Search Results

Search found 1925 results on 77 pages for 'dense matrix'.

Page 28/77 | < Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >

  • Question about BoundingSpheres and Ray intersections

    - by NDraskovic
    I'm working on a XNA project (not really a game) and I'm having some trouble with picking algorithm. I have a few types of 3D models that I draw to the screen, and one of them is a switch. So I'm trying to make a picking algorithm that would enable the user to click on the switch and that would trigger some other function. The problem is that the BoundingSphere.Intersect() method always returns null as result. This is the code I'm using: In the declaration section: ` //Basic matrices private Matrix world = Matrix.CreateTranslation(new Vector3(0, 0, 0)); private Matrix view = Matrix.CreateLookAt(new Vector3(10, 10, 10), new Vector3(0, 0, 0), Vector3.UnitY); private Matrix projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.ToRadians(45), 800f / 600f, 0.01f, 100f); //Collision detection variables Viewport mainViewport; List<BoundingSphere> spheres = new List<BoundingSphere>(); Ray ControlRay; Vector3 nearPoint, farPoint, nearPlane, farPlane, direction; ` And then in the Update method: ` nearPlane = new Vector3((float)Mouse.GetState().X, (float)Mouse.GetState().Y, 0.0f); farPlane = new Vector3((float)Mouse.GetState().X, (float)Mouse.GetState().Y, 10.0f); nearPoint = GraphicsDevice.Viewport.Unproject(nearPlane, projection, view, world); farPoint = GraphicsDevice.Viewport.Unproject(farPlane, projection, view, world); direction = farPoint - nearPoint; direction.Normalize(); ControlRay = new Ray(nearPoint, direction); if (spheres.Count != 0) { for (int i = 0; i < spheres.Count; i++) { if (spheres[i].Intersects(ControlRay) != null) { Window.Title = spheres[i].Center.ToString(); } else { Window.Title = "Empty"; } } ` The "spheres" list gets filled when the 3D object data gets loaded (I read it from a .txt file). For every object marked as switch (I use simple numbers to determine which object is to be drawn), a BoundingSphere is created (center is on the coordinates of the 3D object, and the diameter is always the same), and added to the list. The objects are drawn normally (and spheres.Count is not 0), I can see them on the screen, but the Window title always says "Empty" (of course this is just for testing purposes, I will add the real function when I get positive results) meaning that there is no intersection between the ControlRay and any of the bounding spheres. I think that my basic matrices (world, view and projection) are making some problems, but I cant figure out what. Please help.

    Read the article

  • JavaScript 3D space ship rotation

    - by user36202
    I am working with a fairly low-level JavaScript 3D API (not Three.js) which uses euler angles for rotation. In most cases, euler angles work quite well for doing things like aligning buildings, operating a hovercraft, or looking around in the first-person. However, in space there is no up or down. I want to control the ship's roll, pitch, and yaw. To do that, some people would use a local coordinate system or a permenant matrix or quaternion or whatever to represent the ship's angle. However, since I am not most people and am using a library that deals exclusively in euler angles, I will be using relative angles to represent how to rotate the ship in space and getting the resulting non-relative euler angles. For you math nerds, that means I need to convert 3 euler angles (with Y being the vertical axis, X representing the pitch, and Z representing a roll which is unaffected by the other angles, left-handed system) into a 3x3 orientation matrix, do something fancy with the matrix, and convert it back into the 3 euler angles. Euler to matrix to euler. Somebody has posted something similar to this on SO (http://stackoverflow.com/questions/1217775/rotating-a-spaceship-model-for-a-space-simulator-game) but he ended up just working with a matrix. This will not do for me. Also, I am using JavaScript, not C++. What I want essentially are the functions do_roll, do_pitch, and do_yaw which only take in and put out euler angles. Many thanks.

    Read the article

  • 2D scene graph not transforming relative to parent

    - by Dr.Denis McCracleJizz
    I am currently in the process of coding my own 2D Scene graph, which is basically a port of flash's render engine. The problem I have right now is my rendering doesn't seem to be working properly. This code creates the localTransform property for each DisplayObject. Matrix m_transform = Matrix.CreateRotationZ(rotation) * Matrix.CreateScale(scaleX, scaleY, 1) * Matrix.CreateTranslation(new Vector3(x, y, z)); This is my render code. float dRotation; Vector2 dPosition, dScale; Matrix transform; transform = this.localTransform; if (parent != null) transform = localTransform * parent.localTransform; DecomposeMatrix(ref transform, out dPosition, out dRotation, out dScale); spriteBatch.Draw(this.texture, dPosition, null, Color.White, dRotation, new Vector2(originX, originY), dScale, SpriteEffects.None, 0.0f); Here is the result when I try to add the Stage then to the stage a First DisplayObjectContainer and then a second one. It may look fine but the problem lies in the fact that I add a first DisplayObjectContainer at (400,400) and the second one within it (that's the smallest one) at position (0,0). So he should be right over its parent but he gets render within the parent at the same position the parent has (400, 400) for some reason. It's just as if I double the parent's localMatrix and then render the second cat there. This is the code i use to loop through every childs. base.Draw(spriteBatch); foreach (DisplayObject childs in _childs) { childs.Draw(spriteBatch); }

    Read the article

  • Optimizing drawing of cubes

    - by Christian Frantz
    After googling for hours I've come to a few conclusions, I need to either rewrite my whole cube class, or figure out how to use hardware instancing. I can draw up to 2500 cubes with little lag, but after that my fps drops. Is there a way I can use my class for hardware instancing? Or would I be better off rewriting my class for optimization? public class Cube { public GraphicsDevice device; public VertexBuffer cubeVertexBuffer; public Cube(GraphicsDevice graphicsDevice) { device = graphicsDevice; var vertices = new List<VertexPositionTexture>(); BuildFace(vertices, new Vector3(0, 0, 0), new Vector3(0, 1, 1)); BuildFace(vertices, new Vector3(0, 0, 1), new Vector3(1, 1, 1)); BuildFace(vertices, new Vector3(1, 0, 1), new Vector3(1, 1, 0)); BuildFace(vertices, new Vector3(1, 0, 0), new Vector3(0, 1, 0)); BuildFaceHorizontal(vertices, new Vector3(0, 1, 0), new Vector3(1, 1, 1)); BuildFaceHorizontal(vertices, new Vector3(0, 0, 1), new Vector3(1, 0, 0)); cubeVertexBuffer = new VertexBuffer(device, VertexPositionTexture.VertexDeclaration, vertices.Count, BufferUsage.WriteOnly); cubeVertexBuffer.SetData<VertexPositionTexture>(vertices.ToArray()); } private void BuildFace(List<VertexPositionTexture> vertices, Vector3 p1, Vector3 p2) { vertices.Add(BuildVertex(p1.X, p1.Y, p1.Z, 1, 0)); vertices.Add(BuildVertex(p1.X, p2.Y, p1.Z, 1, 1)); vertices.Add(BuildVertex(p2.X, p2.Y, p2.Z, 0, 1)); vertices.Add(BuildVertex(p2.X, p2.Y, p2.Z, 0, 1)); vertices.Add(BuildVertex(p2.X, p1.Y, p2.Z, 0, 0)); vertices.Add(BuildVertex(p1.X, p1.Y, p1.Z, 1, 0)); } private void BuildFaceHorizontal(List<VertexPositionTexture> vertices, Vector3 p1, Vector3 p2) { vertices.Add(BuildVertex(p1.X, p1.Y, p1.Z, 0, 1)); vertices.Add(BuildVertex(p2.X, p1.Y, p1.Z, 1, 1)); vertices.Add(BuildVertex(p2.X, p2.Y, p2.Z, 1, 0)); vertices.Add(BuildVertex(p1.X, p1.Y, p1.Z, 0, 1)); vertices.Add(BuildVertex(p2.X, p2.Y, p2.Z, 1, 0)); vertices.Add(BuildVertex(p1.X, p1.Y, p2.Z, 0, 0)); } private VertexPositionTexture BuildVertex(float x, float y, float z, float u, float v) { return new VertexPositionTexture(new Vector3(x, y, z), new Vector2(u, v)); } public void Draw(BasicEffect effect) { foreach (EffectPass pass in effect.CurrentTechnique.Passes) { pass.Apply(); device.SetVertexBuffer(cubeVertexBuffer); device.DrawPrimitives(PrimitiveType.TriangleList, 0, cubeVertexBuffer.VertexCount / 3); } } } The following class is a list that draws the cubes. public class DrawableList<T> : DrawableGameComponent { private BasicEffect effect; private ThirdPersonCam camera; private class Entity { public Vector3 Position { get; set; } public Matrix Orientation { get; set; } public Texture2D Texture { get; set; } } private Cube cube; private List<Entity> entities = new List<Entity>(); public DrawableList(Game game, ThirdPersonCam camera, BasicEffect effect) : base(game) { this.effect = effect; cube = new Cube(game.GraphicsDevice); this.camera = camera; } public void Add(Vector3 position, Matrix orientation, Texture2D texture) { entities.Add(new Entity() { Position = position, Orientation = orientation, Texture = texture }); } public override void Draw(GameTime gameTime) { foreach (var item in entities) { effect.VertexColorEnabled = false; effect.TextureEnabled = true; effect.Texture = item.Texture; Matrix center = Matrix.CreateTranslation(new Vector3(-0.5f, -0.5f, -0.5f)); Matrix scale = Matrix.CreateScale(1f); Matrix translate = Matrix.CreateTranslation(item.Position); effect.World = center * scale * translate; effect.View = camera.view; effect.Projection = camera.proj; effect.FogEnabled = true; effect.FogColor = Color.CornflowerBlue.ToVector3(); effect.FogStart = 1.0f; effect.FogEnd = 50.0f; cube.Draw(effect); } base.Draw(gameTime); } } } There are probably many reasons that my fps is so slow, but I can't seem to figure out how to fix it. I've looked at techcraft as well, but what I have is too specific to what I want the outcome to be to just rewrite everything from scratch

    Read the article

  • How to send multiple MVP matrices to a vertex shader in OpenGL ES 2.0

    - by Carbon Crystal
    I'm working my way through optimizing the rendering of sprites in a 2D game using OpenGL ES and I've hit the limit of my knowledge when it comes to GLSL and vertex shaders. I have two large float buffers containing my vertex coordinates and texture coordinates (eventually this will be one buffer) for multiple sprites in order to perform a single glDrawArrays call. This works but I've hit a snag when it comes to passing the transformation matrix into the vertex shader. My shader code is: uniform mat4 u_MVPMatrix; attribute vec4 a_Position; attribute vec2 a_TexCoordinate; varying vec2 v_TexCoordinate; void main() { v_TexCoordinate = a_TexCoordinate; gl_Position = u_MVPMatrix * a_Position; } In Java (Android) I am using a FloatBuffer to store the vertex/texture data and this is provided to the shader like so: mGlEs20.glVertexAttribPointer(mVertexHandle, Globals.GL_POSITION_VERTEX_COUNT, GLES20.GL_FLOAT, false, 0, mVertexCoordinates); mGlEs20.glVertexAttribPointer(mTextureCoordinateHandle, Globals.GL_TEXTURE_VERTEX_COUNT, GLES20.GL_FLOAT, false, 0, mTextureCoordinates); (The Globals.GL_POSITION_VERTEX_COUNT etc are just integers with the value of 2 right now) And I'm passing the MVP (Model/View/Projection) matrix buffer like this: GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mModelCoordinates); (mModelCoordinates is a FloatBuffer containing 16-float sequences representing the MVP matrix for each sprite) This renders my scene but all the sprites share the same transformation, so it's obviously only picking the first 16 elements from the buffer which makes sense since I am passing in "1" as the second parameter. The documentation for this method says: "This should be 1 if the targeted uniform variable is not an array of matrices, and 1 or more if it is an array of matrices." So I tried modifying the shader with a fixed size array large enough to accomodate most of my scenarios: uniform mat4 u_MVPMatrix[1000]; But this lead to an error in the shader: cannot convert from 'uniform array of 4X4 matrix of float' to 'Position 4-component vector of float' This just seems wrong anyway as it's not clear to me how the shader would know when to transition to the next matrix anyway. Anyone have an idea how I can get my shader to pick up a different MVP matrix (i.e. the NEXT 16 floats) from my MVP buffer for every 4 vertices it encounters? (I am using GL_TRIANGLE_STRIP so each sprite has 4 vertices). Thanks!

    Read the article

  • Do I need the 'w' component in my Vector class?

    - by bobobobo
    Assume you're writing matrix code that handles rotation, translation etc for 3d space. Now the transformation matrices have to be 4x4 to fit the translation component in. However, you don't actually need to store a w component in the vector do you? Even in perspective division, you can simply compute and store w outside of the vector, and perspective divide before returning from the method. For example: // post multiply vec2=matrix*vector Vector operator*( const Matrix & a, const Vector& v ) { Vector r ; // do matrix mult r.x = a._11*v.x + a._12*v.y ... real w = a._41*v.x + a._42*v.y ... // perspective divide r /= w ; return r ; } Is there a point in storing w in the Vector class?

    Read the article

  • Why RenderTarget2D overwrites other objects when trying to put some text in a model?

    - by cad
    I am trying to draw an object composited by two cubes (A & B) (one on top of the other, but for now I have them a little bit more open). I am able to do it and this is the result. (Cube A is the blue and Cube B is the one with brown text that comes from a png texture) But I want to have any text as parameter in the cube B. I have tried what @alecnash suggested in his question, but for some reason when I try to draw cube B, cube A dissapears and everything turns purple. This is my draw code: public void Draw(GraphicsDevice graphicsDevice, SpriteBatch spriteBatch, Matrix viewMatrix, Matrix projectionMatrix) { graphicsDevice.BlendState = BlendState.Opaque; graphicsDevice.DepthStencilState = DepthStencilState.Default; graphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise; graphicsDevice.SamplerStates[0] = SamplerState.LinearClamp; // CUBE A basicEffect.View = viewMatrix; basicEffect.Projection = projectionMatrix; basicEffect.World = Matrix.CreateTranslation(ModelPosition); basicEffect.VertexColorEnabled = true; foreach (EffectPass pass in basicEffect.CurrentTechnique.Passes) { pass.Apply(); drawCUBE_TOP(graphicsDevice); drawCUBE_Floor(graphicsDevice); DrawFullSquareStripesFront(graphicsDevice, _numStrips, Color.Red, Color.Blue, _levelPercentage); DrawFullSquareStripesLeft(graphicsDevice, _numStrips, Color.Red, Color.Blue, _levelPercentage); DrawFullSquareStripesRight(graphicsDevice, _numStrips, Color.Red, Color.Blue, _levelPercentage); DrawFullSquareStripesBack(graphicsDevice, _numStrips, Color.Red, Color.Blue, _levelPercentage); } // CUBE B // Set the World matrix which defines the position of the cube texturedCubeEffect.World = Matrix.CreateTranslation(ModelPosition); // Set the View matrix which defines the camera and what it's looking at texturedCubeEffect.View = viewMatrix; // Set the Projection matrix which defines how we see the scene (Field of view) texturedCubeEffect.Projection = projectionMatrix; // Enable textures on the Cube Effect. this is necessary to texture the model texturedCubeEffect.TextureEnabled = true; Texture2D a = SpriteFontTextToTexture(graphicsDevice, spriteBatch, arialFont, "TEST ", Color.Black, Color.GhostWhite); texturedCubeEffect.Texture = a; //texturedCubeEffect.Texture = cubeTexture; // Enable some pretty lights texturedCubeEffect.EnableDefaultLighting(); // apply the effect and render the cube foreach (EffectPass pass in texturedCubeEffect.CurrentTechnique.Passes) { pass.Apply(); cubeToDraw.RenderToDevice(graphicsDevice); } } private Texture2D SpriteFontTextToTexture(GraphicsDevice graphicsDevice, SpriteBatch spriteBatch, SpriteFont font, string text, Color backgroundColor, Color textColor) { Vector2 Size = font.MeasureString(text); RenderTarget2D renderTarget = new RenderTarget2D(graphicsDevice, (int)Size.X, (int)Size.Y); graphicsDevice.SetRenderTarget(renderTarget); graphicsDevice.Clear(Color.Transparent); spriteBatch.Begin(); //have to redo the ColorTexture //spriteBatch.Draw(ColorTexture.Create(graphicsDevice, 1024, 1024, backgroundColor), Vector2.Zero, Color.White); spriteBatch.DrawString(font, text, Vector2.Zero, textColor); spriteBatch.End(); graphicsDevice.SetRenderTarget(null); return renderTarget; } The way I generate texture with dynamic text is: Texture2D a = SpriteFontTextToTexture(graphicsDevice, spriteBatch, arialFont, "TEST ", Color.Black, Color.GhostWhite); After commenting several parts to see what caused the problem, it seems to be located in this line graphicsDevice.SetRenderTarget(renderTarget);

    Read the article

  • World orientation in OpenGLES clarification

    - by Dev2rights
    I have a 3d tile map made up of individual billboards in OpenGLES. Each is a 2 triangles mesh and has a 3D Vector to determine its position and another defining its rotation from the origin at (0,0,0). Im trying to work out how to rotate the entire tile map around a point be that the origin or some arbitrary point in space. Im guessing i need to set up a Model Matrix instead for each tile. Then set up a world matrix for the world. Then on updating i would translate the world matrix and change the orientation and multiply it with each model matrix before rendering. Is this correct ?

    Read the article

  • Efficient Multiple Linear Regression in C# / .Net

    - by mrnye
    Does anyone know of an efficient way to do multiple linear regression in C#, where the number of simultaneous equations may be in the 1000's (with 3 or 4 different inputs). After reading this article on multiple linear regression I tried implementing it with a matrix equation: Matrix y = new Matrix( new double[,]{{745}, {895}, {442}, {440}, {1598}}); Matrix x = new Matrix( new double[,]{{1, 36, 66}, {1, 37, 68}, {1, 47, 64}, {1, 32, 53}, {1, 1, 101}}); Matrix b = (x.Transpose() * x).Inverse() * x.Transpose() * y; for (int i = 0; i < b.Rows; i++) { Trace.WriteLine("INFO: " + b[i, 0].ToDouble()); } However it does not scale well to the scale of 1000's of equations due to the matrix inversion operation. I can call the R language and use that, however I was hoping there would be a pure .Net solution which will scale to these large sets. Any suggestions? EDIT #1: I have settled using R for the time being. By using statconn (downloaded here) I have found it to be both fast & relatively easy to use this method. I.e. here is a small code snippet, it really isn't much code at all to use the R statconn library (note: this is not all the code!). _StatConn.EvaluateNoReturn(string.Format("output <- lm({0})", equation)); object intercept = _StatConn.Evaluate("coefficients(output)['(Intercept)']"); parameters[0] = (double)intercept; for (int i = 0; i < xColCount; i++) { object parameter = _StatConn.Evaluate(string.Format("coefficients(output)['x{0}']", i)); parameters[i + 1] = (double)parameter; }

    Read the article

  • how to export bind and keyframe bone poses from blender to use in OpenGL

    - by SaldaVonSchwartz
    EDIT: I decided to reformulate the question in much simpler terms to see if someone can give me a hand with this. Basically, I'm exporting meshes, skeletons and actions from blender into an engine of sorts that I'm working on. But I'm getting the animations wrong. I can tell the basic motion paths are being followed but there's always an axis of translation or rotation which is wrong. I think the problem is most likely not in my engine code (OpenGL-based) but rather in either my misunderstanding of some part of the theory behind skeletal animation / skinning or the way I am exporting the appropriate joint matrices from blender in my exporter script. I'll explain the theory, the engine animation system and my blender export script, hoping someone might catch the error in either or all of these. The theory: (I'm using column-major ordering since that's what I use in the engine cause it's OpenGL-based) Assume I have a mesh made up of a single vertex v, along with a transformation matrix M which takes the vertex v from the mesh's local space to world space. That is, if I was to render the mesh without a skeleton, the final position would be gl_Position = ProjectionMatrix * M * v. Now assume I have a skeleton with a single joint j in bind / rest pose. j is actually another matrix. A transform from j's local space to its parent space which I'll denote Bj. if j was part of a joint hierarchy in the skeleton, Bj would take from j space to j-1 space (that is to its parent space). However, in this example j is the only joint, so Bj takes from j space to world space, like M does for v. Now further assume I have a a set of frames, each with a second transform Cj, which works the same as Bj only that for a different, arbitrary spatial configuration of join j. Cj still takes vertices from j space to world space but j is rotated and/or translated and/or scaled. Given the above, in order to skin vertex v at keyframe n. I need to: take v from world space to joint j space modify j (while v stays fixed in j space and is thus taken along in the transformation) take v back from the modified j space to world space So the mathematical implementation of the above would be: v' = Cj * Bj^-1 * v. Actually, I have one doubt here.. I said the mesh to which v belongs has a transform M which takes from model space to world space. And I've also read in a couple textbooks that it needs to be transformed from model space to joint space. But I also said in 1 that v needs to be transformed from world to joint space. So basically I'm not sure if I need to do v' = Cj * Bj^-1 * v or v' = Cj * Bj^-1 * M * v. Right now my implementation multiples v' by M and not v. But I've tried changing this and it just screws things up in a different way cause there's something else wrong. Finally, If we wanted to skin a vertex to a joint j1 which in turn is a child of a joint j0, Bj1 would be Bj0 * Bj1 and Cj1 would be Cj0 * Cj1. But Since skinning is defined as v' = Cj * Bj^-1 * v , Bj1^-1 would be the reverse concatenation of the inverses making up the original product. That is, v' = Cj0 * Cj1 * Bj1^-1 * Bj0^-1 * v Now on to the implementation (Blender side): Assume the following mesh made up of 1 cube, whose vertices are bound to a single joint in a single-joint skeleton: Assume also there's a 60-frame, 3-keyframe animation at 60 fps. The animation essentially is: keyframe 0: the joint is in bind / rest pose (the way you see it in the image). keyframe 30: the joint translates up (+z in blender) some amount and at the same time rotates pi/4 rad clockwise. keyframe 59: the joint goes back to the same configuration it was in keyframe 0. My first source of confusion on the blender side is its coordinate system (as opposed to OpenGL's default) and the different matrices accessible through the python api. Right now, this is what my export script does about translating blender's coordinate system to OpenGL's standard system: # World transform: Blender -> OpenGL worldTransform = Matrix().Identity(4) worldTransform *= Matrix.Scale(-1, 4, (0,0,1)) worldTransform *= Matrix.Rotation(radians(90), 4, "X") # Mesh (local) transform matrix file.write('Mesh Transform:\n') localTransform = mesh.matrix_local.copy() localTransform = worldTransform * localTransform for col in localTransform.col: file.write('{:9f} {:9f} {:9f} {:9f}\n'.format(col[0], col[1], col[2], col[3])) file.write('\n') So if you will, my "world" matrix is basically the act of changing blenders coordinate system to the default GL one with +y up, +x right and -z into the viewing volume. Then I also premultiply (in the sense that it's done by the time we reach the engine, not in the sense of post or pre in terms of matrix multiplication order) the mesh matrix M so that I don't need to multiply it again once per draw call in the engine. About the possible matrices to extract from Blender joints (bones in Blender parlance), I'm doing the following: For joint bind poses: def DFSJointTraversal(file, skeleton, jointList): for joint in jointList: bindPoseJoint = skeleton.data.bones[joint.name] bindPoseTransform = bindPoseJoint.matrix_local.inverted() file.write('Joint ' + joint.name + ' Transform {\n') translationV = bindPoseTransform.to_translation() rotationQ = bindPoseTransform.to_3x3().to_quaternion() scaleV = bindPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) DFSJointTraversal(file, skeleton, joint.children) file.write('}\n') Note that I'm actually grabbing the inverse of what I think is the bind pose transform Bj. This is so I don't need to invert it in the engine. Also note I went for matrix_local, assuming this is Bj. The other option is plain "matrix", which as far as I can tell is the same only that not homogeneous. For joint current / keyframe poses: for kfIndex in keyframes: bpy.context.scene.frame_set(kfIndex) file.write('keyframe: {:d}\n'.format(int(kfIndex))) for i in range(0, len(skeleton.data.bones)): file.write('joint: {:d}\n'.format(i)) currentPoseJoint = skeleton.pose.bones[i] currentPoseTransform = currentPoseJoint.matrix translationV = currentPoseTransform.to_translation() rotationQ = currentPoseTransform.to_3x3().to_quaternion() scaleV = currentPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) file.write('\n') Note that here I go for skeleton.pose.bones instead of data.bones and that I have a choice of 3 matrices: matrix, matrix_basis and matrix_channel. From the descriptions in the python API docs I'm not super clear which one I should choose, though I think it's the plain matrix. Also note I do not invert the matrix in this case. The implementation (Engine / OpenGL side): My animation subsystem does the following on each update (I'm omitting parts of the update loop where it's figured out which objects need update and time is hardcoded here for simplicity): static double time = 0; time = fmod((time + elapsedTime),1.); uint16_t LERPKeyframeNumber = 60 * time; uint16_t lkeyframeNumber = 0; uint16_t lkeyframeIndex = 0; uint16_t rkeyframeNumber = 0; uint16_t rkeyframeIndex = 0; for (int i = 0; i < aClip.keyframesCount; i++) { uint16_t keyframeNumber = aClip.keyframes[i].number; if (keyframeNumber <= LERPKeyframeNumber) { lkeyframeIndex = i; lkeyframeNumber = keyframeNumber; } else { rkeyframeIndex = i; rkeyframeNumber = keyframeNumber; break; } } double lTime = lkeyframeNumber / 60.; double rTime = rkeyframeNumber / 60.; double blendFactor = (time - lTime) / (rTime - lTime); GLKMatrix4 bindPosePalette[aSkeleton.jointsCount]; GLKMatrix4 currentPosePalette[aSkeleton.jointsCount]; for (int i = 0; i < aSkeleton.jointsCount; i++) { F3DETQSType& lPose = aClip.keyframes[lkeyframeIndex].skeletonPose.joints[i]; F3DETQSType& rPose = aClip.keyframes[rkeyframeIndex].skeletonPose.joints[i]; GLKVector3 LERPTranslation = GLKVector3Lerp(lPose.t, rPose.t, blendFactor); GLKQuaternion SLERPRotation = GLKQuaternionSlerp(lPose.q, rPose.q, blendFactor); GLKVector3 LERPScaling = GLKVector3Lerp(lPose.s, rPose.s, blendFactor); GLKMatrix4 currentTransform = GLKMatrix4MakeWithQuaternion(SLERPRotation); currentTransform = GLKMatrix4TranslateWithVector3(currentTransform, LERPTranslation); currentTransform = GLKMatrix4ScaleWithVector3(currentTransform, LERPScaling); GLKMatrix4 inverseBindTransform = GLKMatrix4MakeWithQuaternion(aSkeleton.joints[i].inverseBindTransform.q); inverseBindTransform = GLKMatrix4TranslateWithVector3(inverseBindTransform, aSkeleton.joints[i].inverseBindTransform.t); inverseBindTransform = GLKMatrix4ScaleWithVector3(inverseBindTransform, aSkeleton.joints[i].inverseBindTransform.s); if (aSkeleton.joints[i].parentIndex == -1) { bindPosePalette[i] = inverseBindTransform; currentPosePalette[i] = currentTransform; } else { bindPosePalette[i] = GLKMatrix4Multiply(inverseBindTransform, bindPosePalette[aSkeleton.joints[i].parentIndex]); currentPosePalette[i] = GLKMatrix4Multiply(currentPosePalette[aSkeleton.joints[i].parentIndex], currentTransform); } aSkeleton.skinningPalette[i] = GLKMatrix4Multiply(currentPosePalette[i], bindPosePalette[i]); } Finally, this is my vertex shader: #version 100 uniform mat4 modelMatrix; uniform mat3 normalMatrix; uniform mat4 projectionMatrix; uniform mat4 skinningPalette[6]; uniform lowp float skinningEnabled; attribute vec4 position; attribute vec3 normal; attribute vec2 tCoordinates; attribute vec4 jointsWeights; attribute vec4 jointsIndices; varying highp vec2 tCoordinatesVarying; varying highp float lIntensity; void main() { tCoordinatesVarying = tCoordinates; vec4 skinnedVertexPosition = vec4(0.); for (int i = 0; i < 4; i++) { skinnedVertexPosition += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * position; } vec4 skinnedNormal = vec4(0.); for (int i = 0; i < 4; i++) { skinnedNormal += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * vec4(normal, 0.); } vec4 finalPosition = mix(position, skinnedVertexPosition, skinningEnabled); vec4 finalNormal = mix(vec4(normal, 0.), skinnedNormal, skinningEnabled); vec3 eyeNormal = normalize(normalMatrix * finalNormal.xyz); vec3 lightPosition = vec3(0., 0., 2.); lIntensity = max(0.0, dot(eyeNormal, normalize(lightPosition))); gl_Position = projectionMatrix * modelMatrix * finalPosition; } The result is that the animation displays wrong in terms of orientation. That is, instead of bobbing up and down it bobs in and out (along what I think is the Z axis according to my transform in the export clip). And the rotation angle is counterclockwise instead of clockwise. If I try with a more than one joint, then it's almost as if the second joint rotates in it's own different coordinate space and does not follow 100% its parent's transform. Which I assume it should from my animation subsystem which I assume in turn follows the theory I explained for the case of more than one joint. Any thoughts?

    Read the article

  • How do I get confidence intervals without inverting a singular Hessian matrix?

    - by AmalieNot
    Hello. I recently posted this to reddit and it was suggested I come here, so here I am. I'm a student working on an epidemiology model in R, using maximum likelihood methods. I created my negative log likelihood function. It's sort of gross looking, but here it is: NLLdiff = function(v1, CV1, v2, CV2, st1 = (czI01 - czV01), st2 = (czI02 - czV02), st01 = czI01, st02 = czI02, tt1 = czT01, tt2 = czT02) { prob1 = (1 + v1 * CV1 * tt1)^(-1/CV1) prob2 = ( 1 + v2 * CV2 * tt2)^(-1/CV2) -(sum(dbinom(st1, st01, prob1, log = T)) + sum(dbinom(st2, st02, prob2, log = T))) } The reason the first line looks so awful is because most of the data it takes is inputted there. czI01, for example, is already declared. I did this simply so that my later calls to the function don't all have to have awful vectors in them. I then optimized for CV1, CV2, v1 and v2 using mle2 (library bbmle). That's also a bit gross looking, and looks like: ml.cz.diff = mle2 (NLLdiff, start=list(v1 = vguess, CV1 = cguess, v2 = vguess, CV2 = cguess), method="L-BFGS-B", lower = 0.0001) Now, everything works fine up until here. ml.cz.diff gives me values that I can turn into a plot that reasonably fits my data. I also have several different models, and can get AICc values to compare them. However, when I try to get confidence intervals around v1, CV1, v2 and CV2 I have problems. Basically, I get a negative bound on CV1, which is impossible as it actually represents a square number in the biological model as well as some warnings. The warnings are this: http://i.imgur.com/B3H2l.png . Is there a better way to get confidence intervals? Or, really, a way to get confidence intervals that make sense here? What I see happening is that, by coincidence, my hessian matrix is singular for some values in the optimization space. But, since I'm optimizing over 4 variables and don't have overly extensive programming knowledge, I can't come up with a good method of optimization that doesn't rely on the hessian. I have googled the problem - it suggested that my model's bad, but I'm reconstructing some work done before which suggests that my model's really not awful (the plots I make using the ml.cz.diff look like the plots of the original work). I have also read the relevant parts of the manual as well as Bolker's book Ecological Models in R. I have also tried different optimization methods, which resulted in a longer run time but the same errors. The "SANN" method didn't finish running within an hour, so I didn't wait around to see the result. tl;dr : my confidence intervals are bad, is there a relatively straightforward way to fix them in R. My vectors are: czT01 = c(5, 5, 5, 5, 5, 5, 5, 25, 25, 25, 25, 25, 25, 25, 50, 50, 50, 50, 50, 50, 50) czT02 = c(5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 25, 25, 25, 25, 25, 50, 50, 50, 50, 50, 75, 75, 75, 75, 75) czI01 = c(25, 24, 22, 22, 26, 23, 25, 25, 25, 23, 25, 18, 21, 24, 22, 23, 25, 23, 25, 25, 25) czI02 = c(13, 16, 5, 18, 16, 13, 17, 22, 13, 15, 15, 22, 12, 12, 13, 13, 11, 19, 21, 13, 21, 18, 16, 15, 11) czV01 = c(1, 4, 5, 5, 2, 3, 4, 11, 8, 1, 11, 12, 10, 16, 5, 15, 18, 12, 23, 13, 22) czV02 = c(0, 3, 1, 5, 1, 6, 3, 4, 7, 12, 2, 8, 8, 5, 3, 6, 4, 6, 11, 5, 11, 1, 13, 9, 7) and I get my guesses by: v = -log((c(czI01, czI02) - c(czV01, czV02))/c(czI01, czI02))/c(czT01, czT02) vguess = mean(v) cguess = var(v)/vguess^2 It's also possible that I'm doing something else completely wrong, but my results seem reasonable so I haven't caught it.

    Read the article

  • QR Code encoding and decoding using zxing

    - by helixed
    Okay, so I'm going to take the off chance that someone here has used zxing before. I'm developing a Java application, and one of the things it needs to do is encode a byte array of data into a QR Code and then decode it at a later time. Here's an example of what my encoder looks like: byte[] b = {0x48, 0x45, 0x4C, 0x4C, 0x4F}; //convert the byte array into a UTF-8 string String data; try { data = new String(b, "UTF8"); } catch (UnsupportedEncodingException e) { //the program shouldn't be able to get here return; } //get a byte matrix for the data ByteMatrix matrix; com.google.zxing.Writer writer = new QRCodeWriter(); try { matrix = writer.encode(data, com.google.zxing.BarcodeFormat.QR_CODE, width, height); } catch (com.google.zxing.WriterException e) { //exit the method return; } //generate an image from the byte matrix int width = matrix.getWidth(); int height = matrix.getHeight(); byte[][] array = matrix.getArray(); //create buffered image to draw to BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB); //iterate through the matrix and draw the pixels to the image for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { int grayValue = array[y][x] & 0xff; image.setRGB(x, y, (grayValue == 0 ? 0 : 0xFFFFFF)); } } //write the image to the output stream ImageIO.write(image, "png", outputStream); The beginning byte array in this code is just used to test it. The actual byte data will be varied. Here's what my decoder looks like: //get the data from the input stream BufferedImage image = ImageIO.read(inputStream); //convert the image to a binary bitmap source LuminanceSource source = new BufferedImageLuminanceSource(image); BinaryBitmap bitmap = new BinaryBitmap(new HybridBinarizer(source)); //decode the barcode QRCodeReader reader = new QRCodeReader(); Result result; try { result = reader.decode(bitmap, hints); } catch (ReaderException e) { //the data is improperly formatted throw new MCCDatabaseMismatchException(); } byte[] b = result.getRawBytes(); System.out.println(ByteHelper.convertUnsignedBytesToHexString(result.getText().getBytes("UTF8"))); System.out.println(ByteHelper.convertUnsignedBytesToHexString(b)); convertUnsignedBytesToHexString(byte) is a method which converts an array of bytes in a string of hexadecimal characters. When I try to run these two blocks of code together, this is the output: 48454c4c4f 202b0b78cc00ec11ec11ec11ec11ec11ec11ec Clearly the text is being encoded, but the actual bytes of data are completely off. Any help would be appreciated here. Thanks, helixed

    Read the article

  • Problem installing packages

    - by gappy
    I am installing Matrix on a Linux x86_64 multicore system. I receive a message: Warning message: In install.packages("Matrix", dependencies = TRUE) : package 'Matrix' is not available Sure enough, there are not many details on package troubleshooting. It appears that Matrix is available for x86_64, but it's not available in any repository. How come?

    Read the article

  • How to store generated eigen faces for future face recognition?

    - by user3237134
    My code works in the following manner: 1.First, it obtains several images from the training set 2.After loading these images, we find the normalized faces,mean face and perform several calculation. 3.Next, we ask for the name of an image we want to recognize 4.We then project the input image into the eigenspace, and based on the difference from the eigenfaces we make a decision. 5.Depending on eigen weight vector for each input image we make clusters using kmeans command. Source code i tried: clear all close all clc % number of images on your training set. M=1200; %Chosen std and mean. %It can be any number that it is close to the std and mean of most of the images. um=60; ustd=32; %read and show images(bmp); S=[]; %img matrix for i=1:M str=strcat(int2str(i),'.jpg'); %concatenates two strings that form the name of the image eval('img=imread(str);'); [irow icol d]=size(img); % get the number of rows (N1) and columns (N2) temp=reshape(permute(img,[2,1,3]),[irow*icol,d]); %creates a (N1*N2)x1 matrix S=[S temp]; %X is a N1*N2xM matrix after finishing the sequence %this is our S end %Here we change the mean and std of all images. We normalize all images. %This is done to reduce the error due to lighting conditions. for i=1:size(S,2) temp=double(S(:,i)); m=mean(temp); st=std(temp); S(:,i)=(temp-m)*ustd/st+um; end %show normalized images for i=1:M str=strcat(int2str(i),'.jpg'); img=reshape(S(:,i),icol,irow); img=img'; end %mean image; m=mean(S,2); %obtains the mean of each row instead of each column tmimg=uint8(m); %converts to unsigned 8-bit integer. Values range from 0 to 255 img=reshape(tmimg,icol,irow); %takes the N1*N2x1 vector and creates a N2xN1 matrix img=img'; %creates a N1xN2 matrix by transposing the image. % Change image for manipulation dbx=[]; % A matrix for i=1:M temp=double(S(:,i)); dbx=[dbx temp]; end %Covariance matrix C=A'A, L=AA' A=dbx'; L=A*A'; % vv are the eigenvector for L % dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx'; [vv dd]=eig(L); % Sort and eliminate those whose eigenvalue is zero v=[]; d=[]; for i=1:size(vv,2) if(dd(i,i)>1e-4) v=[v vv(:,i)]; d=[d dd(i,i)]; end end %sort, will return an ascending sequence [B index]=sort(d); ind=zeros(size(index)); dtemp=zeros(size(index)); vtemp=zeros(size(v)); len=length(index); for i=1:len dtemp(i)=B(len+1-i); ind(i)=len+1-index(i); vtemp(:,ind(i))=v(:,i); end d=dtemp; v=vtemp; %Normalization of eigenvectors for i=1:size(v,2) %access each column kk=v(:,i); temp=sqrt(sum(kk.^2)); v(:,i)=v(:,i)./temp; end %Eigenvectors of C matrix u=[]; for i=1:size(v,2) temp=sqrt(d(i)); u=[u (dbx*v(:,i))./temp]; end %Normalization of eigenvectors for i=1:size(u,2) kk=u(:,i); temp=sqrt(sum(kk.^2)); u(:,i)=u(:,i)./temp; end % show eigenfaces; for i=1:size(u,2) img=reshape(u(:,i),icol,irow); img=img'; img=histeq(img,255); end % Find the weight of each face in the training set. omega = []; for h=1:size(dbx,2) WW=[]; for i=1:size(u,2) t = u(:,i)'; WeightOfImage = dot(t,dbx(:,h)'); WW = [WW; WeightOfImage]; end omega = [omega WW]; end % Acquire new image % Note: the input image must have a bmp or jpg extension. % It should have the same size as the ones in your training set. % It should be placed on your desktop ed_min=[]; srcFiles = dir('G:\newdatabase\*.jpg'); % the folder in which ur images exists for b = 1 : length(srcFiles) filename = strcat('G:\newdatabase\',srcFiles(b).name); Imgdata = imread(filename); InputImage=Imgdata; InImage=reshape(permute((double(InputImage)),[2,1,3]),[irow*icol,1]); temp=InImage; me=mean(temp); st=std(temp); temp=(temp-me)*ustd/st+um; NormImage = temp; Difference = temp-m; p = []; aa=size(u,2); for i = 1:aa pare = dot(NormImage,u(:,i)); p = [p; pare]; end InImWeight = []; for i=1:size(u,2) t = u(:,i)'; WeightOfInputImage = dot(t,Difference'); InImWeight = [InImWeight; WeightOfInputImage]; end noe=numel(InImWeight); % Find Euclidean distance e=[]; for i=1:size(omega,2) q = omega(:,i); DiffWeight = InImWeight-q; mag = norm(DiffWeight); e = [e mag]; end ed_min=[ed_min MinimumValue]; theta=6.0e+03; %disp(e) z(b,:)=InImWeight; end IDX = kmeans(z,5); clustercount=accumarray(IDX, ones(size(IDX))); disp(clustercount); QUESTIONS: 1.It is working fine for M=50(i.e Training set contains 50 images) but not for M=1200(i.e Training set contains 1200 images).It is not showing any error.There is no output.I waited for 10 min still there is no output. I think it is going infinite loop.What is the problem?Where i was wrong? 2.Instead of running the training set everytime how eigen faces generated are stored so that stored eigen faces are used for future face recoginition for a new input image.So it reduces wastage of time.

    Read the article

  • Vectorization of matlab code for faster execution

    - by user3237134
    My code works in the following manner: 1.First, it obtains several images from the training set 2.After loading these images, we find the normalized faces,mean face and perform several calculation. 3.Next, we ask for the name of an image we want to recognize 4.We then project the input image into the eigenspace, and based on the difference from the eigenfaces we make a decision. 5.Depending on eigen weight vector for each input image we make clusters using kmeans command. Source code i tried: clear all close all clc % number of images on your training set. M=1200; %Chosen std and mean. %It can be any number that it is close to the std and mean of most of the images. um=60; ustd=32; %read and show images(bmp); S=[]; %img matrix for i=1:M str=strcat(int2str(i),'.jpg'); %concatenates two strings that form the name of the image eval('img=imread(str);'); [irow icol d]=size(img); % get the number of rows (N1) and columns (N2) temp=reshape(permute(img,[2,1,3]),[irow*icol,d]); %creates a (N1*N2)x1 matrix S=[S temp]; %X is a N1*N2xM matrix after finishing the sequence %this is our S end %Here we change the mean and std of all images. We normalize all images. %This is done to reduce the error due to lighting conditions. for i=1:size(S,2) temp=double(S(:,i)); m=mean(temp); st=std(temp); S(:,i)=(temp-m)*ustd/st+um; end %show normalized images for i=1:M str=strcat(int2str(i),'.jpg'); img=reshape(S(:,i),icol,irow); img=img'; end %mean image; m=mean(S,2); %obtains the mean of each row instead of each column tmimg=uint8(m); %converts to unsigned 8-bit integer. Values range from 0 to 255 img=reshape(tmimg,icol,irow); %takes the N1*N2x1 vector and creates a N2xN1 matrix img=img'; %creates a N1xN2 matrix by transposing the image. % Change image for manipulation dbx=[]; % A matrix for i=1:M temp=double(S(:,i)); dbx=[dbx temp]; end %Covariance matrix C=A'A, L=AA' A=dbx'; L=A*A'; % vv are the eigenvector for L % dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx'; [vv dd]=eig(L); % Sort and eliminate those whose eigenvalue is zero v=[]; d=[]; for i=1:size(vv,2) if(dd(i,i)>1e-4) v=[v vv(:,i)]; d=[d dd(i,i)]; end end %sort, will return an ascending sequence [B index]=sort(d); ind=zeros(size(index)); dtemp=zeros(size(index)); vtemp=zeros(size(v)); len=length(index); for i=1:len dtemp(i)=B(len+1-i); ind(i)=len+1-index(i); vtemp(:,ind(i))=v(:,i); end d=dtemp; v=vtemp; %Normalization of eigenvectors for i=1:size(v,2) %access each column kk=v(:,i); temp=sqrt(sum(kk.^2)); v(:,i)=v(:,i)./temp; end %Eigenvectors of C matrix u=[]; for i=1:size(v,2) temp=sqrt(d(i)); u=[u (dbx*v(:,i))./temp]; end %Normalization of eigenvectors for i=1:size(u,2) kk=u(:,i); temp=sqrt(sum(kk.^2)); u(:,i)=u(:,i)./temp; end % show eigenfaces; for i=1:size(u,2) img=reshape(u(:,i),icol,irow); img=img'; img=histeq(img,255); end % Find the weight of each face in the training set. omega = []; for h=1:size(dbx,2) WW=[]; for i=1:size(u,2) t = u(:,i)'; WeightOfImage = dot(t,dbx(:,h)'); WW = [WW; WeightOfImage]; end omega = [omega WW]; end % Acquire new image % Note: the input image must have a bmp or jpg extension. % It should have the same size as the ones in your training set. % It should be placed on your desktop ed_min=[]; srcFiles = dir('G:\newdatabase\*.jpg'); % the folder in which ur images exists for b = 1 : length(srcFiles) filename = strcat('G:\newdatabase\',srcFiles(b).name); Imgdata = imread(filename); InputImage=Imgdata; InImage=reshape(permute((double(InputImage)),[2,1,3]),[irow*icol,1]); temp=InImage; me=mean(temp); st=std(temp); temp=(temp-me)*ustd/st+um; NormImage = temp; Difference = temp-m; p = []; aa=size(u,2); for i = 1:aa pare = dot(NormImage,u(:,i)); p = [p; pare]; end InImWeight = []; for i=1:size(u,2) t = u(:,i)'; WeightOfInputImage = dot(t,Difference'); InImWeight = [InImWeight; WeightOfInputImage]; end noe=numel(InImWeight); % Find Euclidean distance e=[]; for i=1:size(omega,2) q = omega(:,i); DiffWeight = InImWeight-q; mag = norm(DiffWeight); e = [e mag]; end ed_min=[ed_min MinimumValue]; theta=6.0e+03; %disp(e) z(b,:)=InImWeight; end IDX = kmeans(z,5); clustercount=accumarray(IDX, ones(size(IDX))); disp(clustercount); Running time for 50 images:Elapsed time is 103.947573 seconds. QUESTIONS: 1.It is working fine for M=50(i.e Training set contains 50 images) but not for M=1200(i.e Training set contains 1200 images).It is not showing any error.There is no output.I waited for 10 min still there is no output. I think it is going infinite loop.What is the problem?Where i was wrong?

    Read the article

  • My vertex shader doesn't affect texture coords or diffuse info but works for position

    - by tina nyaa
    I am new to 3D and DirectX - in the past I have only used abstractions for 2D drawing. Over the past month I've been studying really hard and I'm trying to modify and adapt some of the shaders as part of my personal 'study project'. Below I have a shader, modified from one of the Microsoft samples. I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? // // Skinned Mesh Effect file // Copyright (c) 2000-2002 Microsoft Corporation. All rights reserved. // float4 lhtDir = {0.0f, 0.0f, -1.0f, 1.0f}; //light Direction float4 lightDiffuse = {0.6f, 0.6f, 0.6f, 1.0f}; // Light Diffuse float4 MaterialAmbient : MATERIALAMBIENT = {0.1f, 0.1f, 0.1f, 1.0f}; float4 MaterialDiffuse : MATERIALDIFFUSE = {0.8f, 0.8f, 0.8f, 1.0f}; // Matrix Pallette static const int MAX_MATRICES = 100; float4x3 mWorldMatrixArray[MAX_MATRICES] : WORLDMATRIXARRAY; float4x4 mViewProj : VIEWPROJECTION; /////////////////////////////////////////////////////// struct VS_INPUT { float4 Pos : POSITION; float4 BlendWeights : BLENDWEIGHT; float4 BlendIndices : BLENDINDICES; float3 Normal : NORMAL; float3 Tex0 : TEXCOORD0; }; struct VS_OUTPUT { float4 Pos : POSITION; float4 Diffuse : COLOR; float2 Tex0 : TEXCOORD0; }; float3 Diffuse(float3 Normal) { float CosTheta; // N.L Clamped CosTheta = max(0.0f, dot(Normal, lhtDir.xyz)); // propogate scalar result to vector return (CosTheta); } VS_OUTPUT VShade(VS_INPUT i, uniform int NumBones) { VS_OUTPUT o; float3 Pos = 0.0f; float3 Normal = 0.0f; float LastWeight = 0.0f; // Compensate for lack of UBYTE4 on Geforce3 int4 IndexVector = D3DCOLORtoUBYTE4(i.BlendIndices); // cast the vectors to arrays for use in the for loop below float BlendWeightsArray[4] = (float[4])i.BlendWeights; int IndexArray[4] = (int[4])IndexVector; // calculate the pos/normal using the "normal" weights // and accumulate the weights to calculate the last weight for (int iBone = 0; iBone < NumBones-1; iBone++) { LastWeight = LastWeight + BlendWeightsArray[iBone]; Pos += mul(i.Pos, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; Normal += mul(i.Normal, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; } LastWeight = 1.0f - LastWeight; // Now that we have the calculated weight, add in the final influence Pos += (mul(i.Pos, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); Normal += (mul(i.Normal, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); // transform position from world space into view and then projection space //o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Diffuse.x = 0.0f; o.Diffuse.y = 0.0f; o.Diffuse.z = 0.0f; o.Diffuse.w = 0.0f; o.Tex0 = float2(0,0); return o; } technique t0 { pass p0 { VertexShader = compile vs_3_0 VShade(4); } } I am currently using the SlimDX .NET wrapper around DirectX, but the API is extremely similar: public void Draw() { var device = vertexBuffer.Device; device.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.White, 1.0f, 0); device.SetRenderState(RenderState.Lighting, true); device.SetRenderState(RenderState.DitherEnable, true); device.SetRenderState(RenderState.ZEnable, true); device.SetRenderState(RenderState.CullMode, Cull.Counterclockwise); device.SetRenderState(RenderState.NormalizeNormals, true); device.SetSamplerState(0, SamplerState.MagFilter, TextureFilter.Anisotropic); device.SetSamplerState(0, SamplerState.MinFilter, TextureFilter.Anisotropic); device.SetTransform(TransformState.World, Matrix.Identity * Matrix.Translation(0, -50, 0)); device.SetTransform(TransformState.View, Matrix.LookAtLH(new Vector3(-200, 0, 0), Vector3.Zero, Vector3.UnitY)); device.SetTransform(TransformState.Projection, Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); var material = new Material(); material.Ambient = material.Diffuse = material.Emissive = material.Specular = new Color4(Color.White); material.Power = 1f; device.SetStreamSource(0, vertexBuffer, 0, vertexSize); device.VertexDeclaration = vertexDeclaration; device.Indices = indexBuffer; device.Material = material; device.SetTexture(0, texture); var param = effect.GetParameter(null, "mWorldMatrixArray"); var boneWorldTransforms = bones.OrderedBones.OrderBy(x => x.Id).Select(x => x.CombinedTransformation).ToArray(); effect.SetValue(param, boneWorldTransforms); effect.SetValue(effect.GetParameter(null, "mViewProj"), Matrix.Identity);// Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); effect.SetValue(effect.GetParameter(null, "MaterialDiffuse"), material.Diffuse); effect.SetValue(effect.GetParameter(null, "MaterialAmbient"), material.Ambient); effect.Technique = effect.GetTechnique(0); var passes = effect.Begin(FX.DoNotSaveState); for (var i = 0; i < passes; i++) { effect.BeginPass(i); device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, skin.Vertices.Length, 0, skin.Indicies.Length / 3); effect.EndPass(); } effect.End(); } Again, I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? Also, whatever I set in the bone transformation matrices doesn't seem to have an effect on my model. If I set every bone transformation to a zero matrix, the model still shows up as if nothing had happened, but changing the Pos field in shader output makes the model disappear. I don't understand why I'm getting this kind of behaviour. Thank you!

    Read the article

  • How to reshape matrices in Mathematica

    - by speciousfool
    When manipulating matrices it is often convenient to change their shape. For instance, to turn an N x M sized matrix into a vector of length N X M. In MATLAB a reshape function exists: RESHAPE(X,M,N) returns the M-by-N matrix whose elements are taken columnwise from X. An error results if X does not have M*N elements. In the case of converting between a matrix and vector I can use the Mathematica function Flatten which takes advantage of Mathematica's nested list representation for matrices. As a quick example, suppose I have a matrix X: With Flatten[X] I can get the vector {1,2,3,...,16}. But what would be far more useful is something akin to applying Matlab's reshape(X,2,8) which would result in the following Matrix: This would allow creation of arbitrary matrices as long as the dimensions equal N*M. As far as I can tell, there isn't anything built in which makes me wonder if someone hasn't coded up a Reshape function of their own.

    Read the article

  • What sort of loop structure to compare checkbox matrix with Google Maps markers?

    - by Kirkman14
    I'm trying to build a map of trails around my town. I'm using an XML file to hold all the trail data. For each marker, I have categories like "surface," "difficulty," "uses," etc. I have seen many examples of Google Maps that use checkboxes to show markers by category. However these examples are usually very simple: maybe three different checkboxes. What's different on my end is that I have multiple categories, and within each category there are several possible values. So, a particular trail might have "use" values of "hiking," "biking," "jogging," and "equestrian" because all are allowed. I put together one version, which you can see here: http://www.joshrenaud.com/pd/trails_withcheckboxes3.html In this version, any trail that has any value checked by the user will be displayed on the map. This version works. (although I should point out there is a bug where despite only one category being checked on load, all markers display anyway. After your first click on any checkbox, the map will work properly) However I now realize it's not quite what I want. I want to change it so that it will display only markers that match ALL the values that are checked (rather than ANY, which is what the example above does). I took a hack at this. You can see the result online, but I can't type a link to it because I am new user. Change the "3" in the URL above to a "4" to see it. My questions are about this SECOND url. (trails_withcheckboxes4.html) It doesn't work. I am pretty new to Javascript, so I am sure I have done something totally wrong, but I can't figure out what. My specific questions: Does anyone see anything glaringly obvious that is keeping my second example from working? If not, could someone just suggest what sort of loop structure I would need to build to compare the several arrays of checkboxes with the several arrays of values on any given marker? Here is some of the relevant code, although you can just view source on the examples above to see the whole thing: function createMarker(point,surface,difficulty,use,html) { var marker = new GMarker(point,GIcon); marker.mysurface = surface; marker.mydifficulty = difficulty; marker.myuse = use; GEvent.addListener(marker, "click", function() { marker.openInfoWindowHtml(html); }); gmarkers.push(marker); return marker; } function show() { hide(); var surfaceChecked = []; var difficultyChecked = []; var useChecked = []; var j=0; // okay, let's run through the checkbox elements and make arrays to serve as holders of any values the user has checked. for (i=0; i<surfaceArray.length; i++) { if (document.getElementById('surface'+surfaceArray[i]).checked == true) { surfaceChecked[j] = surfaceArray[i]; j++; } } j=0; for (i=0; i<difficultyArray.length; i++) { if (document.getElementById('difficulty'+difficultyArray[i]).checked == true) { difficultyChecked[j] = difficultyArray[i]; j++; } } j=0; for (i=0; i<useArray.length; i++) { if (document.getElementById('use'+useArray[i]).checked == true) { useChecked[j] = useArray[i]; j++; } } //now that we have our 'xxxChecked' holders, it's time to go through all the markers and see which to show. for (var k=0; k<gmarkers.length; k++) { // this loop runs thru all markers var surfaceMatches = []; var difficultyMatches = []; var useMatches = []; var surfaceOK = false; var difficultyOK = false; var useOK = false; for (var l=0; l<surfaceChecked.length; l++) { // this loops runs through all checked Surface categories for (var m=0; m<gmarkers[k].mysurface.length; m++) { // this loops through all surfaces on the marker if (gmarkers[k].mysurface[m].childNodes[0].nodeValue == surfaceChecked[l]) { surfaceMatches[l] = true; } } } for (l=0; l<difficultyChecked.length; l++) { // this loops runs through all checked Difficulty categories for (m=0; m<gmarkers[k].mydifficulty.length; m++) { // this loops through all difficulties on the marker if (gmarkers[k].mydifficulty[m].childNodes[0].nodeValue == difficultyChecked[l]) { difficultyMatches[l] = true; } } } for (l=0; l<useChecked.length; l++) { // this loops runs through all checked Use categories for (m=0; m<gmarkers[k].myuse.length; m++) { // this loops through all uses on the marker if (gmarkers[k].myuse[m].childNodes[0].nodeValue == useChecked[l]) { useMatches[l] = true; } } } // now it's time to loop thru the Match arrays and make sure they are all completely true. for (m=0; m<surfaceMatches.length; m++) { if (surfaceMatches[m] == true) { surfaceOK = true; } else if (surfaceMatches[m] == false) {surfaceOK = false; break; } } for (m=0; m<difficultyMatches.length; m++) { if (difficultyMatches[m] == true) { difficultyOK = true; } else if (difficultyMatches[m] == false) {difficultyOK = false; break; } } for (m=0; m<useMatches.length; m++) { if (useMatches[m] == true) { useOK = true; } else if (useMatches[m] == false) {useOK = false; break; } } // And finally, if each of the three OK's is true, then let's show the marker. if ((surfaceOK == true) && (difficultyOK == true) && (useOK == true)) { gmarkers[i].show(); } } }

    Read the article

  • rdlc - phantom page break, what to check?

    - by Antonio Nakic Alfirevic
    I have a RDLC report which has some controls on the first page, which are inside a rectangle and which display ok. Beneath the rectangle, i have a matrix, which spans more than one page both in width and in height. I want the matrix to start rendering on the second page. If I enable "insert break before" on the matrix, there is an extra blank page before the matrix(in print layout), which is my problem. If I reduce the amount of data, so the matrix does not span more than one page in width, there is no blank page, and all is well. I checked the Page and Body sizes, they are ok. Any tips? This has been driving me crazy all day, what can I check? Thx

    Read the article

  • FileReference and HttpService Browse Image Modify it then Upload it

    - by user177787
    Hello, I am trying to do an image uploader, user can: - browse local file with button.browse - select one and save it as a FileReference. - then we do FileReference.load() then bind the data to our image control. - after we make a rotation on it and change the data of image. - and to finish we upload it to a server. To change the data of image i get the matrix of the displayed image and transform it then i re-use the new matrix and bind it to my old image: private function TurnImage():void { //Turn it var m:Matrix = _img.transform.matrix; rotateImage(m); _img.transform.matrix = m; } Now the mater is that i really don't know how to send the data as a file to my server cause its not stored in the FileReference and data inside FileReference is readOnly so we can't change it or create a new, so i can't use .upload();. Then i tried HttpService.send but i can't figure out how you send a file and not a mxml.

    Read the article

  • Beagleboard: How do I send/receive data to/from the DSP?

    - by snakile
    I have a beagleboard with TMS320C64x+ DSP. I'm working on an image processing beagleboard application. Here's how it's going to work: The ARM reads an image from a file and put the image in a 2D array. The arm sends the matrix to the DSP. The DSP receives the matrix. The DSP performs the image processing algorithm on the received matrix (the algorithm code uses about 5MB of dynamically allocated memory). The DSP sends the processed image (matrix) to the ARM. The arm received the matrix. The arm saved the processed image to a file. I'v already written the code for steps 1,3,5. What is the easiest way to do steps 3+4 (sending the data)? Code examples are welcome.

    Read the article

  • Simple XNA 2D demo: why is my F# version slower than C# version?

    - by Den
    When running this XNA application it should display a rotated rectangle that moves from top-left corner to bottom-right corner. It looks like my F# version is noticeably much slower. It seems that the Draw method skips a lot of frames. I am using VS 2012 RC, XNA 4.0, .NET 4.5, F# 3.0. I am trying to make it as functional as possible. What could be the reason for poor performance? C#: class Program { static void Main(string[] args) { using (var game = new FlockGame()) { game.Run(); } } } public class FlockGame : Game { private GraphicsDeviceManager graphics; private DrawingManager drawingManager; private Vector2 position = Vector2.Zero; public FlockGame() { graphics = new GraphicsDeviceManager(this); } protected override void Initialize() { drawingManager = new DrawingManager(graphics.GraphicsDevice); this.IsFixedTimeStep = false; } protected override void Update(GameTime gameTime) { position = new Vector2(position.X + 50.1f * (float)gameTime.ElapsedGameTime.TotalSeconds, position.Y + 50.1f * (float)gameTime.ElapsedGameTime.TotalSeconds); base.Update(gameTime); } protected override void Draw(GameTime gameTime) { //this.GraphicsDevice.Clear(Color.Lavender) drawingManager.DrawRectangle(position, new Vector2(100.0f, 100.0f), 0.7845f, Color.Red); base.Draw(gameTime); } } public class DrawingManager { private GraphicsDevice GraphicsDevice; private Effect Effect; public DrawingManager(GraphicsDevice graphicsDevice) { GraphicsDevice = graphicsDevice; this.Effect = new BasicEffect(this.GraphicsDevice) { VertexColorEnabled = true, Projection = Matrix.CreateOrthographicOffCenter(0.0f, this.GraphicsDevice.Viewport.Width, this.GraphicsDevice.Viewport.Height, 0.0f, 0.0f, 1.0f) }; } private VertexPositionColor[] GetRectangleVertices (Vector2 center, Vector2 size, float radians, Color color) { var halfSize = size/2.0f; var topLeft = -halfSize; var bottomRight = halfSize; var topRight = new Vector2(bottomRight.X, topLeft.Y); var bottomLeft = new Vector2(topLeft.X, bottomRight.Y); topLeft = Vector2.Transform(topLeft, Matrix.CreateRotationZ(radians)) + center; topRight = Vector2.Transform(topRight, Matrix.CreateRotationZ(radians)) + center; bottomRight = Vector2.Transform(bottomRight, Matrix.CreateRotationZ(radians)) + center; bottomLeft = Vector2.Transform(bottomLeft, Matrix.CreateRotationZ(radians)) + center; return new VertexPositionColor[] { new VertexPositionColor(new Vector3(topLeft, 0.0f), color), new VertexPositionColor(new Vector3(topRight, 0.0f), color), new VertexPositionColor(new Vector3(topRight, 0.0f), color), new VertexPositionColor(new Vector3(bottomRight, 0.0f), color), new VertexPositionColor(new Vector3(bottomRight, 0.0f), color), new VertexPositionColor(new Vector3(bottomLeft, 0.0f), color), new VertexPositionColor(new Vector3(bottomLeft, 0.0f), color), new VertexPositionColor(new Vector3(topLeft, 0.0f), color) }; } public void DrawRectangle(Vector2 center, Vector2 size, float radians, Color color) { var vertices = GetRectangleVertices(center, size, radians, color); foreach (var pass in this.Effect.CurrentTechnique.Passes) { pass.Apply(); this.GraphicsDevice.DrawUserPrimitives(PrimitiveType.LineList, vertices, 0, vertices.Length/2); } } } F#: namespace Flocking module FlockingProgram = open System open Flocking [<STAThread>] [<EntryPoint>] let Main _ = use g = new FlockGame() g.Run() 0 //------------------------------------------------------------------------------ namespace Flocking open System open System.Diagnostics open Microsoft.Xna.Framework open Microsoft.Xna.Framework.Graphics open Microsoft.Xna.Framework.Input type public FlockGame() as this = inherit Game() let mutable graphics = new GraphicsDeviceManager(this) let mutable drawingManager = null let mutable position = Vector2.Zero override Game.LoadContent() = drawingManager <- new Rendering.DrawingManager(graphics.GraphicsDevice) this.IsFixedTimeStep <- false override Game.Update gameTime = position <- Vector2(position.X + 50.1f * float32 gameTime.ElapsedGameTime.TotalSeconds, position.Y + 50.1f * float32 gameTime.ElapsedGameTime.TotalSeconds) base.Update gameTime override Game.Draw gameTime = //this.GraphicsDevice.Clear(Color.Lavender) Rendering.DrawRectangle(drawingManager, position, Vector2(100.0f, 100.0f), 0.7845f, Color.Red) base.Draw gameTime //------------------------------------------------------------------------------ namespace Flocking open System open System.Collections.Generic open Microsoft.Xna.Framework open Microsoft.Xna.Framework.Graphics open Microsoft.Xna.Framework.Input module Rendering = [<AllowNullLiteral>] type DrawingManager (graphicsDevice : GraphicsDevice) = member this.GraphicsDevice = graphicsDevice member this.Effect = new BasicEffect(this.GraphicsDevice, VertexColorEnabled = true, Projection = Matrix.CreateOrthographicOffCenter(0.0f, float32 this.GraphicsDevice.Viewport.Width, float32 this.GraphicsDevice.Viewport.Height, 0.0f, 0.0f, 1.0f)) let private GetRectangleVertices (center:Vector2, size:Vector2, radians:float32, color:Color) = let halfSize = size / 2.0f let mutable topLeft = -halfSize let mutable bottomRight = halfSize let mutable topRight = new Vector2(bottomRight.X, topLeft.Y) let mutable bottomLeft = new Vector2(topLeft.X, bottomRight.Y) topLeft <- Vector2.Transform(topLeft, Matrix.CreateRotationZ(radians)) + center topRight <- Vector2.Transform(topRight, Matrix.CreateRotationZ(radians)) + center bottomRight <- Vector2.Transform(bottomRight, Matrix.CreateRotationZ(radians)) + center bottomLeft <- Vector2.Transform(bottomLeft, Matrix.CreateRotationZ(radians)) + center [| new VertexPositionColor(new Vector3(topLeft, 0.0f), color) new VertexPositionColor(new Vector3(topRight, 0.0f), color) new VertexPositionColor(new Vector3(topRight, 0.0f), color) new VertexPositionColor(new Vector3(bottomRight, 0.0f), color) new VertexPositionColor(new Vector3(bottomRight, 0.0f), color) new VertexPositionColor(new Vector3(bottomLeft, 0.0f), color) new VertexPositionColor(new Vector3(bottomLeft, 0.0f), color) new VertexPositionColor(new Vector3(topLeft, 0.0f), color) |] let DrawRectangle (drawingManager:DrawingManager, center:Vector2, size:Vector2, radians:float32, color:Color) = let vertices = GetRectangleVertices(center, size, radians, color) for pass in drawingManager.Effect.CurrentTechnique.Passes do pass.Apply() drawingManager.GraphicsDevice.DrawUserPrimitives(PrimitiveType.LineList, vertices, 0, vertices.Length/2)

    Read the article

< Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >