Search Results

Search found 9667 results on 387 pages for 'parallel loop'.

Page 286/387 | < Previous Page | 282 283 284 285 286 287 288 289 290 291 292 293  | Next Page >

  • Why does my 3D model not translate the way I expect? [closed]

    - by ChocoMan
    In my first image, my model displays correctly: But when I move the model's position along the Z-axis (forward) I get this, yet the Y-axis doesnt change. An if I keep going, the model disappears into the ground: Any suggestions as to how I can get the model to translate properly visually? Here is how Im calling the model and the terrain in draw(): cameraPosition = new Vector3(camX, camY, camZ); // Copy any parent transforms. Matrix[] transforms = new Matrix[mShockwave.Bones.Count]; mShockwave.CopyAbsoluteBoneTransformsTo(transforms); Matrix[] ttransforms = new Matrix[terrain.Bones.Count]; terrain.CopyAbsoluteBoneTransformsTo(ttransforms); // Draw the model. A model can have multiple meshes, so loop. foreach (ModelMesh mesh in mShockwave.Meshes) { // This is where the mesh orientation is set, as well // as our camera and projection. foreach (BasicEffect effect in mesh.Effects) { effect.EnableDefaultLighting(); effect.PreferPerPixelLighting = true; effect.World = transforms[mesh.ParentBone.Index] * Matrix.CreateRotationY(modelRotation) * Matrix.CreateTranslation(modelPosition); // Looking at the model (picture shouldnt change other than rotation) effect.View = Matrix.CreateLookAt(cameraPosition, modelPosition, Vector3.Up); effect.Projection = Matrix.CreatePerspectiveFieldOfView( MathHelper.ToRadians(45.0f), aspectRatio, 1.0f, 10000.0f); effect.TextureEnabled = true; } // Draw the mesh, using the effects set above. prepare3d(); mesh.Draw(); } //Terrain test foreach (ModelMesh meshT in terrain.Meshes) { foreach (BasicEffect effect in meshT.Effects) { effect.EnableDefaultLighting(); effect.PreferPerPixelLighting = true; effect.World = ttransforms[meshT.ParentBone.Index] * Matrix.CreateRotationY(0) * Matrix.CreateTranslation(terrainPosition); // Looking at the model (picture shouldnt change other than rotation) effect.View = Matrix.CreateLookAt(cameraPosition, terrainPosition, Vector3.Up); effect.Projection = Matrix.CreatePerspectiveFieldOfView( MathHelper.ToRadians(45.0f), aspectRatio, 1.0f, 10000.0f); effect.TextureEnabled = true; } // Draw the mesh, using the effects set above. prepare3d(); meshT.Draw(); DrawText(); } base.Draw(gameTime); } I'm suspecting that there may be something wrong with how I'm handling my camera. The model rotates fine on its Y-axis.

    Read the article

  • boot issues - long delay, then "gave up waiting for root device"

    - by chazomaticus
    I've had this issue on and off for about two years now. I noticed it on a new (custom built) machine running 10.04 when that first came out, but then it went away until a few months ago. I've gone through a number of hard drive changes but I can't say specifically what if anything I changed hardware-wise to make it stop or start happening. I had assumed upgrading to a modern Ubuntu version would fix the issue, so I installed 12.04 beta on a spare partition last night, but it's still happening. Here's the issue. After grub loads and I select a kernel to boot, the screen goes blank save for a blinking cursor. It sits in this state for many long minutes before it finally gives up and gives me an initramfs shell with the message gave up waiting for root device (and lists the /dev/disk/by-uuid/... path it was waiting for) but no other specific diagnostic information. Now, here's the tricky part. For one, the problem is intermittent - sometimes it progresses from the blinking cursor to the Ubuntu splash boot screen in a few seconds, and once it gets that far it always continues booting fine. The really bizarre thing is that I can "force" it to "find" the root device by repeatedly pressing the space bar and hitting the machine's power button. If I tap those enough, eventually I will notice the hard drive light coming on, at which point it will always continue the boot process after a few seconds. Interestingly, if I wait slightly too long before pressing the power button (30s?), as soon as I press it I get the gave up waiting message and the initramfs shell. I've tried setting up /etc/fstab (and the grub menu.lst or whatever it's called nowadays) to use device names (e.g. /dev/sda1) instead of UUIDs, but I get the same effect just with the device name, not UUID, in the error message. I should also mention that when I boot to Windows 7, there is no issue. It boots slowly all the time just by virtue of being Windows, but it never hangs indefinitely. This would seem to indicate it's a problem in Ubuntu, not the hardware. It's pretty annoying to have to babysit the computer every time it boots. Any ideas? I'm at a loss. Not even sure how to diagnose the issue. Thanks! EDIT: Here's some dmesg output from 10.04. The 15 second gap is where it was doing nothing. I pressed the power button and space bar a few times, and the stuff at 16 seconds happened. Not sure what any of it means. [ 1.320250] scsi18 : ahci [ 1.320294] scsi19 : ahci [ 1.320320] ata19: SATA max UDMA/133 abar m8192@0xfd4fe000 port 0xfd4fe100 ir q 18 [ 1.320323] ata20: SATA max UDMA/133 abar m8192@0xfd4fe000 port 0xfd4fe180 ir q 18 [ 1.403886] usb 2-4: new high speed USB device using ehci_hcd and address 4 [ 1.562558] usb 2-4: configuration #1 chosen from 1 choice [ 16.477824] ata16: SATA link down (SStatus 0 SControl 300) [ 16.477843] ata19: SATA link down (SStatus 0 SControl 300) [ 16.477857] ata3: SATA link down (SStatus 0 SControl 300) [ 16.477895] ata15: SATA link down (SStatus 0 SControl 300) [ 16.477906] ata20: SATA link down (SStatus 0 SControl 300) [ 16.477977] ata17: SATA link down (SStatus 0 SControl 300) [ 16.478003] ata12: SATA link down (SStatus 0 SControl 300) [ 16.478046] ata13: SATA link down (SStatus 0 SControl 300) [ 16.478063] ata14: SATA link down (SStatus 0 SControl 300) [ 16.478108] ata11: SATA link down (SStatus 0 SControl 300) [ 16.478123] ata18: SATA link up 1.5 Gbps (SStatus 113 SControl 300) [ 16.478127] ata6: SATA link down (SStatus 0 SControl 300) [ 16.478157] ata5: SATA link down (SStatus 0 SControl 300) [ 16.478193] ata18.00: ATAPI: MARVELL VIRTUALL, 1.09, max UDMA/66 After that, it took its sweet time, and I had to keep hitting space bar to coax it along. Here's some more dmesg output from a little later in the boot process: [ 17.982291] input: BTC USB Multimedia Keyboard as /devices/pci0000:00/0000:00 :13.0/usb5/5-2/5-2:1.0/input/input4 [ 17.982335] generic-usb 0003:046E:5506.0002: input,hidraw1: USB HID v1.10 Key board [BTC USB Multimedia Keyboard] on usb-0000:00:13.0-2/input0 [ 18.005211] input: BTC USB Multimedia Keyboard as /devices/pci0000:00/0000:00 :13.0/usb5/5-2/5-2:1.1/input/input5 [ 18.005274] generic-usb 0003:046E:5506.0003: input,hiddev96,hidraw2: USB HID v1.10 Device [BTC USB Multimedia Keyboard] on usb-0000:00:13.0-2/input1 [ 22.484906] EXT4-fs (sda6): INFO: recovery required on readonly filesystem [ 22.484910] EXT4-fs (sda6): write access will be enabled during recovery [ 22.548542] EXT4-fs (sda6): recovery complete [ 22.549074] EXT4-fs (sda6): mounted filesystem with ordered data mode [ 32.516772] Adding 20482832k swap on /dev/sda5. Priority:-1 extents:1 across:20482832k [ 32.742540] udev: starting version 151 [ 33.002004] Bluetooth: Atheros AR30xx firmware driver ver 1.0 [ 33.008135] parport_pc 00:09: reported by Plug and Play ACPI [ 33.008186] parport0: PC-style at 0x378, irq 7 [PCSPP,TRISTATE] [ 33.012076] lp: driver loaded but no devices found [ 33.037271] ppdev: user-space parallel port driver [ 33.090256] lp0: using parport0 (interrupt-driven). Any clues in there?

    Read the article

  • Another question about handling game states

    - by Eva
    I'm making a game designed with the entity-component paradigm that uses systems to communicate between components as explained here. I've reached the point in my development that I need to add game states (such as paused, playing, level start, round start, game over, etc.), but I'm not sure how to do it with my framework. I've looked at this code example on game states which everyone seems to reference, but I don't think it fits with my framework. It seems to have each state handling its own drawing and updating. My framework has a SystemManager that handles all the updating using systems. For example, here's my RenderingSystem class: public class RenderingSystem extends GameSystem { private GameView gameView_; /** * Constructor * Creates a new RenderingSystem. * @param gameManager The game manager. Used to get the game components. */ public RenderingSystem(GameManager gameManager) { super(gameManager); } /** * Method: registerGameView * Registers gameView into the RenderingSystem. * @param gameView The game view registered. */ public void registerGameView(GameView gameView) { gameView_ = gameView; } /** * Method: triggerRender * Adds a repaint call to the event queue for the dirty rectangle. */ public void triggerRender() { Rectangle dirtyRect = new Rectangle(); for (GameObject object : getRenderableObjects()) { GraphicsComponent graphicsComponent = object.getComponent(GraphicsComponent.class); dirtyRect.add(graphicsComponent.getDirtyRect()); } gameView_.repaint(dirtyRect); } /** * Method: renderGameView * Renders the game objects onto the game view. * @param g The graphics object that draws the game objects. */ public void renderGameView(Graphics g) { for (GameObject object : getRenderableObjects()) { GraphicsComponent graphicsComponent = object.getComponent(GraphicsComponent.class); if (!graphicsComponent.isVisible()) continue; GraphicsComponent.Shape shape = graphicsComponent.getShape(); BoundsComponent boundsComponent = object.getComponent(BoundsComponent.class); Rectangle bounds = boundsComponent.getBounds(); g.setColor(graphicsComponent.getColor()); if (shape == GraphicsComponent.Shape.RECTANGULAR) { g.fill3DRect(bounds.x, bounds.y, bounds.width, bounds.height, true); } else if (shape == GraphicsComponent.Shape.CIRCULAR) { g.fillOval(bounds.x, bounds.y, bounds.width, bounds.height); } } } /** * Method: getRenderableObjects * @return The renderable game objects. */ private HashSet<GameObject> getRenderableObjects() { return gameManager.getGameObjectManager().getRelevantObjects( getClass()); } } Also all the updating in my game is event-driven. I don't have a loop like theirs that simply updates everything at the same time. I like my framework because it makes it easy to add new GameObjects, but doesn't have the problems some component-based designs encounter when communicating between components. I would hate to chuck it just to get pause to work. Is there a way I can add game states to my game without removing the entity-component design? Does the game state example actually fit my framework, and I'm just missing something?

    Read the article

  • How to update off screen bitmap in a surfaceview thread

    - by DKDiveDude
    I have a Surfaceview thread and an off canvas texture bitmap that is being generated (changed), first row (line), every frame and then copied one position (line) down on regular surfaceview bitmap to make a scrolling effect, and I then continue to draw other things on top of that. Well that is what I really want, however I can't get it to work even though I am creating a separate canvas for off screen bitmap. It is just not scrolling at all. I other words I have a memory bitmap, same size as Surfaceview canvas, which I need to scroll (shift) down one line every frame, and then replace top line with new random texture, and then draw that on regular Surfaceview canvas. Here is what I thought would work; My surfaceChanged where I specify bitmap and canvasses and start thread: @Override public void surfaceCreated(SurfaceHolder holder) { intSurfaceWidth = mSurfaceView.getWidth(); intSurfaceHeight = mSurfaceView.getHeight(); memBitmap = Bitmap.createBitmap(intSurfaceWidth, intSurfaceHeight, Bitmap.Config.ARGB_8888); memCanvas = new Canvas(memCanvas); myThread = new MyThread(holder, this); myThread.setRunning(true); blnPause = false; myThread.start(); } My thread, only showing essential middle running part: @Override public void run() { while (running) { c = null; try { // Lock canvas for drawing c = myHolder.lockCanvas(null); synchronized (mSurfaceHolder) { // First draw off screen bitmap to off screen canvas one line down memCanvas.drawBitmap(memBitmap, 0, 1, null); // Create random one line(row) texture bitmap memTexture = Bitmap.createBitmap(imgTexture, 0, rnd.nextInt(intTextureImageHeight), intSurfaceWidth, 1); // Now add this texture bitmap to top of off screen canvas and hopefully bitmap memCanvas.drawBitmap(textureBitmap, intSurfaceWidth, 0, null); // Draw above updated off screen bitmap to regular canvas, at least I thought it would update (save changes) shifting down and add the texture line to off screen bitmap the off screen canvas was pointing to. c.drawBitmap(memBitmap, 0, 0, null); // Other drawing to canvas comes here } finally { // do this in a finally so that if an exception is thrown // during the above, we don't leave the Surface in an // inconsistent state if (c != null) { myHolder.unlockCanvasAndPost(c); } } } } For my game Tunnel Run. Right now I have a working solution where I instead have an array of bitmaps, size of surface height, that I populate with my random texture and then shift down in a loop for each frame. I get 50 frames per second, but I think I can do better by instead scrolling bitmap.

    Read the article

  • Pragmas and exceptions

    - by Darryl Gove
    The compiler pragmas: #pragma no_side_effect(routinename) #pragma does_not_write_global_data(routinename) #pragma does_not_read_global_data(routinename) are used to tell the compiler more about the routine being called, and enable it to do a better job of optimising around the routine. If a routine does not read global data, then global data does not need to be stored to memory before the call to the routine. If the routine does not write global data, then global data does not need to be reloaded after the call. The no side effect directive indicates that the routine does no I/O, does not read or write global data, and the result only depends on the input. However, these pragmas should not be used on routines that throw exceptions. The following example indicates the problem: #include <iostream extern "C" { int exceptional(int); #pragma no_side_effect(exceptional) } int exceptional(int a) { if (a==7) { throw 7; } else { return a+1; } } int a; int c=0; class myclass { public: int routine(); }; int myclass::routine() { for(a=0; a<1000; a++) { c=exceptional(c); } return 0; } int main() { myclass f; try { f.routine(); } catch(...) { std::cout << "Something happened" << a << c << std::endl; } } The routine "exceptional" is declared as having no side effects, however it can throw an exception. The no side effects directive enables the compiler to avoid storing global data back to memory, and retrieving it after the function call, so the loop containing the call to exceptional is quite tight: $ CC -O -S test.cpp ... .L77000061: /* 0x0014 38 */ call exceptional ! params = %o0 ! Result = %o0 /* 0x0018 36 */ add %i1,1,%i1 /* 0x001c */ cmp %i1,999 /* 0x0020 */ ble,pt %icc,.L77000061 /* 0x0024 */ nop However, when the program is run the result is incorrect: $ CC -O t.cpp $ ./a.out Something happend00 If the code had worked correctly, the output would have been "Something happened77" - the exception occurs on the seventh iteration. Yet, the current code produces a message that uses the original values for the variables 'a' and 'c'. The problem is that the exception handler reads global data, and due to the no side effects directive the compiler has not updated the global data before the function call. So these pragmas should not be used on routines that have the potential to throw exceptions.

    Read the article

  • Deferred Shading - Toolkit

    - by AliveDevil
    I recently managed to get some lights rendered in a scene by using a buffer and a for-loop. The problem with this method is the performance drop if more lights are used. I tried to convert Deferred Rendering in XNA4.0 | ROY-T.NL but it is not working, because I am not using any models. I know I have to render color, normals and lights seperate but I don't know how I could get it working. For understanding my structure better I'm using a world-class which holds some chunks. These chunks are loading all vertices from their items. These items have a property which returns the vertices. The item is returning VertexPositionNormalTexture[]. The chunk loads these Vertices and combines them to one large array of VertexPositionNormalTexture via someList.AsParallel().SelectMany(m => m).ToArray()). m is a VertexPositionNormalTexture. someList is List<VertexPositionNormalTexture>. I got my own shader to draw these vertices how I want them to be drawn. The first thing I would try is setting up two RenderTarget2D for rendering the color and normal part. With two different shaders. Than I would have to render the lights and there's the problem: I don't know how. I set up a structure to simplify working with lights but it didn't really help. public struct Light { public Vector3 Position; public Color4 Color; public float Range; public float Intensity; public Light( Vector3 position, Color color, float range, float intensity ) : this() { this.Position = position; this.Color = color; this.Range = range; this.Intensity = intensity; } public float[] Definition { get { return new[] { Position.X, Position.Y, Position.Z, Color.Red, Color.Green, Color.Blue, Intensity, Range }; } } } The next part is equally different because I don't know how to combine the colorMap, normalMap and textureMap to one finalMap. Some information to the system: I'm using SharpDX (Nightly from some months ago) and the SharpDX.Toolkit (I don't want to mess up with Direct3DDevice and similar things). Can someone help me with this problem? If things are missing or I provided insufficient information tell me, I need to get deferred shading working. Things I'm not able to do: create a rendertarget which holds all lights, merge colorMap, normalMap and lightMap to one finalMap and presenting this to the user.

    Read the article

  • Why does my int, booleans, doubles does not work?

    - by SystemNetworks
    As you see, my code does not work. When armor1 is true, it would add my life. goldA is another class. public void goldenArmor(GameContainer gc, StateBasedGame sbg, Graphics g) { if(armor1==true) { goldA.life = life; goldA.intelligence = intelligence; goldA.power = power; goldA.lifeLeft = lifeLeft; goldA.head(); goldA.body(); goldA.legs(); } } My other class: package javagame; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.Image; import org.newdawn.slick.Input; import org.newdawn.slick.SlickException; /* Note: Copyright(C)2012 System Networks | Square NET | Julius Bryan Gambe. You cannot copy the style, story of the game and gameplay! To programmers: The int,doubles,strings,booleans are properly sorted out. Please don't mess it up. */ /* NOTE: We have loops but not for programming. The loop is: 1.show the world to user 2.Obtain input from the user 3.Shows the update, repeat step 1 */ import org.newdawn.slick.*; import org.newdawn.slick.state.*; import org.lwjgl.input.Mouse; //contents: // public class GoldenArmor{ //get it from play public int life; public double intelligence; public int lifeLeft; public double power; public GoldenArmor() { // TODO Auto-generated constructor stub } //start here public void head() { life += 10; intelligence +=0.5; } public void body() { lifeLeft += 100; } public void legs() { power += 100; } } /* SYSTEM NETWORKS(C) 2012 NET FRONT */ The life, intelligence, power, lifeLeft are nothing but to use it as just reference to prevent stack overflow. And at my main class, it becomes my real booleans, int, doubles. How do I fix this? It does not add it to my normal int.

    Read the article

  • What is this algorithm for converting strings into numbers called?

    - by CodexArcanum
    I've been doing some work in Parsec recently, and for my toy language I wanted multi-based fractional numbers to be expressible. After digging around in Parsec's source a bit, I found their implementation of a floating-point number parser, and copied it to make the needed modifications. So I understand what this code does, and vaguely why (I haven't worked out the math fully yet, but I think I get the gist). But where did it come from? This seems like a pretty clever way to turn strings into floats and ints, is there a name for this algorithm? Or is it just something basic that's a hole in my knowledge? Did the folks behind Parsec devise it? Here's the code, first for integers: number' :: Integer -> Parser Integer number' base = do { digits <- many1 ( oneOf ( sigilRange base )) ; let n = foldl (\x d -> base * x + toInteger (convertDigit base d)) 0 digits ; seq n (return n) } So the basic idea here is that digits contains the string representing the whole number part, ie "192". The foldl converts each digit individually into a number, then adds that to the running total multiplied by the base, which means that by the end each digit has been multiplied by the correct factor (in aggregate) to position it. The fractional part is even more interesting: fraction' :: Integer -> Parser Double fraction' base = do { digits <- many1 ( oneOf ( sigilRange base )) ; let base' = fromIntegral base ; let f = foldr (\d x -> (x + fromIntegral (convertDigit base d))/base') 0.0 digits ; seq f (return f) Same general idea, but now a foldr and using repeated division. I don't quite understand why you add first and then divide for the fraction, but multiply first then add for the whole. I know it works, just haven't sorted out why. Anyway, I feel dumb not working it out myself, it's very simple and clever looking at it. Is there a name for this algorithm? Maybe the imperative version using a loop would be more familiar?

    Read the article

  • CPU Usage in Very Large Coherence Clusters

    - by jpurdy
    When sizing Coherence installations, one of the complicating factors is that these installations (by their very nature) tend to be application-specific, with some being large, memory-intensive caches, with others acting as I/O-intensive transaction-processing platforms, and still others performing CPU-intensive calculations across the data grid. Regardless of the primary resource requirements, Coherence sizing calculations are inherently empirical, in that there are so many permutations that a simple spreadsheet approach to sizing is rarely optimal (though it can provide a good starting estimate). So we typically recommend measuring actual resource usage (primarily CPU cycles, network bandwidth and memory) at a given load, and then extrapolating from those measurements. Of course there may be multiple types of load, and these may have varying degrees of correlation -- for example, an increased request rate may drive up the number of objects "pinned" in memory at any point, but the increase may be less than linear if those objects are naturally shared by concurrent requests. But for most reasonably-designed applications, a linear resource model will be reasonably accurate for most levels of scale. However, at extreme scale, sizing becomes a bit more complicated as certain cluster management operations -- while very infrequent -- become increasingly critical. This is because certain operations do not naturally tend to scale out. In a small cluster, sizing is primarily driven by the request rate, required cache size, or other application-driven metrics. In larger clusters (e.g. those with hundreds of cluster members), certain infrastructure tasks become intensive, in particular those related to members joining and leaving the cluster, such as introducing new cluster members to the rest of the cluster, or publishing the location of partitions during rebalancing. These tasks have a strong tendency to require all updates to be routed via a single member for the sake of cluster stability and data integrity. Fortunately that member is dynamically assigned in Coherence, so it is not a single point of failure, but it may still become a single point of bottleneck (until the cluster finishes its reconfiguration, at which point this member will have a similar load to the rest of the members). The most common cause of scaling issues in large clusters is disabling multicast (by configuring well-known addresses, aka WKA). This obviously impacts network usage, but it also has a large impact on CPU usage, primarily since the senior member must directly communicate certain messages with every other cluster member, and this communication requires significant CPU time. In particular, the need to notify the rest of the cluster about membership changes and corresponding partition reassignments adds stress to the senior member. Given that portions of the network stack may tend to be single-threaded (both in Coherence and the underlying OS), this may be even more problematic on servers with poor single-threaded performance. As a result of this, some extremely large clusters may be configured with a smaller number of partitions than ideal. This results in the size of each partition being increased. When a cache server fails, the other servers will use their fractional backups to recover the state of that server (and take over responsibility for their backed-up portion of that state). The finest granularity of this recovery is a single partition, and the single service thread can not accept new requests during this recovery. Ordinarily, recovery is practically instantaneous (it is roughly equivalent to the time required to iterate over a set of backup backing map entries and move them to the primary backing map in the same JVM). But certain factors can increase this duration drastically (to several seconds): large partitions, sufficiently slow single-threaded CPU performance, many or expensive indexes to rebuild, etc. The solution of course is to mitigate each of those factors but in many cases this may be challenging. Larger clusters also lead to the temptation to place more load on the available hardware resources, spreading CPU resources thin. As an example, while we've long been aware of how garbage collection can cause significant pauses, it usually isn't viewed as a major consumer of CPU (in terms of overall system throughput). Typically, the use of a concurrent collector allows greater responsiveness by minimizing pause times, at the cost of reducing system throughput. However, at a recent engagement, we were forced to turn off the concurrent collector and use a traditional parallel "stop the world" collector to reduce CPU usage to an acceptable level. In summary, there are some less obvious factors that may result in excessive CPU consumption in a larger cluster, so it is even more critical to test at full scale, even though allocating sufficient hardware may often be much more difficult for these large clusters.

    Read the article

  • How to resolve concurrent ramp collisions in 2d platformer?

    - by Shaun Inman
    A bit about the physics engine: Bodies are all rectangles. Bodies are sorted at the beginning of every update loop based on the body-in-motion's horizontal and vertical velocity (to avoid sticky walls/floors). Solid bodies are resolved by testing the body-in-motion's new X with the old Y and adjusting if necessary before testing the new X with the new Y, again adjusting if necessary. Works great. Ramps (rectangles with a flag set indicating bottom-left, bottom-right, etc) are resolved by calculating the ratio of penetration along the x-axis and setting a new Y accordingly (with some checks to make sure the body-in-motion isn't attacking from the tall or flat side, in which case the ramp is treated as a normal rectangle). This also works great. Side-by-side ramps, eg. \/ and /\, work fine but things get jittery and unpredictable when a top-down ramp is directly above a bottom-up ramp, eg. < or > or when a bottom-up ramp runs right up to the ceiling/top-down ramp runs right down to the floor. I've been able to lock it down somewhat by detecting whether the body-in-motion hadFloor when also colliding with a top-down ramp or hadCeiling when also colliding with a bottom-up ramp then resolving by calculating the ratio of penetration along the y-axis and setting the new X accordingly (the opposite of the normal behavior). But as soon as the body-in-motion jumps the hasFloor flag becomes false, the first ramp resolution pushes the body into collision with the second ramp and collision resolution becomes jittery again for a few frames. I'm sure I'm making this more complicated than it needs to be. Can anyone recommend a good resource that outlines the best way to address this problem? (Please don't recommend I use something like Box2d or Chipmunk. Also, "redesign your levels" isn't an answer; the body-in-motion may at times be riding another body-in-motion, eg. a platform, that pushes it into a ramp so I'd like to be able to resolve this properly.) Thanks!

    Read the article

  • Finding furthermost point in game world

    - by user13414
    I am attempting to find the furthermost point in my game world given the player's current location and a normalized direction vector in screen space. My current algorithm is: convert player world location to screen space multiply the direction vector by a large number (2000) and add it to the player's screen location to get the distant screen location convert the distant screen location to world space create a line running from the player's world location to the distant world location loop over the bounding "walls" (of which there are always 4) of my game world check whether the wall and the line intersect if so, where they intersect is the furthermost point of my game world in the direction of the vector Here it is, more or less, in code: public Vector2 GetFurthermostWorldPoint(Vector2 directionVector) { var screenLocation = entity.WorldPointToScreen(entity.Location); var distantScreenLocation = screenLocation + (directionVector * 2000); var distantWorldLocation = entity.ScreenPointToWorld(distantScreenLocation); var line = new Line(entity.Center, distantWorldLocation); float intersectionDistance; Vector2 intersectionPoint; foreach (var boundingWall in entity.Level.BoundingWalls) { if (boundingWall.Intersects(line, out intersectionDistance, out intersectionPoint)) { return intersectionPoint; } } Debug.Assert(false, "No intersection found!"); return Vector2.Zero; } Now this works, for some definition of "works". I've found that the further out my distant screen location is, the less chance it has of working. When digging into the reasons why, I noticed that calls to Viewport.Unproject could result in wildly varying return values for points that are "far away". I wrote this stupid little "test" to try and understand what was going on: [Fact] public void wtf() { var screenPositions = new Vector2[] { new Vector2(400, 240), new Vector2(400, -2000), }; var viewport = new Viewport(0, 0, 800, 480); var projectionMatrix = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, viewport.Width / viewport.Height, 1, 200000); var viewMatrix = Matrix.CreateLookAt(new Vector3(400, 630, 600), new Vector3(400, 345, 0), new Vector3(0, 0, 1)); var worldMatrix = Matrix.Identity; foreach (var screenPosition in screenPositions) { var nearPoint = viewport.Unproject(new Vector3(screenPosition, 0), projectionMatrix, viewMatrix, worldMatrix); var farPoint = viewport.Unproject(new Vector3(screenPosition, 1), projectionMatrix, viewMatrix, worldMatrix); Console.WriteLine("For screen position {0}:", screenPosition); Console.WriteLine(" Projected Near Point = {0}", nearPoint.TruncateZ()); Console.WriteLine(" Projected Far Point = {0}", farPoint.TruncateZ()); Console.WriteLine(); } } The output I get on the console is: For screen position {X:400 Y:240}: Projected Near Point = {X:400 Y:629.571 Z:599.0967} Projected Far Point = {X:392.9302 Y:-83074.98 Z:-175627.9} For screen position {X:400 Y:-2000}: Projected Near Point = {X:400 Y:626.079 Z:600.7554} Projected Far Point = {X:390.2068 Y:-767438.6 Z:148564.2} My question is really twofold: what am I doing wrong with the unprojection such that it varies so wildly and, thus, does not allow me to determine the corresponding world point for my distant screen point? is there a better way altogether to determine the furthermost point in world space given a current world space location, and a directional vector in screen space?

    Read the article

  • Indefinite loops where the first time is different

    - by George T
    This isn't a serious problem or anything someone has asked me to do, just a seemingly simple thing that I came up with as a mental exercise but has stumped me and which I feel that I should know the answer to already. There may be a duplicate but I didn't manage to find one. Suppose that someone asked you to write a piece of code that asks the user to enter a number and, every time the number they entered is not zero, says "Error" and asks again. When they enter zero it stops. In other words, the code keeps asking for a number and repeats until zero is entered. In each iteration except the first one it also prints "Error". The simplest way I can think of to do that would be something like the folloing pseudocode: int number = 0; do { if(number != 0) { print("Error"); } print("Enter number"); number = getInput(); }while(number != 0); While that does what it's supposed to, I personally don't like that there's repeating code (you test number != 0 twice) -something that should generally be avoided. One way to avoid this would be something like this: int number = 0; while(true) { print("Enter number"); number = getInput(); if(number == 0) { break; } else { print("Error"); } } But what I don't like in this one is "while(true)", another thing to avoid. The only other way I can think of includes one more thing to avoid: labels and gotos: int number = 0; goto question; error: print("Error"); question: print("Enter number"); number = getInput(); if(number != 0) { goto error; } Another solution would be to have an extra variable to test whether you should say "Error" or not but this is wasted memory. Is there a way to do this without doing something that's generally thought of as a bad practice (repeating code, a theoretically endless loop or the use of goto)? I understand that something like this would never be complex enough that the first way would be a problem (you'd generally call a function to validate input) but I'm curious to know if there's a way I haven't thought of.

    Read the article

  • Why is my dual-boot Ubuntu partition showing up as a peripheral "root.disk"?

    - by Don
    I recently installed Ubuntu 12.04, which I had been booting from a usb key, as a dual-boot on my machine running Windows 7. From what I had read online while researching, I was prepared to have to shrink the Windows partition and all that. But I never had to - it really was just a few clicks here and there and it was installed. I'm still pretty confused about it, but whatever, it worked, and the two peacefully coexist on my machine, and I have broken things to fix before I worry about fixing unbroken things. So yesterday I got it in my head to look at my partitions (I was considering making an all new partition to install the Windows 8 Release Preview). What I saw confused me. Here's a screenshot of the disk utility. At this moment, there is nothing connected to my computer, and nothing in any of the optical drives/ports/card readers/etc. Can you help me figure out what's going on here? Don's Machine is, I believe, my Windows partition - that's the name I assigned my machine from Windows Explorer. PQSERVICE is from what I can find online also Windows, but having to do with backup. And SYSTEM REQUIRED, if I browse it in Ubuntu, is definitely something to do with booting, and I believe it is also Windows'. According to the sizes shown, those three together should use up my 500 GB HD. Then further down, as a "peripheral device", it lists that 31 GB disk. This is obviously my Ubuntu (Model:Linux Loop:root.disk), but why is it showing up as a peripheral? So, to sum up those questions and to add some more random ones I had: Why is Ubuntu showing up as a peripheral device? If the Windows sections take up all 500 GB, where does Ubuntu live? If I renamed the disk partitions, would my life become a nightmare (seriously - can I safely rename them)? Why didn't I have to resize the Windows partition in the first place? Would giving Ubuntu more space improve its performance (it hangs alot)? Is it possible to have a partition for each OS (Windows 7 & 8, Ubuntu), a partition for files, and a separate partition for backups? Is this towards the good or bad idea end of the spectrum? @Elfy, would that explain why it keeps hanging? I guess I'll backup my files, rip it out, and reinstall it correctly later on today.

    Read the article

  • Inline template efficiency

    - by Darryl Gove
    I like inline templates, and use them quite extensively. Whenever I write code with them I'm always careful to check the disassembly to see that the resulting output is efficient. Here's a potential cause of inefficiency. Suppose we want to use the mis-named Leading Zero Detect (LZD) instruction on T4 (this instruction does a count of the number of leading zero bits in an integer register - so it should really be called leading zero count). So we put together an inline template called lzd.il looking like: .inline lzd lzd %o0,%o0 .end And we throw together some code that uses it: int lzd(int); int a; int c=0; int main() { for(a=0; a<1000; a++) { c=lzd(c); } return 0; } We compile the code with some amount of optimisation, and look at the resulting code: $ cc -O -xtarget=T4 -S lzd.c lzd.il $ more lzd.s .L77000018: /* 0x001c 11 */ lzd %o0,%o0 /* 0x0020 9 */ ld [%i1],%i3 /* 0x0024 11 */ st %o0,[%i2] /* 0x0028 9 */ add %i3,1,%i0 /* 0x002c */ cmp %i0,999 /* 0x0030 */ ble,pt %icc,.L77000018 /* 0x0034 */ st %i0,[%i1] What is surprising is that we're seeing a number of loads and stores in the code. Everything could be held in registers, so why is this happening? The problem is that the code is only inlined at the code generation stage - when the actual instructions are generated. Earlier compiler phases see a function call. The called functions can do all kinds of nastiness to global variables (like 'a' in this code) so we need to load them from memory after the function call, and store them to memory before the function call. Fortunately we can use a #pragma directive to tell the compiler that the routine lzd() has no side effects - meaning that it does not read or write to memory. The directive to do that is #pragma no_side_effect(<routine name), and it needs to be placed after the declaration of the function. The new code looks like: int lzd(int); #pragma no_side_effect(lzd) int a; int c=0; int main() { for(a=0; a<1000; a++) { c=lzd(c); } return 0; } Now the loop looks much neater: /* 0x0014 10 */ add %i1,1,%i1 ! 11 ! { ! 12 ! c=lzd(c); /* 0x0018 12 */ lzd %o0,%o0 /* 0x001c 10 */ cmp %i1,999 /* 0x0020 */ ble,pt %icc,.L77000018 /* 0x0024 */ nop

    Read the article

  • Portland Silverlight User Group: WP7 &amp; XNA &ndash; I survived.

    - by George Clingerman
    Last night I gave a talk to the Portland Silverlight User Group. http://www.portlandsilverlight.net/Meetings/Details/15 And I survived (which you should have probably already figured out since you’re reading this post AND that’s what I titled it…) Really though it was a fantastic time and I had a lot of fun! I was a little nervous getting ready for it, but I’m always a little nervous getting ready for things. I had the game all written,  I knew the general flow for what the talk was going to be. I read over Scott Hanselman’s 11 Top Tips for a Successful Technical presentation (which has become something I do EVERY time I’m preparing for a talk). I gave myself a brief list of points I wanted to make sure I covered or worked into the talk. But then I was ready and I waited. I hate the waiting. It makes me nervous. Once I was up in front of the room though with my laptop open and some XNA code in front of me, my nerves go away. Then I’m ready. I know XNA, I love talking about XNA and I love sharing what I know and hearing questions that make me think. And hopefully that came through while I was talking. I had a freaking blast. The swag went quickly (and I was even able to hand out some XNA 2.0 books that have been around forever!) and the pizza was been gobbled down. I started the talk at about 6:10 and managed to cover a very brief intro to programming against the game loop (it’s a different concept and one that seems to trip a lot of people up getting started with game development) and then rolled into making a basic 2D game for Windows Phone 7 using XNA. And I finished the whole thing before 8:30. Wahoo! I’m planning on posting the source code and assets on my site so those should be coming soon. And to make things even better, they recorded the whole thing on video so everyone will get to see me pretend I can speak! Just wait till you hear the new song I wrote for this talk…

    Read the article

  • 2D SAT Collision Detection not working when using certain polygons (With example)

    - by sFuller
    My SAT algorithm falsely reports that collision is occurring when using certain polygons. I believe this happens when using a polygon that does not contain a right angle. Here is a simple diagram of what is going wrong: Here is the problematic code: std::vector<vec2> axesB = polygonB->GetAxes(); //loop over axes B for(int i = 0; i < axesB.size(); i++) { float minA,minB,maxA,maxB; polygonA->Project(axesB[i],&minA,&maxA); polygonB->Project(axesB[i],&minB,&maxB); float intervalDistance = polygonA->GetIntervalDistance(minA, maxA, minB, maxB); if(intervalDistance >= 0) return false; //Collision not occurring } This function retrieves axes from the polygon: std::vector<vec2> Polygon::GetAxes() { std::vector<vec2> axes; for(int i = 0; i < verts.size(); i++) { vec2 a = verts[i]; vec2 b = verts[(i+1)%verts.size()]; vec2 edge = b-a; axes.push_back(vec2(-edge.y,edge.x).GetNormailzed()); } return axes; } This function returns the normalized vector: vec2 vec2::GetNormailzed() { float mag = sqrt( x*x + y*y ); return *this/mag; } This function projects a polygon onto an axis: void Polygon::Project(vec2* axis, float* min, float* max) { float d = axis->DotProduct(&verts[0]); float _min = d; float _max = d; for(int i = 1; i < verts.size(); i++) { d = axis->DotProduct(&verts[i]); _min = std::min(_min,d); _max = std::max(_max,d); } *min = _min; *max = _max; } This function returns the dot product of the vector with another vector. float vec2::DotProduct(vec2* other) { return (x*other->x + y*other->y); } Could anyone give me a pointer in the right direction to what could be causing this bug? Edit: I forgot this function, which gives me the interval distance: float Polygon::GetIntervalDistance(float minA, float maxA, float minB, float maxB) { float intervalDistance; if (minA < minB) { intervalDistance = minB - maxA; } else { intervalDistance = minA - maxB; } return intervalDistance; //A positive value indicates this axis can be separated. } Edit 2: I have recreated the problem in HTML5/Javascript: Demo

    Read the article

  • Behaviour Trees with irregular updates

    - by Robominister
    I'm interested in behaviour trees that aren't iterated every game tick, but every so often. (Edit: the tree could specify how many frames within the main game loop to wait before running its tick function again). Every theoretical implementation I have seen of behaviour trees talks of the tree search being carried out every game update - which seems necessary, because a leaf node (eg a behaviour, like 'return to base') needs to be constantly checked to see if is still running, failed or completed. Can anyone suggest how I might start implementing a tree that isnt run every tick, or point me in the direction of good material specific to this case (I am struggling to find anything)? My thoughts so far: action leaf nodes (when they start) must only push some kind of action object onto a list for an entity, rather than directly calling any code that makes the entity do something. The list of actions for the entity would be run every frame (update any that need to run, pop any that have completed from the list). the return state from a given action must be fed back into the tree, so that when we run the tree iteration again (and reach the same action leaf node - so the tree has so far determined that we ought to still be trying this action) - that the action has completed, or is still running etc. If my actual action code is running from an action list on an entity, then I possibly need to cancel previously running actions in the list - i am thinking that I can just delete the entire stack of queued up actions. I've seen the idea of ActionLists which block lower priority actions when a higher priority one is added, but this seems like very close logic to behaviour trees, and I dont want to be duplicating behaviour. This leaves me with some questions 1) How would I feed the action return state back into the tree? Its obvious I need to store some information relating to 'currently executing actions' on the entity, and check that in the tree tick, but I can't imagine how. 2) Does having a seperate behaviour tree (for deciding behaviour) and action list (for carrying out actual queued up actions) sound like a reasonable approach? 3) Is the approach of updating a behaviour tree irregularly actually used by anyone? It seems like a nice idea for budgeting ai search time when you have a lot of ai entities to process. (Edit) - I am also thinking about storing a single instance of a given behaviour tree in memory, and providing it by reference to any entity that uses it. So any information about what action was last selected for execution on an entity must be stored in a data context relative to the entity (which the tree can check). (I am probably answering my own questions as i go!) I hope I have expressed my questions adequately! Thanks in advance for any help :)

    Read the article

  • ADF Reusable Artefacts

    - by Arda Eralp
    Primary reusable ADF Business Component: Entity Objects (EOs) View Objects (VOs) Application Modules (AMs) Framework Extensions Classes Primary reusable ADF Controller: Bounded Task Flows (BTFs) Task Flow Templates Primary reusable ADF Faces: Page Templates Skins Declarative Components Utility Classes Certain components will often be used more than once. Whether the reuse happens within the same application, or across different applications, it is often advantageous to package these reusable components into a library that can be shared between different developers, across different teams, and even across departments within an organization. In the world of Java object-oriented programming, reusing classes and objects is just standard procedure. With the introduction of the model-view-controller (MVC) architecture, applications can be further modularized into separate model, view, and controller layers. By separating the data (model and business services layers) from the presentation (view and controller layers), you ensure that changes to any one layer do not affect the integrity of the other layers. You can change business logic without having to change the UI, or redesign the web pages or front end without having to recode domain logic. Oracle ADF and JDeveloper support the MVC design pattern. When you create an application in JDeveloper, you can choose many application templates that automatically set up data model and user interface projects. Because the different MVC layers are decoupled from each other, development can proceed on different projects in parallel and with a certain amount of independence. ADF Library further extends this modularity of design by providing a convenient and practical way to create, deploy, and reuse high-level components. When you first design your application, you design it with component reusability in mind. If you created components that can be reused, you can package them into JAR files and add them to a reusable component repository. If you need a component, you may look into the repository for those components and then add them into your project or application. For example, you can create an application module for a domain and package it to be used as the data model project in several different applications. Or, if your application will be consuming components, you may be able to load a page template component from a repository of ADF Library JARs to create common look and feel pages. Then you can put your page flow together by stringing together several task flow components pulled from the library. An ADF Library JAR contains ADF components and does not, and cannot, contain other JARs. It should not be confused with the JDeveloper library, Java EE library, or Oracle WebLogic shared library. Reusable Component Description Data Control Any data control can be packaged into an ADF Library JAR. Some of the data controls supported by Oracle ADF include application modules, Enterprise JavaBeans, web services, URL services, JavaBeans, and placeholder data controls. Application Module When you are using ADF Business Components and you generate an application module, an associated application module data control is also generated. When you package an application module data control, you also package up the ADF Business Components associated with that application module. The relevant entity objects, view objects, and associations will be a part of the ADF Library JAR and available for reuse. Business Components Business components are the entity objects, view objects, and associations used in the ADF Business Components data model project. You can package business components by themselves or together with an application module. Task Flows & Task Flow Templates Task flows can be packaged into an ADF Library JAR for reuse. If you drop a bounded task flow that uses page fragments, JDeveloper adds a region to the page and binds it to the dropped task flow. ADF bounded task flows built using pages can be dropped onto pages. The drop will create a link to call the bounded task flow. A task flow call activity and control flow will automatically be added to the task flow, with the view activity referencing the page. If there is more than one existing task flow with a view activity referencing the page, it will prompt you to select the one to automatically add a task flow call activity and control flow. If an ADF task flow template was created in the same project as the task flow, the ADF task flow template will be included in the ADF Library JAR and will be reusable. Page Templates You can package a page template and its artifacts into an ADF Library JAR. If the template uses image files and they are included in a directory within your project, these files will also be available for the template during reuse. Declarative Components You can create declarative components and package them for reuse. The tag libraries associated with the component will be included and loaded into the consuming project. You can also package up projects that have several different reusable components if you expect that more than one component will be consumed. For example, you can create a project that has both an application module and a bounded task flow. When this ADF Library JAR file is consumed, the application will have both the application module and the task flow available for use. You can package multiple components into one JAR file, or you can package a single component into a JAR file. Oracle ADF and JDeveloper give you the option and flexibility to create reusable components that best suit you and your organization. You create a reusable component by using JDeveloper to package and deploy the project that contains the components into a ADF Library JAR file. You use the components by adding that JAR to the consuming project. At design time, the JAR is added to the consuming project's class path and so is available for reuse. At runtime, the reused component runs from the JAR file by reference.

    Read the article

  • Documentation Changes in Solaris 11.1

    - by alanc
    One of the first places you can see Solaris 11.1 changes are in the docs, which have now been posted in the Solaris 11.1 Library on docs.oracle.com. I spent a good deal of time reviewing documentation for this release, and thought some would be interesting to blog about, but didn't review all the changes (not by a long shot), and am not going to cover all the changes here, so there's plenty left for you to discover on your own. Just comparing the Solaris 11.1 Library list of docs against the Solaris 11 list will show a lot of reorganization and refactoring of the doc set, especially in the system administration guides. Hopefully the new break down will make it easier to get straight to the sections you need when a task is at hand. Packaging System Unfortunately, the excellent in-depth guide for how to build packages for the new Image Packaging System (IPS) in Solaris 11 wasn't done in time to make the initial Solaris 11 doc set. An interim version was published shortly after release, in PDF form on the OTN IPS page. For Solaris 11.1 it was included in the doc set, as Packaging and Delivering Software With the Image Packaging System in Oracle Solaris 11.1, so should be easier to find, and easier to share links to specific pages the HTML version. Beyond just how to build a package, it includes details on how Solaris is packaged, and how package updates work, which may be useful to all system administrators who deal with Solaris 11 upgrades & installations. The Adding and Updating Oracle Solaris 11.1 Software Packages was also extended, including new sections on Relaxing Version Constraints Specified by Incorporations and Locking Packages to a Specified Version that may be of interest to those who want to keep the Solaris 11 versions of certain packages when they upgrade, such as the couple of packages that had functionality removed by an (unusual for an update release) End of Feature process in the 11.1 release. Also added in this release is a document containing the lists of all the packages in each of the major package groups in Solaris 11.1 (solaris-desktop, solaris-large-server, and solaris-small-server). While you can simply get the contents of those groups from the package repository, either via the web interface or the pkg command line, the documentation puts them in handy tables for easier side-by-side comparison, or viewing the lists before you've installed the system to pick which one you want to initially install. X Window System We've not had good X11 coverage in the online Solaris docs in a while, mostly relying on the man pages, and upstream X.Org docs. In this release, we've integrated some X coverage into the Solaris 11.1 Desktop Adminstrator's Guide, including sections on installing fonts for fontconfig or legacy X11 clients, X server configuration, and setting up remote access via X11 or VNC. Of course we continue to work on improving the docs, including a lot of contributions to the upstream docs all OS'es share (more about that another time). Security One of the things Oracle likes to do for its products is to publish security guides for administrators & developers to know how to build systems that meet their security needs. For Solaris, we started this with Solaris 11, providing a guide for sysadmins to find where the security relevant configuration options were documented. The Solaris 11.1 Security Guidelines extend this to cover new security features, such as Address Space Layout Randomization (ASLR) and Read-Only Zones, as well as adding additional guidelines for existing features, such as how to limit the size of tmpfs filesystems, to avoid users driving the system into swap thrashing situations. For developers, the corresponding document is the Developer's Guide to Oracle Solaris 11 Security, which has been the source for years for documentation of security-relevant Solaris API's such as PAM, GSS-API, and the Solaris Cryptographic Framework. For Solaris 11.1, a new appendix was added to start providing Secure Coding Guidelines for Developers, leveraging the CERT Secure Coding Standards and OWASP guidelines to provide the base recommendations for common programming languages and their standard API's. Solaris specific secure programming guidance was added via links to other documentation in the product doc set. In parallel, we updated the Solaris C Libary Functions security considerations list with details of Solaris 11 enhancements such as FD_CLOEXEC flags, additional *at() functions, and new stdio functions such as asprintf() and getline(). A number of code examples throughout the Solaris 11.1 doc set were updated to follow these recommendations, changing unbounded strcpy() calls to strlcpy(), sprintf() to snprintf(), etc. so that developers following our examples start out with safer code. The Writing Device Drivers guide even had the appendix updated to list which of these utility functions, like snprintf() and strlcpy(), are now available via the Kernel DDI. Little Things Of course all the big new features got documented, and some major efforts were put into refactoring and renovation, but there were also a lot of smaller things that got fixed as well in the nearly a year between the Solaris 11 and 11.1 doc releases - again too many to list here, but a random sampling of the ones I know about & found interesting or useful: The Privileges section of the DTrace Guide now gives users a pointer to find out how to set up DTrace privileges for non-global zones and what limitations are in place there. A new section on Recommended iSCSI Configuration Practices was added to the iSCSI configuration section when it moved into the SAN Configuration and Multipathing administration guide. The Managing System Power Services section contains an expanded explanation of the various tunables for power management in Solaris 11.1. The sample dcmd sources in /usr/demo/mdb were updated to include ::help output, so that developers like myself who follow the examples don't forget to include it (until a helpful code reviewer pointed it out while reviewing the mdb module changes for Xorg 1.12). The README file in that directory was updated to show the correct paths for installing both kernel & userspace modules, including the 64-bit variants.

    Read the article

  • Problem animating in Unity/Orthello 2D. Can't move gameObject

    - by Nelson Gregório
    I have a enemy npc that moves left and right in a corridor. It's animated with 2 sprites using Orthello 2D Framework. If I untick the animation's play on start and looping, the npc moves correctly. If I turn it on, the npc tries to move but is pulled back to his starting position again and again because of the animation loop. If I turn looping off during runtime, the npc moves correctly again. What did I do wrong? Here's the npc code if needed. using UnityEngine; using System.Collections; public class Enemies : MonoBehaviour { private Vector2 movement; public float moveSpeed = 200; public bool started = true; public bool blockedRight = false; public bool blockedLeft = false; public GameObject BorderL; public GameObject BorderR; void Update () { if (gameObject.transform.position.x < BorderL.transform.position.x) { started = false; blockedRight = false; blockedLeft = true; } if (gameObject.transform.position.x > BorderR.transform.position.x) { started = false; blockedLeft = false; blockedRight = true; } if(started) { movement = new Vector2(1, 0f); movement *= Time.deltaTime*moveSpeed; gameObject.transform.Translate(movement.x,movement.y, 0f); } if(!blockedRight && !started && blockedLeft) { movement = new Vector2(1, 0f); movement *= Time.deltaTime*moveSpeed; gameObject.transform.Translate(movement.x,movement.y, 0f); } if(!blockedLeft && !started && blockedRight) { movement = new Vector2(-1, 0f); movement *= Time.deltaTime*moveSpeed; gameObject.transform.Translate(movement.x,movement.y, 0f); } } }

    Read the article

  • Why do "Joke" programming languages exist? [closed]

    - by ThePlan
    First of all please be aware this post contains some abusive language but I hope it will not bother anyone. I apologize for the bad language but that's what the name is. As I've been doing documentation on existing programming languages attempting to make a complete list of them I stumbled across terrible programming languages, which were clearly not made for actual use and implementation due to their insane difficulty. Languages such as Brainfu*k and LOLCODE or Whitespace are fool languages because they have no real use. For example, a "Hello world" program written in BrainFu*k. Taken from Wikipedia: The following program prints "Hello World!" and a newline to the screen: +++++ +++++ initialize counter (cell #0) to 10 [ use loop to set the next four cells to 70/100/30/10 > +++++ ++ add 7 to cell #1 > +++++ +++++ add 10 to cell #2 > +++ add 3 to cell #3 > + add 1 to cell #4 <<<< - decrement counter (cell #0) ] > ++ . print 'H' > + . print 'e' +++++ ++ . print 'l' . print 'l' +++ . print 'o' > ++ . print ' ' << +++++ +++++ +++++ . print 'W' > . print 'o' +++ . print 'r' ----- - . print 'l' ----- --- . print 'd' > + . print '!' > . print '\n' or another example taken from LOLCODE language: HAI CAN HAS STDIO? PLZ OPEN FILE "LOLCATS.TXT"? AWSUM THX VISIBLE FILE O NOES INVISIBLE "ERROR!" KTHXBYE These languages are very difficult to learn/read/work with. My question is - Why do they exist? What is the purpose of them? Also, is there an official "name" for these type of languages?

    Read the article

  • How can I clear explosions in my function?

    - by hustlerinc
    Hi I have a function to place bombs, and a for loop that places explosions on the tiles where possible. My problem is that I can't remove the explosions after a while. I've tried everything I can come up with so now I turn here as a last resort. The function looks like this: function Bomb(){ var placebomb = false; if(placeBomb && player.bombs != 0){ map[player.Y][player.X].object = 2; var bombX = player.X; var bombY = player.Y; placeBomb = false; player.bombs--; setTimeout(explode, 3000); } function explode(){ var explodeNorth = true; var explodeEast = true; var explodeSouth = true; var explodeWest = true; map[bombY][bombX].explosion = 1; delete map[bombY][bombX].object; for(i=0;i<=player.bombRadius;i++){ if(explodeNorth && map[bombY-i][bombX]){ if(!map[bombY-i][bombX].wall){ if(!map[bombY-i][bombX].object){ map[bombY-i][bombX].explosion = 1; } else var explodeNorth = false; delete map[bombY-i][bombX].object; map[bombY-i][bombX].explosion = 1; } else var explodeNorth = false; } if(explodeEast && map[bombY][bombX+i]){ if(!map[bombY][bombX+i].wall){ if(!map[bombY][bombX+i].object){ map[bombY][bombX+i].explosion = 1; } else var explodeEast = false; delete map[bombY][bombX+i].object; map[bombY][bombX+i].explosion = 1; } else var explodeEast = false; } if(explodeSouth && map[bombY+i][bombX]){ if(!map[bombY+i][bombX].wall){ if(!map[bombY+i][bombX].object){ map[bombY+i][bombX].explosion = 1; } else var explodeSouth = false; delete map[bombY+i][bombX].object; map[bombY+i][bombX].explosion = 1; } else var explodeSouth = false; } if(explodeWest && map[bombY][bombX-i]){ if(!map[bombY][bombX-i].wall){ if(!map[bombY][bombX-i].object){ map[bombY][bombX-i].explosion = 1; } else var explodeWest = false; delete map[bombY][bombX-i].object; map[bombY][bombX-i].explosion = 1; } else var explodeWest = false; } } player.bombs++; } } If anyone can think of a good way to remove the explosion after a delay please help.

    Read the article

  • Nifty popup fails to register

    - by Snailer
    I'm new to Nifty GUI, so I'm following a tutorial here for making popups. For now, I'm just trying to get a very basic "test" popup to show, but I get multiple errors and none of them make much sense. To show a popup, I believe it is necessary to first have a Nifty Screen already showing, which I do. So here is the ScreenController for the working Nifty Screen: public class WorkingScreen extends AbstractAppState implements ScreenController { //Main is my jme SimpleApplication private Main app; private Nifty nifty; private Screen screen; public WorkingScreen() {} public void equip(String slotstr) { int slot = Integer.valueOf(slotstr); System.out.println("Equipping item in slot "+slot); //Here's where it STOPS working. app.getPlayer().registerPopupScreen(nifty); System.out.println("Registered new popup"); Element ele = nifty.createPopup(app.getPlayer().POPUP); System.out.println("popup is " +ele); nifty.showPopup(nifty.getCurrentScreen(), ele.getId(), null); } @Override public void initialize(AppStateManager stateManager, Application app) { super.initialize(stateManager, app); this.app = (Main)app; } @Override public void update(float tpf) { /** jME update loop! */ } public void bind(Nifty nifty, Screen screen) { this.nifty = nifty; this.screen = screen; } When I call equip(0) the system prints Equipping item in slot 0, then a lot of errors and none of the subsequent println()'s. Clearly it botches somewhere in Player.registerPopupScreen(Nifty nifty). Here's the method: public final String POPUP = "Test Popup"; public void registerPopupScreen(Nifty nifty) { System.out.println("Attempting new popup"); PopupBuilder b = new PopupBuilder(POPUP) {{ childLayoutCenter(); backgroundColor("#000a"); panel(new PanelBuilder() {{ id("List"); childLayoutCenter(); height(percentage(75)); width(percentage(50)); control(new ButtonBuilder("TestButton") {{ label("TestButton"); width("120px"); height("40px"); align(Align.Center); }}); }}); }}; System.out.println("PopupBuilder success."); b.registerPopup(nifty); System.out.println("Registerpopup success."); } Because that first println() doesn't show, it looks like this method isn't even called at all! Edit After removing all calls on the Player object, the popup works. It seems I'm not "allowed" to access the player from the ScreenController. Unfortunate, since I need information on the player for the popup. Is there a workaround?

    Read the article

  • Small script to look for Project Replication actions that have failed

    - by Trond Strømme
    Today when looking at a couple of projects on a ZFS 7320 Storage Appliance I noticed on one project that one of its replication actions had failed, as I hadn't checked the Recent Alerts log yet I was not aware of this. I decided to write a small script to check if there were others that had failed. Nothing fancy, just a loop through all projects, look at the project's replication child and compare the values of the last_sync and last_try properties and print the result if they're not equal. (There are probably more sensible ways of doing this, but at least it involves me getting the chance to put on my headphones and doing just a little bit of coding.) script // this script will locate failed project level replication // it will look at the sync times for 'last_sync' and 'last_try' // and compare these, if they deviate you should investigate. // NOTE! this code is offered 'as is' Run at your own risk, // it will probably work as intended, but in now way can I // (or Oracle) be held responsible if your server starts behaving // like a three year old kid in a candy store.. (not that mine do, // they are very well behaved boys...) run('configuration'); run('storage'); printf('Host: %s, pool: %s\n', get('owner'),get('pool')); run('cd /'); run('shares'); proj=list(); printf("total projects: %d\n",proj.length +'\n'); // just for project level replication for(i=0;i<proj.length;i++){ run('select '+proj[i]); run('replication'); //get all replication actions preps = list(); for(j=0;j<preps.length;j++){ run('select ' + preps[j]); last_sync = get('last_sync'); last_try = get('last_try'); // printf("target %s\n", get('target')); //why the flip does this not get the proper name? if(!( last_sync.valueOf() === last_try.valueOf())){ printf("sync has failed for %s %s\n", proj[i], get('target')); }else{ // printf("OK %s %s\n", proj[i], get('target')); } run('done'); //done with the replica action } run('done'); run('done'); } printf("finished\n"); For a more on how to run the script, or testing it please look at my previous post. Sample output: Host: elb1sn01, pool: exalogic total projects: 45 sync has failed for ACSExalogicSystem cb3a24fe-ad60-c90f-d15d-adaafd595639 finished

    Read the article

  • How should I structure my turn based engine to allow flexibility for players/AI and observation?

    - by Reefpirate
    I've just started making a Turn Based Strategy engine in GameMaker's GML language... And I was cruising along nicely until it came time to handle the turn cycle, and determining who is controlling what player, and also how to handle the camera and what is displayed on screen. Here's an outline of the main switch happening in my main game loop at the moment: switch (GameState) { case BEGIN_TURN: // Start of turn operations/routines break; case MID_TURN: switch (PControlledBy[Turn]) { case HUMAN: switch (MidTurnState) { case MT_SELECT: // No units selected, 'idle' UI state break; case MT_MOVE: // Unit selected and attempting to move break; case MT_ATTACK: break; } break; case COMPUTER: // AI ROUTINES GO HERE break; case OBSERVER: // OBSERVER ROUTINES GO HERE break; } break; case END_TURN: // End of turn routines/operations, and move Turn to next player break; } Now, I can see a couple of problems with this set-up already... But I don't have any idea how to go about making it 'right'. Turn is a global variable that stores which player's turn it is, and the BEGIN_TURN and END_TURN states make perfect sense to me... But the MID_TURN state is baffling me because of the things I want to happen here: If there are players controlled by humans, I want the AI to do it's thing on its turn here, but I want to be able to have the camera follow the AI as it makes moves in the human player's vision. If there are no human controlled player's, I'd like to be able to watch two or more AI's battle it out on the map with god-like 'observer' vision. So basically I'm wondering if there are any resources for how to structure a Turn Based Strategy engine? I've found lots of writing about pathfinding and AI, and those are all great... But when it comes to handling the turn structure and the game states I am having trouble finding any resources at all. How should the states be divided to allow flexibility between the players and the controllers (HUMAN, COMPUTER, OBSERVER)? Also, maybe if I'm on the right track I just need some reassurance before I lay down another few hundred lines of code...

    Read the article

< Previous Page | 282 283 284 285 286 287 288 289 290 291 292 293  | Next Page >