Search Results

Search found 1739 results on 70 pages for 'sir mix'.

Page 28/70 | < Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >

  • How to Join N live MP3 streams into one using FFMPEG?

    - by Ole Jak
    How to Join N live MP3 streams (radio streams like such live KCDX mp3 stream http://mp3.kcdx.com:8000/stream ) into 1 using FFMPEG? (I have N incoming live mp3 streams I want to join them and stream out 1 live mp3 stream) I mean I want to mix sounds like thay N speakers speak at the same time (btw N stereo to 1 mono), please help. BTW: My problem is mainly how to make FFMPEG read from stream not from file... Would you mind giving some code examples, please.

    Read the article

  • Describe your workflow of using version control (VCS or DVCS)

    - by edwin.nathaniel
    I'd like to learn other people workflow when using either SVN or GIT. Please describe your strategy to handle the following tasks: Implement a feature Fixing bugs (during development and deployed app) Code Review Refactoring code (post code-review) Incorporate patches Releasing the newer version of your app (desktop, web, mobile, would you treat them differently?) Feel free to organize your answer not grouped by the tasks but grouped by whatever you think is relevant but please organize it by VCS/DVCS (please don't mix them). Thank you.

    Read the article

  • Java: Difference between PrintStream and PrintWriter

    - by Martijn Courteaux
    Hi, What is the difference between PrintStream and PrintWriter? They have much methods in common. I always mix up this classes because of that reason. And I think we can use them for exactly the same. But there has to be a difference. Otherwise there was only one class. I first searched on StackOverflow, but not yet this question. Thanks

    Read the article

  • Scala: getting the name of the class the trait is mixed in

    - by Alexey Romanov
    Given an instance of a class, we can obviously return its name: trait MixedInClassDiscovery { val className = this.getClass.getName } class AClass extends MixedInClassDiscovery { ... this.className // returns "AClass" ... } But this way uses reflection, once for every instance of AClass. Can the same be done once for every class, instead? One solution which comes to mind is to mix it into companion objects instead of classes themselves.

    Read the article

  • Redirect to https login page

    - by user50622
    I have a site that has a mix of http and https pages. Under the root of the site, one folder has all the http pages and another has all the https pages. Login is over https and sends the user to the other pages. When a session expires the forms authentication redirects to the Login page but the browser uses http and the user gets a 403 error. Is there any way to override the session timeout to send it to https?

    Read the article

  • How do I connect StaticListableBeanFactory with ClassPathXmlApplicationContext?

    - by Aaron Digulla
    In the setup of my test cases, I have this code: ApplicationContext context = new ClassPathXmlApplicationContext( "spring/common.xml" ); StaticListableBeanFactory testBeanFactory = new StaticListableBeanFactory(); How do I connect the two in such a way that tests can register beans in the testBeanFactory during setup and the rest of the application uses them instead of the ones defined in common.xml? Note: I need to mix a static (common.xml) and a dynamic configuration. I can't use XML for the latter because that would mean to write 1000 XML files.

    Read the article

  • Method parameters confusion

    - by elec
    Often time methods take more than 3 parameters which are all of the same type, eg. void mymethod (String param1, String param2, String param3) then it's very easy for the client to mix up the parameters orders, for instance inverting param1 and param2: mymethod (param2, param1, param3); ...which can be the cause of much time spent debugging what should be a trivial matter. Any tips on how to avoid this sort of mistake (apart from unit tests) ?

    Read the article

  • How to Join N live MP3 streams into 1 using FFMPEG?

    - by Ole Jak
    How to Join N live MP3 streams (radio streams like such live KCDX mp3 stream http://mp3.kcdx.com:8000/stream ) into 1 using FFMPEG? (I have N incoming live mp3 streams I vant to join them and stream out 1 live mp3 stream) I mean I wanna to mix sounds like thay N speakers speak at the same time (btw N stereo to 1 mono), please help BTW: My problem is mainly how to make FFMPEG read from stream not from file... Would you mind giving some code examples, please...

    Read the article

  • Building a decision-making game in jQuery? Where would I store data....

    - by redconservatory
    I built a slideshow/decision-making game in Flash but would like to try to redo it using jQuery. The slideshow part seems simple enough, however I have a series of user decisions that I'm not sure how to approach. In flash, if the user makes a decision, I would just store this in a variable or shared local objects, is this the same for jQuery? i.e. mix regular javascript variables with the jQuery?

    Read the article

  • JavaScript - Storing data during user interaction

    - by Tim
    I'm working on a web based form builder that uses a mix of Jquery and PHP server side interaction. While the user is building the form I'm trying to determine the best method to store each of one of the form items before all the data is sent to the server. I've looked at the following methods Javascript arrays XML document Send each form item to the server side to be stored in a session

    Read the article

  • Let emacs choose mode conditionally when opening files

    - by artistoex
    I'm using the php debugger geben and nxhtml-mode -- my standard mode for editing php files. Unfortunately, these two modes don't mix well. Is it possible to configure emacs such a way that it enables nxhtml only conditionaly, when I open php files manually, but enables php-mode instead when the buffer is opened by geben?

    Read the article

  • What happens in memory when calling a function with literal values?

    - by Drise
    Suppose I have an arbitrary function: void someFunc(int, double, char); and I call someFunc(8, 2.4, 'a');, what actually happens? How does 8, 2.4, and 'a' get memory, moved into that memory, and passed into the function? What type of optimizations does the compiler have for situations like these? What if I mix and match parameters, such like someFunc(myIntVar, 2.4, someChar);? What happens if the function is declared as inline?

    Read the article

  • DHCP and DNS services configuration for VOIP system, windows domain, etc

    - by Stemen
    My company has numerous physical offices (for purposes of this discussion, 15 buildings). Some of them are well-connected to our primary data center via fiber. Others will be connected to the data center by P2P T1. We are in the beginning stages of implementing an Avaya VOIP telephone system, and we will be replacing a significant portion of our network infrastructure in the process. In tandem with the phone system implementation, we are going to be re-addressing some of our networks, and consolidating most of our Windows domains into one (not all domains, just most). We currently have quite a few Windows domains, and they of course each have their own DNS zones. A few of those networks currently use DHCP, but the majority use static IP assignments for every device. I'm tired of managing static assignments -- I want to use DHCP configuration on everything except servers. Printers and etc will have DHCP reservations. The new IP phones will need to get IP addresses from DHCP, though they need to be in a separate VLAN from the computers/printers/etc. The computers and printers need to be registered in DNS. That's currently handled by the Windows DHCP servers on each of the respective domains. We need to place a priority on DHCP and DNS being available on a per-site basis (in case something were to interrupt the WAN connection) for computers and (primarily) phones. Smaller locations (which will have IP phones but not be a member of any Windows domain) will not have any Windows DNS/DHCP server(s) available. We also are looking for the easiest way to replace a part if it were to fail. That is to say, if a server/appliance/router hosting DHCP were to crash hard, and we couldn't extremely quickly recover the DHCP reservations and leases (and subsequently restore them onto a cold spare), we anticipate that bad things could happen. What is the best idea for how to re-implement DNS and DHCP keeping all of the above in mind? Some thoughts that have been raised (by myself or my coworkers): Use Windows DNS and DHCP servers, where they exist, and use IP helpers to route DHCP requests to some other Windows server if necessary. May not be acceptable if the WAN goes down and clients don't get a DHCP response. Use Windows DNS (everywhere, over WAN in some cases) and a mix of Windows DHCP and DHCP provided by Cisco routers. Every site would be covered for DHCP, but from what I've read, Cisco routers can't handle dynamic registration of DHCP clients to Windows DNS servers, which might create a problem where Cisco routers are used for DHCP. Use Windows DNS (everywhere, over WAN in some cases) and a mix of Windows DHCP and DHCP provided by some service running on an extremely low-price linux server. Is there any such software that would allow DHCP leases granted by these linux boxes to be dynamically registered on the Windows DNS servers? Come up with a Linux solution for both DNS and DHCP, and deploy low-price linux servers to every site. Requirements would be that the DNS zone be multi-master (like Windows DNS integrated with Active Directory), that DHCP be able to make dynamic DNS registrations in that zone, for every lease (where a hostname is provided and is thus possible), and that multiple servers be either authoritative for the same DHCP scope or at least receiving a real-time copy / replication / sync of the leases table so that if one server dies, we still know which MAC has what address. Purchase dedicated DNS/DHCP appliances, deploying to all sites. From what I read/see, this solves all of our technical problems. Then come the financial problems... I don't have a ton of money to spend on this. Or, some other solution that we've thus far overlooked and will consider upon recommendation. Can Cisco routers or Windows servers sync DHCP lease tables so that multiple servers can be authoritative (or active/passive for all I care) for the same scope, in case one of the partners were to fail? I've read online (repeatedly) that ISC's DHCP is able to maintain the same lease table across multiple servers, in order to solve this problem. Does anyone have any experience or advice to regarding that?

    Read the article

  • In Linux, what's the best way to delegate administration responsibilities, like for Apache, a database, or some other application?

    - by Andrew Banks
    In Linux, what's the best way to delegate administration responsibilities for Apache and other "applications"? File permissions? Sudo? A mix of both? Something else? At work we have two tiers of "administrators" Operating system administrators. These are your run-of-the-mill "server administrators." They are responsible for just the operating system. Application administrators. The people who build the web site. This includes not only writing the SQL, PHP, and HTML, but also setting up and running Apache and PostgreSQL or MySQL. The aforementioned OS admins will install this stuff, but it's mainly up to the app admins to edit all the config files, start and stop processes when needed, and so on. I am one of the app admins. This is different than what I am used to. I used to just write code. The sysadmin took care not only of the OS but also installing, setting up, and keeping up the server software. But he left. Now I'm in charge of setting up Apache and the database. The new sysadmins say they just handle the operating system. It's no problem. I welcome learning new stuff. But there is a learning curve, even for the OS admins. Apache, by default, seems to be set up for administration by root directly. All the config files and scripts are 644 and owned by root:root. I'm not given the root password, naturally, so the OS admins must somehow give my ordinary OS user account all the rights necessary to edit Apache's config files, start and stop it, read its log files, and so on. Right now they're using a mix of: (1) giving me certain sudo rights, (2) adding me to certain groups, and (3) changing the file permissions of various directories, to make them writable by one of the groups I'm in. This never goes smoothly. There's always a back-and-forth between me and the sysadmins. They say it's ready. Then I try certain things, and half of them I still can't do. So they make some more changes. Then finally I seem to be independent and can administer Apache and the database without pestering them anymore. It's the sheer complication and amount of changes that make me uncomfortable. Even though it finally works, more or less, it seems hackneyed. I feel like we're doing it wrong. It seems like the makers of the software would have anticipated this scenario (someone other than root administering it) and have a clean two- or three-step program to delegate responsibility to me. But it feels like we are really chewing up the filesystem and making it far and away from the default set-up. Any suggestions? Are we doing it the recommended way? P.S. For PostgreSQL it seems a little better. Its files are owned by a system user named postgres. So giving me the right to run sudo su - postgres gives me just about everything. I'm just now getting into MySQL, but it seems to be set up similarly. But it seems a little weird doing all my work as another user.

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

< Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >