Search Results

Search found 1618 results on 65 pages for 'solaris'.

Page 28/65 | < Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >

  • Developer Webinar Toay:"Publishing IPS PAckages"

    - by user13333379
    Oracle's Solaris Organization is pleased to announce a Technical Webinar for Developers on Oracle Solaris 11: "Publishing IPS Packages" By Eric Reid (Principal Software Engineer) today June 19, 2012 9:00 AM PDT This bi-weekly webinar series (every other Tuesday @ 9 a.m. PT) is designed for ISVs, IHVs, and Application Developers who want a deep-dive overview about how they can deploy Oracle Solaris 11 into their application environments. This series will provide you the unique opportunity to learn directly from Oracle Solaris ISV Engineers and will include LIVE Q&A via chat with subject matter experts from each topic area. Any OTN member can register for this free webinar here.  Today's webinar is a deep dive into IPS. The attendees of the initial IPS webinar asked for more information around this topic. Eric Reid who worked with leading software vendors (ISVs) to migrate Solaris 10 System V packages to IPS will share his experience with us. 

    Read the article

  • Developer Webinar Today:"Publishing IPS Packages"

    - by user13333379
    Oracle's Solaris Organization is pleased to announce a Technical Webinar for Developers on Oracle Solaris 11: "Publishing IPS Packages" By Eric Reid (Principal Software Engineer) today June 19, 2012 9:00 AM PDT This bi-weekly webinar series (every other Tuesday @ 9 a.m. PT) is designed for ISVs, IHVs, and Application Developers who want a deep-dive overview about how they can deploy Oracle Solaris 11 into their application environments. This series will provide you the unique opportunity to learn directly from Oracle Solaris ISV Engineers and will include LIVE Q&A via chat with subject matter experts from each topic area. Any OTN member can register for this free webinar here.  Today's webinar is a deep dive into IPS. The attendees of the initial IPS webinar asked for more information around this topic. Eric Reid who worked with leading software vendors (ISVs) to migrate Solaris 10 System V packages to IPS will share his experience with us. 

    Read the article

  • Introducing Oracle VM Server for SPARC

    - by Honglin Su
    As you are watching Oracle's Virtualization Strategy Webcast and exploring the great virtualization offerings of Oracle VM product line, I'd like to introduce Oracle VM Server for SPARC --  highly efficient, enterprise-class virtualization solution for Sun SPARC Enterprise Systems with Chip Multithreading (CMT) technology. Oracle VM Server for SPARC, previously called Sun Logical Domains, leverages the built-in SPARC hypervisor to subdivide supported platforms' resources (CPUs, memory, network, and storage) by creating partitions called logical (or virtual) domains. Each logical domain can run an independent operating system. Oracle VM Server for SPARC provides the flexibility to deploy multiple Oracle Solaris operating systems simultaneously on a single platform. Oracle VM Server also allows you to create up to 128 virtual servers on one system to take advantage of the massive thread scale offered by the CMT architecture. Oracle VM Server for SPARC integrates both the industry-leading CMT capability of the UltraSPARC T1, T2 and T2 Plus processors and the Oracle Solaris operating system. This combination helps to increase flexibility, isolate workload processing, and improve the potential for maximum server utilization. Oracle VM Server for SPARC delivers the following: Leading Price/Performance - The low-overhead architecture provides scalable performance under increasing workloads without additional license cost. This enables you to meet the most aggressive price/performance requirement Advanced RAS - Each logical domain is an entirely independent virtual machine with its own OS. It supports virtual disk mutipathing and failover as well as faster network failover with link-based IP multipathing (IPMP) support. Moreover, it's fully integrated with Solaris FMA (Fault Management Architecture), which enables predictive self healing. CPU Dynamic Resource Management (DRM) - Enable your resource management policy and domain workload to trigger the automatic addition and removal of CPUs. This ability helps you to better align with your IT and business priorities. Enhanced Domain Migrations - Perform domain migrations interactively and non-interactively to bring more flexibility to the management of your virtualized environment. Improve active domain migration performance by compressing memory transfers and taking advantage of cryptographic acceleration hardware. These methods provide faster migration for load balancing, power saving, and planned maintenance. Dynamic Crypto Control - Dynamically add and remove cryptographic units (aka MAU) to and from active domains. Also, migrate active domains that have cryptographic units. Physical-to-virtual (P2V) Conversion - Quickly convert an existing SPARC server running the Oracle Solaris 8, 9 or 10 OS into a virtualized Oracle Solaris 10 image. Use this image to facilitate OS migration into the virtualized environment. Virtual I/O Dynamic Reconfiguration (DR) - Add and remove virtual I/O services and devices without needing to reboot the system. CPU Power Management - Implement power saving by disabling each core on a Sun UltraSPARC T2 or T2 Plus processor that has all of its CPU threads idle. Advanced Network Configuration - Configure the following network features to obtain more flexible network configurations, higher performance, and scalability: Jumbo frames, VLANs, virtual switches for link aggregations, and network interface unit (NIU) hybrid I/O. Official Certification Based On Real-World Testing - Use Oracle VM Server for SPARC with the most sophisticated enterprise workloads under real-world conditions, including Oracle Real Application Clusters (RAC). Affordable, Full-Stack Enterprise Class Support - Obtain worldwide support from Oracle for the entire virtualization environment and workloads together. The support covers hardware, firmware, OS, virtualization, and the software stack. SPARC Server Virtualization Oracle offers a full portfolio of virtualization solutions to address your needs. SPARC is the leading platform to have the hard partitioning capability that provides the physical isolation needed to run independent operating systems. Many customers have already used Oracle Solaris Containers for application isolation. Oracle VM Server for SPARC provides another important feature with OS isolation. This gives you the flexibility to deploy multiple operating systems simultaneously on a single Sun SPARC T-Series server with finer granularity for computing resources.  For SPARC CMT processors, the natural level of granularity is an execution thread, not a time-sliced microsecond of execution resources. Each CPU thread can be treated as an independent virtual processor. The scheduler is naturally built into the CPU for lower overhead and higher performance. Your organizations can couple Oracle Solaris Containers and Oracle VM Server for SPARC with the breakthrough space and energy savings afforded by Sun SPARC Enterprise systems with CMT technology to deliver a more agile, responsive, and low-cost environment. Management with Oracle Enterprise Manager Ops Center The Oracle Enterprise Manager Ops Center Virtualization Management Pack provides full lifecycle management of virtual guests, including Oracle VM Server for SPARC and Oracle Solaris Containers. It helps you streamline operations and reduce downtime. Together, the Virtualization Management Pack and the Ops Center Provisioning and Patch Automation Pack provide an end-to-end management solution for physical and virtual systems through a single web-based console. This solution automates the lifecycle management of physical and virtual systems and is the most effective systems management solution for Oracle's Sun infrastructure. Ease of Deployment with Configuration Assistant The Oracle VM Server for SPARC Configuration Assistant can help you easily create logical domains. After gathering the configuration data, the Configuration Assistant determines the best way to create a deployment to suit your requirements. The Configuration Assistant is available as both a graphical user interface (GUI) and terminal-based tool. Oracle Solaris Cluster HA Support The Oracle Solaris Cluster HA for Oracle VM Server for SPARC data service provides a mechanism for orderly startup and shutdown, fault monitoring and automatic failover of the Oracle VM Server guest domain service. In addition, applications that run on a logical domain, as well as its resources and dependencies can be controlled and managed independently. These are managed as if they were running in a classical Solaris Cluster hardware node. Supported Systems Oracle VM Server for SPARC is supported on all Sun SPARC Enterprise Systems with CMT technology. UltraSPARC T2 Plus Systems ·   Sun SPARC Enterprise T5140 Server ·   Sun SPARC Enterprise T5240 Server ·   Sun SPARC Enterprise T5440 Server ·   Sun Netra T5440 Server ·   Sun Blade T6340 Server Module ·   Sun Netra T6340 Server Module UltraSPARC T2 Systems ·   Sun SPARC Enterprise T5120 Server ·   Sun SPARC Enterprise T5220 Server ·   Sun Netra T5220 Server ·   Sun Blade T6320 Server Module ·   Sun Netra CP3260 ATCA Blade Server Note that UltraSPARC T1 systems are supported on earlier versions of the software.Sun SPARC Enterprise Systems with CMT technology come with the right to use (RTU) of Oracle VM Server, and the software is pre-installed. If you have the systems under warranty or with support, you can download the software and system firmware as well as their updates. Oracle Premier Support for Systems provides fully-integrated support for your server hardware, firmware, OS, and virtualization software. Visit oracle.com/support for information about Oracle's support offerings for Sun systems. For more information about Oracle's virtualization offerings, visit oracle.com/virtualization.

    Read the article

  • Interesting articles and blogs on SPARC T4

    - by mv
    Interesting articles and blogs on SPARC T4 processor   I have consolidated all the interesting information I could get on SPARC T4 processor and its hardware cryptographic capabilities.  Hope its useful. 1. Advantages of SPARC T4 processor  Most important points in this T4 announcement are : "The SPARC T4 processor was designed from the ground up for high speed security and has a cryptographic stream processing unit (SPU) integrated directly into each processor core. These accelerators support 16 industry standard security ciphers and enable high speed encryption at rates 3 to 5 times that of competing processors. By integrating encryption capabilities directly inside the instruction pipeline, the SPARC T4 processor eliminates the performance and cost barriers typically associated with secure computing and makes it possible to deliver high security levels without impacting the user experience." Data Sheet has more details on these  : "New on-chip Encryption Instruction Accelerators with direct non-privileged support for 16 industry-standard cryptographic algorithms plus random number generation in each of the eight cores: AES, Camellia, CRC32c, DES, 3DES, DH, DSA, ECC, Kasumi, MD5, RSA, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512" I ran "isainfo -v" command on Solaris 11 Sparc T4-1 system. It shows the new instructions as expected  : $ isainfo -v 64-bit sparcv9 applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc 32-bit sparc applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc v8plus div32 mul32  2.  Dan Anderson's Blog have some interesting points about how these can be used : "New T4 crypto instructions include: aes_kexpand0, aes_kexpand1, aes_kexpand2,         aes_eround01, aes_eround23, aes_eround01_l, aes_eround_23_l, aes_dround01, aes_dround23, aes_dround01_l, aes_dround_23_l.       Having SPARC T4 hardware crypto instructions is all well and good, but how do we access it ?      The software is available with Solaris 11 and is used automatically if you are running Solaris a SPARC T4.  It is used internally in the kernel through kernel crypto modules.  It is available in user space through the PKCS#11 library." 3.   Dans' Blog on Where's the Crypto Libraries? Although this was written in 2009 but still is very useful  "Here's a brief tour of the major crypto libraries shown in the digraph:   The libpkcs11 library contains the PKCS#11 API (C_\*() functions, such as C_Initialize()). That in turn calls library pkcs11_softtoken or pkcs11_kernel, for userland or kernel crypto providers. The latter is used mostly for hardware-assisted cryptography (such as n2cp for Niagara2 SPARC processors), as that is performed more efficiently in kernel space with the "kCF" module (Kernel Crypto Framework). Additionally, for Solaris 10, strong crypto algorithms were split off in separate libraries, pkcs11_softtoken_extra libcryptoutil contains low-level utility functions to help implement cryptography. libsoftcrypto (OpenSolaris and Solaris Nevada only) implements several symmetric-key crypto algorithms in software, such as AES, RC4, and DES3, and the bignum library (used for RSA). libmd implements MD5, SHA, and SHA2 message digest algorithms" 4. Difference in T3 and T4 Diagram in this blog is good and self explanatory. Jeff's blog also highlights the differences  "The T4 servers have improved crypto acceleration, described at https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine. It is "just built in" so administrators no longer have to assign crypto accelerator units to domains - it "just happens". Every physical or virtual CPU on a SPARC-T4 has full access to hardware based crypto acceleration at all times. .... For completeness sake, it's worth noting that the T4 adds more crypto algorithms, and accelerates Camelia, CRC32c, and more SHA-x." 5. About performance counters In this blog, performance counters are explained : "Note that unlike T3 and before, T4 crypto doesn't require kernel modules like ncp or n2cp, there is no visibility of crypto hardware with kstats or cryptoadm. T4 does provide hardware counters for crypto operations.  You can see these using cpustat: cpustat -c pic0=Instr_FGU_crypto 5 You can check the general crypto support of the hardware and OS with the command "isainfo -v". Since T4 crypto's implementation now allows direct userland access, there are no "crypto units" visible to cryptoadm.  " For more details refer Martin's blog as well. 6. How to turn off  SPARC T4 or Intel AES-NI crypto acceleration  I found this interesting blog from Darren about how to turn off  SPARC T4 or Intel AES-NI crypto acceleration. "One of the new Solaris 11 features of the linker/loader is the ability to have a single ELF object that has multiple different implementations of the same functions that are selected at runtime based on the capabilities of the machine.   The alternate to this is having the application coded to call getisax(2) system call and make the choice itself.  We use this functionality of the linker/loader when we build the userland libraries for the Solaris Cryptographic Framework (specifically libmd.so and libsoftcrypto.so) The Solaris linker/loader allows control of a lot of its functionality via environment variables, we can use that to control the version of the cryptographic functions we run.  To do this we simply export the LD_HWCAP environment variable with values that tell ld.so.1 to not select the HWCAP section matching certain features even if isainfo says they are present.  This will work for consumers of the Solaris Cryptographic Framework that use the Solaris PKCS#11 libraries or use libmd.so interfaces directly.  For SPARC T4 : export LD_HWCAP="-aes -des -md5 -sha256 -sha512 -mont -mpul" .. For Intel systems with AES-NI support: export LD_HWCAP="-aes"" Note that LD_HWCAP is explained in  http://docs.oracle.com/cd/E23823_01/html/816-5165/ld.so.1-1.html "LD_HWCAP, LD_HWCAP_32, and LD_HWCAP_64 -  Identifies an alternative hardware capabilities value... A “-” prefix results in the capabilities that follow being removed from the alternative capabilities." 7. Whitepaper on SPARC T4 Servers—Optimized for End-to-End Data Center Computing This Whitepaper on SPARC T4 Servers—Optimized for End-to-End Data Center Computing explains more details.  It has DTrace scripts which may come in handy : "To ensure the hardware-assisted cryptographic acceleration is configured to use and working with the security scenarios, it is recommended to use the following Solaris DTrace script. #!/usr/sbin/dtrace -s pid$1:libsoftcrypto:yf*:entry, pid$target:libsoftcrypto:rsa*:entry, pid$1:libmd:yf*:entry { @[probefunc] = count(); } tick-1sec { printa(@ops); trunc(@ops); }" Note that I have slightly modified the D Script to have RSA "libsoftcrypto:rsa*:entry" as well as per recommendations from Chi-Chang Lin. 8. References http://www.oracle.com/us/corporate/features/sparc-t4-announcement-494846.html http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-1-ds-487858.pdf https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine https://blogs.oracle.com/DanX/entry/where_s_the_crypto_libraries https://blogs.oracle.com/darren/entry/howto_turn_off_sparc_t4 http://docs.oracle.com/cd/E23823_01/html/816-5165/ld.so.1-1.html   https://blogs.oracle.com/hardware/entry/unleash_the_power_of_cryptography https://blogs.oracle.com/cmt/entry/t4_crypto_cheat_sheet https://blogs.oracle.com/martinm/entry/t4_performance_counters_explained  https://blogs.oracle.com/jsavit/entry/no_mau_required_on_a http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-business-wp-524472.pdf

    Read the article

  • links for 2010-06-02

    - by Bob Rhubart
    @eelzinga: Oracle Service Bus 11g communication with Oracle SOA Suite 11g, DirectBindings, part1 Oracle ACE Erikc Elzinga launches a series of post in which he will describe how to develop various  Oracle Service Bus 11g to Oracle SOA Suite  process flows. (tags: oracle otn oracleace soa servicebus) @Atul_Kumar: Integrate UCM (ECM/Content Server) with Microsoft Active Directory as LDAP Provider Atul Kumar's step-by-step instructions. (tags: oracle otn enterprise2.0 ucm ecm ldap) Stefan Hinker: Is my application a good fit for CMT? "The first and most important criterion for suitability is always the service time of your application," says Stefan Hinker.  "If this is sufficient, then the application is OK on CMT. If it is not, and the reason is actually the CPU and not some other high-latency component (like a remote database), you will need to test on other CPU architectures." (tags: oracle sun cpu cmt sparc solaris) @deltalounge: Definitions of Services and Processes Peter Paul shares a collection of useful definitions gathered from the works of many of the big thinkers in the SOA space.  (tags: oracle otn soa businessprocess) OTN TechCast: Oracle Solaris Virtualization - Oracle Solaris Video Joost Pronk, CTO for Oracle Solaris Product Management, provides an overview of the robust virtualization functionality built into the Oracle Solaris OS. (tags: oracle otn solaris virtualization)

    Read the article

  • Happy Birthday, SPARC!

    - by A&C Redaktion
    25 Jahre gibt es SPARC in diesem Herbst – da gratulieren Oracle A&C und alle Partner natürlich ganz herzlich! Wir blicken zurück auf ein Vierteljahrhundert Erfolgsgeschichte:Wir befinden uns im Jahr 1987 und klobige graue PCs halten seit einigen Jahren Einzug in Büros und Privathäuser. Ein innovatives Startup-Unternehmen namens Sun Microsystems präsentiert seinen neuen Computer Sun-4, die eigentliche Sensation jedoch ist der Mikroprozessor, den die jungen Leute extra dafür entwickelt hatten: SPARC. Es handelte sich um einen extrem leistungsfähigen RISC-Hauptprozessor, der sowohl in den eigenen Workstations als auch den Servern der Sun-4-Baureihe zum Einsatz kommt. Vor allem in der Unternehmens-IT ermöglicht SPARC in den Folgejahren einen enormen Sprung nach vorn.Die weitere Entwicklung von SPARC, kombiniert mit einem Überblick über andere Meilensteine in der Geschichte der Computerwelt, finden Sie auf der Webseite "Celebrate 25 Years of SPARC Innovation".Wir springen gleich weiter in die Gegenwart, denn auch seit Sun zu Oracle gehört, hat sich so manches getan: Gerade erst hat Oracle die neue Server-Linie Sparc T4 vorgestellt – in Fachkreisen spricht man bereits von der größten Leistungssteigerung in der Geschichte der SPARC-Prozessoren.In den USA wurde das Jubiläum bereits kräftig gefeiert: Hier finden Sie Bilder vom Geburtstagsfest im Museum für Computer-Geschichte in Mountain View, Kalifornien, bei dem auch die SPARC-Entwickler Bill Joy and Andreas von Bechtolsheim zugegen waren und auch im Video SPARC-Event Highlights dreht sich alles um das Jubiläum. In der Oracle Familie gibt es 2012 noch ein weiteres Geburtstagskind: Solaris wird 20, herzlichen Glückwunsch! Das Unix-Betriebssystem, basierend auf SunOS, kam im Jahr 1992 erstmals auf den Markt. Solaris konnte seine gute Stellung seither behaupten und hat nun mit Solaris 11.1 das erste Cloud-Betriebssystem vorgestellt. Dieses überträgt die Zuverlässigkeit, Sicherheit und Skalierbarkeit des bewährten Solaris in die Cloud und bietet eine optimale Plattform für Unternehmensanwendungen.  Lesen Sie hier, was die Fachpresse über die Geburtstagskinder schreibt: ProLinux.de (SPARC) Computerwoche.de (Solaris)SearchDataCenter.de (Solaris)

    Read the article

  • Happy Birthday, SPARC!

    - by A&C Redaktion
    25 Jahre gibt es SPARC in diesem Herbst – da gratulieren Oracle A&C und alle Partner natürlich ganz herzlich! Wir blicken zurück auf ein Vierteljahrhundert Erfolgsgeschichte:Wir befinden uns im Jahr 1987 und klobige graue PCs halten seit einigen Jahren Einzug in Büros und Privathäuser. Ein innovatives Startup-Unternehmen namens Sun Microsystems präsentiert seinen neuen Computer Sun-4, die eigentliche Sensation jedoch ist der Mikroprozessor, den die jungen Leute extra dafür entwickelt hatten: SPARC. Es handelte sich um einen extrem leistungsfähigen RISC-Hauptprozessor, der sowohl in den eigenen Workstations als auch den Servern der Sun-4-Baureihe zum Einsatz kommt. Vor allem in der Unternehmens-IT ermöglicht SPARC in den Folgejahren einen enormen Sprung nach vorn.Die weitere Entwicklung von SPARC, kombiniert mit einem Überblick über andere Meilensteine in der Geschichte der Computerwelt, finden Sie auf der Webseite "Celebrate 25 Years of SPARC Innovation".Wir springen gleich weiter in die Gegenwart, denn auch seit Sun zu Oracle gehört, hat sich so manches getan: Gerade erst hat Oracle die neue Server-Linie Sparc T4 vorgestellt – in Fachkreisen spricht man bereits von der größten Leistungssteigerung in der Geschichte der SPARC-Prozessoren.In den USA wurde das Jubiläum bereits kräftig gefeiert: Hier finden Sie Bilder vom Geburtstagsfest im Museum für Computer-Geschichte in Mountain View, Kalifornien, bei dem auch die SPARC-Entwickler Bill Joy and Andreas von Bechtolsheim zugegen waren und auch im Video SPARC-Event Highlights dreht sich alles um das Jubiläum. In der Oracle Familie gibt es 2012 noch ein weiteres Geburtstagskind: Solaris wird 20, herzlichen Glückwunsch! Das Unix-Betriebssystem, basierend auf SunOS, kam im Jahr 1992 erstmals auf den Markt. Solaris konnte seine gute Stellung seither behaupten und hat nun mit Solaris 11.1 das erste Cloud-Betriebssystem vorgestellt. Dieses überträgt die Zuverlässigkeit, Sicherheit und Skalierbarkeit des bewährten Solaris in die Cloud und bietet eine optimale Plattform für Unternehmensanwendungen.  Lesen Sie hier, was die Fachpresse über die Geburtstagskinder schreibt: ProLinux.de (SPARC) Computerwoche.de (Solaris)SearchDataCenter.de (Solaris)

    Read the article

  • Az Oracle üzleti intelligencia csomag Windows Server 2008-on is, a kliens Vista op.rsz-en is

    - by Fekete Zoltán
    Tegnap az Oracle BI Hands On rendezvényen felmerült a kérdés, hogy az Oracle Business Intelligence Enterprise Editon fut-e Windows Server 2008-on. A válasz: IGEN. Az Oracle BI EE fut a Windows Server 2008-on. Emellett a másik kérdésre a válasz: IGEN, a kliens lehet Windows Vista is. Mivel az Oracle BI szerver szoftver, amit egy böngészovel érnek el a felhasználók elemzési, lekérdezés/jelentés/riport- készítési feladatok elvégzésére, ezért az Oracle BI csak szerver operációs rendszerekre van bevizsgálva: Linux, Solaris, HP-UX, AIX és Windows platformokon. A jelenleg támogatott operációs rendszerek: Microsoft Windows 2000/2003 Server; Microsoft Windows Server 2008 Enterprise Edition x86 32 bit2 - Red Hat Enterprise Linux AS 4.x; Red Hat Enterprise Linux Server/Advanced Platform 5 - Novell SUSE 9.x - Oracle Enterprise Linux 4; Oracle Enterprise Linux 5 - Sun Solaris 9 SPARC 32 bit ; Sun Solaris 9 SPARC 64 bit; Sun Solaris 10 SPARC 32 bit; Sun Solaris 10 SPARC 64 bit - AIX 5.2 PowerPC 32 bit; AIX 5.2 PowerPC 64 bit; AIX 5.3 PowerPC 32 bit; AIX 5.3 PowerPC 64 bit; AIX 6.1 PowerPC 32 bit; AIX 6.1 PowerPC 64 bit - HP-UX 11.11 PA-RISC 64 bit; HP-UX 11.23 PA-RISC 64 bit; HP-UX 11.23 Itanium 64 bit; HP-UX 11.31 Itanium 64 bit A böngészos hozzáférést az irányítópultokhoz (dashboard), interaktív elemzo munkához használható operációs rendszerek: Windows, Vista, Linux, Solaris, Apple Mac OS 10.x.

    Read the article

  • Oracle SPARC SuperCluster and US DoD Security guidelines

    - by user12611852
    I've worked in the past to help our government customers understand how best to secure Solaris.  For my customer base that means complying with Security Technical Implementation Guides (STIGs) from the Defense Information Systems Agency (DISA).  I recently worked with a team to apply both the Solaris and Oracle 11gR2 database STIGs to a SPARC SuperCluster.  The results have been published in an Oracle White paper. The SPARC SuperCluster is a highly available, high performance platform that incorporates: SPARC T4-4 servers Exadata Storage Servers and software ZFS Storage appliance InfiniBand interconnect Flash Cache  Oracle Solaris 11 Oracle VM for SPARC Oracle Database 11gR2 It is targeted towards large, mission critical database, middleware and general purpose workloads.  Using the Oracle Solution Center we configured a SSC applied DoD security guidance and confirmed functionality and performance of the system.  The white paper reviews our findings and includes a number of security recommendations.  In addition, customers can contact me for the itemized spreadsheets with our detailed STIG reports. Some notes: There is no DISA STIG  documentation for Solaris 11.  Oracle is working to help DISA create one using their new process. As a result, our report follows the Solaris 10 STIG document and applies it to Solaris 11 where applicable. In my conversations over the years with DISA Field Security Office they have repeatedly told me, "The absence of a DISA written STIG should not prevent a product from being used.  Customer may apply vendor or industry security recommendations to receive accreditation." Thanks to the core team: Kevin Rohan, Gary Jensen and Rich Qualls as well as the staff of the Oracle Solution Center and Glenn Brunette for their help in creating the document.

    Read the article

  • What's a "Cloud Operating System"?

    - by user12608550
    What's a "Cloud Operating System"? Oracle's recently introduced Solaris 11 has been touted as "The First Cloud OS". Interesting claim, but what exactly does it mean? To answer that, we need to recall what characteristics define a cloud and then see how Solaris 11's capabilities map to those characteristics. By now, most cloud computing professionals have at least heard of, if not adopted, the National Institute of Standards and Technology (NIST) Definition of Cloud Computing, including its vocabulary and conceptual architecture. NIST says that cloud computing includes these five characteristics: On-demand self-service Broad network access Resource pooling Rapid elasticity Measured service How does Solaris 11 support these capabilities? Well, one of the key enabling technologies for cloud computing is virtualization, and Solaris 11 along with Oracle's SPARC and x86 hardware offerings provides the full range of virtualization technologies including dynamic hardware domains, hypervisors for both x86 and SPARC systems, and efficient non-hypervisor workload virtualization with containers. This provides the elasticity needed for cloud systems by supporting on-demand creation and resizing of application environments; it supports the safe partitioning of cloud systems into multi-tenant infrastructures, adding resources as needed and deprovisioning computing resources when no longer needed, allowing for pay-only-for-usage chargeback models. For cloud computing developers, add to that the next generation of Java, and you've got the NIST requirements covered. The results, or one of them anyway, are services like the new Oracle Public Cloud. And Solaris is the ideal platform for running your Java applications. So, if you want to develop for cloud computing, for IaaS, PaaS, or SaaS, start with an operating system designed to support cloud's key requirements…start with Solaris 11.

    Read the article

  • Oracle VM server for SPARC 2.2 on S11

    - by Liam Merwick
    Oracle VM Server for SPARC 2.2 has been released for a little while now. The https://blogs.oracle.com/virtualization blog has an overview of all the 2.2 features. Initially, what was released was the SVR4 package for Solaris 10 (which is unbundled and wasn't constrained by any external schedule). On Solaris 11, the 'ldomsmanager' package is built into Solaris (and therefore doesn't need to be downloaded separately) so it is delivered as part of an S11 Support Repository Update (SRU). Some of the features in 2.2 are specific to S11 (SR-IOV and the ability to live migrate between machines with different CPU types) and so there have been many requests to know when are the S11 bits coming. Solaris 11 SRU8.5 was released on Friday and this includes Oracle VM server for SPARC 2.2 so if you're already running an S11 SRU all you need do is a 'pkg update' to get the 2.2 bits. If you're still running the original S11 and your 'pkg publisher' output shows the /release repository then you'll need to sign up for the /support repo by getting the appropriate keys and certificates to access the repository (requires a support contract). The 2.2 Admin Guide documents how to do this upgrade on S11 Two S11 articles which have some useful details on upgrading (not just 'ldomsmanager') via the support repositories are: How to Update Oracle Solaris 11 Systems From Oracle Support Repositories by Glynn Foster Tips for Updating Your Oracle Solaris 11 System from the Oracle Support Repository by Peter Dennis In particular, if you'd like to stick with the v2.1 release when upgrading to SRU8.5 or greater, see the 'pkg freeze' section of Peter's article.

    Read the article

  • eSTEP TechCast - December 2012

    - by uwes
    Dear partner, we are pleased to announce our next eSTEP TechCast on Thursday 6th of December and would be happy if you could join. Please see below the details for the next TechCast.Date and time:Thursday, 06. December 2012, 11:00 - 12:00 GMT (12:00 - 13:00 CET; 15:00 - 16:00 GST) Title: Innovations with Oracle Solaris Cluster 4 Abstract:Oracle Solaris Cluster 4.0 is the version of Solaris Cluster that runs with Oracle Solaris 11. In this webcast we will focus at the integration of the cluster software with the IPS packaging system of Solaris 11, which makes installing and updating the software much easier and much more reliable, especially with virtualization technologies involved. Our webcast will also reflect new versions of Oracle Solaris Cluster if they will be announced in the meantime. Target audience: Tech Presales Speaker: Hartmut Streppel Call Info:Call-in-toll-free number: 08006948154 (United Kingdom)Call-in-toll-free number: +44-2081181001 (United Kingdom) Show global numbers Conference Code: 803 594 3Security Passcode: 9876Webex Info (Oracle Web Conference) Meeting Number: 255 760 510Meeting Password: tech2011 Playback / Recording / Archive: The webcasts will be recorded and will be available shortly after the event in the eSTEP portal under the Events tab, where you could find also material from already delivered eSTEP TechCasts. Use your email-adress and PIN: eSTEP_2011 to get access. Feel free to have a look. We are happy to get your comments and feedback. Thanks and best regards, Partner HW Enablement EMEA

    Read the article

  • I need a TSE (The Semware Editor) replacement for Windows / Linux / OS X / Solaris (one to edit them

    - by lexu
    My text and programmers editor of choice, when working on a windows box is TSE (The Semware Editor). It is small, it is fast, it is configurabel, and since I've used it (and it's predecessor QEdit) for over twenty years, my fingers can do the editing on autopilot, while the brain is busy with syntax and design. Do you know of a similar editor preferably one that runs on Windows, Linux and OS X (and Solaris ..) I've tried to use VIM (I know how to use VI even longer thant TSE) but it doesn't feel right.

    Read the article

  • has anyone got Riak working on Solaris or OpenSolaris?

    - by Zubair
    has anyone got Riak working on Solaris or OpenSolaris? When I try to compile it I get: user@opensolaris:~/riak# gmake all rel ./rebar compile /usr/bin/env: No such file or directory gmake: *** [compile] Error 127 user@opensolaris:~/riak# mkdir /usr/bin/env mkdir: Failed to make directory "/usr/bin/env"; File exists user@opensolaris:~/riak#

    Read the article

  • Controlling server configurations with IPS

    - by barts
    I recently received a customer question regarding how they best could control which packages and which versions were used on their production Solaris 11 servers.  They had considered pointing each server at its own software repository - a common initial approach.  A simpler method leverages one of dependency mechanisms we introduced with Solaris 11, but is not immediately obvious to most people. Typically, most internal IT departments qualify particular versions for production use.  What this customer wanted to do was insure that their operations staff only installed internally qualified versions of Solaris on their servers.  The easiest way of doing this is to leverage the 'incorporate' type of dependency in a small package defined for each server type.  From the reference " Packaging and Delivering Software With the Image Packaging System in Oracle® Solaris 11.1":  The incorporate dependency specifies that if the given package is installed, it must be at the given version, to the given version accuracy. For example, if the dependent FMRI has a version of 1.4.3, then no version less than 1.4.3 or greater than or equal to 1.4.4 satisfies the dependency. Version 1.4.3.7 does satisfy this example dependency. The common way to use incorporate dependencies is to put many of them in the same package to define a surface in the package version space that is compatible. Packages that contain such sets of incorporate dependencies are often called incorporations. Incorporations are typically used to define sets of software packages that are built together and are not separately versioned. The incorporate dependency is heavily used in Oracle Solaris to ensurethat compatible versions of software are installed together. An example incorporate dependency is: depend type=incorporate fmri=pkg:/driver/network/ethernet/[email protected],5.11-0.175.0.0.0.2.1 So, to make sure only qualified versions are installed on a server, create a package that will be installed on the machines to be controlled.  This package will contain an incorporate dependency on the "entire" package, which controls the various components used to be build Solaris.  Every time a new version of Solaris has been qualified for production use, create a new version of this package specifying the new version of "entire" that was qualified.  Once this new control package is available in the repositories configured on the production server, the pkg update command will update that system to the specified version.  Unless a new version of the control package is made available, pkg update will report that no updates are available since no version of the control package can be installed that satisfies the incorporate constraint. Note that if desired, the same package can be used to specify which packages must be present on the system by adding either "require" or "group" dependencies; the latter permits removal of some of the packages, the former does not.  More details on this can be found in either the section 5 pkg man page or the previously mentioned reference document. This technique of using package dependencies to constrain system configuration leverages the SAT solver which is at the heart of IPS, and is basic to how we package Solaris itself.  

    Read the article

  • World Record Batch Rate on Oracle JD Edwards Consolidated Workload with SPARC T4-2

    - by Brian
    Oracle produced a World Record batch throughput for single system results on Oracle's JD Edwards EnterpriseOne Day-in-the-Life benchmark using Oracle's SPARC T4-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2. The workload includes both online and batch workload. The SPARC T4-2 server delivered a result of 8,000 online users while concurrently executing a mix of JD Edwards EnterpriseOne Long and Short batch processes at 95.5 UBEs/min (Universal Batch Engines per minute). In order to obtain this record benchmark result, the JD Edwards EnterpriseOne, Oracle WebLogic and Oracle Database 11g Release 2 servers were executed each in separate Oracle Solaris Containers which enabled optimal system resources distribution and performance together with scalable and manageable virtualization. One SPARC T4-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2 utilized only 55% of the available CPU power. The Oracle DB server in a Shared Server configuration allows for optimized CPU resource utilization and significant memory savings on the SPARC T4-2 server without sacrificing performance. This configuration with SPARC T4-2 server has achieved 33% more Users/core, 47% more UBEs/min and 78% more Users/rack unit than the IBM Power 770 server. The SPARC T4-2 server with 2 processors ran the JD Edwards "Day-in-the-Life" benchmark and supported 8,000 concurrent online users while concurrently executing mixed batch workloads at 95.5 UBEs per minute. The IBM Power 770 server with twice as many processors supported only 12,000 concurrent online users while concurrently executing mixed batch workloads at only 65 UBEs per minute. This benchmark demonstrates more than 2x cost savings by consolidating the complete solution in a single SPARC T4-2 server compared to earlier published results of 10,000 users and 67 UBEs per minute on two SPARC T4-2 and SPARC T4-1. The Oracle DB server used mirrored (RAID 1) volumes for the database providing high availability for the data without impacting performance. Performance Landscape JD Edwards EnterpriseOne Day in the Life (DIL) Benchmark Consolidated Online with Batch Workload System Rack Units BatchRate(UBEs/m) Online Users Users /Units Users /Core Version SPARC T4-2 (2 x SPARC T4, 2.85 GHz) 3 95.5 8,000 2,667 500 9.0.2 IBM Power 770 (4 x POWER7, 3.3 GHz, 32 cores) 8 65 12,000 1,500 375 9.0.2 Batch Rate (UBEs/m) — Batch transaction rate in UBEs per minute Configuration Summary Hardware Configuration: 1 x SPARC T4-2 server with 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 4 x 300 GB 10K RPM SAS internal disk 2 x 300 GB internal SSD 2 x Sun Storage F5100 Flash Arrays Software Configuration: Oracle Solaris 10 Oracle Solaris Containers JD Edwards EnterpriseOne 9.0.2 JD Edwards EnterpriseOne Tools (8.98.4.2) Oracle WebLogic Server 11g (10.3.4) Oracle HTTP Server 11g Oracle Database 11g Release 2 (11.2.0.1) Benchmark Description JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations. Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company. The workload consists of online transactions and the UBE – Universal Business Engine workload of 61 short and 4 long UBEs. LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time. The UBE processes workload runs from the JD Enterprise Application server. Oracle's UBE processes come as three flavors: Short UBEs < 1 minute engage in Business Report and Summary Analysis, Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address, Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs. The UBE workload generates large numbers of PDF files reports and log files. The UBE Queues are categorized as the QBATCHD, a single threaded queue for large and medium UBEs, and the QPROCESS queue for short UBEs run concurrently. Oracle's UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute. Key Points and Best Practices Two JD Edwards EnterpriseOne Application Servers, two Oracle WebLogic Servers 11g Release 1 coupled with two Oracle Web Tier HTTP server instances and one Oracle Database 11g Release 2 database on a single SPARC T4-2 server were hosted in separate Oracle Solaris Containers bound to four processor sets to demonstrate consolidation of multiple applications, web servers and the database with best resource utilizations. Interrupt fencing was configured on all Oracle Solaris Containers to channel the interrupts to processors other than the processor sets used for the JD Edwards Application server, Oracle WebLogic servers and the database server. A Oracle WebLogic vertical cluster was configured on each WebServer Container with twelve managed instances each to load balance users' requests and to provide the infrastructure that enables scaling to high number of users with ease of deployment and high availability. The database log writer was run in the real time RT class and bound to a processor set. The database redo logs were configured on the raw disk partitions. The Oracle Solaris Container running the Enterprise Application server completed 61 Short UBEs, 4 Long UBEs concurrently as the mixed size batch workload. The mixed size UBEs ran concurrently from the Enterprise Application server with the 8,000 online users driven by the LoadRunner. See Also SPARC T4-2 Server oracle.com OTN JD Edwards EnterpriseOne oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Oracle Fusion Middleware oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 09/30/2012.

    Read the article

  • Best Practices - Dynamic Reconfiguration

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains) Overview of dynamic Reconfiguration Oracle VM Server for SPARC supports Dynamic Reconfiguration (DR), making it possible to add or remove resources to or from a domain (virtual machine) while it is running. This is extremely useful because resources can be shifted to or from virtual machines in response to load conditions without having to reboot or interrupt running applications. For example, if an application requires more CPU capacity, you can add CPUs to improve performance, and remove them when they are no longer needed. You can use even use Dynamic Resource Management (DRM) policies that automatically add and remove CPUs to domains based on load. How it works (in broad general terms) Dynamic Reconfiguration is done in coordination with Solaris, which recognises a hypervisor request to change its virtual machine configuration and responds appropriately. In essence, Solaris receives a message saying "you now have 16 more CPUs numbered 16 to 31" or "8GB more RAM starting at address X" or "here's a new network or disk device - have fun with it". These actions take very little time. Solaris then can start using the new resource. In the case of added CPUs, that means dispatching processes and potentially binding interrupts to the new CPUs. For memory, Solaris adds the new memory pages to its "free" list and starts using them. Comparable actions occur with network and disk devices: they are recognised by Solaris and then used. Removing is the reverse process: after receiving the DR message to free specific CPUs, Solaris unbinds interrupts assigned to the CPUs and stops dispatching process threads. That takes very little time. primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 1.0% 6d 22h 29m ldom1 active -n---- 5000 16 8G 0.9% 6h 59m primary # ldm set-core 5 ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 0.2% 6d 22h 29m ldom1 active -n---- 5000 40 8G 0.1% 6h 59m primary # ldm set-core 2 ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 1.0% 6d 22h 29m ldom1 active -n---- 5000 16 8G 0.9% 6h 59m Memory pages are vacated by copying their contents to other memory locations and wiping them clean. Solaris may have to swap memory contents to disk if the remaining RAM isn't enough to hold all the contents. For this reason, deallocating memory can take longer on a loaded system. Even on a lightly loaded system it took several 7 or 8 seconds to switch the domain below between 8GB and 24GB of RAM. primary # ldm set-mem 24g ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 0.1% 6d 22h 36m ldom1 active -n---- 5000 16 24G 0.2% 7h 6m primary # ldm set-mem 8g ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 0.7% 6d 22h 37m ldom1 active -n---- 5000 16 8G 0.3% 7h 7m What if the device is in use? (this is the anecdote that inspired this blog post) If CPU or memory is being removed, releasing it pretty straightforward, using the method described above. The resources are released, and Solaris continues with less capacity. It's not as simple with a network or I/O device: you don't want to yank a device out from underneath an application that might be using it. In the following example, I've added a virtual network device to ldom1 and want to take it away, even though it's been plumbed. primary # ldm rm-vnet vnet19 ldom1 Guest LDom returned the following reason for failing the operation: Resource Information ---------------------------------------------------------- ----------------------- /devices/virtual-devices@100/channel-devices@200/network@1 Network interface net1 VIO operation failed because device is being used in LDom ldom1 Failed to remove VNET instance That's what I call a helpful error message - telling me exactly what was wrong. In this case the problem is easily solved. I know this NIC is seen in the guest as net1 so: ldom1 # ifconfig net1 down unplumb Now I can dispose of it, and even the virtual switch I had created for it: primary # ldm rm-vnet vnet19 ldom1 primary # ldm rm-vsw primary-vsw9 If I had to take away the device disruptively, I could have used ldm rm-vnet -f but that could disrupt whoever was using it. It's better if that can be avoided. Summary Oracle VM Server for SPARC provides dynamic reconfiguration, which lets you modify a guest domain's CPU, memory and I/O configuration on the fly without reboot. You can add and remove resources as needed, and even automate this for CPUs by setting up resource policies. Taking things away can be more complicated than giving, especially for devices like disks and networks that may contain application and system state or be involved in a transaction. LDoms and Solaris cooperative work together to coordinate resource allocation and de-allocation in a safe and effective way. For best practices, use dynamic reconfiguration to make the best use of your system's resources.

    Read the article

  • What is bondib1 used for on SPARC SuperCluster with InfiniBand, Solaris 11 networking & Oracle RAC?

    - by user12620111
    A co-worker asked the following question about a SPARC SuperCluster InfiniBand network: > on the database nodes the RAC nodes communicate over the cluster_interconnect. This is the > 192.168.10.0 network on bondib0. (according to ./crs/install/crsconfig_params NETWORKS> setting) > What is bondib1 used for? Is it a HA counterpart in case bondib0 dies? This is my response: Summary: bondib1 is currently only being used for outbound cluster interconnect interconnect traffic. Details: bondib0 is the cluster_interconnect $ oifcfg getif            bondeth0  10.129.184.0  global  public bondib0  192.168.10.0  global  cluster_interconnect ipmpapp0  192.168.30.0  global  public bondib0 and bondib1 are on 192.168.10.1 and 192.168.10.2 respectively. # ipadm show-addr | grep bondi bondib0/v4static  static   ok           192.168.10.1/24 bondib1/v4static  static   ok           192.168.10.2/24 Hostnames tied to the IPs are node1-priv1 and node1-priv2  # grep 192.168.10 /etc/hosts 192.168.10.1    node1-priv1.us.oracle.com   node1-priv1 192.168.10.2    node1-priv2.us.oracle.com   node1-priv2 For the 4 node RAC interconnect: Each node has 2 private IP address on the 192.168.10.0 network. Each IP address has an active InfiniBand link and a failover InfiniBand link. Thus, the 4 node RAC interconnect is using a total of 8 IP addresses and 16 InfiniBand links. bondib1 isn't being used for the Virtual IP (VIP): $ srvctl config vip -n node1 VIP exists: /node1-ib-vip/192.168.30.25/192.168.30.0/255.255.255.0/ipmpapp0, hosting node node1 VIP exists: /node1-vip/10.55.184.15/10.55.184.0/255.255.255.0/bondeth0, hosting node node1 bondib1 is on bondib1_0 and fails over to bondib1_1: # ipmpstat -g GROUP       GROUPNAME   STATE     FDT       INTERFACES ipmpapp0    ipmpapp0    ok        --        ipmpapp_0 (ipmpapp_1) bondeth0    bondeth0    degraded  --        net2 [net5] bondib1     bondib1     ok        --        bondib1_0 (bondib1_1) bondib0     bondib0     ok        --        bondib0_0 (bondib0_1) bondib1_0 goes over net24 # dladm show-link | grep bond LINK                CLASS     MTU    STATE    OVER bondib0_0           part      65520  up       net21 bondib0_1           part      65520  up       net22 bondib1_0           part      65520  up       net24 bondib1_1           part      65520  up       net23 net24 is IB Partition FFFF # dladm show-ib LINK         HCAGUID         PORTGUID        PORT STATE  PKEYS net24        21280001A1868A  21280001A1868C  2    up     FFFF net22        21280001CEBBDE  21280001CEBBE0  2    up     FFFF,8503 net23        21280001A1868A  21280001A1868B  1    up     FFFF,8503 net21        21280001CEBBDE  21280001CEBBDF  1    up     FFFF On Express Module 9 port 2: # dladm show-phys -L LINK              DEVICE       LOC net21             ibp4         PCI-EM1/PORT1 net22             ibp5         PCI-EM1/PORT2 net23             ibp6         PCI-EM9/PORT1 net24             ibp7         PCI-EM9/PORT2 Outbound traffic on the 192.168.10.0 network will be multiplexed between bondib0 & bondib1 # netstat -rn Routing Table: IPv4   Destination           Gateway           Flags  Ref     Use     Interface -------------------- -------------------- ----- ----- ---------- --------- 192.168.10.0         192.168.10.2         U        16    6551834 bondib1   192.168.10.0         192.168.10.1         U         9    5708924 bondib0   There is a lot more traffic on bondib0 than bondib1 # /bin/time snoop -I bondib0 -c 100 > /dev/null Using device ipnet/bondib0 (promiscuous mode) 100 packets captured real        4.3 user        0.0 sys         0.0 (100 packets in 4.3 seconds = 23.3 pkts/sec) # /bin/time snoop -I bondib1 -c 100 > /dev/null Using device ipnet/bondib1 (promiscuous mode) 100 packets captured real       13.3 user        0.0 sys         0.0 (100 packets in 13.3 seconds = 7.5 pkts/sec) Half of the packets on bondib0 are outbound (from self). The remaining packet are split evenly, from the other nodes in the cluster. # snoop -I bondib0 -c 100 | awk '{print $1}' | sort | uniq -c Using device ipnet/bondib0 (promiscuous mode) 100 packets captured   49 node1-priv1.us.oracle.com   24 node2-priv1.us.oracle.com   14 node3-priv1.us.oracle.com   13 node4-priv1.us.oracle.com 100% of the packets on bondib1 are outbound (from self), but the headers in the packets indicate that they are from the IP address associated with bondib0: # snoop -I bondib1 -c 100 | awk '{print $1}' | sort | uniq -c Using device ipnet/bondib1 (promiscuous mode) 100 packets captured  100 node1-priv1.us.oracle.com The destination of the bondib1 outbound packets are split evenly, to node3 and node 4. # snoop -I bondib1 -c 100 | awk '{print $3}' | sort | uniq -c Using device ipnet/bondib1 (promiscuous mode) 100 packets captured   51 node3-priv1.us.oracle.com   49 node4-priv1.us.oracle.com Conclusion: bondib1 is currently only being used for outbound cluster interconnect interconnect traffic.

    Read the article

  • links for 2010-12-16

    - by Bob Rhubart
    Oracle Solaris 11 Express: Network Virtualization and Resource Control | Oracle Clinic XiangBingLiu's detailed overview of Oracle Solaris 11 Express features, including Crossbow. (tags: oracle solaris virtualization crossbow) A New Threat To Web Applications: Connection String Parameter Pollution (CSPP) (The Oracle Global Product Security Blog) "CSPP, if carried out successfully, can be used to steal user identities and hijack web credentials. CSPP is a high risk attack because of the relative ease with which it can be carried out (low access complexity) and the potential results it can have (high impact)." -- Shaomin Wang (tags: oracle otn security cspp)

    Read the article

  • Oracle Systems and Solutions at OpenWorld Tokyo 2012

    - by ferhat
    Oracle OpenWorld Tokyo and JavaOne Tokyo will start next week April 4th. We will cover Oracle systems and Oracle Optimized Solutions in several keynote talks and general sessions. Full schedule can be found here. Come by the DemoGrounds to learn more about mission critical integration and optimization of complete Oracle stack. Our Oracle Optimized Solutions experts will be at hand to discuss 1-1 several of Oracle's systems solutions and technologies. Oracle Optimized Solutions are proven blueprints that eliminate integration guesswork by combing best in class hardware and software components to deliver complete system architectures that are fully tested, and include documented best practices that reduce integration risks and deliver better application performance. And because they are highly flexible by design, Oracle Optimized Solutions can be implemented as an end-to-end solution or easily adapted into existing environments. Oracle Optimized Solutions, Servers,  Storage, and Oracle Solaris  Sessions, Keynotes, and General Session Talks DAY TIME TITLE Notes Session Wednesday  April 4 9:00 - 11:15 Keynote: ENGINEERED FOR INNOVATION - Engineered Systems Mark Hurd,  President, Oracle Takao Endo, President & CEO, Oracle Corporation Japan John Fowler, EVP of Systems, Oracle Ed Screven, Chief Corporate Architect, Oracle English Session K1-01 11:50 - 12:35 Simplifying IT: Transforming the Data Center with Oracle's Engineered Systems Robert Shimp, Group VP, Product Marketing, Oracle English Session S1-01 15:20 - 16:05 Introducing Tiered Storage Solution for low cost Big Data Archiving S1-33 16:30 - 17:15 Simplifying IT - IT System Consolidation that also Accelerates Business Agility S1-42 Thursday  April 5 9:30 - 11:15 Keynote: Extreme Innovation Larry Ellison, Chief Executive Officer, Oracle English Session K2-01 11:50 - 13:20 General Session: Server and Storage Systems Strategy John Fowler, EVP of Systems, Oracle English Session G2-01 16:30 - 17:15 Top 5 Reasons why ZFS Storage appliance is "The cloud storage" by SAKURA Internet Inc L2-04 16:30 - 17:15 The UNIX based Exa* Performance IT Integration Platform - SPARC SuperCluster S2-42 17:40 - 18:25 Full stack solutions of hardware and software with SPARC SuperCluster and Oracle E-Business Suite  to minimize the business cost while maximizing the agility, performance, and availability S2-53 Friday April 6 9:30 - 11:15 Keynote: Oracle Fusion Applications & Cloud Robert Shimp, Group VP, Product Marketing Anthony Lye, Senior VP English Session K3-01 11:50 - 12:35 IT at Oracle: The Art of IT Transformation to Enable Business Growth English Session S3-02 13:00-13:45 ZFS Storagge Appliance: Architecture of high efficient and high performance S3-13 14:10 - 14:55 Why "Niko Niko doga" chose ZFS Storage Appliance to support their growing requirements and storage infrastructure By DWANGO Co, Ltd. S3-21 15:20 - 16:05 Osaka University: Lower TCO and higher flexibility for student study by Virtual Desktop By Osaka University S3-33 Oracle Developer Sessions with Oracle Systems and Oracle Solaris DAY TIME TITLE Notes LOCATION Friday April 6 13:00 - 13:45 Oracle Solaris 11 Developers D3-03 13:00 - 14:30 Oracle Solaris Tuning Contest Hands-On Lab D3-04 14:00 - 14:35 How to build high performance and high security Oracle Database environment with Oracle SPARC/Solaris English Session D3-13 15:00 - 15:45 IT Assets preservation and constructive migration with Oracle Solaris virtualization D3-24 16:00 - 17:30 The best packaging system for cloud environment - Creating an IPS package D3-34 Follow Oracle Infrared at Twitter, Facebook, Google+, and LinkedIn  to catch the latest news, developments, announcements, and inside views from  Oracle Optimized Solutions.

    Read the article

  • SPARC T4-2 Produces World Record Oracle Essbase Aggregate Storage Benchmark Result

    - by Brian
    Significance of Results Oracle's SPARC T4-2 server configured with a Sun Storage F5100 Flash Array and running Oracle Solaris 10 with Oracle Database 11g has achieved exceptional performance for the Oracle Essbase Aggregate Storage Option benchmark. The benchmark has upwards of 1 billion records, 15 dimensions and millions of members. Oracle Essbase is a multi-dimensional online analytical processing (OLAP) server and is well-suited to work well with SPARC T4 servers. The SPARC T4-2 server (2 cpus) running Oracle Essbase 11.1.2.2.100 outperformed the previous published results on Oracle's SPARC Enterprise M5000 server (4 cpus) with Oracle Essbase 11.1.1.3 on Oracle Solaris 10 by 80%, 32% and 2x performance improvement on Data Loading, Default Aggregation and Usage Based Aggregation, respectively. The SPARC T4-2 server with Sun Storage F5100 Flash Array and Oracle Essbase running on Oracle Solaris 10 achieves sub-second query response times for 20,000 users in a 15 dimension database. The SPARC T4-2 server configured with Oracle Essbase was able to aggregate and store values in the database for a 15 dimension cube in 398 minutes with 16 threads and in 484 minutes with 8 threads. The Sun Storage F5100 Flash Array provides more than a 20% improvement out-of-the-box compared to a mid-size fiber channel disk array for default aggregation and user-based aggregation. The Sun Storage F5100 Flash Array with Oracle Essbase provides the best combination for large Oracle Essbase databases leveraging Oracle Solaris ZFS and taking advantage of high bandwidth for faster load and aggregation. Oracle Fusion Middleware provides a family of complete, integrated, hot pluggable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. Oracle Essbase's performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation. Performance Landscape System Data Size(millions of items) Database Load(minutes) Default Aggregation(minutes) Usage Based Aggregation(minutes) SPARC T4-2, 2 x SPARC T4 2.85 GHz 1000 149 398* 55 Sun M5000, 4 x SPARC64 VII 2.53 GHz 1000 269 526 115 Sun M5000, 4 x SPARC64 VII 2.4 GHz 400 120 448 18 * – 398 mins with CALCPARALLEL set to 16; 484 mins with CALCPARALLEL threads set to 8 Configuration Summary Hardware Configuration: 1 x SPARC T4-2 2 x 2.85 GHz SPARC T4 processors 128 GB memory 2 x 300 GB 10000 RPM SAS internal disks Storage Configuration: 1 x Sun Storage F5100 Flash Array 40 x 24 GB flash modules SAS HBA with 2 SAS channels Data Storage Scheme Striped - RAID 0 Oracle Solaris ZFS Software Configuration: Oracle Solaris 10 8/11 Installer V 11.1.2.2.100 Oracle Essbase Client v 11.1.2.2.100 Oracle Essbase v 11.1.2.2.100 Oracle Essbase Administration services 64-bit Oracle Database 11g Release 2 (11.2.0.3) HP's Mercury Interactive QuickTest Professional 9.5.0 Benchmark Description The objective of the Oracle Essbase Aggregate Storage Option benchmark is to showcase the ability of Oracle Essbase to scale in terms of user population and data volume for large enterprise deployments. Typical administrative and end-user operations for OLAP applications were simulated to produce benchmark results. The benchmark test results include: Database Load: Time elapsed to build a database including outline and data load. Default Aggregation: Time elapsed to build aggregation. User Based Aggregation: Time elapsed of the aggregate views proposed as a result of tracked retrieval queries. Summary of the data used for this benchmark: 40 flat files, each of size 1.2 GB, 49.4 GB in total 10 million rows per file, 1 billion rows total 28 columns of data per row Database outline has 15 dimensions (five of them are attribute dimensions) Customer dimension has 13.3 million members 3 rule files Key Points and Best Practices The Sun Storage F5100 Flash Array has been used to accelerate the application performance. Setting data load threads (DLTHREADSPREPARE) to 64 and Load Buffer to 6 improved dataloading by about 9%. Factors influencing aggregation materialization performance are "Aggregate Storage Cache" and "Number of Threads" (CALCPARALLEL) for parallel view materialization. The optimal values for this workload on the SPARC T4-2 server were: Aggregate Storage Cache: 32 GB CALCPARALLEL: 16   See Also Oracle Essbase Aggregate Storage Option Benchmark on Oracle's SPARC T4-2 Server oracle.com Oracle Essbase oracle.com OTN SPARC T4-2 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 28 August 2012.

    Read the article

< Previous Page | 24 25 26 27 28 29 30 31 32 33 34 35  | Next Page >