Search Results

Search found 12047 results on 482 pages for 'general debugging tidbits'.

Page 29/482 | < Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >

  • LLBLGen Pro feature highlights: grouping model elements

    - by FransBouma
    (This post is part of a series of posts about features of the LLBLGen Pro system) When working with an entity model which has more than a few entities, it's often convenient to be able to group entities together if they belong to a semantic sub-model. For example, if your entity model has several entities which are about 'security', it would be practical to group them together under the 'security' moniker. This way, you could easily find them back, yet they can be left inside the complete entity model altogether so their relationships with entities outside the group are kept. In other situations your domain consists of semi-separate entity models which all target tables/views which are located in the same database. It then might be convenient to have a single project to manage the complete target database, yet have the entity models separate of each other and have them result in separate code bases. LLBLGen Pro can do both for you. This blog post will illustrate both situations. The feature is called group usage and is controllable through the project settings. This setting is supported on all supported O/R mapper frameworks. Situation one: grouping entities in a single model. This situation is common for entity models which are dense, so many relationships exist between all sub-models: you can't split them up easily into separate models (nor do you likely want to), however it's convenient to have them grouped together into groups inside the entity model at the project level. A typical example for this is the AdventureWorks example database for SQL Server. This database, which is a single catalog, has for each sub-group a schema, however most of these schemas are tightly connected with each other: adding all schemas together will give a model with entities which indirectly are related to all other entities. LLBLGen Pro's default setting for group usage is AsVisualGroupingMechanism which is what this situation is all about: we group the elements for visual purposes, it has no real meaning for the model nor the code generated. Let's reverse engineer AdventureWorks to an entity model. By default, LLBLGen Pro uses the target schema an element is in which is being reverse engineered, as the group it will be in. This is convenient if you already have categorized tables/views in schemas, like which is the case in AdventureWorks. Of course this can be switched off, or corrected on the fly. When reverse engineering, we'll walk through a wizard which will guide us with the selection of the elements which relational model data should be retrieved, which we can later on use to reverse engineer to an entity model. The first step after specifying which database server connect to is to select these elements. below we can see the AdventureWorks catalog as well as the different schemas it contains. We'll include all of them. After the wizard completes, we have all relational model data nicely in our catalog data, with schemas. So let's reverse engineer entities from the tables in these schemas. We select in the catalog explorer the schemas 'HumanResources', 'Person', 'Production', 'Purchasing' and 'Sales', then right-click one of them and from the context menu, we select Reverse engineer Tables to Entity Definitions.... This will bring up the dialog below. We check all checkboxes in one go by checking the checkbox at the top to mark them all to be added to the project. As you can see LLBLGen Pro has already filled in the group name based on the schema name, as this is the default and we didn't change the setting. If you want, you can select multiple rows at once and set the group name to something else using the controls on the dialog. We're fine with the group names chosen so we'll simply click Add to Project. This gives the following result:   (I collapsed the other groups to keep the picture small ;)). As you can see, the entities are now grouped. Just to see how dense this model is, I've expanded the relationships of Employee: As you can see, it has relationships with entities from three other groups than HumanResources. It's not doable to cut up this project into sub-models without duplicating the Employee entity in all those groups, so this model is better suited to be used as a single model resulting in a single code base, however it benefits greatly from having its entities grouped into separate groups at the project level, to make work done on the model easier. Now let's look at another situation, namely where we work with a single database while we want to have multiple models and for each model a separate code base. Situation two: grouping entities in separate models within the same project. To get rid of the entities to see the second situation in action, simply undo the reverse engineering action in the project. We still have the AdventureWorks relational model data in the catalog. To switch LLBLGen Pro to see each group in the project as a separate project, open the Project Settings, navigate to General and set Group usage to AsSeparateProjects. In the catalog explorer, select Person and Production, right-click them and select again Reverse engineer Tables to Entities.... Again check the checkbox at the top to mark all entities to be added and click Add to Project. We get two groups, as expected, however this time the groups are seen as separate projects. This means that the validation logic inside LLBLGen Pro will see it as an error if there's e.g. a relationship or an inheritance edge linking two groups together, as that would lead to a cyclic reference in the code bases. To see this variant of the grouping feature, seeing the groups as separate projects, in action, we'll generate code from the project with the two groups we just created: select from the main menu: Project -> Generate Source-code... (or press F7 ;)). In the dialog popping up, select the target .NET framework you want to use, the template preset, fill in a destination folder and click Start Generator (normal). This will start the code generator process. As expected the code generator has simply generated two code bases, one for Person and one for Production: The group name is used inside the namespace for the different elements. This allows you to add both code bases to a single solution and use them together in a different project without problems. Below is a snippet from the code file of a generated entity class. //... using System.Xml.Serialization; using AdventureWorks.Person; using AdventureWorks.Person.HelperClasses; using AdventureWorks.Person.FactoryClasses; using AdventureWorks.Person.RelationClasses; using SD.LLBLGen.Pro.ORMSupportClasses; namespace AdventureWorks.Person.EntityClasses { //... /// <summary>Entity class which represents the entity 'Address'.<br/><br/></summary> [Serializable] public partial class AddressEntity : CommonEntityBase //... The advantage of this is that you can have two code bases and work with them separately, yet have a single target database and maintain everything in a single location. If you decide to move to a single code base, you can do so with a change of one setting. It's also useful if you want to keep the groups as separate models (and code bases) yet want to add relationships to elements from another group using a copy of the entity: you can simply reverse engineer the target table to a new entity into a different group, effectively making a copy of the entity. As there's a single target database, changes made to that database are reflected in both models which makes maintenance easier than when you'd have a separate project for each group, with its own relational model data. Conclusion LLBLGen Pro offers a flexible way to work with entities in sub-models and control how the sub-models end up in the generated code.

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • Visiting the Fire Station in Coromandel

    Hm, I just tried to remember how we actually came up with this cool idea... but it's already too blurred and it doesn't really matter after all. Anyway, if I remember correctly (IIRC), it happened during one of the Linux meetups at Mugg & Bean, Bagatelle where Ajay and I brought our children along and we had a brief conversation about how cool it would be to check out one of the fire stations here in Mauritius. We both thought that it would be a great experience and adventure for the little ones. An idea takes shape And there we go, down the usual routine these... having an idea, checking out the options and discussing who's doing what. Except this time, it was all up to Ajay, and he did a fantastic job. End of August, he told me that he got in touch with one of his friends which actually works as a fire fighter at the station in Coromandel and that there could be an option to come and visit them (soon). A couple of days later - Confirmed! Be there, and in time... What time? Anyway, doesn't really matter... Everything was settled and arranged. I asked the kids on Friday afternoon if they might be interested to see the fire engines and what a fire fighter is doing. Of course, they were all in! Getting up early on Sunday morning isn't really a regular exercise for all of us but everything went smooth and after a short breakfast it was time to leave. Where are we going? Are we there yet? Now, we are in Bambous. Why do you go this way? The kids were so much into it. Absolutely amazing to see their excitement. Are we there yet? Well, we went through the sugar cane fields towards Chebel and then down into the industrial zone at Coromandel. Honestly, I had a clue where the fire station is located but having Google Maps in reach that shouldn't be a problem in case that we might get lost. But my worries were washed away when our children guided us... "There! Over there are the fire engines! We have to turn left, dad." - No comment, the kids were right! As we were there a little bit too early, we parked the car and the kids started to explore the area and outskirts of the fire station. Some minutes later, as if we had placed an order a unit of two cars had to go out for an alarm and the kids could witness them leaving as closely as possible. Sirens on and wow!!! Ladder truck L32 - MAN truck with Rosenbauer built-up and equipment by Metz Taking the tour Ajay arrived shortly after that and guided us finally inside the station to meet with his pal. The three guys were absolutely well-prepared and showed us around in the hall, explaining that there two units out at the moment. But the ladder truck (with max. 32m expandable height) was still around we all got a great insight into the technique and equipment on the vehicle. It was amazing to see all three kids listening to Mambo as give some figures about the truck and how the fire fighters are actually it. The children and 'our' fire fighters of the day had great fun with the various fire engines Absolutely fantastic that the children were allowed to experience this - we had so much fun! Ajay's son brought two of his toy fire engines along, shared them with ours, and they all played very well together. As a parent it was really amazing to see them at such an ease. Enough theory Shortly afterwards the ladder truck was moved outside, got stabilised and ready to go for 'real-life' exercising. With the additional equipment of safety helmets, security belts and so on, we all got a first-hand impression about how it could be as a fire-fighter. Actually, I was totally amazed by the curiousity and excitement of my BWE. She was really into it and asked lots of interesting questions - in general but also technical. And while our fighters were busy with Ajay and family, I gave her some more details and explanations about the truck, the expandable ladder, the safety cage at the top and other equipment available. Safety first! No exceptions and always be prepared for the worst case... Also, the equipped has been checked prior to excuse - This is your life saver... Hooked up and ready to go... ...of course not too high. This is just a demonstration - and 32 meters above ground isn't for everyone. Well, after that it was me that had the asking looks on me, and I finally revealed to the local fire fighters that I was in the auxiliary fire brigade, more precisely in the hazard department, for more than 10 years. So not a professional fire fighter but at least a passionate and educated one as them. Inside the station Our fire fighters really took their time to explain their daily job to kids, provided them access to operation seat on the ladder truck and how the truck cabin is actually equipped with the different radios and so on. It was really a great time. Later on we had a brief tour through the building itself, and again all of our questions were answered. We had great fun and started to joke about bits and pieces. For me it was also very interesting to see the comparison between the fire station here in Mauritius and the ones I have been to back in Germany. Amazing to see them completely captivated in the play - the children had lots of fun! Also, that there are currently ten fire stations all over the island, plus two additional but private ones at the airport and at the harbour. The newest one is actually down in Black River on the west coast because the time from Quatre Bornes takes too long to have any chance of an effective alarm at all. IMHO, a very good decision as time is the most important factor in getting fire incidents under control. After all it was great experience for all of us, especially for the children to see and understand that their toy trucks are only copies of the real thing and that the job of a (professional) fire fighter is very important in our society. Don't forget that those guys run into the danger zone while you're trying to get away from it as much as possible. Another unit just came back from a grass fire - and shortly after they went out again. No time to rest, too much to do! Mauritian Fire Fighters now and (maybe) in the future... Thank you! It was an honour to be around! Thank you to Ajay for organising and arranging this Sunday morning event, and of course of Big Thank You to the three guys that took some time off to have us at the Fire Station in Coromandel and guide us through their daily job! And remember to call 115 in case of emergencies!

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • Debugging utilities for Linux process hang issues?

    - by Niranjan
    I have a daemon process which does the configuration management. all the other processes should interact with this daemon for their functioning. But when I execute a large action, after few hours the daemon process is unresponsive for 2 to 3 hours. And After 2- 3 hours it is working normally. Debugging utilities for Linux process hang issues? How to get at what point the linux process hangs?

    Read the article

  • Debugging an httpmodule on the asp.net development server

    - by Caveatrob
    Hi, I want to integrate some http modules in my asp.net application (v 3.5, visual studio 2008) and I'm not sure how to debug or use such modules while debugging in the asp.net development server that fires when I run the web app. Do I need to include the module source in the solution or can I just drop the DLL into BIN? I'm from the 1.1 world and am not yet used to the asp.net development server.

    Read the article

  • http proxy for debugging purposes

    - by flybywire
    I am looking for a preferably free http proxy to be used for debugging purposes. I already have firebug and firebug lite in my tool set, but firebug lite won't let me see ajax requests in internet explorer. I thought an intercepting proxy might do the feat

    Read the article

  • Debugging into a shared library source from consuming app, using QTCreator

    - by morpheous
    I am using QTCreator (1.3.1) on Ubuntu Karmic. I have built two projects: a shared library an application that links to the shared library I am debugging the application, and need to step into the implementation (i.e. the source) of one of the functions exported by the shared library. Does anyone know how to setup the QTCreator to allow me to step into the source of a shared library?

    Read the article

  • Debugging php-cli scripts with xdebug and netbeans?

    - by wurdalack
    I have managed to initiate php-cli script debug session from the IDE itself, but I need to start the debugging session from the shell / command line. These are rather complex maintenance PHP scripts which take a lot of input parameters, so entering arguments from within Netbeans is a bit cumbersome. I have done it before with Zend studio http://kb.zend.com/index.php?View=entry&EntryID=130 but now I need to get it working with Netbeans. Thanks in advance.

    Read the article

  • Debugging CodeIgniters 404 errors

    - by Alex
    I'm having a nightmare uploading my site to the production server. The site runs fine locally and on a staging server (exactly the same server, settings as the production site). However when I deploy to production I'm getting a 404 error from CI. CodeIgniters 404 error pages are frustrating because it seems as if i can't access other libraries from them. How can I go about debugging the error? See which controller is trying to be called etc.

    Read the article

  • Scriptable testing/debugging HTTP/HTTPS cookies and redirects

    - by Peter Boughton
    I need to setup some automated testing of HTTP requests, to check cookies are doing the right thing, with (manual) debugging when there is a problem. So far I've been muddling along with Firebug, but it's quite a bit of effort using that, and I would prefer some form of scriptable tool, both to make it easier for me and to allow an automated regression test. Any recommendations?

    Read the article

  • Set default browser when debugging WPF?

    - by Albert Walker
    I'm using VWD Express 2008 to develop a WPF Browser Application. When I start debugging, it launches the XBAP in my default browser, which is Opera. Obviously, XBAPs don't work in Opera, so I have to repeatedly right-click on the document to open in IE. Is there any way to change the settings for PresentationHost.exe so that it always opens with IE? A registry setting, perhaps?

    Read the article

  • cpp/Qt : per class debugging

    - by dzen
    I'm developing a Qt application. For each class, I'm trying to mimic the framework, such as error() and errorString() method, use of Private implementation. But I would like to add a per class debugging: Set a macro to the desired level of debug, have a macro or a function that knows the level of debug, and use qDebug() or qWarning() which is class independant, and will know the current class's name (for some pretty prints) Anyone have a good idea to implement this ?

    Read the article

  • "IntelliTrace debugging not available" error in Visual Studio 2010

    - by Tony_Henrich
    In XP 32bit Visual Studio 2010 I get the error below when I start debugging with IntelliTrace enabled. Doesn't IntelliTrace work in Windows XP or is there some setting which causes this error? UPDATE: The error occurs when I choose the second option to add call information in the IntelliTrace settings. There's nothing in the event log about this error. The question now is how to find out why VS is having trouble adding call information.

    Read the article

  • Run time Debugging

    - by Prakash
    We have recently downloaded, installed and compiled gcc-3.0.4 code. gcc compiler has built successfully and we where able to compile some same test cpp file. I would like to know how we can modify gcc source code so that we add additional run time debugging statements like the binary in execution compiled by my gcc should print below statement in a log file: filename.cpp::FunctionName#linenumber-statement or any additional information that I can insert via this tailored compiler code Any references would be highly appreciable.

    Read the article

  • JavaScript / HTML highlighting / debugging in Eclipse using PhoneGap

    - by Jason Hartley
    I am writing an app using PhoneGap for Android in Eclipse. Since the project is an Android project, it's in a Java perspective. For whatever reason, Eclipse won't highlight HTML and JavaScript for me while in an Android/Java project/perspective and switching to the JavaScript perspective doesn't highlight the code either. Without highlighting or debugging tools, the debug process is very slow. How do I tell Eclipse to highlight HTML and JavaScript for me while working in a Java Environment?

    Read the article

  • Debugging a basic OpenGL texture fail? (iphone)

    - by Ben
    Hey all, I have a very basic texture map problem in GL on iPhone, and I'm wondering what strategies there are for debugging this kind of thing. (Frankly, just staring at state machine calls and wondering if any of them is wrong or misordered is no way to live-- are there tools for this?) I have a 512x512 PNG file that I'm loading up from disk (not specially packed), creating a CGBitmapContext, then calling CGContextDrawImage to get bytes out of it. (This code is essentially stolen from an Apple sample.) I'm trying to map the texture to a "quad", with code that looks essentially like this-- all flat 2D stuff, nothing fancy: glEnable(GL_TEXTURE_2D); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glEnableClientState(GL_TEXTURE_COORD_ARRAY); GLfloat vertices[8] = { viewRect.origin.x, viewRect.size.height, viewRect.origin.x, viewRect.origin.y, viewRect.size.width, viewRect.origin.y, viewRect.size.width, viewRect.size.height }; GLfloat texCoords[8] = { 0, 1.0, 0, 0, 1.0, 0, 1.0, 1.0 }; glBindTexture(GL_TEXTURE_2D, myTextureRef); // This was previously bound to glVertexPointer(2, GL_FLOAT , 0, vertices); glTexCoordPointer(2, GL_FLOAT, 0, texCoords); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glDisable(GL_TEXTURE_2D); My supposedly textured area comes out just black. I see no debug output from the CG calls to set up the texture. glGetError reports nothing. If I simplify this code block to just draw the verts, but set up a pure color, the quad area lights up exactly as expected. If I clear the whole context immediately beforehand to red, I don't see the red-- which means something is being rendered there, but not the contents of my PNG. What could I be doing wrong? And more importantly, what are the right tools and techniques for debugging this sort of thing, because running into this kind of problem and not being able to "step through it" in a debugger in any meaningful way is a bummer. Thanks!

    Read the article

< Previous Page | 25 26 27 28 29 30 31 32 33 34 35 36  | Next Page >