Search Results

Search found 711 results on 29 pages for 'synchronize'.

Page 29/29 | < Previous Page | 25 26 27 28 29 

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • How to shoot yourself in the foot (DO NOT Read in the office)

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2013/06/21/how-to-shoot-yourself-in-the-foot-do-not-read.aspxLet me make it absolutely clear - the following is:merely collated by your Geek from http://www.codeproject.com/Lounge.aspx?msg=3917012#xx3917012xxvery, very very funny so you read it in the presence of others at your own riskso here is the list - you have been warned!C You shoot yourself in the foot.   C++ You accidently create a dozen instances of yourself and shoot them all in the foot. Providing emergency medical assistance is impossible since you can't tell which are bitwise copies and which are just pointing at others and saying "That's me, over there."   FORTRAN You shoot yourself in each toe, iteratively, until you run out of toes, then you read in the next foot and repeat. If you run out of bullets, you continue anyway because you have no exception-handling facility.   Modula-2 After realizing that you can't actually accomplish anything in this language, you shoot yourself in the head.   COBOL USEing a COLT 45 HANDGUN, AIM gun at LEG.FOOT, THEN place ARM.HAND.FINGER on HANDGUN.TRIGGER and SQUEEZE. THEN return HANDGUN to HOLSTER. CHECK whether shoelace needs to be retied.   Lisp You shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds...   BASIC Shoot yourself in the foot with a water pistol. On big systems, continue until entire lower body is waterlogged.   Forth Foot yourself in the shoot.   APL You shoot yourself in the foot; then spend all day figuring out how to do it in fewer characters.   Pascal The compiler won't let you shoot yourself in the foot.   Snobol If you succeed, shoot yourself in the left foot. If you fail, shoot yourself in the right foot.   HyperTalk Put the first bullet of the gun into foot left of leg of you. Answer the result.   Prolog You tell your program you want to be shot in the foot. The program figures out how to do it, but the syntax doesn't allow it to explain.   370 JCL You send your foot down to MIS with a 4000-page document explaining how you want it to be shot. Three years later, your foot comes back deep-fried.   FORTRAN-77 You shoot yourself in each toe, iteratively, until you run out of toes, then you read in the next foot and repeat. If you run out of bullets, you continue anyway because you still can't do exception-processing.   Modula-2 (alternative) You perform a shooting on what might be currently a foot with what might be currently a bullet shot by what might currently be a gun.   BASIC (compiled) You shoot yourself in the foot with a BB using a SCUD missile launcher.   Visual Basic You'll really only appear to have shot yourself in the foot, but you'll have so much fun doing it that you won't care.   Forth (alternative) BULLET DUP3 * GUN LOAD FOOT AIM TRIGGER PULL BANG! EMIT DEAD IF DROP ROT THEN (This takes about five bytes of memory, executes in two to ten clock cycles on any processor and can be used to replace any existing function of the language as well as in any future words). (Welcome to bottom up programming - where you, too, can perform compiler pre-processing instead of writing code)   APL (alternative) You hear a gunshot and there's a hole in your foot, but you don't remember enough linear algebra to understand what happened. or @#&^$%&%^ foot   Pascal (alternative) Same as Modula-2 except that the bullet is not the right type for the gun and your hand is blown off.   Snobol (alternative) You grab your foot with your hand, then rewrite your hand to be a bullet. The act of shooting the original foot then changes your hand/bullet into yet another foot (a left foot).   Prolog (alternative) You attempt to shoot yourself in the foot, but the bullet, failing to find its mark, backtracks to the gun, which then explodes in your face.   COMAL You attempt to shoot yourself in the foot with a water pistol, but the bore is clogged, and the pressure build-up blows apart both the pistol and your hand. or draw_pistol aim_at_foot(left) pull_trigger hop(swearing)   Scheme As Lisp, but none of the other appendages are aware of this happening.   Algol You shoot yourself in the foot with a musket. The musket is aesthetically fascinating and the wound baffles the adolescent medic in the emergency room.   Ada If you are dumb enough to actually use this language, the United States Department of Defense will kidnap you, stand you up in front of a firing squad and tell the soldiers, "Shoot at the feet." or The Department of Defense shoots you in the foot after offering you a blindfold and a last cigarette. or After correctly packaging your foot, you attempt to concurrently load the gun, pull the trigger, scream and shoot yourself in the foot. When you try, however, you discover that your foot is of the wrong type. or After correctly packing your foot, you attempt to concurrently load the gun, pull the trigger, scream, and confidently aim at your foot knowing it is safe. However the cordite in the round does an Unchecked Conversion, fires and shoots you in the foot anyway.   Eiffel   You create a GUN object, two FOOT objects and a BULLET object. The GUN passes both the FOOT objects a reference to the BULLET. The FOOT objects increment their hole counts and forget about the BULLET. A little demon then drives a garbage truck over your feet and grabs the bullet (both of it) on the way. Smalltalk You spend so much time playing with the graphics and windowing system that your boss shoots you in the foot, takes away your workstation and makes you develop in COBOL on a character terminal. or You send the message shoot to gun, with selectors bullet and myFoot. A window pops up saying Gunpowder doesNotUnderstand: spark. After several fruitless hours spent browsing the methods for Trigger, FiringPin and IdealGas, you take the easy way out and create ShotFoot, a subclass of Foot with an additional instance variable bulletHole. Object Oriented Pascal You perform a shooting on what might currently be a foot with what might currently be a bullet fired from what might currently be a gun.   PL/I You consume all available system resources, including all the offline bullets. The Data Processing & Payroll Department doubles its size, triples its budget, acquires four new mainframes and drops the original one on your foot. Postscript foot bullets 6 locate loadgun aim gun shoot showpage or It takes the bullet ten minutes to travel from the gun to your foot, by which time you're long since gone out to lunch. The text comes out great, though.   PERL You stab yourself in the foot repeatedly with an incredibly large and very heavy Swiss Army knife. or You pick up the gun and begin to load it. The gun and your foot begin to grow to huge proportions and the world around you slows down, until the gun fires. It makes a tiny hole, which you don't feel. Assembly Language You crash the OS and overwrite the root disk. The system administrator arrives and shoots you in the foot. After a moment of contemplation, the administrator shoots himself in the foot and then hops around the room rabidly shooting at everyone in sight. or You try to shoot yourself in the foot only to discover you must first reinvent the gun, the bullet, and your foot.or The bullet travels to your foot instantly, but it took you three weeks to load the round and aim the gun.   BCPL You shoot yourself somewhere in the leg -- you can't get any finer resolution than that. Concurrent Euclid You shoot yourself in somebody else's foot.   Motif You spend days writing a UIL description of your foot, the trajectory, the bullet and the intricate scrollwork on the ivory handles of the gun. When you finally get around to pulling the trigger, the gun jams.   Powerbuilder While attempting to load the gun you discover that the LoadGun system function is buggy; as a work around you tape the bullet to the outside of the gun and unsuccessfully attempt to fire it with a nail. In frustration you club your foot with the butt of the gun and explain to your client that this approximates the functionality of shooting yourself in the foot and that the next version of Powerbuilder will fix it.   Standard ML By the time you get your code to typecheck, you're using a shoot to foot yourself in the gun.   MUMPS You shoot 583149 AK-47 teflon-tipped, hollow-point, armour-piercing bullets into even-numbered toes on odd-numbered feet of everyone in the building -- with one line of code. Three weeks later you shoot yourself in the head rather than try to modify that line.   Java You locate the Gun class, but discover that the Bullet class is abstract, so you extend it and write the missing part of the implementation. Then you implement the ShootAble interface for your foot, and recompile the Foot class. The interface lets the bullet call the doDamage method on the Foot, so the Foot can damage itself in the most effective way. Now you run the program, and call the doShoot method on the instance of the Gun class. First the Gun creates an instance of Bullet, which calls the doFire method on the Gun. The Gun calls the hit(Bullet) method on the Foot, and the instance of Bullet is passed to the Foot. But this causes an IllegalHitByBullet exception to be thrown, and you die.   Unix You shoot yourself in the foot or % ls foot.c foot.h foot.o toe.c toe.o % rm * .o rm: .o: No such file or directory % ls %   370 JCL (alternative) You shoot yourself in the head just thinking about it.   DOS JCL You first find the building you're in in the phone book, then find your office number in the corporate phone book. Then you have to write this down, then describe, in cubits, your exact location, in relation to the door (right hand side thereof). Then you need to write down the location of the gun (loading it is a proprietary utility), then you load it, and the COBOL program, and run them, and, with luck, it may be run tonight.   VMS   $ MOUNT/DENSITY=.45/LABEL=BULLET/MESSAGE="BYE" BULLET::BULLET$GUN SYS$BULLET $ SET GUN/LOAD/SAFETY=OFF/SIGHT=NONE/HAND=LEFT/CHAMBER=1/ACTION=AUTOMATIC/ LOG/ALL/FULL SYS$GUN_3$DUA3:[000000]GUN.GNU $ SHOOT/LOG/AUTO SYS$GUN SYS$SYSTEM:[FOOT]FOOT.FOOT   %DCL-W-ACTIMAGE, error activating image GUN -CLI-E-IMGNAME, image file $3$DUA240:[GUN]GUN.EXE;1 -IMGACT-F-NOTNATIVE, image is not an OpenVMS Alpha AXP image or %SYS-F-FTSHT, foot shot (fifty lines of traceback omitted) sh,csh, etc You can't remember the syntax for anything, so you spend five hours reading manual pages, then your foot falls asleep. You shoot the computer and switch to C.   Apple System 7 Double click the gun icon and a window giving a selection for guns, target areas, plus balloon help with medical remedies, and assorted sound effects. Click "shoot" button and a small bomb appears with note "Error of Type 1 has occurred."   Windows 3.1 Double click the gun icon and wait. Eventually a window opens giving a selection for guns, target areas, plus balloon help with medical remedies, and assorted sound effects. Click "shoot" button and a small box appears with note "Unable to open Shoot.dll, check that path is correct."   Windows 95 Your gun is not compatible with this OS and you must buy an upgrade and install it before you can continue. Then you will be informed that you don't have enough memory.   CP/M I remember when shooting yourself in the foot with a BB gun was a big deal.   DOS You finally found the gun, but can't locate the file with the foot for the life of you.   MSDOS You shoot yourself in the foot, but can unshoot yourself with add-on software.   Access You try to point the gun at your foot, but it shoots holes in all your Borland distribution diskettes instead.   Paradox Not only can you shoot yourself in the foot, your users can too.   dBase You squeeze the trigger, but the bullet moves so slowly that by the time your foot feels the pain, you've forgotten why you shot yourself anyway. or You buy a gun. Bullets are only available from another company and are promised to work so you buy them. Then you find out that the next version of the gun is the one scheduled to actually shoot bullets.   DBase IV, V1.0 You pull the trigger, but it turns out that the gun was a poorly designed hand grenade and the whole building blows up.   SQL You cut your foot off, send it out to a service bureau and when it returns, it has a hole in it but will no longer fit the attachment at the end of your leg. or Insert into Foot Select Bullet >From Gun.Hand Where Chamber = 'LOADED' And Trigger = 'PULLED'   Clipper You grab a bullet, get ready to insert it in the gun so that you can shoot yourself in the foot and discover that the gun that the bullets fits has not yet been built, but should be arriving in the mail _REAL_SOON_NOW_. Oracle The menus for coding foot_shooting have not been implemented yet and you can't do foot shooting in SQL.   English You put your foot in your mouth, then bite it off. (For those who don't know, English is a McDonnell Douglas/PICK query language which allegedly requires 110% of system resources to run happily.) Revelation [an implementation of the PICK Operating System] You'll be able to shoot yourself in the foot just as soon as you figure out what all these bullets are for.   FlagShip Starting at the top of your head, you aim the gun at yourself repeatedly until, half an hour later, the gun is finally pointing at your foot and you pull the trigger. A new foot with a hole in it appears but you can't work out how to get rid of the old one and your gun doesn't work anymore.   FidoNet You put your foot in your mouth, then echo it internationally.   PicoSpan [a UNIX-based computer conferencing system] You can't shoot yourself in the foot because you're not a host. or (host variation) Whenever you shoot yourself in the foot, someone opens a topic in policy about it.   Internet You put your foot in your mouth, shoot it, then spam the bullet so that everybody gets shot in the foot.   troff rmtroff -ms -Hdrwp | lpr -Pwp2 & .*place bullet in footer .B .NR FT +3i .in 4 .bu Shoot! .br .sp .in -4 .br .bp NR HD -2i .*   Genetic Algorithms You create 10,000 strings describing the best way to shoot yourself in the foot. By the time the program produces the optimal solution, humans have evolved wings and the problem is moot.   CSP (Communicating Sequential Processes) You only fail to shoot everything that isn't your foot.   MS-SQL Server MS-SQL Server’s gun comes pre-loaded with an unlimited supply of Teflon coated bullets, and it only has two discernible features: the muzzle and the trigger. If that wasn't enough, MS-SQL Server also puts the gun in your hand, applies local anesthetic to the skin of your forefinger and stitches it to the gun's trigger. Meanwhile, another process has set up a spinal block to numb your lower body. It will then proceeded to surgically remove your foot, cryogenically freeze it for preservation, and attach it to the muzzle of the gun so that no matter where you aim, you will shoot your foot. In order to avoid shooting yourself in the foot, you need to unstitch your trigger finger, remove your foot from the muzzle of the gun, and have it surgically reattached. Then you probably want to get some crutches and go out to buy a book on SQL Server Performance Tuning.   Sybase Sybase's gun requires assembly, and you need to go out and purchase your own clip and bullets to load the gun. Assembly is complicated by the fact that Sybase has hidden the gun behind a big stack of reference manuals, but it hasn't told you where that stack is. While you were off finding the gun, assembling it, buying bullets, etc., Sybase was also busy surgically removing your foot and cryogenically freezing it for preservation. Instead of attaching it to the muzzle of the gun, though, it packed your foot on dry ice and sent it UPS-Ground to an unnamed hookah bar somewhere in the middle east. In order to shoot your foot, you must modify your gun with a GPS system for targeting and hire some guy named "Indy" to find the hookah bar and wire the coordinates back to you. By this time, you've probably become so daunted at the tasks stand between you and shooting your foot that you hire a guy who's read all the books on Sybase to help you shoot your foot. If you're lucky, he'll be smart enough both to find your foot and to stop you from shooting it.   Magic software You spend 1 week looking up the correct syntax for GUN. When you find it, you realise that GUN will not let you shoot in your own foot. It will allow you to shoot almost anything but your foot. You then decide to build your own gun. You can't use the standard barrel since this will only allow for standard bullets, which will not fire if the barrel is pointed at your foot. After four weeks, you have created your own custom gun. It blows up in your hand without warning, because you failed to initialise the safety catch and it doesn't know whether the initial state is "0", 0, NULL, "ZERO", 0.0, 0,0, "0.0", or "0,00". You fix the problem with your remaining hand by nesting 12 safety catches, and then decide to build the gun without safety catch. You then shoot the management and retire to a happy life where you code in languages that will allow you to shoot your foot in under 10 days.FirefoxLets you shoot yourself in as many feet as you'd like, while using multiple great addons! IEA moving target in terms of standard ammunition size and doesn't always work properly with non-Microsoft ammunition, so sometimes you shoot something other than your foot. However, it's the corporate world's standard foot-shooting apparatus. Hackers seem to enjoy rigging websites up to trigger cascading foot-shooting failures. Windows 98 About the same as Windows 95 in terms of overall bullet capacity and triggering mechanisms. Includes updated DirectShot API. A new version was released later on to support USB guns, Windows 98 SE.WPF:You get your baseball glove and a ball and you head out to your backyard, where you throw balls to your pitchback. Then your unkempt-haired-cargo-shorts-and-sandals-with-white-socks-wearing neighbor uses XAML to sculpt your arm into a gun, the ball into a bullet and the pitchback into your foot. By now, however, only the neighbor can get it to work and he's only around from 6:30 PM - 3:30 AM. LOGO: You very carefully lay out the trajectory of the bullet. Then you start the gun, which fires very slowly. You walk precisely to the point where the bullet will travel and wait, but just before it gets to you, your class time is up and one of the other kids has already used the system to hack into Sony's PS3 network. Flash: Someone has designed a beautiful-looking gun that anyone can shoot their feet with for free. It weighs six hundred pounds. All kinds of people are shooting themselves in the feet, and sending the link to everyone else so that they can too. That is, except for the criminals, who are all stealing iOS devices that the gun won't work with.APL: Its (mostly) all greek to me. Lisp: Place ((gun in ((hand sight (foot then shoot))))) (Lots of Insipid Stupid Parentheses)Apple OS/X and iOS Once a year, Steve Jobs returns from sick leave to tell millions of unwavering fans how they will be able to shoot themselves in the foot differently this year. They retweet and blog about it ad nauseam, and wait in line to be the first to experience "shoot different".Windows ME Usually fails, even at shooting you in the foot. Yo dawg, I heard you like shooting yourself in the foot. So I put a gun in your gun, so you can shoot yourself in the foot while you shoot yourself in the foot. (Okay, I'm not especially proud of this joke.) Windows 2000 Now you really do have to log in, before you are allowed to shoot yourself in the foot.Windows XPYou thought you learned your lesson: Don't use Windows ME. Then, along came this new creature, built on top of Windows NT! So you spend the next couple days installing antivirus software, patches and service packs, just so you can get that driver to install, and then proceed to shoot yourself in the foot. Windows Vista Newer! Glossier! Shootier! Windows 7 The bullets come out a lot smoother. Active Directory Each bullet now has an attached Bullet Identifier, and can be uniquely identified. Policies can be applied to dictate fragmentation, and the gun will occasionally have a confusing delay after the trigger has been pulled. PythonYou try to use import foot; foot.shoot() only to realize that's only available in 3.0, to which you can't yet upgrade from 2.7 because of all those extension libs lacking support. Solaris Shoots best when used on SPARC hardware, but still runs the trigger GUI under Java. After weeks of learning the appropriate STOP command to prevent the trigger from automatically being pressed on boot, you think you've got it under control. Then the one time you ever use dtrace, it hits a bug that fires the gun. MySQL The feature that allows you to shoot yourself in the foot has been in development for about 6 years, and they are adding it into the next version, which is coming out REAL SOON NOW, promise! But you can always check it out of source control and try it yourself (just not in any environment where data integrity is important because it will probably explode.) PostgreSQLAllows you to have a smug look on your face while you shoot yourself in the foot, because those MySQL guys STILL don't have that feature. NoSQL Barrel? Who needs a barrel? Just put the bullet on your foot, and strike it with a hammer. See? It's so much simpler and more efficient that way. You can even strike multiple bullets in one swing if you swing with a good enough arc, because hammers are easy to use. Getting them to synchronize is a little difficult, though.Eclipse There are about a dozen different packages for shooting yourself in the foot, with weird interdependencies on outdated components. Once you finally navigate the morass and get one installed, you then have something to look at while you shoot yourself in the foot with that package: You can watch the screen redraw.Outlook Makes it really easy to let everyone know you shot yourself in the foot!Shooting yourself in the foot using delegates.You really need to shoot yourself in the foot but you hate firearms (you don't want any dependency on the specifics of shooting) so you delegate it to somebody else. You don't care how it is done as long is shooting your foot. You can do it asynchronously in case you know you may faint so you are called back/slapped in the face by your shooter/friend (or background worker) when everything is done.C#You prepare the gun and the bullet, carefully modeling all of the physics of a bullet traveling through a foot. Just before you're about to pull the trigger, you stumble on System.Windows.BodyParts.Foot.ShootAt(System.Windows.Firearms.IGun gun) in the extended framework, realize you just wasted the entire afternoon, and shoot yourself in the head.PHP<?phprequire("foot_safety_check.php");?><!DOCTYPE HTML><html><head> <!--Lower!--><title>Shooting me in the foot</title></head> <body> <!--LOWER!!!--><leg> <!--OK, I made this one up...--><footer><?php echo (dungSift($_SERVER['HTTP_USER_AGENT'], "ie"))?("Your foot is safe, but you might want to wear a hard hat!"):("<div class=\"shot\">BANG!</div>"); ?></footer></leg> </body> </html>

    Read the article

  • Partner Blog Series: PwC Perspectives - The Gotchas, The Do's and Don'ts for IDM Implementations

    - by Tanu Sood
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0in; line-height:12.0pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Arial; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} table.MsoTableMediumList1Accent6 {mso-style-name:"Medium List 1 - Accent 6"; mso-tstyle-rowband-size:1; mso-tstyle-colband-size:1; mso-style-priority:65; mso-style-unhide:no; border-top:solid #E0301E 1.0pt; mso-border-top-themecolor:accent6; border-left:none; border-bottom:solid #E0301E 1.0pt; mso-border-bottom-themecolor:accent6; border-right:none; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Georgia","serif"; color:black; mso-themecolor:text1; mso-ansi-language:EN-GB;} table.MsoTableMediumList1Accent6FirstRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:cell-none; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; font-family:"Verdana","sans-serif"; mso-ascii-font-family:Georgia; mso-ascii-theme-font:major-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:major-fareast; mso-hansi-font-family:Georgia; mso-hansi-theme-font:major-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:major-bidi;} table.MsoTableMediumList1Accent6LastRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; color:#968C6D; mso-themecolor:text2; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6FirstCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-column; mso-style-priority:65; mso-style-unhide:no; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6LastCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6OddColumn {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} table.MsoTableMediumList1Accent6OddRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0in; line-height:12.0pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Arial; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} table.MsoTableMediumList1Accent6 {mso-style-name:"Medium List 1 - Accent 6"; mso-tstyle-rowband-size:1; mso-tstyle-colband-size:1; mso-style-priority:65; mso-style-unhide:no; border-top:solid #E0301E 1.0pt; mso-border-top-themecolor:accent6; border-left:none; border-bottom:solid #E0301E 1.0pt; mso-border-bottom-themecolor:accent6; border-right:none; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Georgia","serif"; color:black; mso-themecolor:text1; mso-ansi-language:EN-GB;} table.MsoTableMediumList1Accent6FirstRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:cell-none; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; font-family:"Arial Narrow","sans-serif"; mso-ascii-font-family:Georgia; mso-ascii-theme-font:major-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:major-fareast; mso-hansi-font-family:Georgia; mso-hansi-theme-font:major-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:major-bidi;} table.MsoTableMediumList1Accent6LastRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; color:#968C6D; mso-themecolor:text2; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6FirstCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-column; mso-style-priority:65; mso-style-unhide:no; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6LastCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6OddColumn {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} table.MsoTableMediumList1Accent6OddRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} It is generally accepted among business communities that technology by itself is not a silver bullet to all problems, but when it is combined with leading practices, strategy, careful planning and execution, it can create a recipe for success. This post attempts to highlight some of the best practices along with dos & don’ts that our practice has accumulated over the years in the identity & access management space in general, and also in the context of R2, in particular. Best Practices The following section illustrates the leading practices in “How” to plan, implement and sustain a successful OIM deployment, based on our collective experience. Planning is critical, but often overlooked A common approach to planning an IAM program that we identify with our clients is the three step process involving a current state assessment, a future state roadmap and an executable strategy to get there. It is extremely beneficial for clients to assess their current IAM state, perform gap analysis, document the recommended controls to address the gaps, align future state roadmap to business initiatives and get buy in from all stakeholders involved to improve the chances of success. When designing an enterprise-wide solution, the scalability of the technology must accommodate the future growth of the enterprise and the projected identity transactions over several years. Aligning the implementation schedule of OIM to related information technology projects increases the chances of success. As a baseline, it is recommended to match hardware specifications to the sizing guide for R2 published by Oracle. Adherence to this will help ensure that the hardware used to support OIM will not become a bottleneck as the adoption of new services increases. If your Organization has numerous connected applications that rely on reconciliation to synchronize the access data into OIM, consider hosting dedicated instances to handle reconciliation. Finally, ensure the use of clustered environment for development and have at least three total environments to help facilitate a controlled migration to production. If your Organization is planning to implement role based access control, we recommend performing a role mining exercise and consolidate your enterprise roles to keep them manageable. In addition, many Organizations have multiple approval flows to control access to critical roles, applications and entitlements. If your Organization falls into this category, we highly recommend that you limit the number of approval workflows to a small set. Most Organizations have operations managed across data centers with backend database synchronization, if your Organization falls into this category, ensure that the overall latency between the datacenters when replicating the databases is less than ten milliseconds to ensure that there are no front office performance impacts. Ingredients for a successful implementation During the development phase of your project, there are a number of guidelines that can be followed to help increase the chances for success. Most implementations cannot be completed without the use of customizations. If your implementation requires this, it’s a good practice to perform code reviews to help ensure quality and reduce code bottlenecks related to performance. We have observed at our clients that the development process works best when team members adhere to coding leading practices. Plan for time to correct coding defects and ensure developers are empowered to report their own bugs for maximum transparency. Many organizations struggle with defining a consistent approach to managing logs. This is particularly important due to the amount of information that can be logged by OIM. We recommend Oracle Diagnostics Logging (ODL) as an alternative to be used for logging. ODL allows log files to be formatted in XML for easy parsing and does not require a server restart when the log levels are changed during troubleshooting. Testing is a vital part of any large project, and an OIM R2 implementation is no exception. We suggest that at least one lower environment should use production-like data and connectors. Configurations should match as closely as possible. For example, use secure channels between OIM and target platforms in pre-production environments to test the configurations, the migration processes of certificates, and the additional overhead that encryption could impose. Finally, we ask our clients to perform database backups regularly and before any major change event, such as a patch or migration between environments. In the lowest environments, we recommend to have at least a weekly backup in order to prevent significant loss of time and effort. Similarly, if your organization is using virtual machines for one or more of the environments, it is recommended to take frequent snapshots so that rollbacks can occur in the event of improper configuration. Operate & sustain the solution to derive maximum benefits When migrating OIM R2 to production, it is important to perform certain activities that will help achieve a smoother transition. At our clients, we have seen that splitting the OIM tables into their own tablespaces by categories (physical tables, indexes, etc.) can help manage database growth effectively. If we notice that a client hasn’t enabled the Oracle-recommended indexing in the applicable database, we strongly suggest doing so to improve performance. Additionally, we work with our clients to make sure that the audit level is set to fit the organization’s auditing needs and sometimes even allocate UPA tables and indexes into their own table-space for better maintenance. Finally, many of our clients have set up schedules for reconciliation tables to be archived at regular intervals in order to keep the size of the database(s) reasonable and result in optimal database performance. For our clients that anticipate availability issues with target applications, we strongly encourage the use of the offline provisioning capabilities of OIM R2. This reduces the provisioning process for a given target application dependency on target availability and help avoid broken workflows. To account for this and other abnormalities, we also advocate that OIM’s monitoring controls be configured to alert administrators on any abnormal situations. Within OIM R2, we have begun advising our clients to utilize the ‘profile’ feature to encapsulate multiple commonly requested accounts, roles, and/or entitlements into a single item. By setting up a number of profiles that can be searched for and used, users will spend less time performing the same exact steps for common tasks. We advise our clients to follow the Oracle recommended guides for database and application server tuning which provides a good baseline configuration. It offers guidance on database connection pools, connection timeouts, user interface threads and proper handling of adapters/plug-ins. All of these can be important configurations that will allow faster provisioning and web page response times. Many of our clients have begun to recognize the value of data mining and a remediation process during the initial phases of an implementation (to help ensure high quality data gets loaded) and beyond (to support ongoing maintenance and business-as-usual processes). A successful program always begins with identifying the data elements and assigning a classification level based on criticality, risk, and availability. It should finish by following through with a remediation process. Dos & Don’ts Here are the most common dos and don'ts that we socialize with our clients, derived from our experience implementing the solution. Dos Don’ts Scope the project into phases with realistic goals. Look for quick wins to show success and value to the stake holders. Avoid “boiling the ocean” and trying to integrate all enterprise applications in the first phase. Establish an enterprise ID (universal unique ID across the enterprise) earlier in the program. Avoid major UI customizations that require code changes. Have a plan in place to patch during the project, which helps alleviate any major issues or roadblocks (product and database). Avoid publishing all the target entitlements if you don't anticipate their usage during access request. Assess your current state and prepare a roadmap to address your operations, tactical and strategic goals, align it with your business priorities. Avoid integrating non-production environments with your production target systems. Defer complex integrations to the later phases and take advantage of lessons learned from previous phases Avoid creating multiple accounts for the same user on the same system, if there is an opportunity to do so. Have an identity and access data quality initiative built into your plan to identify and remediate data related issues early on. Avoid creating complex approval workflows that would negative impact productivity and SLAs. Identify the owner of the identity systems with fair IdM knowledge and empower them with authority to make product related decisions. This will help ensure overcome any design hurdles. Avoid creating complex designs that are not sustainable long term and would need major overhaul during upgrades. Shadow your internal or external consulting resources during the implementation to build the necessary product skills needed to operate and sustain the solution. Avoid treating IAM as a point solution and have appropriate level of communication and training plan for the IT and business users alike. Conclusion In our experience, Identity programs will struggle with scope, proper resourcing, and more. We suggest that companies consider the suggestions discussed in this post and leverage them to help enable their identity and access program. This concludes PwC blog series on R2 for the month and we sincerely hope that the information we have shared thus far has been beneficial. For more information or if you have questions, you can reach out to Rex Thexton, Senior Managing Director, PwC and or Dharma Padala, Director, PwC. We look forward to hearing from you. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0in; line-height:12.0pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Arial; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Meet the Writers: Dharma Padala is a Director in the Advisory Security practice within PwC.  He has been implementing medium to large scale Identity Management solutions across multiple industries including utility, health care, entertainment, retail and financial sectors.   Dharma has 14 years of experience in delivering IT solutions out of which he has been implementing Identity Management solutions for the past 8 years. Praveen Krishna is a Manager in the Advisory Security practice within PwC.  Over the last decade Praveen has helped clients plan, architect and implement Oracle identity solutions across diverse industries.  His experience includes delivering security across diverse topics like network, infrastructure, application and data where he brings a holistic point of view to problem solving. Scott MacDonald is a Director in the Advisory Security practice within PwC.  He has consulted for several clients across multiple industries including financial services, health care, automotive and retail.   Scott has 10 years of experience in delivering Identity Management solutions. John Misczak is a member of the Advisory Security practice within PwC.  He has experience implementing multiple Identity and Access Management solutions, specializing in Oracle Identity Manager and Business Process Engineering Language (BPEL).

    Read the article

  • Custom rails route problem with 2.3.8 and Mongrel

    - by CHsurfer
    I have a controller called 'exposures' which I created automatically with the script/generate scaffold call. The scaffold pages work fine. I created a custom action called 'test' in the exposures controller. When I try to call the page (http://127.0.0.1:3000/exposures/test/1) I get a blank, white screen with no text at all in the source. I am using Rails 2.3.8 and mongrel in the development environment. There are no entries in development.log and the console that was used to open mongrel has the following error: You might have expected an instance of Array. The error occurred while evaluating nil.split D:/Rails/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.8/lib/action_controller/cgi_process.rb:52:in dispatch_cgi' D:/Rails/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.8/lib/action_controller/dispatcher.rb:101:in dispatch_cgi' D:/Rails/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.8/lib/action_controller/dispatcher.rb:27:in dispatch' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/rails.rb:76:in process' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/rails.rb:74:in synchronize' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/rails.rb:74:in process' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:159:in process_client' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:158:in each' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:158:in process_client' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:285:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:285:in initialize' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:285:in new' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:285:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:268:in initialize' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:268:in new' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:268:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/configurator.rb:282:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/configurator.rb:281:in each' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/configurator.rb:281:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/mongrel_rails:128:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/command.rb:212:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/mongrel_rails:281 D:/Rails/ruby/bin/mongrel_rails:19:in load' D:/Rails/ruby/bin/mongrel_rails:19 Here is the exposures_controller code: class ExposuresController < ApplicationController # GET /exposures # GET /exposures.xml def index @exposures = Exposure.all respond_to do |format| format.html # index.html.erb format.xml { render :xml => @exposures } end end #/exposure/graph/1 def graph @exposure = Exposure.find(params[:id]) project_name = @exposure.tender.project.name group_name = @exposure.tender.user.group.name tender_desc = @exposure.tender.description direction = "Cash Out" direction = "Cash In" if @exposure.supply currency_1_and_2 = "#{@exposure.currency_in} = #{@exposure.currency_out}" title = "#{project_name}:#{group_name}:#{tender_desc}/n" title += "#{direction}:#{currency_1_and_2}" factors = Array.new carrieds = Array.new days = Array.new @exposure.rates.each do |r| factors << r.factor carrieds << r.carried days << r.day.to_s end max = (factors+carrieds).max min = (factors+carrieds).min g = Graph.new g.title(title, '{font-size: 12px;}') g.set_data(factors) g.line_hollow(2, 4, '0x80a033', 'Bounces', 10) g.set_x_labels(days) g.set_x_label_style( 10, '#CC3399', 2 ); g.set_y_min(min*0.9) g.set_y_max(max*1.1) g.set_y_label_steps(5) render :text = g.render end def test render :text = "this works" end # GET /exposures/1 # GET /exposures/1.xml def show @exposure = Exposure.find(params[:id]) @graph = open_flash_chart_object(700,250, "/exposures/graph/#{@exposure.id}") #@graph = "/exposures/graph/#{@exposure.id}" respond_to do |format| format.html # show.html.erb format.xml { render :xml => @exposure } end end # GET /exposures/new # GET /exposures/new.xml def new @exposure = Exposure.new respond_to do |format| format.html # new.html.erb format.xml { render :xml => @exposure } end end # GET /exposures/1/edit def edit @exposure = Exposure.find(params[:id]) end # POST /exposures # POST /exposures.xml def create @exposure = Exposure.new(params[:exposure]) respond_to do |format| if @exposure.save flash[:notice] = 'Exposure was successfully created.' format.html { redirect_to(@exposure) } format.xml { render :xml => @exposure, :status => :created, :location => @exposure } else format.html { render :action => "new" } format.xml { render :xml => @exposure.errors, :status => :unprocessable_entity } end end end # PUT /exposures/1 # PUT /exposures/1.xml def update @exposure = Exposure.find(params[:id]) respond_to do |format| if @exposure.update_attributes(params[:exposure]) flash[:notice] = 'Exposure was successfully updated.' format.html { redirect_to(@exposure) } format.xml { head :ok } else format.html { render :action => "edit" } format.xml { render :xml => @exposure.errors, :status => :unprocessable_entity } end end end # DELETE /exposures/1 # DELETE /exposures/1.xml def destroy @exposure = Exposure.find(params[:id]) @exposure.destroy respond_to do |format| format.html { redirect_to(exposures_url) } format.xml { head :ok } end end end Clever readers will notice the 'graph' action. This is what I really want to work, but if I can't even get the test action working, then I'm sure I have no chance. Any ideas? I have restarted mongrel a few times with no change. Here is the output of Rake routes (but I don't believe this is the problem. The error would be in the form of and HTML error response). D:\Rails\rails_apps\fxrake routes (in D:/Rails/rails_apps/fx) DEPRECATION WARNING: Rake tasks in vendor/plugins/open_flash_chart/tasks are deprecated. Use lib/tasks instead. (called from D:/ by/gems/1.8/gems/rails-2.3.8/lib/tasks/rails.rb:10) rates GET /rates(.:format) {:controller="rates", :action="index"} POST /rates(.:format) {:controller="rates", :action="create"} new_rate GET /rates/new(.:format) {:controller="rates", :action="new"} edit_rate GET /rates/:id/edit(.:format) {:controller="rates", :action="edit"} rate GET /rates/:id(.:format) {:controller="rates", :action="show"} PUT /rates/:id(.:format) {:controller="rates", :action="update"} DELETE /rates/:id(.:format) {:controller="rates", :action="destroy"} tenders GET /tenders(.:format) {:controller="tenders", :action="index"} POST /tenders(.:format) {:controller="tenders", :action="create"} new_tender GET /tenders/new(.:format) {:controller="tenders", :action="new"} edit_tender GET /tenders/:id/edit(.:format) {:controller="tenders", :action="edit"} tender GET /tenders/:id(.:format) {:controller="tenders", :action="show"} PUT /tenders/:id(.:format) {:controller="tenders", :action="update"} DELETE /tenders/:id(.:format) {:controller="tenders", :action="destroy"} exposures GET /exposures(.:format) {:controller="exposures", :action="index"} POST /exposures(.:format) {:controller="exposures", :action="create"} new_exposure GET /exposures/new(.:format) {:controller="exposures", :action="new"} edit_exposure GET /exposures/:id/edit(.:format) {:controller="exposures", :action="edit"} exposure GET /exposures/:id(.:format) {:controller="exposures", :action="show"} PUT /exposures/:id(.:format) {:controller="exposures", :action="update"} DELETE /exposures/:id(.:format) {:controller="exposures", :action="destroy"} currencies GET /currencies(.:format) {:controller="currencies", :action="index"} POST /currencies(.:format) {:controller="currencies", :action="create"} new_currency GET /currencies/new(.:format) {:controller="currencies", :action="new"} edit_currency GET /currencies/:id/edit(.:format) {:controller="currencies", :action="edit"} currency GET /currencies/:id(.:format) {:controller="currencies", :action="show"} PUT /currencies/:id(.:format) {:controller="currencies", :action="update"} DELETE /currencies/:id(.:format) {:controller="currencies", :action="destroy"} projects GET /projects(.:format) {:controller="projects", :action="index"} POST /projects(.:format) {:controller="projects", :action="create"} new_project GET /projects/new(.:format) {:controller="projects", :action="new"} edit_project GET /projects/:id/edit(.:format) {:controller="projects", :action="edit"} project GET /projects/:id(.:format) {:controller="projects", :action="show"} PUT /projects/:id(.:format) {:controller="projects", :action="update"} DELETE /projects/:id(.:format) {:controller="projects", :action="destroy"} groups GET /groups(.:format) {:controller="groups", :action="index"} POST /groups(.:format) {:controller="groups", :action="create"} new_group GET /groups/new(.:format) {:controller="groups", :action="new"} edit_group GET /groups/:id/edit(.:format) {:controller="groups", :action="edit"} group GET /groups/:id(.:format) {:controller="groups", :action="show"} PUT /groups/:id(.:format) {:controller="groups", :action="update"} DELETE /groups/:id(.:format) {:controller="groups", :action="destroy"} users GET /users(.:format) {:controller="users", :action="index"} POST /users(.:format) {:controller="users", :action="create"} new_user GET /users/new(.:format) {:controller="users", :action="new"} edit_user GET /users/:id/edit(.:format) {:controller="users", :action="edit"} user GET /users/:id(.:format) {:controller="users", :action="show"} PUT /users/:id(.:format) {:controller="users", :action="update"} DELETE /users/:id(.:format) {:controller="users", :action="destroy"} /:controller/:action/:id /:controller/:action/:id(.:format) D:\Rails\rails_apps\fxrails -v Rails 2.3.8 Thanks in advance for the help -Jon

    Read the article

  • HELP!! Delayed-job: Rake aborted! Can't modify frozen hash

    - by pmneve
    Too bad even the trace doesn't say which hash is involved. Sorry this post is long: am trying to provide enough context to be meaningful. Occurs intermittently when rake jobs:work is pulling a command out of delayed_jobs while my status observer is in the process of parsing a log file for detailed results of the previous delayed_job denizen. I have an observer class (in RAILS_ROOT/lib ) which listens for the events, makes a copy of them and calls the owner class ( in apps/models ) which then calls on the log parser (also in /lib) to do the actual work. (Should both of those classes, the observer and the parser be in app/models?) Am due to deliver this application in a few days and this is killing it (and me). Am using DirectoryWatcher to look for flag files that indicate the start and finish of the delayed_jobs. That is started at the end of environment.rb like this: require 'directory_watcher' $scriptStatusObserver = ScriptStatusObserver.new dirToWatch ="#{RAILS_ROOT}/tmp/flags" $directoryWatcher = DirectoryWatcher.new( dirToWatch ) $directoryWatcher.glob= "*.flg" $directoryWatcher.interval=(15) $directoryWatcher.add_observer( $scriptStatusObserver ) $directoryWatcher.persist=("#{RAILS_ROOT}/tmp/flags/dw_state.yml") $directoryWatcher.start at_exit { $directoryWatcher.stop } This code is outside of the run method (btw is that the best place or is inside the run better?) Here is the observer: require 'script_run' class ScriptStatusObserver def initialize @rcvdEvents = [] end def update( *events ) begin puts "#{LINE.to_s}: ScriptStatusObserver events: \n"+events.to_yaml cnt = 0 events.each do |e| if e.to_s.match(/^\s*added/) cnt = cnt + 1 @rcvdEvents << e end end ScriptRun.new.catch_up( @rcvdEvents ) if cnt > 0 @rcvdEvents.clear rescue puts $! end end end Here is ScriptRun (it attaches to an associative table built with has_many:through) require 'observer' class ScriptRun < ActiveRecord::Base set_table_name "scripts_runs" belongs_to :script belongs_to :run def parse( result ) parser = LogParser.new parser.parse(result) end def catch_up( events ) events.each do |e| typ = e.type path = e.path thisMatch = path.match(/flags\/(\d+)_(\d+)_([\d\.]+)_(\w+)\.flg/) run_id = thisMatch[1] script_id = thisMatch[2] ts = thisMatch[3] status = thisMatch[4] if e.to_s.match(/^\s*added/) status_update( script_id, run_id, status, ts, path ) end end end def status_update( script_id, run_id, status, ts, path ) scriptrun = ScriptRun.find(:first, :conditions => [ "run_id = ? and script_id = ?", run_id.to_i, script_id.to_i ]) if scriptrun.kind_of?(ScriptRun) currStatus = scriptrun.status if not currStatus == 'completed' scriptrun.update_attribute(:status, status) if status == 'parse' flag = File.new(path) logSpec = flag.gets flag.close logName = File.basename(logSpec) logPath = logSpec.sub(logName, '') logName =~ /^(([\w_]+)_([\w]+)_(\d+))\.log$/ name = $1 basename = $2 runenv = $3 tsOrPid = $4 result = Result.new result.log_path = logPath result.basename = basename result.name = name result.script_id = script_id.to_i result.run_id = run_id.to_i if runenv == 'sit' runenv = 'SIT3348' end result.application_environment_id = ApplicationEnvironment.find(:first, :conditions => [ "nodename = ?", runenv]).id parse(result) if run_completed?( run_id ) myRun = Run.find(run_id.to_i) if myRun.kind_of?( Run ) myRun.update_attribute( :completed, Time.now.to_f ) end end end end else puts "#{__LINE__.to_s}: ScriptRun.status_update: ScriptRun not found for run #{run_id} script #{script_id} ts #{ts.to_s}" end File.delete(path) end def run_completed?( id ) scriptruns = ScriptRun.find(:all, :conditions = [ "run_id = ?", id.to_i] ) scriptruns.each do |sr| if not sr.status == 'completed' return false end end return true end end LogParser is too long even for this post but it reads the script log and pulls detailed information (counts and timings) out of the log and writes to a details table. It also tallies and calculates averages and rolls those up into summary tables for quicker access from the web pages. Here is the error trace: (don't ask why everything is under my Windows profile. It's a long story) Scanner running 1270239731.43 directory_watcher.notify_observers: #, #] update:[#, /pneve/workspace/waftt-0.29/tmp/flags/100039_18_1270239550.108_parse.flg"] rake aborted! can't modify frozen hash C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/rails/activerecord/l ib/active_record/attribute_methods.rb:313:in []=' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/rails/activerecord/l ib/active_record/attribute_methods.rb:313:inwrite_attribute_without_dirty' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/rails/activerecord/l ib/active_record/dirty.rb:139:in write_attribute' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/rails/activerecord/l ib/active_record/attribute_methods.rb:211:inlast_error=' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:141:in handle_failed_job' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:115:inrun' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:162:in reserve_and_run_one_job' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:92:inwork_off' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:91:in times' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:91:inwork_off' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:66:in start' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/rails/activesupport/ lib/active_support/core_ext/benchmark.rb:10:inrealtime' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:65:in start' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:62:inloop' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:62:in start' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/tasks.rb:13 c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:636:incall' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:636:in execute' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:631:ineach' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:631:in execute' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:597:ininvoke_with_call_chain' c:/Documents and Settings/pneve/ruby/lib/ruby/1.8/monitor.rb:242:in synchronize ' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:590:ininvoke_with_call_chain' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:583:in invoke' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2051:ininvoke_task' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2029:in top_level' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2029:ineach' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2029:in top_level' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2068:instandard_exception_handling' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2023:in top_level' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2001:inrun' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2068:in standard_exception_handling' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:1998:inrun' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/bin/rake: 31 c:/Documents and Settings/pneve/ruby/bin/rake:16:in `load' c:/Documents and Settings/pneve/ruby/bin/rake:16

    Read the article

  • HELP!! Rake aborted! Can't modify frozen hash

    - by pmneve
    Too bad even the trace doesn't say which hash is involved. Sorry this post is long: am trying to provide enough context to be meaningful. Occurs intermittently when rake jobs:work is pulling a command out of delayed_jobs while my status observer is in the process of parsing a log file for detailed results of the previous delayed_job denizen. I have an observer class (in RAILS_ROOT/lib ) which listens for the events, makes a copy of them and calls the owner class ( in apps/models ) which then calls on the log parser (also in /lib) to do the actual work. (Should both of those classes, the observer and the parser be in app/models?) Am due to deliver this application in a few days and this is killing it (and me). Am using DirectoryWatcher to look for flag files that indicate the start and finish of the delayed_jobs. That is started at the end of environment.rb like this: require 'directory_watcher' $scriptStatusObserver = ScriptStatusObserver.new dirToWatch ="#{RAILS_ROOT}/tmp/flags" $directoryWatcher = DirectoryWatcher.new( dirToWatch ) $directoryWatcher.glob= "*.flg" $directoryWatcher.interval=(15) $directoryWatcher.add_observer( $scriptStatusObserver ) $directoryWatcher.persist=("#{RAILS_ROOT}/tmp/flags/dw_state.yml") $directoryWatcher.start at_exit { $directoryWatcher.stop } This code is outside of the run method (btw is that the best place or is inside the run better?) Here is the observer: require 'script_run' class ScriptStatusObserver def initialize @rcvdEvents = [] end def update( *events ) begin puts "#{LINE.to_s}: ScriptStatusObserver events: \n"+events.to_yaml cnt = 0 events.each do |e| if e.to_s.match(/^\s*added/) cnt = cnt + 1 @rcvdEvents << e end end ScriptRun.new.catch_up( @rcvdEvents ) if cnt > 0 @rcvdEvents.clear rescue puts $! end end end Here is ScriptRun (it attaches to an associative table built with has_many:through) require 'observer' class ScriptRun < ActiveRecord::Base set_table_name "scripts_runs" belongs_to :script belongs_to :run def parse( result ) parser = LogParser.new parser.parse(result) end def catch_up( events ) events.each do |e| typ = e.type path = e.path thisMatch = path.match(/flags\/(\d+)_(\d+)_([\d\.]+)_(\w+)\.flg/) run_id = thisMatch[1] script_id = thisMatch[2] ts = thisMatch[3] status = thisMatch[4] if e.to_s.match(/^\s*added/) status_update( script_id, run_id, status, ts, path ) end end end def status_update( script_id, run_id, status, ts, path ) scriptrun = ScriptRun.find(:first, :conditions => [ "run_id = ? and script_id = ?", run_id.to_i, script_id.to_i ]) if scriptrun.kind_of?(ScriptRun) currStatus = scriptrun.status if not currStatus == 'completed' scriptrun.update_attribute(:status, status) if status == 'parse' flag = File.new(path) logSpec = flag.gets flag.close logName = File.basename(logSpec) logPath = logSpec.sub(logName, '') logName =~ /^(([\w_]+)_([\w]+)_(\d+))\.log$/ name = $1 basename = $2 runenv = $3 tsOrPid = $4 result = Result.new result.log_path = logPath result.basename = basename result.name = name result.script_id = script_id.to_i result.run_id = run_id.to_i if runenv == 'sit' runenv = 'SIT3348' end result.application_environment_id = ApplicationEnvironment.find(:first, :conditions => [ "nodename = ?", runenv]).id parse(result) if run_completed?( run_id ) myRun = Run.find(run_id.to_i) if myRun.kind_of?( Run ) myRun.update_attribute( :completed, Time.now.to_f ) end end end end else puts "#{__LINE__.to_s}: ScriptRun.status_update: ScriptRun not found for run #{run_id} script #{script_id} ts #{ts.to_s}" end File.delete(path) end def run_completed?( id ) scriptruns = ScriptRun.find(:all, :conditions = [ "run_id = ?", id.to_i] ) scriptruns.each do |sr| if not sr.status == 'completed' return false end end return true end end LogParser is too long even for this post but it reads the script log and pulls detailed information (counts and timings) out of the log and writes to a details table. It also tallies and calculates averages and rolls those up into summary tables for quicker access from the web pages. Here is the error trace: (don't ask why everything is under my Windows profile. It's a long story) Scanner running 1270239731.43 directory_watcher.notify_observers: #, #] update:[#, /pneve/workspace/waftt-0.29/tmp/flags/100039_18_1270239550.108_parse.flg"] rake aborted! can't modify frozen hash C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/rails/activerecord/l ib/active_record/attribute_methods.rb:313:in []=' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/rails/activerecord/l ib/active_record/attribute_methods.rb:313:inwrite_attribute_without_dirty' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/rails/activerecord/l ib/active_record/dirty.rb:139:in write_attribute' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/rails/activerecord/l ib/active_record/attribute_methods.rb:211:inlast_error=' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:141:in handle_failed_job' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:115:inrun' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:162:in reserve_and_run_one_job' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:92:inwork_off' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:91:in times' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:91:inwork_off' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:66:in start' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/rails/activesupport/ lib/active_support/core_ext/benchmark.rb:10:inrealtime' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:65:in start' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:62:inloop' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/worker.rb:62:in start' C:/Documents and Settings/pneve/workspace/waftt-0.29/vendor/plugins/delayed_job/ lib/delayed/tasks.rb:13 c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:636:incall' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:636:in execute' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:631:ineach' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:631:in execute' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:597:ininvoke_with_call_chain' c:/Documents and Settings/pneve/ruby/lib/ruby/1.8/monitor.rb:242:in synchronize ' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:590:ininvoke_with_call_chain' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:583:in invoke' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2051:ininvoke_task' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2029:in top_level' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2029:ineach' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2029:in top_level' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2068:instandard_exception_handling' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2023:in top_level' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2001:inrun' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:2068:in standard_exception_handling' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/lib/rake. rb:1998:inrun' c:/Documents and Settings/pneve/ruby/lib/ruby/gems/1.8/gems/rake-0.8.7/bin/rake: 31 c:/Documents and Settings/pneve/ruby/bin/rake:16:in `load' c:/Documents and Settings/pneve/ruby/bin/rake:16

    Read the article

  • Probelm with String.split() in java

    - by Matt
    What I am trying to do is read a .java file, and pick out all of the identifiers and store them in a list. My problem is with the .split() method. If you run this code the way it is, you will get ArrayOutOfBounds, but if you change the delimiter from "." to anything else, the code works. But I need to lines parsed by "." so is there another way I could accomplish this? import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.util.*; public class MyHash { private static String[] reserved = new String[100]; private static List list = new LinkedList(); private static List list2 = new LinkedList(); public static void main (String args[]){ Hashtable hashtable = new Hashtable(997); makeReserved(); readFile(); String line; ListIterator itr = list.listIterator(); int listIndex = 0; while (listIndex < list.size()) { if (itr.hasNext()){ line = itr.next().toString(); //PROBLEM IS HERE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! String[] words = line.split("."); //CHANGE THIS AND IT WILL WORK System.out.println(words[0]); //TESTING TO SEE IF IT WORKED } listIndex++; } } public static void readFile() { String text; String[] words; BufferedReader in = null; try { in = new BufferedReader(new FileReader("MyHash.java")); //NAME OF INPUT FILE } catch (FileNotFoundException ex) { Logger.getLogger(MyHash.class.getName()).log(Level.SEVERE, null, ex); } try { while ((text = in.readLine()) != null){ text = text.trim(); words = text.split("\\s+"); for (int i = 0; i < words.length; i++){ list.add(words[i]); } for (int j = 0; j < reserved.length; j++){ if (list.contains(reserved[j])){ list.remove(reserved[j]); } } } } catch (IOException ex) { Logger.getLogger(MyHash.class.getName()).log(Level.SEVERE, null, ex); } try { in.close(); } catch (IOException ex) { Logger.getLogger(MyHash.class.getName()).log(Level.SEVERE, null, ex); } } public static int keyIt (int x) { int key = x % 997; return key; } public static int horner (String word){ int length = word.length(); char[] letters = new char[length]; for (int i = 0; i < length; i++){ letters[i]=word.charAt(i); } char[] alphabet = new char[26]; String abc = "abcdefghijklmnopqrstuvwxyz"; for (int i = 0; i < 26; i++){ alphabet[i]=abc.charAt(i); } int[] numbers = new int[length]; int place = 0; for (int i = 0; i < length; i++){ for (int j = 0; j < 26; j++){ if (alphabet[j]==letters[i]){ numbers[place]=j+1; place++; } } } int hornered = numbers[0] * 32; for (int i = 1; i < numbers.length; i++){ hornered += numbers[i]; if (i == numbers.length -1){ return hornered; } hornered = hornered % 997; hornered *= 32; } return hornered; } public static String[] makeReserved (){ reserved[0] = "abstract"; reserved[1] = "assert"; reserved[2] = "boolean"; reserved[3] = "break"; reserved[4] = "byte"; reserved[5] = "case"; reserved[6] = "catch"; reserved[7] = "char"; reserved[8] = "class"; reserved[9] = "const"; reserved[10] = "continue"; reserved[11] = "default"; reserved[12] = "do"; reserved[13] = "double"; reserved[14] = "else"; reserved[15] = "enum"; reserved[16] = "extends"; reserved[17] = "false"; reserved[18] = "final"; reserved[19] = "finally"; reserved[20] = "float"; reserved[21] = "for"; reserved[22] = "goto"; reserved[23] = "if"; reserved[24] = "implements"; reserved[25] = "import"; reserved[26] = "instanceof"; reserved[27] = "int"; reserved[28] = "interface"; reserved[29] = "long"; reserved[30] = "native"; reserved[31] = "new"; reserved[32] = "null"; reserved[33] = "package"; reserved[34] = "private"; reserved[35] = "protected"; reserved[36] = "public"; reserved[37] = "return"; reserved[38] = "short"; reserved[39] = "static"; reserved[40] = "strictfp"; reserved[41] = "super"; reserved[42] = "switch"; reserved[43] = "synchronize"; reserved[44] = "this"; reserved[45] = "throw"; reserved[46] = "throws"; reserved[47] = "trasient"; reserved[48] = "true"; reserved[49] = "try"; reserved[50] = "void"; reserved[51] = "volatile"; reserved[52] = "while"; reserved[53] = "="; reserved[54] = "=="; reserved[55] = "!="; reserved[56] = "+"; reserved[57] = "-"; reserved[58] = "*"; reserved[59] = "/"; reserved[60] = "{"; reserved[61] = "}"; return reserved; } }

    Read the article

  • Hibernate + PostgreSQL : relation does not exist - SQL Error: 0, SQLState: 42P01

    - by tommy599
    Hello, I am having some problems trying to work with PostgreSQL and Hibernate, more specifically, the issue mentioned in the title. I've been searching the net for a few hours now but none of the found solutions worked for me. I am using Eclipse Java EE IDE for Web Developers. Build id: 20090920-1017 with HibernateTools, Hibernate 3, PostgreSQL 8.4.3 on Ubuntu 9.10. Here are the relevant files: Message.class package hello; public class Message { private Long id; private String text; public Message() { } public Long getId() { return id; } public void setId(Long id) { this.id = id; } public String getText() { return text; } public void setText(String text) { this.text = text; } } Message.hbm.xml <?xml version="1.0"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"> <hibernate-mapping package="hello"> <class name="Message" table="public.messages"> <id name="id" column="id"> <generator class="assigned"/> </id> <property name="text" column="messagetext"/> </class> </hibernate-mapping> hibernate.cfg.xml <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd"> <hibernate-configuration> <session-factory> <property name="hibernate.connection.driver_class">org.postgresql.Driver</property> <property name="hibernate.connection.password">bar</property> <property name="hibernate.connection.url">jdbc:postgresql:postgres/tommy</property> <property name="hibernate.connection.username">foo</property> <property name="hibernate.dialect">org.hibernate.dialect.PostgreSQLDialect</property> <property name="show_sql">true</property> <property name="log4j.logger.org.hibernate.type">DEBUG</property> <mapping resource="hello/Message.hbm.xml"/> </session-factory> </hibernate-configuration> Main package hello; import org.hibernate.Session; import org.hibernate.SessionFactory; import org.hibernate.Transaction; import org.hibernate.cfg.Configuration; public class App { public static void main(String[] args) { SessionFactory sessionFactory = new Configuration().configure() .buildSessionFactory(); Message message = new Message(); message.setText("Hello Cruel World"); message.setId(2L); Session session = null; Transaction transaction = null; try { session = sessionFactory.openSession(); transaction = session.beginTransaction(); session.save(message); } catch (Exception e) { System.out.println("Exception attemtping to Add message: " + e.getMessage()); } finally { if (session != null && session.isOpen()) { if (transaction != null) transaction.commit(); session.flush(); session.close(); } } } } Table structure: foo=# \d messages Table "public.messages" Column | Type | Modifiers -------------+---------+----------- id | integer | messagetext | text | Eclipse console output when I run it Apr 28, 2010 11:13:53 PM org.hibernate.cfg.Environment <clinit> INFO: Hibernate 3.5.1-Final Apr 28, 2010 11:13:53 PM org.hibernate.cfg.Environment <clinit> INFO: hibernate.properties not found Apr 28, 2010 11:13:53 PM org.hibernate.cfg.Environment buildBytecodeProvider INFO: Bytecode provider name : javassist Apr 28, 2010 11:13:53 PM org.hibernate.cfg.Environment <clinit> INFO: using JDK 1.4 java.sql.Timestamp handling Apr 28, 2010 11:13:53 PM org.hibernate.cfg.Configuration configure INFO: configuring from resource: /hibernate.cfg.xml Apr 28, 2010 11:13:53 PM org.hibernate.cfg.Configuration getConfigurationInputStream INFO: Configuration resource: /hibernate.cfg.xml Apr 28, 2010 11:13:53 PM org.hibernate.cfg.Configuration addResource INFO: Reading mappings from resource : hello/Message.hbm.xml Apr 28, 2010 11:13:54 PM org.hibernate.cfg.HbmBinder bindRootPersistentClassCommonValues INFO: Mapping class: hello.Message -> public.messages Apr 28, 2010 11:13:54 PM org.hibernate.cfg.Configuration doConfigure INFO: Configured SessionFactory: null Apr 28, 2010 11:13:54 PM org.hibernate.connection.DriverManagerConnectionProvider configure INFO: Using Hibernate built-in connection pool (not for production use!) Apr 28, 2010 11:13:54 PM org.hibernate.connection.DriverManagerConnectionProvider configure INFO: Hibernate connection pool size: 20 Apr 28, 2010 11:13:54 PM org.hibernate.connection.DriverManagerConnectionProvider configure INFO: autocommit mode: false Apr 28, 2010 11:13:54 PM org.hibernate.connection.DriverManagerConnectionProvider configure INFO: using driver: org.postgresql.Driver at URL: jdbc:postgresql:postgres/tommy Apr 28, 2010 11:13:54 PM org.hibernate.connection.DriverManagerConnectionProvider configure INFO: connection properties: {user=foo, password=****} Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: RDBMS: PostgreSQL, version: 8.4.3 Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: JDBC driver: PostgreSQL Native Driver, version: PostgreSQL 8.4 JDBC4 (build 701) Apr 28, 2010 11:13:54 PM org.hibernate.dialect.Dialect <init> INFO: Using dialect: org.hibernate.dialect.PostgreSQLDialect Apr 28, 2010 11:13:54 PM org.hibernate.engine.jdbc.JdbcSupportLoader useContextualLobCreation INFO: Disabling contextual LOB creation as createClob() method threw error : java.lang.reflect.InvocationTargetException Apr 28, 2010 11:13:54 PM org.hibernate.transaction.TransactionFactoryFactory buildTransactionFactory INFO: Using default transaction strategy (direct JDBC transactions) Apr 28, 2010 11:13:54 PM org.hibernate.transaction.TransactionManagerLookupFactory getTransactionManagerLookup INFO: No TransactionManagerLookup configured (in JTA environment, use of read-write or transactional second-level cache is not recommended) Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Automatic flush during beforeCompletion(): disabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Automatic session close at end of transaction: disabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: JDBC batch size: 15 Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: JDBC batch updates for versioned data: disabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Scrollable result sets: enabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: JDBC3 getGeneratedKeys(): enabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Connection release mode: auto Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Default batch fetch size: 1 Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Generate SQL with comments: disabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Order SQL updates by primary key: disabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Order SQL inserts for batching: disabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory createQueryTranslatorFactory INFO: Query translator: org.hibernate.hql.ast.ASTQueryTranslatorFactory Apr 28, 2010 11:13:54 PM org.hibernate.hql.ast.ASTQueryTranslatorFactory <init> INFO: Using ASTQueryTranslatorFactory Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Query language substitutions: {} Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: JPA-QL strict compliance: disabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Second-level cache: enabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Query cache: disabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory createRegionFactory INFO: Cache region factory : org.hibernate.cache.impl.NoCachingRegionFactory Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Optimize cache for minimal puts: disabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Structured second-level cache entries: disabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Echoing all SQL to stdout Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Statistics: disabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Deleted entity synthetic identifier rollback: disabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Default entity-mode: pojo Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Named query checking : enabled Apr 28, 2010 11:13:54 PM org.hibernate.cfg.SettingsFactory buildSettings INFO: Check Nullability in Core (should be disabled when Bean Validation is on): enabled Apr 28, 2010 11:13:54 PM org.hibernate.impl.SessionFactoryImpl <init> INFO: building session factory Apr 28, 2010 11:13:55 PM org.hibernate.impl.SessionFactoryObjectFactory addInstance INFO: Not binding factory to JNDI, no JNDI name configured Hibernate: insert into public.messages (messagetext, id) values (?, ?) Apr 28, 2010 11:13:55 PM org.hibernate.util.JDBCExceptionReporter logExceptions WARNING: SQL Error: 0, SQLState: 42P01 Apr 28, 2010 11:13:55 PM org.hibernate.util.JDBCExceptionReporter logExceptions SEVERE: Batch entry 0 insert into public.messages (messagetext, id) values ('Hello Cruel World', '2') was aborted. Call getNextException to see the cause. Apr 28, 2010 11:13:55 PM org.hibernate.util.JDBCExceptionReporter logExceptions WARNING: SQL Error: 0, SQLState: 42P01 Apr 28, 2010 11:13:55 PM org.hibernate.util.JDBCExceptionReporter logExceptions SEVERE: ERROR: relation "public.messages" does not exist Position: 13 Apr 28, 2010 11:13:55 PM org.hibernate.event.def.AbstractFlushingEventListener performExecutions SEVERE: Could not synchronize database state with session org.hibernate.exception.SQLGrammarException: Could not execute JDBC batch update at org.hibernate.exception.SQLStateConverter.convert(SQLStateConverter.java:92) at org.hibernate.exception.JDBCExceptionHelper.convert(JDBCExceptionHelper.java:66) at org.hibernate.jdbc.AbstractBatcher.executeBatch(AbstractBatcher.java:275) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:263) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:179) at org.hibernate.event.def.AbstractFlushingEventListener.performExecutions(AbstractFlushingEventListener.java:321) at org.hibernate.event.def.DefaultFlushEventListener.onFlush(DefaultFlushEventListener.java:51) at org.hibernate.impl.SessionImpl.flush(SessionImpl.java:1206) at org.hibernate.impl.SessionImpl.managedFlush(SessionImpl.java:375) at org.hibernate.transaction.JDBCTransaction.commit(JDBCTransaction.java:137) at hello.App.main(App.java:31) Caused by: java.sql.BatchUpdateException: Batch entry 0 insert into public.messages (messagetext, id) values ('Hello Cruel World', '2') was aborted. Call getNextException to see the cause. at org.postgresql.jdbc2.AbstractJdbc2Statement$BatchResultHandler.handleError(AbstractJdbc2Statement.java:2569) at org.postgresql.core.v3.QueryExecutorImpl$1.handleError(QueryExecutorImpl.java:459) at org.postgresql.core.v3.QueryExecutorImpl.processResults(QueryExecutorImpl.java:1796) at org.postgresql.core.v3.QueryExecutorImpl.execute(QueryExecutorImpl.java:407) at org.postgresql.jdbc2.AbstractJdbc2Statement.executeBatch(AbstractJdbc2Statement.java:2708) at org.hibernate.jdbc.BatchingBatcher.doExecuteBatch(BatchingBatcher.java:70) at org.hibernate.jdbc.AbstractBatcher.executeBatch(AbstractBatcher.java:268) ... 8 more Exception in thread "main" org.hibernate.exception.SQLGrammarException: Could not execute JDBC batch update at org.hibernate.exception.SQLStateConverter.convert(SQLStateConverter.java:92) at org.hibernate.exception.JDBCExceptionHelper.convert(JDBCExceptionHelper.java:66) at org.hibernate.jdbc.AbstractBatcher.executeBatch(AbstractBatcher.java:275) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:263) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:179) at org.hibernate.event.def.AbstractFlushingEventListener.performExecutions(AbstractFlushingEventListener.java:321) at org.hibernate.event.def.DefaultFlushEventListener.onFlush(DefaultFlushEventListener.java:51) at org.hibernate.impl.SessionImpl.flush(SessionImpl.java:1206) at org.hibernate.impl.SessionImpl.managedFlush(SessionImpl.java:375) at org.hibernate.transaction.JDBCTransaction.commit(JDBCTransaction.java:137) at hello.App.main(App.java:31) Caused by: java.sql.BatchUpdateException: Batch entry 0 insert into public.messages (messagetext, id) values ('Hello Cruel World', '2') was aborted. Call getNextException to see the cause. at org.postgresql.jdbc2.AbstractJdbc2Statement$BatchResultHandler.handleError(AbstractJdbc2Statement.java:2569) at org.postgresql.core.v3.QueryExecutorImpl$1.handleError(QueryExecutorImpl.java:459) at org.postgresql.core.v3.QueryExecutorImpl.processResults(QueryExecutorImpl.java:1796) at org.postgresql.core.v3.QueryExecutorImpl.execute(QueryExecutorImpl.java:407) at org.postgresql.jdbc2.AbstractJdbc2Statement.executeBatch(AbstractJdbc2Statement.java:2708) at org.hibernate.jdbc.BatchingBatcher.doExecuteBatch(BatchingBatcher.java:70) at org.hibernate.jdbc.AbstractBatcher.executeBatch(AbstractBatcher.java:268) ... 8 more PostgreSQL log file 2010-04-28 23:13:55 EEST LOG: execute S_1: BEGIN 2010-04-28 23:13:55 EEST ERROR: relation "public.messages" does not exist at character 13 2010-04-28 23:13:55 EEST STATEMENT: insert into public.messages (messagetext, id) values ($1, $2) 2010-04-28 23:13:55 EEST LOG: unexpected EOF on client connection If I copy/paste the query into the postgre command line and put the values in and ; after it, it works. Everything is lowercase, so I don't think that it's that issue. If I switch to MySQL, the same code same project (I only change driver,URL, authentication), it works. In Eclipse Datasource Explorer, I can ping the DB and it succeeds. Weird thing is that I can't see the tables from there either. It expands the public schema but it doesn't expand the tables. Could it be some permission issue? Thanks!

    Read the article

  • unrecognized selector sent to instance in xcode using objective c and sup as backend

    - by user1765037
    I am a beginner in native development.I made a project using xcode in objective C.It builded successfully.But when I run the project ,an error came like 'unrecognized selector sent to instance'.Why this is happening ?can anyone help me to solve this?I am attaching the error that I am getting with this.. And I am posting the code with this.... ConnectionController.m #import "ConnectionController.h" #import "SUPApplication.h" #import "Flight_DetailsFlightDB.h" #import "CallbackHandler.h" @interface ConnectionController() @property (nonatomic,retain)CallbackHandler *callbackhandler; @end @implementation ConnectionController @synthesize callbackhandler; static ConnectionController *appConnectionController; //Begin Application Setup +(void)beginApplicationSetup { if(!appConnectionController) { appConnectionController = [[[ConnectionController alloc]init]retain]; appConnectionController.callbackhandler = [[CallbackHandler getInstance]retain]; } if([SUPApplication connectionStatus] == SUPConnectionStatus_DISCONNECTED) [appConnectionController setupApplicationConnection]; else NSLog(@"Already Connected"); } -(BOOL)setupApplicationConnection { SUPApplication *app = [SUPApplication getInstance]; [app setApplicationIdentifier:@"HWC"]; [app setApplicationCallback:self.callbackhandler]; NSLog(@"inside setupApp"); SUPConnectionProperties *properties = [app connectionProperties]; NSLog(@"server"); [properties setServerName:@"sapecxxx.xxx.com"]; NSLog(@"inside setupAppser"); [properties setPortNumber:5001]; NSLog(@"inside setupApppot"); [properties setFarmId:@"0"]; NSLog(@"inside setupAppfarm"); [properties setUrlSuffix:@"/tm/?cid=%cid%"]; NSLog(@"inside setupAppurlsuff"); [properties setNetworkProtocol:@"http"]; SUPLoginCredentials *loginCred = [SUPLoginCredentials getInstance]; NSLog(@"inside setupAppmac"); [loginCred setUsername:@"mac"]; [loginCred setPassword:nil]; [properties setLoginCredentials:loginCred]; [properties setActivationCode:@"1234"]; if(![Flight_DetailsFlightDB databaseExists]) { [Flight_DetailsFlightDB createDatabase]; } SUPConnectionProfile *connprofile = [Flight_DetailsFlightDB getSynchronizationProfile]; [connprofile setNetworkProtocol:@"http"]; NSLog(@"inside setupAppPort2"); [connprofile setPortNumber:2480]; NSLog(@"inside setupAppser2"); [connprofile setServerName:@"sapecxxx.xxx.com"]; NSLog(@"inside setupAppdom2"); [connprofile setDomainName:@"Development"]; NSLog(@"inside setupAppuser"); [connprofile setUser:@"supAdmin"]; [connprofile setPassword:@"s3pAdmin"]; [connprofile setAsyncReplay:YES]; [connprofile setClientId:@"0"]; // [Flight_DetailsFlightDB beginOnlineLogin:@"supAdmin" password:@"s3pAdmin"]; [Flight_DetailsFlightDB registerCallbackHandler:self.callbackhandler]; [Flight_DetailsFlightDB setApplication:app]; if([SUPApplication connectionStatus] == SUPRegistrationStatus_REGISTERED) { [app startConnection:0]; } else { [app registerApplication:0]; } } @end ViewController.m #import "Demo_FlightsViewController.h" #import "ConnectionController.h" #import "Flight_DetailsFlightDB.h" #import "SUPObjectList.h" #import "Flight_DetailsSessionPersonalization.h" #import "Flight_DetailsFlight_MBO.h" #import "Flight_DetailsPersonalizationParameters.h" @interface Demo_FlightsViewController () @end @implementation Demo_FlightsViewController - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view, typically from a nib. } -(IBAction)Connect:(id)sender { @try { [ConnectionController beginApplicationSetup]; } @catch (NSException *exception) { NSLog(@"ConnectionAborted"); } // synchronise } -(IBAction)Synchronise:(id)sender { @try { [Flight_DetailsFlightDB synchronize]; NSLog(@"SYNCHRONISED"); } @catch (NSException *exception) { NSLog(@"Synchronisation Failed"); } } -(IBAction)findall:(id)sender { SUPObjectList *list = [Flight_DetailsSessionPersonalization findAll]; NSLog(@"no of lines got synchronised is %d",list.size); } -(IBAction)confirm:(id)sender { Flight_DetailsPersonalizationParameters *pp = [Flight_DetailsFlightDB getPersonalizationParameters]; MBOLogInfo(@"personalisation parmeter for airline id= %@",pp.Airline_PK); [pp setAirline_PK:@"AA"]; [pp save]; while([Flight_DetailsFlightDB hasPendingOperations]) { [NSThread sleepForTimeInterval:1]; } NSLog(@"inside confirm............"); [Flight_DetailsFlightDB beginSynchronize]; Flight_DetailsFlight_MBO *flight = nil; SUPObjectList *cl = nil; cl =[Flight_DetailsFlight_MBO findAll]; if(cl && cl.length > 0) { int i; for(i=0;i<cl.length;i++) { flight = [cl item:i]; if(flight) { NSLog(@"details are %@",flight.CITYFROM); } } } } - (void)viewDidUnload { [super viewDidUnload]; // Release any retained subviews of the main view. } - (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation { return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown); } @end SUPConnectionProfile.h #import "sybase_sup.h" #define FROM_IMPORT_THREAD TRUE #define FROM_APP_THREAD FALSE #define SUP_UL_MAX_CACHE_SIZE 10485760 @class SUPBooleanUtil; @class SUPNumberUtil; @class SUPStringList; @class SUPStringUtil; @class SUPPersistenceException; @class SUPLoginCertificate; @class SUPLoginCredentials; @class SUPConnectionProfile; /*! @class SUPConnectionProfile @abstract This class contains fields and methods needed to connect and authenticate to an SUP server. @discussion */ @interface SUPConnectionProfile : NSObject { SUPConnectionProfile* _syncProfile; SUPBoolean _threadLocal; SUPString _wrapperData; NSMutableDictionary* _delegate; SUPLoginCertificate* _certificate; SUPLoginCredentials* _credentials; int32_t _maxDbConnections; BOOL initTraceCalled; } /*! @method @abstract Return a new instance of SUPConnectionProfile. @discussion @result The SUPconnectionprofile object. */ + (SUPConnectionProfile*)getInstance; /*! @method @abstract Return a new instance of SUPConnectionProfile. @discussion This method is deprecated. use getInstance instead. @result The SUPconnectionprofile object. */ + (SUPConnectionProfile*)newInstance DEPRECATED_ATTRIBUTE NS_RETURNS_NON_RETAINED; - (SUPConnectionProfile*)init; /*! @property @abstract The sync profile. @discussion */ @property(readwrite, retain, nonatomic) SUPConnectionProfile* syncProfile; /*! @property @abstract The maximum number of active DB connections allowed @discussion Default value is 4, but can be changed by application developer. */ @property(readwrite, assign, nonatomic) int32_t maxDbConnections; /*! @method @abstract The SUPConnectionProfile manages an internal dictionary of key value pairs. This method returns the SUPString value for a given string. @discussion @param name The string. */ - (SUPString)getString:(SUPString)name; /*! @method @abstract The SUPConnectionProfile manages an internal dictionary of key value pairs. This method returns the SUPString value for a given string. If the value is not found, returns 'defaultValue'. @discussion @param name The string. @param defaultValue The default Value. */ - (SUPString)getStringWithDefault:(SUPString)name:(SUPString)defaultValue; /*! @method @abstract The SUPConnectionProfile manages an internal dictionary of key value pairs. This method returns the SUPBoolean value for a given string. @discussion @param name The string. */ - (SUPBoolean)getBoolean:(SUPString)name; /*! @method @abstract The SUPConnectionProfile manages an internal dictionary of key value pairs. This method returns the SUPBoolean value for a given string. If the value is not found, returns 'defaultValue'. @discussion @param name The string. @param defaultValue The default Value. */ - (SUPBoolean)getBooleanWithDefault:(SUPString)name:(SUPBoolean)defaultValue; /*! @method @abstract The SUPConnectionProfile manages an internal dictionary of key value pairs. This method returns the SUPInt value for a given string. @discussion @param name The string. */ - (SUPInt)getInt:(SUPString)name; /*! @method @abstract The SUPConnectionProfile manages an internal dictionary of key value pairs. This method returns the SUPInt value for a given string. If the value is not found, returns 'defaultValue'. @discussion @param name The string. @param defaultValue The default Value. */ - (SUPInt)getIntWithDefault:(SUPString)name:(SUPInt)defaultValue; /*! @method getUPA @abstract retrieve upa from profile @discussion if it is in profile's dictionary, it returns value for key "upa"; if it is not found in profile, it composes the upa value from base64 encoding of username:password; and also inserts it into profile's dictionary. @param none @result return string value of upa. */ - (SUPString)getUPA; /*! @method @abstract Sets the SUPString 'value' for the given 'name'. @discussion @param name The name. @param value The value. */ - (void)setString:(SUPString)name:(SUPString)value; /*! @method @abstract Sets the SUPBoolean 'value' for the given 'name'. @discussion @param name The name. @param value The value. */ - (void)setBoolean:(SUPString)name:(SUPBoolean)value; /*! @method @abstract Sets the SUPInt 'value' for the given 'name'. @discussion @param name The name. @param value The value. */ - (void)setInt:(SUPString)name:(SUPInt)value; /*! @method @abstract Sets the username. @discussion @param value The value. */ - (void)setUser:(SUPString)value; /*! @method @abstract Sets the password. @discussion @param value The value. */ - (void)setPassword:(SUPString)value; /*! @method @abstract Sets the ClientId. @discussion @param value The value. */ - (void)setClientId:(SUPString)value; /*! @method @abstract Returns the databasename. @discussion @param value The value. */ - (SUPString)databaseName; /*! @method @abstract Sets the databasename. @discussion @param value The value. */ - (void)setDatabaseName:(SUPString)value; @property(readwrite,copy, nonatomic) SUPString databaseName; /*! @method @abstract Gets the encryption key. @discussion @result The encryption key. */ - (SUPString)getEncryptionKey; /*! @method @abstract Sets the encryption key. @discussion @param value The value. */ - (void)setEncryptionKey:(SUPString)value; @property(readwrite,copy, nonatomic) SUPString encryptionKey; /*! @property @abstract The authentication credentials (username/password or certificate) for this profile. @discussion */ @property(retain,readwrite,nonatomic) SUPLoginCredentials *credentials; /*! @property @abstract The authentication certificate. @discussion If this is not null, certificate will be used for authentication. If this is null, credentials property (username/password) will be used. */ @property(readwrite,retain,nonatomic) SUPLoginCertificate *certificate; @property(readwrite, assign, nonatomic) BOOL initTraceCalled; /*! @method @abstract Gets the UltraLite collation creation parameter @discussion @result conllation string */ - (SUPString)getCollation; /*! @method @abstract Sets the UltraLite collation creation parameter @discussion @param value The value. */ - (void)setCollation:(SUPString)value; @property(readwrite,copy, nonatomic) SUPString collation; /*! @method @abstract Gets the maximum cache size in bytes; the default value for iOS is 10485760 (10 MB). @discussion @result max cache size */ - (int)getCacheSize; /*! @method @abstract Sets the maximum cache size in bytes. @discussion For Ultralite, passes the cache_max_size property into the connection parameters for DB connections; For SQLite, executes the "PRAGMA cache_size" statement when a connection is opened. @param cacheSize value */ - (void)setCacheSize:(int)cacheSize; @property(readwrite,assign, nonatomic) int cacheSize; /*! @method @abstract Returns the user. @discussion @result The username. */ - (SUPString)getUser; /*! @method @abstract Returns the password hash value. @discussion @result The password hash value. */ - (NSUInteger)getPasswordHash; /*! @method @abstract Returns the password. @discussion @result The password hash value. */ - (NSString*)getPassword; /*! @method @abstract Adds a new key value pair. @discussion @param key The key. @param value The value. */ - (void)add:(SUPString)key:(SUPString)value; /*! @method @abstract Removes the key. @discussion @param key The key to remove. */ - (void)remove:(SUPString)key; - (void)clear; /*! @method @abstract Returns a boolean indicating if the key is present. @discussion @param key The key. @result The result indicating if the key is present. */ - (SUPBoolean)containsKey:(SUPString)key; /*! @method @abstract Returns the item for the given key. @discussion @param key The key. @result The item. */ - (SUPString)item:(SUPString)key; /*! @method @abstract Returns the list of keys. @discussion @result The keylist. */ - (SUPStringList*)keys; /*! @method @abstract Returns the list of values. @discussion @result The value list. */ - (SUPStringList*)values; /*! @method @abstract Returns the internal map of key value pairs. @discussion @result The NSMutableDictionary with key value pairs. */ - (NSMutableDictionary*)internalMap; /*! @method @abstract Returns the domain name. @result The domain name. @discussion */ - (SUPString)getDomainName; /*! @method @abstract Sets the domain name. @param value The domain name. @discussion */ - (void)setDomainName:(SUPString)value; /*! @method @abstract Get async operation replay property. Default is true. @result YES : if ansync operation replay is enabled; NO: if async operation is disabled. @discussion */ - (BOOL) getAsyncReplay; /*! @method @abstract Set async operation replay property. Default is true. @result value: enable/disable async replay operation. @discussion */ - (void) setAsyncReplay:(BOOL) value; /*! @method @abstract enable or disable the trace in client object API. @param enable - YES: enable the trace; NO: disable the trace. @discussion */ - (void)enableTrace:(BOOL)enable; /*! @method @abstract enable or disable the trace with payload info in client object API. @param enable - YES: enable the trace; NO: disable the trace. @param withPayload = YES: show payload information; NO: not show payload information. @discussion */ - (void)enableTrace:(BOOL)enable withPayload:(BOOL)withPayload; /*! @method @abstract initialize trace levels from server configuration. @discussion */ - (void)initTrace; - (void)dealloc; /* ultralite/mobilink required parameters */ - (SUPString)getNetworkProtocol; - (void)setNetworkProtocol:(SUPString)protocol; - (SUPString)getNetworkStreamParams; - (void)setNetworkStreamParams:(SUPString)stream; - (SUPString)getServerName; - (void)setServerName:(SUPString)name; - (int)getPortNumber; - (void)setPortNumber:(int)port; - (int)getPageSize; - (void)setPageSize:(int)size; @end @interface SUPConnectionProfile(internal) - (void)applyPropertiesFromApplication; @end We are using SUP 2.1.3 library files.Please go through the code and help me...

    Read the article

< Previous Page | 25 26 27 28 29