphs completely. If you are interested then carry on reading.             Create a new ASP.NET MVC 2 application, then open global.asax.cs file and the following lines,     protected void Application_BeginRequest() { var q = Request.QueryString; }             Then make the Index action method as,    [ValidateInput(false)] public ActionResult Index(string id) { return View(); }             Please note that the Index action method contains a parameter and this action method is decorated with [ValidateInput(false)]. Run this application again, but now with ?id=<s query string, you will get HttpRequestValidationException exception at Application_BeginRequest method. Now just add the following entry in web.config,   <httpRuntime requestValidationMode="2.0"/>             Now run this application again. This time your application will run just fine. Now just see the following quote from ASP.NET 4 Breaking Changes,   In ASP.NET 4, by default, request validation is enabled for all requests, because it is enabled before the BeginRequest phase of an HTTP request. As a result, request validation applies to requests for all ASP.NET resources, not just .aspx page requests. This includes requests such as Web service calls and custom HTTP handlers. Request validation is also active when custom HTTP modules are reading the contents of an HTTP request.             This clearly state that request validation is enabled before the BeginRequest phase of an HTTP request. For understanding what does enabled means here, we need to see HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly. Here is the implementation of HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly,     public NameValueCollection Form { get { if (this._form == null) { this._form = new HttpValueCollection(); if (this._wr != null) { this.FillInFormCollection(); } this._form.MakeReadOnly(); } if (this._flags[2]) { this._flags.Clear(2); this.ValidateNameValueCollection(this._form, RequestValidationSource.Form); } return this._form; } } public NameValueCollection QueryString { get { if (this._queryString == null) { this._queryString = new HttpValueCollection(); if (this._wr != null) { this.FillInQueryStringCollection(); } this._queryString.MakeReadOnly(); } if (this._flags[1]) { this._flags.Clear(1); this.ValidateNameValueCollection(this._queryString, RequestValidationSource.QueryString); } return this._queryString; } } public void ValidateInput() { if (!this._flags[0x8000]) { this._flags.Set(0x8000); this._flags.Set(1); this._flags.Set(2); this._flags.Set(4); this._flags.Set(0x40); this._flags.Set(0x80); this._flags.Set(0x100); this._flags.Set(0x200); this._flags.Set(8); } }             The above code indicates that HttpRequest.QueryString and HttpRequest.Form will only validate the querystring and form collection if certain flags are set. These flags are automatically set if you call HttpRequest.ValidateInput method. Now run the above application again(don't forget to append ?id=<s query string in the url) with the same settings(i.e, requestValidationMode="2.0" setting in web.config and Application_BeginRequest method in global.asax.cs), your application will run just fine. Now just update the Application_BeginRequest method as,   protected void Application_BeginRequest() { Request.ValidateInput(); var q = Request.QueryString; }             Note that I am calling Request.ValidateInput method prior to use Request.QueryString property. ValidateInput method will internally set certain flags(discussed above). These flags will then tells the Request.QueryString (and Request.Form) property that validate the query string(or form) when user call Request.QueryString(or Request.Form) property. So running this application again with ?id=<s query string will throw HttpRequestValidationException exception. Now I hope it is clear to you that what does requestValidationMode do. It just tells the ASP.NET that not invoke the Request.ValidateInput method internally before the BeginRequest phase of an HTTP request if requestValidationMode is set to a value less than 4.0 in web.config. Here is the implementation of HttpRequest.ValidateInputIfRequiredByConfig method which will prove this statement(Don't be confused with HttpRequest and Request. Request is the property of HttpRequest class),    internal void ValidateInputIfRequiredByConfig() { ............................................................... ............................................................... ............................................................... ............................................................... if (httpRuntime.RequestValidationMode >= VersionUtil.Framework40) { this.ValidateInput(); } }              Hopefully the above discussion will clear you how requestValidationMode works in ASP.NET 4. It is also interesting to note that both HttpRequest.QueryString and HttpRequest.Form only throws the exception when you access them first time. Any subsequent access to HttpRequest.QueryString and HttpRequest.Form will not throw any exception. Continuing with the above example, just update Application_BeginRequest method in global.asax.cs file as,   protected void Application_BeginRequest() { try { var q = Request.QueryString; var f = Request.Form; } catch//swallow this exception { } var q1 = Request.QueryString; var f1 = Request.Form; }             Without setting requestValidationMode to 2.0 and without decorating ValidateInput attribute on Index action, your application will work just fine because both HttpRequest.QueryString and HttpRequest.Form will clear their flags after reading HttpRequest.QueryString and HttpRequest.Form for the first time(see the implementation of HttpRequest.QueryString and HttpRequest.Form above).           Now let's see ASP.NET MVC 3 granular request validation internal working. First of all we need to see type of HttpRequest.QueryString and HttpRequest.Form properties. Both HttpRequest.QueryString and HttpRequest.Form properties are of type NameValueCollection which is inherited from the NameObjectCollectionBase class. NameObjectCollectionBase class contains _entriesArray, _entriesTable, NameObjectEntry.Key and NameObjectEntry.Value fields which granular request validation uses internally. In addition granular request validation also uses _queryString, _form and _flags fields, ValidateString method and the Indexer of HttpRequest class. Let's see when and how granular request validation uses these fields.           Create a new ASP.NET MVC 3 application. Then put a breakpoint at Application_BeginRequest method and another breakpoint at HomeController.Index method. Now just run this application. When the break point inside Application_BeginRequest method hits then add the following expression in quick watch window, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                                              Now Press F5 so that the second breakpoint inside HomeController.Index method hits. When the second breakpoint hits then add the following expression in quick watch window again, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                            First screen shows that _entriesTable field is of type System.Collections.Hashtable and _entriesArray field is of type System.Collections.ArrayList during the BeginRequest phase of the HTTP request. While the second screen shows that _entriesTable type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingHashtable and _entriesArray type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingArrayList during executing the Index action method. In addition to these members, ASP.NET MVC 3 also perform some operation on _flags, _form, _queryString and other members of HttpRuntime class internally. This shows that ASP.NET MVC 3 performing some operation on the members of HttpRequest class for making granular request validation possible.           Both LazilyValidatingArrayList and LazilyValidatingHashtable classes are defined in the Microsoft.Web.Infrastructure assembly. You may wonder why their name starts with Lazily. The fact is that now with ASP.NET MVC 3, request validation will be performed lazily. In simple words, Microsoft.Web.Infrastructure assembly is now taking the responsibility for request validation from System.Web assembly. See the below screens. The first screen depicting HttpRequestValidationException exception in ASP.NET MVC 2 application while the second screen showing HttpRequestValidationException exception in ASP.NET MVC 3 application.   In MVC 2:                 In MVC 3:                          The stack trace of the second screenshot shows that Microsoft.Web.Infrastructure assembly (instead of System.Web assembly) is now performing request validation in ASP.NET MVC 3. Now you may ask: where Microsoft.Web.Infrastructure assembly is performing some operation on the members of HttpRequest class. There are at least two places where the Microsoft.Web.Infrastructure assembly performing some operation , Microsoft.Web.Infrastructure.DynamicValidationHelper.GranularValidationReflectionUtil.GetInstance method and Microsoft.Web.Infrastructure.DynamicValidationHelper.ValidationUtility.CollectionReplacer.ReplaceCollection method, Here is the implementation of these methods,   private static GranularValidationReflectionUtil GetInstance() { try { if (DynamicValidationShimReflectionUtil.Instance != null) { return null; } GranularValidationReflectionUtil util = new GranularValidationReflectionUtil(); Type containingType = typeof(NameObjectCollectionBase); string fieldName = "_entriesArray"; bool isStatic = false; Type fieldType = typeof(ArrayList); FieldInfo fieldInfo = CommonReflectionUtil.FindField(containingType, fieldName, isStatic, fieldType); util._del_get_NameObjectCollectionBase_entriesArray = MakeFieldGetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); util._del_set_NameObjectCollectionBase_entriesArray = MakeFieldSetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); Type type6 = typeof(NameObjectCollectionBase); string str2 = "_entriesTable"; bool flag2 = false; Type type7 = typeof(Hashtable); FieldInfo info2 = CommonReflectionUtil.FindField(type6, str2, flag2, type7); util._del_get_NameObjectCollectionBase_entriesTable = MakeFieldGetterFunc<NameObjectCollectionBase, Hashtable>(info2); util._del_set_NameObjectCollectionBase_entriesTable = MakeFieldSetterFunc<NameObjectCollectionBase, Hashtable>(info2); Type targetType = CommonAssemblies.System.GetType("System.Collections.Specialized.NameObjectCollectionBase+NameObjectEntry"); Type type8 = targetType; string str3 = "Key"; bool flag3 = false; Type type9 = typeof(string); FieldInfo info3 = CommonReflectionUtil.FindField(type8, str3, flag3, type9); util._del_get_NameObjectEntry_Key = MakeFieldGetterFunc<string>(targetType, info3); Type type10 = targetType; string str4 = "Value"; bool flag4 = false; Type type11 = typeof(object); FieldInfo info4 = CommonReflectionUtil.FindField(type10, str4, flag4, type11); util._del_get_NameObjectEntry_Value = MakeFieldGetterFunc<object>(targetType, info4); util._del_set_NameObjectEntry_Value = MakeFieldSetterFunc(targetType, info4); Type type12 = typeof(HttpRequest); string methodName = "ValidateString"; bool flag5 = false; Type[] argumentTypes = new Type[] { typeof(string), typeof(string), typeof(RequestValidationSource) }; Type returnType = typeof(void); MethodInfo methodInfo = CommonReflectionUtil.FindMethod(type12, methodName, flag5, argumentTypes, returnType); util._del_validateStringCallback = CommonReflectionUtil.MakeFastCreateDelegate<HttpRequest, ValidateStringCallback>(methodInfo); Type type = CommonAssemblies.SystemWeb.GetType("System.Web.HttpValueCollection"); util._del_HttpValueCollection_ctor = CommonReflectionUtil.MakeFastNewObject<Func<NameValueCollection>>(type); Type type14 = typeof(HttpRequest); string str6 = "_form"; bool flag6 = false; Type type15 = type; FieldInfo info6 = CommonReflectionUtil.FindField(type14, str6, flag6, type15); util._del_get_HttpRequest_form = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info6); util._del_set_HttpRequest_form = MakeFieldSetterFunc(typeof(HttpRequest), info6); Type type16 = typeof(HttpRequest); string str7 = "_queryString"; bool flag7 = false; Type type17 = type; FieldInfo info7 = CommonReflectionUtil.FindField(type16, str7, flag7, type17); util._del_get_HttpRequest_queryString = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info7); util._del_set_HttpRequest_queryString = MakeFieldSetterFunc(typeof(HttpRequest), info7); Type type3 = CommonAssemblies.SystemWeb.GetType("System.Web.Util.SimpleBitVector32"); Type type18 = typeof(HttpRequest); string str8 = "_flags"; bool flag8 = false; Type type19 = type3; FieldInfo flagsFieldInfo = CommonReflectionUtil.FindField(type18, str8, flag8, type19); Type type20 = type3; string str9 = "get_Item"; bool flag9 = false; Type[] typeArray4 = new Type[] { typeof(int) }; Type type21 = typeof(bool); MethodInfo itemGetter = CommonReflectionUtil.FindMethod(type20, str9, flag9, typeArray4, type21); Type type22 = type3; string str10 = "set_Item"; bool flag10 = false; Type[] typeArray6 = new Type[] { typeof(int), typeof(bool) }; Type type23 = typeof(void); MethodInfo itemSetter = CommonReflectionUtil.FindMethod(type22, str10, flag10, typeArray6, type23); MakeRequestValidationFlagsAccessors(flagsFieldInfo, itemGetter, itemSetter, out util._del_BitVector32_get_Item, out util._del_BitVector32_set_Item); return util; } catch { return null; } } private static void ReplaceCollection(HttpContext context, FieldAccessor<NameValueCollection> fieldAccessor, Func<NameValueCollection> propertyAccessor, Action<NameValueCollection> storeInUnvalidatedCollection, RequestValidationSource validationSource, ValidationSourceFlag validationSourceFlag) { NameValueCollection originalBackingCollection; ValidateStringCallback validateString; SimpleValidateStringCallback simpleValidateString; Func<NameValueCollection> getActualCollection; Action<NameValueCollection> makeCollectionLazy; HttpRequest request = context.Request; Func<bool> getValidationFlag = delegate { return _reflectionUtil.GetRequestValidationFlag(request, validationSourceFlag); }; Func<bool> func = delegate { return !getValidationFlag(); }; Action<bool> setValidationFlag = delegate (bool value) { _reflectionUtil.SetRequestValidationFlag(request, validationSourceFlag, value); }; if ((fieldAccessor.Value != null) && func()) { storeInUnvalidatedCollection(fieldAccessor.Value); } else { originalBackingCollection = fieldAccessor.Value; validateString = _reflectionUtil.MakeValidateStringCallback(context.Request); simpleValidateString = delegate (string value, string key) { if (((key == null) || !key.StartsWith("__", StringComparison.Ordinal)) && !string.IsNullOrEmpty(value)) { validateString(value, key, validationSource); } }; getActualCollection = delegate { fieldAccessor.Value = originalBackingCollection; bool flag = getValidationFlag(); setValidationFlag(false); NameValueCollection col = propertyAccessor(); setValidationFlag(flag); storeInUnvalidatedCollection(new NameValueCollection(col)); return col; }; makeCollectionLazy = delegate (NameValueCollection col) { simpleValidateString(col[null], null); LazilyValidatingArrayList array = new LazilyValidatingArrayList(_reflectionUtil.GetNameObjectCollectionEntriesArray(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesArray(col, array); LazilyValidatingHashtable table = new LazilyValidatingHashtable(_reflectionUtil.GetNameObjectCollectionEntriesTable(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesTable(col, table); }; Func<bool> hasValidationFired = func; Action disableValidation = delegate { setValidationFlag(false); }; Func<int> fillInActualFormContents = delegate { NameValueCollection values = getActualCollection(); makeCollectionLazy(values); return values.Count; }; DeferredCountArrayList list = new DeferredCountArrayList(hasValidationFired, disableValidation, fillInActualFormContents); NameValueCollection target = _reflectionUtil.NewHttpValueCollection(); _reflectionUtil.SetNameObjectCollectionEntriesArray(target, list); fieldAccessor.Value = target; } }             Hopefully the above code will help you to understand the internal working of granular request validation. It is also important to note that Microsoft.Web.Infrastructure assembly invokes HttpRequest.ValidateInput method internally. For further understanding please see Microsoft.Web.Infrastructure assembly code. Finally you may ask: at which stage ASP NET MVC 3 will invoke these methods. You will find this answer by looking at the following method source,   Unvalidated extension method for HttpRequest class defined in System.Web.Helpers.Validation class. System.Web.Mvc.MvcHandler.ProcessRequestInit method. System.Web.Mvc.ControllerActionInvoker.ValidateRequest method. System.Web.WebPages.WebPageHttpHandler.ProcessRequestInternal method.       Summary:             ASP.NET helps in preventing XSS attack using a feature called request validation. In this article, I showed you how you can use granular request validation in ASP.NET MVC 3. I explain you the internal working of  granular request validation. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • What&rsquo;s New in ASP.NET 4.0 Part Two: WebForms and Visual Studio Enhancements

    - by Rick Strahl
    In the last installment I talked about the core changes in the ASP.NET runtime that I’ve been taking advantage of. In this column, I’ll cover the changes to the Web Forms engine and some of the cool improvements in Visual Studio that make Web and general development easier. WebForms The WebForms engine is the area that has received most significant changes in ASP.NET 4.0. Probably the most widely anticipated features are related to managing page client ids and of ViewState on WebForm pages. Take Control of Your ClientIDs Unique ClientID generation in ASP.NET has been one of the most complained about “features” in ASP.NET. Although there’s a very good technical reason for these unique generated ids - they guarantee unique ids for each and every server control on a page - these unique and generated ids often get in the way of client-side JavaScript development and CSS styling as it’s often inconvenient and fragile to work with the long, generated ClientIDs. In ASP.NET 4.0 you can now specify an explicit client id mode on each control or each naming container parent control to control how client ids are generated. By default, ASP.NET generates mangled client ids for any control contained in a naming container (like a Master Page, or a User Control for example). The key to ClientID management in ASP.NET 4.0 are the new ClientIDMode and ClientIDRowSuffix properties. ClientIDMode supports four different ClientID generation settings shown below. For the following examples, imagine that you have a Textbox control named txtName inside of a master page control container on a WebForms page. <%@Page Language="C#"      MasterPageFile="~/Site.Master"     CodeBehind="WebForm2.aspx.cs"     Inherits="WebApplication1.WebForm2"  %> <asp:Content ID="content"  ContentPlaceHolderID="content"               runat="server"               ClientIDMode="Static" >       <asp:TextBox runat="server" ID="txtName" /> </asp:Content> The four available ClientIDMode values are: AutoID This is the existing behavior in ASP.NET 1.x-3.x where full naming container munging takes place. <input name="ctl00$content$txtName" type="text"        id="ctl00_content_txtName" /> This should be familiar to any ASP.NET developer and results in fairly unpredictable client ids that can easily change if the containership hierarchy changes. For example, removing the master page changes the name in this case, so if you were to move a block of script code that works against the control to a non-Master page, the script code immediately breaks. Static This option is the most deterministic setting that forces the control’s ClientID to use its ID value directly. No naming container naming at all is applied and you end up with clean client ids: <input name="ctl00$content$txtName"         type="text" id="txtName" /> Note that the name property which is used for postback variables to the server still is munged, but the ClientID property is displayed simply as the ID value that you have assigned to the control. This option is what most of us want to use, but you have to be clear on that because it can potentially cause conflicts with other controls on the page. If there are several instances of the same naming container (several instances of the same user control for example) there can easily be a client id naming conflict. Note that if you assign Static to a data-bound control, like a list child control in templates, you do not get unique ids either, so for list controls where you rely on unique id for child controls, you’ll probably want to use Predictable rather than Static. I’ll write more on this a little later when I discuss ClientIDRowSuffix. Predictable The previous two values are pretty self-explanatory. Predictable however, requires some explanation. To me at least it’s not in the least bit predictable. MSDN defines this value as follows: This algorithm is used for controls that are in data-bound controls. The ClientID value is generated by concatenating the ClientID value of the parent naming container with the ID value of the control. If the control is a data-bound control that generates multiple rows, the value of the data field specified in the ClientIDRowSuffix property is added at the end. For the GridView control, multiple data fields can be specified. If the ClientIDRowSuffix property is blank, a sequential number is added at the end instead of a data-field value. Each segment is separated by an underscore character (_). The key that makes this value a bit confusing is that it relies on the parent NamingContainer’s ClientID to build its own ClientID value. This effectively means that the value is not predictable at all but rather very tightly coupled to the parent naming container’s ClientIDMode setting. For my simple textbox example, if the ClientIDMode property of the parent naming container (Page in this case) is set to “Predictable” you’ll get this: <input name="ctl00$content$txtName" type="text"         id="content_txtName" /> which gives an id that based on walking up to the currently active naming container (the MasterPage content container) and starting the id formatting from there downward. Think of this as a semi unique name that’s guaranteed unique only for the naming container. If, on the other hand, the Page is set to “AutoID” you get the following with Predictable on txtName: <input name="ctl00$content$txtName" type="text"         id="ctl00_content_txtName" /> The latter is effectively the same as if you specified AutoID because it inherits the AutoID naming from the Page and Content Master Page control of the page. But again - predictable behavior always depends on the parent naming container and how it generates its id, so the id may not always be exactly the same as the AutoID generated value because somewhere in the NamingContainer chain the ClientIDMode setting may be set to a different value. For example, if you had another naming container in the middle that was set to Static you’d end up effectively with an id that starts with the NamingContainers id rather than the whole ctl000_content munging. The most common use for Predictable is likely to be for data-bound controls, which results in each data bound item getting a unique ClientID. Unfortunately, even here the behavior can be very unpredictable depending on which data-bound control you use - I found significant differences in how template controls in a GridView behave from those that are used in a ListView control. For example, GridView creates clean child ClientIDs, while ListView still has a naming container in the ClientID, presumably because of the template container on which you can’t set ClientIDMode. Predictable is useful, but only if all naming containers down the chain use this setting. Otherwise you’re right back to the munged ids that are pretty unpredictable. Another property, ClientIDRowSuffix, can be used in combination with ClientIDMode of Predictable to force a suffix onto list client controls. For example: <asp:GridView runat="server" ID="gvItems"              AutoGenerateColumns="false"             ClientIDMode="Static"              ClientIDRowSuffix="Id">     <Columns>     <asp:TemplateField>         <ItemTemplate>             <asp:Label runat="server" id="txtName"                        Text='<%# Eval("Name") %>'                   ClientIDMode="Predictable"/>         </ItemTemplate>     </asp:TemplateField>     <asp:TemplateField>         <ItemTemplate>         <asp:Label runat="server" id="txtId"                     Text='<%# Eval("Id") %>'                     ClientIDMode="Predictable" />         </ItemTemplate>     </asp:TemplateField>     </Columns>  </asp:GridView> generates client Ids inside of a column in the master page described earlier: <td>     <span id="txtName_0">Rick</span> </td> where the value after the underscore is the ClientIDRowSuffix field - in this case “Id” of the item data bound to the control. Note that all of the child controls require ClientIDMode=”Predictable” in order for the ClientIDRowSuffix to be applied, and the parent GridView controls need to be set to Static either explicitly or via Naming Container inheritance to give these simple names. It’s a bummer that ClientIDRowSuffix doesn’t work with Static to produce this automatically. Another real problem is that other controls process the ClientIDMode differently. For example, a ListView control processes the Predictable ClientIDMode differently and produces the following with the Static ListView and Predictable child controls: <span id="ctrl0_txtName_0">Rick</span> I couldn’t even figure out a way using ClientIDMode to get a simple ID that also uses a suffix short of falling back to manually generated ids using <%= %> expressions instead. Given the inconsistencies inside of list controls using <%= %>, ids for the ListView might not be a bad idea anyway. Inherit The final setting is Inherit, which is the default for all controls except Page. This means that controls by default inherit the parent naming container’s ClientIDMode setting. For more detailed information on ClientID behavior and different scenarios you can check out a blog post of mine on this subject: http://www.west-wind.com/weblog/posts/54760.aspx. ClientID Enhancements Summary The ClientIDMode property is a welcome addition to ASP.NET 4.0. To me this is probably the most useful WebForms feature as it allows me to generate clean IDs simply by setting ClientIDMode="Static" on either the page or inside of Web.config (in the Pages section) which applies the setting down to the entire page which is my 95% scenario. For the few cases when it matters - for list controls and inside of multi-use user controls or custom server controls) - I can use Predictable or even AutoID to force controls to unique names. For application-level page development, this is easy to accomplish and provides maximum usability for working with client script code against page controls. ViewStateMode Another area of large criticism for WebForms is ViewState. ViewState is used internally by ASP.NET to persist page-level changes to non-postback properties on controls as pages post back to the server. It’s a useful mechanism that works great for the overall mechanics of WebForms, but it can also cause all sorts of overhead for page operation as ViewState can very quickly get out of control and consume huge amounts of bandwidth in your page content. ViewState can also wreak havoc with client-side scripting applications that modify control properties that are tracked by ViewState, which can produce very unpredictable results on a Postback after client-side updates. Over the years in my own development, I’ve often turned off ViewState on pages to reduce overhead. Yes, you lose some functionality, but you can easily implement most of the common functionality in non-ViewState workarounds. Relying less on heavy ViewState controls and sticking with simpler controls or raw HTML constructs avoids getting around ViewState problems. In ASP.NET 3.x and prior, it wasn’t easy to control ViewState - you could turn it on or off and if you turned it off at the page or web.config level, you couldn’t turn it back on for specific controls. In short, it was an all or nothing approach. With ASP.NET 4.0, the new ViewStateMode property gives you more control. It allows you to disable ViewState globally either on the page or web.config level and then turn it back on for specific controls that might need it. ViewStateMode only works when EnableViewState="true" on the page or web.config level (which is the default). You can then use ViewStateMode of Disabled, Enabled or Inherit to control the ViewState settings on the page. If you’re shooting for minimal ViewState usage, the ideal situation is to set ViewStateMode to disabled on the Page or web.config level and only turn it back on particular controls: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"        ClientIDMode="Static"                ViewStateMode="Disabled"     EnableViewState="true"  %> <!-- this control has viewstate  --> <asp:TextBox runat="server" ID="txtName"  ViewStateMode="Enabled" />       <!-- this control has no viewstate - it inherits  from parent container --> <asp:TextBox runat="server" ID="txtAddress" /> Note that the EnableViewState="true" at the Page level isn’t required since it’s the default, but it’s important that the value is true. ViewStateMode has no effect if EnableViewState="false" at the page level. The main benefit of ViewStateMode is that it allows you to more easily turn off ViewState for most of the page and enable only a few key controls that might need it. For me personally, this is a perfect combination as most of my WebForm apps can get away without any ViewState at all. But some controls - especially third party controls - often don’t work well without ViewState enabled, and now it’s much easier to selectively enable controls rather than the old way, which required you to pretty much turn off ViewState for all controls that you didn’t want ViewState on. Inline HTML Encoding HTML encoding is an important feature to prevent cross-site scripting attacks in data entered by users on your site. In order to make it easier to create HTML encoded content, ASP.NET 4.0 introduces a new Expression syntax using <%: %> to encode string values. The encoding expression syntax looks like this: <%: "<script type='text/javascript'>" +     "alert('Really?');</script>" %> which produces properly encoded HTML: &lt;script type=&#39;text/javascript&#39; &gt;alert(&#39;Really?&#39;);&lt;/script&gt; Effectively this is a shortcut to: <%= HttpUtility.HtmlEncode( "<script type='text/javascript'>" + "alert('Really?');</script>") %> Of course the <%: %> syntax can also evaluate expressions just like <%= %> so the more common scenario applies this expression syntax against data your application is displaying. Here’s an example displaying some data model values: <%: Model.Address.Street %> This snippet shows displaying data from your application’s data store or more importantly, from data entered by users. Anything that makes it easier and less verbose to HtmlEncode text is a welcome addition to avoid potential cross-site scripting attacks. Although I listed Inline HTML Encoding here under WebForms, anything that uses the WebForms rendering engine including ASP.NET MVC, benefits from this feature. ScriptManager Enhancements The ASP.NET ScriptManager control in the past has introduced some nice ways to take programmatic and markup control over script loading, but there were a number of shortcomings in this control. The ASP.NET 4.0 ScriptManager has a number of improvements that make it easier to control script loading and addresses a few of the shortcomings that have often kept me from using the control in favor of manual script loading. The first is the AjaxFrameworkMode property which finally lets you suppress loading the ASP.NET AJAX runtime. Disabled doesn’t load any ASP.NET AJAX libraries, but there’s also an Explicit mode that lets you pick and choose the library pieces individually and reduce the footprint of ASP.NET AJAX script included if you are using the library. There’s also a new EnableCdn property that forces any script that has a new WebResource attribute CdnPath property set to a CDN supplied URL. If the script has this Attribute property set to a non-null/empty value and EnableCdn is enabled on the ScriptManager, that script will be served from the specified CdnPath. [assembly: WebResource(    "Westwind.Web.Resources.ww.jquery.js",    "application/x-javascript",    CdnPath =  "http://mysite.com/scripts/ww.jquery.min.js")] Cool, but a little too static for my taste since this value can’t be changed at runtime to point at a debug script as needed, for example. Assembly names for loading scripts from resources can now be simple names rather than fully qualified assembly names, which make it less verbose to reference scripts from assemblies loaded from your bin folder or the assembly reference area in web.config: <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <Scripts>         <asp:ScriptReference          Name="Westwind.Web.Resources.ww.jquery.js"         Assembly="Westwind.Web" />     </Scripts>        </asp:ScriptManager> The ScriptManager in 4.0 also supports script combining via the CompositeScript tag, which allows you to very easily combine scripts into a single script resource served via ASP.NET. Even nicer: You can specify the URL that the combined script is served with. Check out the following script manager markup that combines several static file scripts and a script resource into a single ASP.NET served resource from a static URL (allscripts.js): <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <CompositeScript          Path="~/scripts/allscripts.js">         <Scripts>             <asp:ScriptReference                    Path="~/scripts/jquery.js" />             <asp:ScriptReference                    Path="~/scripts/ww.jquery.js" />             <asp:ScriptReference            Name="Westwind.Web.Resources.editors.js"                 Assembly="Westwind.Web" />         </Scripts>     </CompositeScript> </asp:ScriptManager> When you render this into HTML, you’ll see a single script reference in the page: <script src="scripts/allscripts.debug.js"          type="text/javascript"></script> All you need to do to make this work is ensure that allscripts.js and allscripts.debug.js exist in the scripts folder of your application - they can be empty but the file has to be there. This is pretty cool, but you want to be real careful that you use unique URLs for each combination of scripts you combine or else browser and server caching will easily screw you up royally. The script manager also allows you to override native ASP.NET AJAX scripts now as any script references defined in the Scripts section of the ScriptManager trump internal references. So if you want custom behavior or you want to fix a possible bug in the core libraries that normally are loaded from resources, you can now do this simply by referencing the script resource name in the Name property and pointing at System.Web for the assembly. Not a common scenario, but when you need it, it can come in real handy. Still, there are a number of shortcomings in this control. For one, the ScriptManager and ClientScript APIs still have no common entry point so control developers are still faced with having to check and support both APIs to load scripts so that controls can work on pages that do or don’t have a ScriptManager on the page. The CdnUrl is static and compiled in, which is very restrictive. And finally, there’s still no control over where scripts get loaded on the page - ScriptManager still injects scripts into the middle of the HTML markup rather than in the header or optionally the footer. This, in turn, means there is little control over script loading order, which can be problematic for control developers. MetaDescription, MetaKeywords Page Properties There are also a number of additional Page properties that correspond to some of the other features discussed in this column: ClientIDMode, ClientTarget and ViewStateMode. Another minor but useful feature is that you can now directly access the MetaDescription and MetaKeywords properties on the Page object to set the corresponding meta tags programmatically. Updating these values programmatically previously required either <%= %> expressions in the page markup or dynamic insertion of literal controls into the page. You can now just set these properties programmatically on the Page object in any Control derived class on the page or the Page itself: Page.MetaKeywords = "ASP.NET,4.0,New Features"; Page.MetaDescription = "This article discusses the new features in ASP.NET 4.0"; Note, that there’s no corresponding ASP.NET tag for the HTML Meta element, so the only way to specify these values in markup and access them is via the @Page tag: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"      ClientIDMode="Static"                MetaDescription="Article that discusses what's                      new in ASP.NET 4.0"     MetaKeywords="ASP.NET,4.0,New Features" %> Nothing earth shattering but quite convenient. Visual Studio 2010 Enhancements for Web Development For Web development there are also a host of editor enhancements in Visual Studio 2010. Some of these are not Web specific but they are useful for Web developers in general. Text Editors Throughout Visual Studio 2010, the text editors have all been updated to a new core engine based on WPF which provides some interesting new features for various code editors including the nice ability to zoom in and out with Ctrl-MouseWheel to quickly change the size of text. There are many more API options to control the editor and although Visual Studio 2010 doesn’t yet use many of these features, we can look forward to enhancements in add-ins and future editor updates from the various language teams that take advantage of the visual richness that WPF provides to editing. On the negative side, I’ve noticed that occasionally the code editor and especially the HTML and JavaScript editors will lose the ability to use various navigation keys like arrows, back and delete keys, which requires closing and reopening the documents at times. This issue seems to be well documented so I suspect this will be addressed soon with a hotfix or within the first service pack. Overall though, the code editors work very well, especially given that they were re-written completely using WPF, which was one of my big worries when I first heard about the complete redesign of the editors. Multi-Targeting Visual Studio now targets all versions of the .NET framework from 2.0 forward. You can use Visual Studio 2010 to work on your ASP.NET 2, 3.0 and 3.5 applications which is a nice way to get your feet wet with the new development environment without having to make changes to existing applications. It’s nice to have one tool to work in for all the different versions. Multi-Monitor Support One cool feature of Visual Studio 2010 is the ability to drag windows out of the Visual Studio environment and out onto the desktop including onto another monitor easily. Since Web development often involves working with a host of designers at the same time - visual designer, HTML markup window, code behind and JavaScript editor - it’s really nice to be able to have a little more screen real estate to work on each of these editors. Microsoft made a welcome change in the environment. IntelliSense Snippets for HTML and JavaScript Editors The HTML and JavaScript editors now finally support IntelliSense scripts to create macro-based template expansions that have been in the core C# and Visual Basic code editors since Visual Studio 2005. Snippets allow you to create short XML-based template definitions that can act as static macros or real templates that can have replaceable values that can be embedded into the expanded text. The XML syntax for these snippets is straight forward and it’s pretty easy to create custom snippets manually. You can easily create snippets using XML and store them in your custom snippets folder (C:\Users\rstrahl\Documents\Visual Studio 2010\Code Snippets\Visual Web Developer\My HTML Snippets and My JScript Snippets), but it helps to use one of the third-party tools that exist to simplify the process for you. I use SnippetEditor, by Bill McCarthy, which makes short work of creating snippets interactively (http://snippeteditor.codeplex.com/). Note: You may have to manually add the Visual Studio 2010 User specific Snippet folders to this tool to see existing ones you’ve created. Code snippets are some of the biggest time savers and HTML editing more than anything deals with lots of repetitive tasks that lend themselves to text expansion. Visual Studio 2010 includes a slew of built-in snippets (that you can also customize!) and you can create your own very easily. If you haven’t done so already, I encourage you to spend a little time examining your coding patterns and find the repetitive code that you write and convert it into snippets. I’ve been using CodeRush for this for years, but now you can do much of the basic expansion natively for HTML and JavaScript snippets. jQuery Integration Is Now Native jQuery is a popular JavaScript library and recently Microsoft has recently stated that it will become the primary client-side scripting technology to drive higher level script functionality in various ASP.NET Web projects that Microsoft provides. In Visual Studio 2010, the default full project template includes jQuery as part of a new project including the support files that provide IntelliSense (-vsdoc files). IntelliSense support for jQuery is now also baked into Visual Studio 2010, so unlike Visual Studio 2008 which required a separate download, no further installs are required for a rich IntelliSense experience with jQuery. Summary ASP.NET 4.0 brings many useful improvements to the platform, but thankfully most of the changes are incremental changes that don’t compromise backwards compatibility and they allow developers to ease into the new features one feature at a time. None of the changes in ASP.NET 4.0 or Visual Studio 2010 are monumental or game changers. The bigger features are language and .NET Framework changes that are also optional. This ASP.NET and tools release feels more like fine tuning and getting some long-standing kinks worked out of the platform. It shows that the ASP.NET team is dedicated to paying attention to community feedback and responding with changes to the platform and development environment based on this feedback. If you haven’t gotten your feet wet with ASP.NET 4.0 and Visual Studio 2010, there’s no reason not to give it a shot now - the ASP.NET 4.0 platform is solid and Visual Studio 2010 works very well for a brand new release. Check it out. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Automating Solaris 11 Zones Installation Using The Automated Install Server

    - by Orgad Kimchi
    Introduction How to use the Oracle Solaris 11 Automated install server in order to automate the Solaris 11 Zones installation. In this document I will demonstrate how to setup the Automated Install server in order to provide hands off installation process for the Global Zone and two Non Global Zones located on the same system. Architecture layout: Figure 1. Architecture layout Prerequisite Setup the Automated install server (AI) using the following instructions “How to Set Up Automated Installation Services for Oracle Solaris 11” The first step in this setup will be creating two Solaris 11 Zones configuration files. Step 1: Create the Solaris 11 Zones configuration files  The Solaris Zones configuration files should be in the format of the zonecfg export command. # zonecfg -z zone1 export > /var/tmp/zone1# cat /var/tmp/zone1 create -b set brand=solaris set zonepath=/rpool/zones/zone1 set autoboot=true set ip-type=exclusive add anet set linkname=net0 set lower-link=auto set configure-allowed-address=true set link-protection=mac-nospoof set mac-address=random end  Create a backup copy of this file under a different name, for example, zone2. # cp /var/tmp/zone1 /var/tmp/zone2 Modify the second configuration file with the zone2 configuration information You should change the zonepath for example: set zonepath=/rpool/zones/zone2 Step2: Copy and share the Zones configuration files  Create the NFS directory for the Zones configuration files # mkdir /export/zone_config Share the directory for the Zones configuration file # share –o ro /export/zone_config Copy the Zones configuration files into the NFS shared directory # cp /var/tmp/zone1 /var/tmp/zone2  /export/zone_config Verify that the NFS share has been created using the following command # share export_zone_config      /export/zone_config     nfs     sec=sys,ro Step 3: Add the Global Zone as client to the Install Service Use the installadm create-client command to associate client (Global Zone) with the install service To find the MAC address of a system, use the dladm command as described in the dladm(1M) man page. The following command adds the client (Global Zone) with MAC address 0:14:4f:2:a:19 to the s11x86service install service. # installadm create-client -e “0:14:4f:2:a:19" -n s11x86service You can verify the client creation using the following command # installadm list –c Service Name  Client Address     Arch   Image Path ------------  --------------     ----   ---------- s11x86service 00:14:4F:02:0A:19  i386   /export/auto_install/s11x86service We can see the client install service name (s11x86service), MAC address (00:14:4F:02:0A:19 and Architecture (i386). Step 4: Global Zone manifest setup  First, get a list of the installation services and the manifests associated with them: # installadm list -m Service Name   Manifest        Status ------------   --------        ------ default-i386   orig_default   Default s11x86service  orig_default   Default Then probe the s11x86service and the default manifest associated with it. The -m switch reflects the name of the manifest associated with a service. Since we want to capture that output into a file, we redirect the output of the command as follows: # installadm export -n s11x86service -m orig_default >  /var/tmp/orig_default.xml Create a backup copy of this file under a different name, for example, orig-default2.xml, and edit the copy. # cp /var/tmp/orig_default.xml /var/tmp/orig_default2.xml Use the configuration element in the AI manifest for the client system to specify non-global zones. Use the name attribute of the configuration element to specify the name of the zone. Use the source attribute to specify the location of the config file for the zone.The source location can be any http:// or file:// location that the client can access during installation. The following sample AI manifest specifies two Non-Global Zones: zone1 and zone2 You should replace the server_ip with the ip address of the NFS server. <!DOCTYPE auto_install SYSTEM "file:///usr/share/install/ai.dtd.1"> <auto_install>   <ai_instance>     <target>       <logical>         <zpool name="rpool" is_root="true">           <filesystem name="export" mountpoint="/export"/>           <filesystem name="export/home"/>           <be name="solaris"/>         </zpool>       </logical>     </target>     <software type="IPS">       <source>         <publisher name="solaris">           <origin name="http://pkg.oracle.com/solaris/release"/>         </publisher>       </source>       <software_data action="install">         <name>pkg:/entire@latest</name>         <name>pkg:/group/system/solaris-large-server</name>       </software_data>     </software>     <configuration type="zone" name="zone1" source="file:///net/server_ip/export/zone_config/zone1"/>     <configuration type="zone" name="zone2" source="file:///net/server_ip/export/zone_config/zone2"/>   </ai_instance> </auto_install> The following example adds the /var/tmp/orig_default2.xml AI manifest to the s11x86service install service # installadm create-manifest -n s11x86service -f /var/tmp/orig_default2.xml -m gzmanifest You can verify the manifest creation using the following command # installadm list -n s11x86service  -m Service/Manifest Name  Status   Criteria ---------------------  ------   -------- s11x86service    orig_default        Default  None    gzmanifest          Inactive None We can see from the command output that the new manifest named gzmanifest has been created and associated with the s11x86service install service. Step 5: Non Global Zone manifest setup The AI manifest for non-global zone installation is similar to the AI manifest for installing the global zone. If you do not provide a custom AI manifest for a non-global zone, the default AI manifest for Zones is used The default AI manifest for Zones is available at /usr/share/auto_install/manifest/zone_default.xml. In this example we should use the default AI manifest for zones The following sample default AI manifest for zones # cat /usr/share/auto_install/manifest/zone_default.xml <?xml version="1.0" encoding="UTF-8"?> <!--  Copyright (c) 2011, 2012, Oracle and/or its affiliates. All rights reserved. --> <!DOCTYPE auto_install SYSTEM "file:///usr/share/install/ai.dtd.1"> <auto_install>     <ai_instance name="zone_default">         <target>             <logical>                 <zpool name="rpool">                     <!--                       Subsequent <filesystem> entries instruct an installer                       to create following ZFS datasets:                           <root_pool>/export         (mounted on /export)                           <root_pool>/export/home    (mounted on /export/home)                       Those datasets are part of standard environment                       and should be always created.                       In rare cases, if there is a need to deploy a zone                       without these datasets, either comment out or remove                       <filesystem> entries. In such scenario, it has to be also                       assured that in case of non-interactive post-install                       configuration, creation of initial user account is                       disabled in related system configuration profile.                       Otherwise the installed zone would fail to boot.                     -->                     <filesystem name="export" mountpoint="/export"/>                     <filesystem name="export/home"/>                     <be name="solaris">                         <options>                             <option name="compression" value="on"/>                         </options>                     </be>                 </zpool>             </logical>         </target>         <software type="IPS">             <destination>                 <image>                     <!-- Specify locales to install -->                     <facet set="false">facet.locale.*</facet>                     <facet set="true">facet.locale.de</facet>                     <facet set="true">facet.locale.de_DE</facet>                     <facet set="true">facet.locale.en</facet>                     <facet set="true">facet.locale.en_US</facet>                     <facet set="true">facet.locale.es</facet>                     <facet set="true">facet.locale.es_ES</facet>                     <facet set="true">facet.locale.fr</facet>                     <facet set="true">facet.locale.fr_FR</facet>                     <facet set="true">facet.locale.it</facet>                     <facet set="true">facet.locale.it_IT</facet>                     <facet set="true">facet.locale.ja</facet>                     <facet set="true">facet.locale.ja_*</facet>                     <facet set="true">facet.locale.ko</facet>                     <facet set="true">facet.locale.ko_*</facet>                     <facet set="true">facet.locale.pt</facet>                     <facet set="true">facet.locale.pt_BR</facet>                     <facet set="true">facet.locale.zh</facet>                     <facet set="true">facet.locale.zh_CN</facet>                     <facet set="true">facet.locale.zh_TW</facet>                 </image>             </destination>             <software_data action="install">                 <name>pkg:/group/system/solaris-small-server</name>             </software_data>         </software>     </ai_instance> </auto_install> (optional) We can customize the default AI manifest for Zones Create a backup copy of this file under a different name, for example, zone_default2.xml and edit the copy # cp /usr/share/auto_install/manifest/zone_default.xml /var/tmp/zone_default2.xml Edit the copy (/var/tmp/zone_default2.xml) The following example adds the /var/tmp/zone_default2.xml AI manifest to the s11x86service install service and specifies that zone1 and zone2 should use this manifest. # installadm create-manifest -n s11x86service -f /var/tmp/zone_default2.xml -m zones_manifest -c zonename="zone1 zone2" Note: Do not use the following elements or attributes in a non-global zone AI manifest:     The auto_reboot attribute of the ai_instance element     The http_proxy attribute of the ai_instance element     The disk child element of the target element     The noswap attribute of the logical element     The nodump attribute of the logical element     The configuration element Step 6: Global Zone profile setup We are going to create a global zone configuration profile which includes the host information for example: host name, ip address name services etc… # sysconfig create-profile –o /var/tmp/gz_profile.xml You need to provide the host information for example:     Default router     Root password     DNS information The output should eventually disappear and be replaced by the initial screen of the System Configuration Tool (see Figure 2), where you can do the final configuration. Figure 2. Profile creation menu You can validate the profile using the following command # installadm validate -n s11x86service –P /var/tmp/gz_profile.xml Validating static profile gz_profile.xml...  Passed Next, instantiate a profile with the install service. In our case, use the following syntax for doing this # installadm create-profile -n s11x86service  -f /var/tmp/gz_profile.xml -p  gz_profile You can verify profile creation using the following command # installadm list –n s11x86service  -p Service/Profile Name  Criteria --------------------  -------- s11x86service    gz_profile         None We can see that the gz_profie has been created and associated with the s11x86service Install service. Step 7: Setup the Solaris Zones configuration profiles The step should be similar to the Global zone profile creation on step 6 # sysconfig create-profile –o /var/tmp/zone1_profile.xml # sysconfig create-profile –o /var/tmp/zone2_profile.xml You can validate the profiles using the following command # installadm validate -n s11x86service -P /var/tmp/zone1_profile.xml Validating static profile zone1_profile.xml...  Passed # installadm validate -n s11x86service -P /var/tmp/zone2_profile.xml Validating static profile zone2_profile.xml...  Passed Next, associate the profiles with the install service The following example adds the zone1_profile.xml configuration profile to the s11x86service  install service and specifies that zone1 should use this profile. # installadm create-profile -n s11x86service  -f  /var/tmp/zone1_profile.xml -p zone1_profile -c zonename=zone1 The following example adds the zone2_profile.xml configuration profile to the s11x86service  install service and specifies that zone2 should use this profile. # installadm create-profile -n s11x86service  -f  /var/tmp/zone2_profile.xml -p zone2_profile -c zonename=zone2 You can verify the profiles creation using the following command # installadm list -n s11x86service -p Service/Profile Name  Criteria --------------------  -------- s11x86service    zone1_profile      zonename = zone1    zone2_profile      zonename = zone2    gz_profile         None We can see that we have three profiles in the s11x86service  install service     Global Zone  gz_profile     zone1            zone1_profile     zone2            zone2_profile. Step 8: Global Zone setup Associate the global zone client with the manifest and the profile that we create in the previous steps The following example adds the manifest and profile to the client (global zone), where: gzmanifest  is the name of the manifest. gz_profile  is the name of the configuration profile. mac="0:14:4f:2:a:19" is the client (global zone) mac address s11x86service is the install service name. # installadm set-criteria -m  gzmanifest  –p  gz_profile  -c mac="0:14:4f:2:a:19" -n s11x86service You can verify the manifest and profile association using the following command # installadm list -n s11x86service -p  -m Service/Manifest Name  Status   Criteria ---------------------  ------   -------- s11x86service    gzmanifest                   mac  = 00:14:4F:02:0A:19    orig_default        Default  None Service/Profile Name  Criteria --------------------  -------- s11x86service    gz_profile         mac      = 00:14:4F:02:0A:19    zone2_profile      zonename = zone2    zone1_profile      zonename = zone1 Step 9: Provision the host with the Non-Global Zones The next step is to boot the client system off the network and provision it using the Automated Install service that we just set up. First, boot the client system. Figure 3 shows the network boot attempt (when done on an x86 system): Figure 3. Network Boot Then you will be prompted by a GRUB menu, with a timer, as shown in Figure 4. The default selection (the "Text Installer and command line" option) is highlighted.  Press the down arrow to highlight the second option labeled Automated Install, and then press Enter. The reason we need to do this is because we want to prevent a system from being automatically re-installed if it were to be booted from the network accidentally. Figure 4. GRUB Menu What follows is the continuation of a networked boot from the Automated Install server,. The client downloads a mini-root (a small set of files in which to successfully run the installer), identifies the location of the Automated Install manifest on the network, retrieves that manifest, and then processes it to identify the address of the IPS repository from which to obtain the desired software payload. Non-Global Zones are installed and configured on the first reboot after the Global Zone is installed. You can list all the Solaris Zones status using the following command # zoneadm list -civ Once the Zones are in running state you can login into the Zone using the following command # zlogin –z zone1 Troubleshooting Automated Installations If an installation to a client system failed, you can find the client log at /system/volatile/install_log. NOTE: Zones are not installed if any of the following errors occurs:     A zone config file is not syntactically correct.     A collision exists among zone names, zone paths, or delegated ZFS datasets in the set of zones to be installed     Required datasets are not configured in the global zone. For more troubleshooting information see “Installing Oracle Solaris 11 Systems” Conclusion This paper demonstrated the benefits of using the Automated Install server to simplify the Non Global Zones setup, including the creation and configuration of the global zone manifest and the Solaris Zones profiles.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • MySQL is running VERY slow on CentOS 6x (not 5x)

    - by user1032531
    I have two servers: a VPS and a laptop. I recently re-built both of them, and MySQL is running about 20 times slower on the laptop. Both servers used to run CentOS 5.8 and I think MySQL 5.1, and the laptop used to do great so I do not think it is the hardware. For the VPS, my provider installed CentOS 6.4, and then I installed MySQL 5.1.69 using yum with the CentOS repo. For the laptop, I installed CentOS 6.4 basic server and then installed MySQL 5.1.69 using yum with the CentOS repo. my.cnf for both servers are identical, and I have shown below. For both servers, I've also included below the output from SHOW VARIABLES; as well as output from sysbench, file system information, and cpu information. I have tried adding skip-name-resolve, but it didn't help. The matrix below shows the SHOW VARIABLES output from both servers which is different. Again, MySQL was installed the same way, so I do not know why it is different, but it is and I think this might be why the laptop is executing MySQL so slowly. Why is the laptop running MySQL slowly, and how do I fix it? Differences between SHOW VARIABLES on both servers +---------------------------+-----------------------+-------------------------+ | Variable | Value-VPS | Value-Laptop | +---------------------------+-----------------------+-------------------------+ | hostname | vps.site1.com | laptop.site2.com | | max_binlog_cache_size | 4294963200 | 18446744073709500000 | | max_seeks_for_key | 4294967295 | 18446744073709500000 | | max_write_lock_count | 4294967295 | 18446744073709500000 | | myisam_max_sort_file_size | 2146435072 | 9223372036853720000 | | myisam_mmap_size | 4294967295 | 18446744073709500000 | | plugin_dir | /usr/lib/mysql/plugin | /usr/lib64/mysql/plugin | | pseudo_thread_id | 7568 | 2 | | system_time_zone | EST | PDT | | thread_stack | 196608 | 262144 | | timestamp | 1372252112 | 1372252046 | | version_compile_machine | i386 | x86_64 | +---------------------------+-----------------------+-------------------------+ my.cnf for both servers [root@server1 ~]# cat /etc/my.cnf [mysqld] datadir=/var/lib/mysql socket=/var/lib/mysql/mysql.sock user=mysql # Disabling symbolic-links is recommended to prevent assorted security risks symbolic-links=0 [mysqld_safe] log-error=/var/log/mysqld.log pid-file=/var/run/mysqld/mysqld.pid innodb_strict_mode=on sql_mode=TRADITIONAL # sql_mode=STRICT_TRANS_TABLES,NO_ZERO_DATE,NO_ZERO_IN_DATE character-set-server=utf8 collation-server=utf8_general_ci log=/var/log/mysqld_all.log [root@server1 ~]# VPS SHOW VARIABLES Info Same as Laptop shown below but changes per above matrix (removed to allow me to be under the 30000 characters as required by ServerFault) Laptop SHOW VARIABLES Info auto_increment_increment 1 auto_increment_offset 1 autocommit ON automatic_sp_privileges ON back_log 50 basedir /usr/ big_tables OFF binlog_cache_size 32768 binlog_direct_non_transactional_updates OFF binlog_format STATEMENT bulk_insert_buffer_size 8388608 character_set_client utf8 character_set_connection utf8 character_set_database latin1 character_set_filesystem binary character_set_results utf8 character_set_server latin1 character_set_system utf8 character_sets_dir /usr/share/mysql/charsets/ collation_connection utf8_general_ci collation_database latin1_swedish_ci collation_server latin1_swedish_ci completion_type 0 concurrent_insert 1 connect_timeout 10 datadir /var/lib/mysql/ date_format %Y-%m-%d datetime_format %Y-%m-%d %H:%i:%s default_week_format 0 delay_key_write ON delayed_insert_limit 100 delayed_insert_timeout 300 delayed_queue_size 1000 div_precision_increment 4 engine_condition_pushdown ON error_count 0 event_scheduler OFF expire_logs_days 0 flush OFF flush_time 0 foreign_key_checks ON ft_boolean_syntax + -><()~*:""&| ft_max_word_len 84 ft_min_word_len 4 ft_query_expansion_limit 20 ft_stopword_file (built-in) general_log OFF general_log_file /var/run/mysqld/mysqld.log group_concat_max_len 1024 have_community_features YES have_compress YES have_crypt YES have_csv YES have_dynamic_loading YES have_geometry YES have_innodb YES have_ndbcluster NO have_openssl DISABLED have_partitioning YES have_query_cache YES have_rtree_keys YES have_ssl DISABLED have_symlink DISABLED hostname server1.site2.com identity 0 ignore_builtin_innodb OFF init_connect init_file init_slave innodb_adaptive_hash_index ON innodb_additional_mem_pool_size 1048576 innodb_autoextend_increment 8 innodb_autoinc_lock_mode 1 innodb_buffer_pool_size 8388608 innodb_checksums ON innodb_commit_concurrency 0 innodb_concurrency_tickets 500 innodb_data_file_path ibdata1:10M:autoextend innodb_data_home_dir innodb_doublewrite ON innodb_fast_shutdown 1 innodb_file_io_threads 4 innodb_file_per_table OFF innodb_flush_log_at_trx_commit 1 innodb_flush_method innodb_force_recovery 0 innodb_lock_wait_timeout 50 innodb_locks_unsafe_for_binlog OFF innodb_log_buffer_size 1048576 innodb_log_file_size 5242880 innodb_log_files_in_group 2 innodb_log_group_home_dir ./ innodb_max_dirty_pages_pct 90 innodb_max_purge_lag 0 innodb_mirrored_log_groups 1 innodb_open_files 300 innodb_rollback_on_timeout OFF innodb_stats_method nulls_equal innodb_stats_on_metadata ON innodb_support_xa ON innodb_sync_spin_loops 20 innodb_table_locks ON innodb_thread_concurrency 8 innodb_thread_sleep_delay 10000 innodb_use_legacy_cardinality_algorithm ON insert_id 0 interactive_timeout 28800 join_buffer_size 131072 keep_files_on_create OFF key_buffer_size 8384512 key_cache_age_threshold 300 key_cache_block_size 1024 key_cache_division_limit 100 language /usr/share/mysql/english/ large_files_support ON large_page_size 0 large_pages OFF last_insert_id 0 lc_time_names en_US license GPL local_infile ON locked_in_memory OFF log OFF log_bin OFF log_bin_trust_function_creators OFF log_bin_trust_routine_creators OFF log_error /var/log/mysqld.log log_output FILE log_queries_not_using_indexes OFF log_slave_updates OFF log_slow_queries OFF log_warnings 1 long_query_time 10.000000 low_priority_updates OFF lower_case_file_system OFF lower_case_table_names 0 max_allowed_packet 1048576 max_binlog_cache_size 18446744073709547520 max_binlog_size 1073741824 max_connect_errors 10 max_connections 151 max_delayed_threads 20 max_error_count 64 max_heap_table_size 16777216 max_insert_delayed_threads 20 max_join_size 18446744073709551615 max_length_for_sort_data 1024 max_long_data_size 1048576 max_prepared_stmt_count 16382 max_relay_log_size 0 max_seeks_for_key 18446744073709551615 max_sort_length 1024 max_sp_recursion_depth 0 max_tmp_tables 32 max_user_connections 0 max_write_lock_count 18446744073709551615 min_examined_row_limit 0 multi_range_count 256 myisam_data_pointer_size 6 myisam_max_sort_file_size 9223372036853727232 myisam_mmap_size 18446744073709551615 myisam_recover_options OFF myisam_repair_threads 1 myisam_sort_buffer_size 8388608 myisam_stats_method nulls_unequal myisam_use_mmap OFF net_buffer_length 16384 net_read_timeout 30 net_retry_count 10 net_write_timeout 60 new OFF old OFF old_alter_table OFF old_passwords OFF open_files_limit 1024 optimizer_prune_level 1 optimizer_search_depth 62 optimizer_switch index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=on pid_file /var/run/mysqld/mysqld.pid plugin_dir /usr/lib64/mysql/plugin port 3306 preload_buffer_size 32768 profiling OFF profiling_history_size 15 protocol_version 10 pseudo_thread_id 3 query_alloc_block_size 8192 query_cache_limit 1048576 query_cache_min_res_unit 4096 query_cache_size 0 query_cache_type ON query_cache_wlock_invalidate OFF query_prealloc_size 8192 rand_seed1 rand_seed2 range_alloc_block_size 4096 read_buffer_size 131072 read_only OFF read_rnd_buffer_size 262144 relay_log relay_log_index relay_log_info_file relay-log.info relay_log_purge ON relay_log_space_limit 0 report_host report_password report_port 3306 report_user rpl_recovery_rank 0 secure_auth OFF secure_file_priv server_id 0 skip_external_locking ON skip_name_resolve OFF skip_networking OFF skip_show_database OFF slave_compressed_protocol OFF slave_exec_mode STRICT slave_load_tmpdir /tmp slave_max_allowed_packet 1073741824 slave_net_timeout 3600 slave_skip_errors OFF slave_transaction_retries 10 slow_launch_time 2 slow_query_log OFF slow_query_log_file /var/run/mysqld/mysqld-slow.log socket /var/lib/mysql/mysql.sock sort_buffer_size 2097144 sql_auto_is_null ON sql_big_selects ON sql_big_tables OFF sql_buffer_result OFF sql_log_bin ON sql_log_off OFF sql_log_update ON sql_low_priority_updates OFF sql_max_join_size 18446744073709551615 sql_mode sql_notes ON sql_quote_show_create ON sql_safe_updates OFF sql_select_limit 18446744073709551615 sql_slave_skip_counter sql_warnings OFF ssl_ca ssl_capath ssl_cert ssl_cipher ssl_key storage_engine MyISAM sync_binlog 0 sync_frm ON system_time_zone PDT table_definition_cache 256 table_lock_wait_timeout 50 table_open_cache 64 table_type MyISAM thread_cache_size 0 thread_handling one-thread-per-connection thread_stack 262144 time_format %H:%i:%s time_zone SYSTEM timed_mutexes OFF timestamp 1372254399 tmp_table_size 16777216 tmpdir /tmp transaction_alloc_block_size 8192 transaction_prealloc_size 4096 tx_isolation REPEATABLE-READ unique_checks ON updatable_views_with_limit YES version 5.1.69 version_comment Source distribution version_compile_machine x86_64 version_compile_os redhat-linux-gnu wait_timeout 28800 warning_count 0 VPS Sysbench Info Deleted to stay under 30000 characters. Laptop Sysbench Info [root@server1 ~]# cat sysbench.txt sysbench 0.4.12: multi-threaded system evaluation benchmark Running the test with following options: Number of threads: 8 Doing OLTP test. Running mixed OLTP test Doing read-only test Using Special distribution (12 iterations, 1 pct of values are returned in 75 pct cases) Using "BEGIN" for starting transactions Using auto_inc on the id column Threads started! Time limit exceeded, exiting... (last message repeated 7 times) Done. OLTP test statistics: queries performed: read: 634718 write: 0 other: 90674 total: 725392 transactions: 45337 (755.56 per sec.) deadlocks: 0 (0.00 per sec.) read/write requests: 634718 (10577.78 per sec.) other operations: 90674 (1511.11 per sec.) Test execution summary: total time: 60.0048s total number of events: 45337 total time taken by event execution: 479.4912 per-request statistics: min: 2.04ms avg: 10.58ms max: 85.56ms approx. 95 percentile: 19.70ms Threads fairness: events (avg/stddev): 5667.1250/42.18 execution time (avg/stddev): 59.9364/0.00 [root@server1 ~]# VPS File Info [root@vps ~]# df -T Filesystem Type 1K-blocks Used Available Use% Mounted on /dev/simfs simfs 20971520 16187440 4784080 78% / none tmpfs 6224432 4 6224428 1% /dev none tmpfs 6224432 0 6224432 0% /dev/shm [root@vps ~]# Laptop File Info [root@server1 ~]# df -T Filesystem Type 1K-blocks Used Available Use% Mounted on /dev/mapper/vg_server1-lv_root ext4 72383800 4243964 64462860 7% / tmpfs tmpfs 956352 0 956352 0% /dev/shm /dev/sdb1 ext4 495844 60948 409296 13% /boot [root@server1 ~]# VPS CPU Info Removed to stay under the 30000 character limit required by ServerFault Laptop CPU Info [root@server1 ~]# cat /proc/cpuinfo processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Core(TM)2 Duo CPU T7100 @ 1.80GHz stepping : 13 cpu MHz : 800.000 cache size : 2048 KB physical id : 0 siblings : 2 core id : 0 cpu cores : 2 apicid : 0 initial apicid : 0 fpu : yes fpu_exception : yes cpuid level : 10 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx lm constant_tsc arch_perfmon pebs bts rep_good aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm lahf_lm ida dts tpr_shadow vnmi flexpriority bogomips : 3591.39 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: processor : 1 vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Core(TM)2 Duo CPU T7100 @ 1.80GHz stepping : 13 cpu MHz : 800.000 cache size : 2048 KB physical id : 0 siblings : 2 core id : 1 cpu cores : 2 apicid : 1 initial apicid : 1 fpu : yes fpu_exception : yes cpuid level : 10 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx lm constant_tsc arch_perfmon pebs bts rep_good aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm lahf_lm ida dts tpr_shadow vnmi flexpriority bogomips : 3591.39 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: [root@server1 ~]# EDIT New Info requested by shakalandy [root@localhost ~]# cat /proc/meminfo MemTotal: 2044804 kB MemFree: 761464 kB Buffers: 68868 kB Cached: 369708 kB SwapCached: 0 kB Active: 881080 kB Inactive: 246016 kB Active(anon): 688312 kB Inactive(anon): 4416 kB Active(file): 192768 kB Inactive(file): 241600 kB Unevictable: 0 kB Mlocked: 0 kB SwapTotal: 4095992 kB SwapFree: 4095992 kB Dirty: 0 kB Writeback: 0 kB AnonPages: 688428 kB Mapped: 65156 kB Shmem: 4216 kB Slab: 92428 kB SReclaimable: 31260 kB SUnreclaim: 61168 kB KernelStack: 2392 kB PageTables: 28356 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 5118392 kB Committed_AS: 1530212 kB VmallocTotal: 34359738367 kB VmallocUsed: 343604 kB VmallocChunk: 34359372920 kB HardwareCorrupted: 0 kB AnonHugePages: 520192 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB DirectMap4k: 8556 kB DirectMap2M: 2078720 kB [root@localhost ~]# ps aux | grep mysql root 2227 0.0 0.0 108332 1504 ? S 07:36 0:00 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --pid-file=/var/lib/mysql/localhost.badobe.com.pid mysql 2319 0.1 24.5 1470068 501360 ? Sl 07:36 0:57 /usr/sbin/mysqld --basedir=/usr --datadir=/var/lib/mysql --plugin-dir=/usr/lib64/mysql/plugin --user=mysql --log-error=/var/lib/mysql/localhost.badobe.com.err --pid-file=/var/lib/mysql/localhost.badobe.com.pid root 3579 0.0 0.1 201840 3028 pts/0 S+ 07:40 0:00 mysql -u root -p root 13887 0.0 0.1 201840 3036 pts/3 S+ 18:08 0:00 mysql -uroot -px xxxxxxxxxx root 14449 0.0 0.0 103248 840 pts/2 S+ 18:16 0:00 grep mysql [root@localhost ~]# ps aux | grep mysql root 2227 0.0 0.0 108332 1504 ? S 07:36 0:00 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --pid-file=/var/lib/mysql/localhost.badobe.com.pid mysql 2319 0.1 24.5 1470068 501356 ? Sl 07:36 0:57 /usr/sbin/mysqld --basedir=/usr --datadir=/var/lib/mysql --plugin-dir=/usr/lib64/mysql/plugin --user=mysql --log-error=/var/lib/mysql/localhost.badobe.com.err --pid-file=/var/lib/mysql/localhost.badobe.com.pid root 3579 0.0 0.1 201840 3028 pts/0 S+ 07:40 0:00 mysql -u root -p root 13887 0.0 0.1 201840 3048 pts/3 S+ 18:08 0:00 mysql -uroot -px xxxxxxxxxx root 14470 0.0 0.0 103248 840 pts/2 S+ 18:16 0:00 grep mysql [root@localhost ~]# vmstat 1 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 0 742172 76376 371064 0 0 6 6 78 202 2 1 97 1 0 0 0 0 742164 76380 371060 0 0 0 16 191 467 2 1 93 5 0 0 0 0 742164 76380 371064 0 0 0 0 148 388 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 159 418 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 145 380 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 166 429 2 1 97 0 0 1 0 0 742164 76380 371064 0 0 0 0 148 373 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 149 382 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 168 408 2 0 97 0 0 0 0 0 742164 76380 371064 0 0 0 0 165 394 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 159 354 2 1 98 0 0 0 0 0 742164 76388 371060 0 0 0 16 180 447 2 0 91 6 0 0 0 0 742164 76388 371064 0 0 0 0 143 344 2 1 98 0 0 0 1 0 742784 76416 370044 0 0 28 580 360 678 3 1 74 23 0 1 0 0 744768 76496 367772 0 0 40 1036 437 865 3 1 53 43 0 0 1 0 747248 76596 365412 0 0 48 1224 561 923 3 2 53 43 0 0 1 0 749232 76696 363092 0 0 32 1132 512 883 3 2 52 44 0 0 1 0 751340 76772 361020 0 0 32 1008 472 872 2 1 52 45 0 0 1 0 753448 76840 358540 0 0 36 1088 512 860 2 1 51 46 0 0 1 0 755060 76936 357636 0 0 28 1012 481 922 2 2 52 45 0 0 1 0 755060 77064 357988 0 0 12 896 444 902 2 1 53 45 0 0 1 0 754688 77148 358448 0 0 16 1096 506 1007 1 1 56 42 0 0 2 0 754192 77268 358932 0 0 12 1060 481 957 1 2 53 44 0 0 1 0 753696 77380 359392 0 0 12 1052 512 1025 2 1 55 42 0 0 1 0 751028 77480 359828 0 0 8 984 423 909 2 2 52 45 0 0 1 0 750524 77620 360200 0 0 8 788 367 869 1 2 54 44 0 0 1 0 749904 77700 360664 0 0 8 928 439 924 2 2 55 43 0 0 1 0 749408 77796 361084 0 0 12 976 468 967 1 1 56 43 0 0 1 0 748788 77896 361464 0 0 12 992 453 944 1 2 54 43 0 1 1 0 748416 77992 361996 0 0 12 784 392 868 2 1 52 46 0 0 1 0 747920 78092 362336 0 0 4 896 382 874 1 1 52 46 0 0 1 0 745252 78172 362780 0 0 12 1040 444 923 1 1 56 42 0 0 1 0 744764 78288 363220 0 0 8 1024 448 934 2 1 55 43 0 0 1 0 744144 78408 363668 0 0 8 1000 461 982 2 1 53 44 0 0 1 0 743648 78488 364148 0 0 8 872 443 888 2 1 54 43 0 0 1 0 743152 78548 364468 0 0 16 1020 511 995 2 1 55 43 0 0 1 0 742656 78632 365024 0 0 12 928 431 913 1 2 53 44 0 0 1 0 742160 78728 365468 0 0 12 996 470 955 2 2 54 44 0 1 1 0 739492 78840 365896 0 0 8 988 447 939 1 2 52 46 0 0 1 0 738872 78996 366352 0 0 12 972 442 928 1 1 55 44 0 1 1 0 738244 79148 366812 0 0 8 948 549 1126 2 2 54 43 0 0 1 0 737624 79312 367188 0 0 12 996 456 953 2 2 54 43 0 0 1 0 736880 79456 367660 0 0 12 960 444 918 1 1 53 46 0 0 1 0 736260 79584 368124 0 0 8 884 414 921 1 1 54 44 0 0 1 0 735648 79716 368488 0 0 12 976 450 955 2 1 56 41 0 0 1 0 733104 79840 368988 0 0 12 932 453 918 1 2 55 43 0 0 1 0 732608 79996 369356 0 0 16 916 444 889 1 2 54 43 0 1 1 0 731476 80128 369800 0 0 16 852 514 978 2 2 54 43 0 0 1 0 731244 80252 370200 0 0 8 904 398 870 2 1 55 43 0 1 1 0 730624 80384 370612 0 0 12 1032 447 977 1 2 57 41 0 0 1 0 730004 80524 371096 0 0 12 984 469 941 2 2 52 45 0 0 1 0 729508 80636 371544 0 0 12 928 438 922 2 1 52 46 0 0 1 0 728888 80756 371948 0 0 16 972 439 943 2 1 55 43 0 0 1 0 726468 80900 372272 0 0 8 960 545 1024 2 1 54 43 0 1 1 0 726344 81024 372272 0 0 8 464 490 1057 1 2 53 44 0 0 1 0 726096 81148 372276 0 0 4 328 441 1063 2 1 53 45 0 1 1 0 726096 81256 372292 0 0 0 296 387 975 1 1 53 45 0 0 1 0 725848 81380 372284 0 0 4 332 425 1034 2 1 54 44 0 1 1 0 725848 81496 372300 0 0 4 308 386 992 2 1 54 43 0 0 1 0 725600 81616 372296 0 0 4 328 404 1060 1 1 54 44 0 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 1 0 725600 81732 372296 0 0 4 328 439 1011 1 1 53 44 0 0 1 0 725476 81848 372308 0 0 0 316 441 1023 2 2 52 46 0 1 1 0 725352 81972 372300 0 0 4 344 451 1021 1 1 55 43 0 2 1 0 725228 82088 372320 0 0 0 328 427 1058 1 1 54 44 0 1 1 0 724980 82220 372300 0 0 4 336 419 999 2 1 54 44 0 1 1 0 724980 82328 372320 0 0 4 320 430 1019 1 1 54 44 0 1 1 0 724732 82436 372328 0 0 0 388 363 942 2 1 54 44 0 1 1 0 724608 82560 372312 0 0 4 308 419 993 1 2 54 44 0 1 0 0 724360 82684 372320 0 0 0 304 421 1028 2 1 55 42 0 1 0 0 724360 82684 372388 0 0 0 0 158 416 2 1 98 0 0 1 1 0 724236 82720 372360 0 0 0 6464 243 855 3 2 84 12 0 1 0 0 724112 82748 372360 0 0 0 5356 266 895 3 1 84 12 0 2 1 0 724112 82764 372380 0 0 0 3052 221 511 2 2 93 4 0 1 0 0 724112 82796 372372 0 0 0 4548 325 1067 2 2 81 16 0 1 0 0 724112 82816 372368 0 0 0 3240 259 829 3 1 90 6 0 1 0 0 724112 82836 372380 0 0 0 3260 309 822 3 2 88 8 0 1 1 0 724112 82876 372364 0 0 0 4680 326 978 3 1 77 19 0 1 0 0 724112 82884 372380 0 0 0 512 207 508 2 1 95 2 0 1 0 0 724112 82884 372388 0 0 0 0 138 361 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 158 397 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 146 395 2 1 98 0 0 2 0 0 724112 82884 372388 0 0 0 0 160 395 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 163 382 1 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 176 422 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 134 351 2 1 98 0 0 0 0 0 724112 82884 372388 0 0 0 0 190 429 2 1 97 0 0 0 0 0 724104 82884 372392 0 0 0 0 139 358 2 1 98 0 0 0 0 0 724848 82884 372392 0 0 0 4 211 432 2 1 97 0 0 1 0 0 724980 82884 372392 0 0 0 0 166 370 2 1 98 0 0 0 0 0 724980 82884 372392 0 0 0 0 164 397 2 1 98 0 0 ^C [root@localhost ~]# Database size mysql> SELECT table_schema "Data Base Name", sum( data_length + index_length ) / 1024 / 1024 "Data Base Size in MB", sum( data_free )/ 1024 / 1024 "Free Space in MB" FROM information_schema.TABLES GROUP BY table_schema; +--------------------+----------------------+------------------+ | Data Base Name | Data Base Size in MB | Free Space in MB | +--------------------+----------------------+------------------+ | bidjunction | 4.68750000 | 0.00000000 | | information_schema | 0.00976563 | 0.00000000 | | mysql | 0.63899899 | 0.00105286 | +--------------------+----------------------+------------------+ 3 rows in set (0.01 sec) mysql> Before Query mysql> SHOW SESSION STATUS like '%Tmp%'; +-------------------------+-------+ | Variable_name | Value | +-------------------------+-------+ | Created_tmp_disk_tables | 0 | | Created_tmp_files | 6 | | Created_tmp_tables | 0 | +-------------------------+-------+ 3 rows in set (0.00 sec) mysql> After Query mysql> SHOW SESSION STATUS like '%Tmp%'; +-------------------------+-------+ | Variable_name | Value | +-------------------------+-------+ | Created_tmp_disk_tables | 0 | | Created_tmp_files | 6 | | Created_tmp_tables | 2 | +-------------------------+-------+ 3 rows in set (0.00 sec) mysql>

    Read the article

< Previous Page | 273 274 275 276 277 278  | Next Page >