Search Results

Search found 9082 results on 364 pages for 'feature extraction'.

Page 292/364 | < Previous Page | 288 289 290 291 292 293 294 295 296 297 298 299  | Next Page >

  • Global Email Forwarding with EXIM?

    - by Dexirian
    Been trying to find a solution to this for a while without success so here i go : I was given the task to build a High-Availability Load-Balanced Network Cluster for our 2 linux servers. I did some workaround and managed to get a DNS + SQL + Web Folders + Mails synchronisation going between both. Now i would like my server 2 to only do mailing and server 1 to only do web hosting. I transfered all the accounts for 1 to 2 using the WHM built-in account transfert feature. I created 2 different rsync jobs that sync, update, and delete the files for mail and websites. Now i was able to successfully transfer 1 mail accounts from 1 to 2, and the server 2 works flawlessly. All i had to do was change the MX entries to point to the new server and bingo. Now my problem is, some clients have their mail softwares configured so that they point to oldserver.domain.com. I cant make the (A) entry of oldserver.domain.com point to the new server for obvious reasons. I thought of using .foward files and add them to the home directories of the concerned users but that would be very difficult. So my question is : Is there a way to configure exim so that it will only foward mails to the new server? I need to change all the users so they use their mail on server 2 without them doing anything. Thanks! EDIT : TO CLARIFY MY PROBLEM Some clients have their mail point to oldserver.xyz instead of mail.olderserver.xyz I want to know if i can do something to prevent modifying the clients configuration I would also like to know is there is a way to find out what clients aren't properly configured

    Read the article

  • file system damage

    - by jffrs
    I try recover the backup superblock on /dev/sda2 that contain ubuntu 12.04 LTS and partition ext4 with livecd ubuntu 10.04. the message is below root@ubuntu:/home/ubuntu# fsck.ext4 -b 163840 -B 4096 /dev/sda2 e2fsck 1.41.11 (14-Mar-2010) /dev/sda2 was not cleanly unmounted, check forced. Resize inode not valid. Recreate? yes Pass 1: Checking inodes, blocks, and sizes Programming error? block #7963637 claimed for no reason in process_bad_block. Programming error? block #11240437 claimed for no reason in process_bad_block. Root inode is not a directory. Clear? yes Inode 712 is in extent format, but superblock is missing EXTENTS feature Fix? yes Inode 98519 has compression flag set on filesystem without compression support. Clear? yes Inode 98519 has INDEX_FL flag set but is not a directory. Clear HTree index? what's the correct procedure?

    Read the article

  • 2008R2 Standard and Hyper-V and Ram Usage (Usable vs Available)

    - by Mark
    A new server was purchased for our development team to start utilizing the full feature set of TFS, namely Lab Management. Because of the need for Lab Management we bought a fairly beefy machine to handle this task and to also act as a build machine. I have been tasked to setup additional features TFS on this machine starting out with a build controller and eventually going towards a full out Lab Management setup using Hyper-V. My question: Upon initially logging I noticed that Windows is registering 64gb but only 32gb available. I know this is a limitation because of licencing since only Standard Edition is installed. Since Hyper-V is another layer that handles the virtualization of guest OS's is Hyper-V able to access this memory? Or is Hyper-V memory usage also limited by 2008 R2 Standard? If Hyper-V can somehow access this memory, is this how it should be setup? Or should the host 2008R2 Standard be upgraded to Enterprise so the Host can utilize the full 64gb? Before I go hog wild and using TFS I wanted to ask some experts so I don't need to reinstall the OS down the road to utilize the additional 32gb. Thanks for any help or links you can share.

    Read the article

  • IE8 page reload hangs

    - by Rod
    When a 7mb HTM file is first opened (by clicking on the file icon or using Open With), both IE8 and Firefox display this browser file quickly. After the file is closed, Firefox will reopen this file quickly, but IE8 appears to hang during the reopen. Clearing the IE cache does not help. However, IE will reopen the file quickly again only if the File/Open/Browse feature of the menu bar is used (clicking on the file icon can be used only once between computer reboots). Testing suggests that the problem relates to the number of HTML hyperlinks pointing to another part of the file. There are many hyperlinks, but they are not a problem during the first load of the document (between computer reboots). What needs to be fixed to avoid use of the workaround? Using Windows XP SP3 Update 6/23/12 - Controlled testing shows that the number of hyperlinks is not the problem. The way this large file is opened is the difference: 1) from the IE menu bar, File/Open/Browse is consistent and fast (but not as fast as FF). 2) clicking on the file name in the folder (even when IE is the default program for this file type) causes a much delayed load of the file. Creating a smaller file demonstrates the delayed load, but verifies that the load eventually occurs.

    Read the article

  • WINDOWS 7: Make the contents of two folders appear in one

    - by big_smile
    In Windows 7, I have three folders: "Images", "assets" and "all". I want the contents of "Images " and "assets" to appear in "all" automatically without copying those files into that folder (e.g. I don't want to duplicate the files). I also only want the contents to be copied over and not the folders themslves (The reason for this is that if the folders are copied over, they will become sub-directories. I am using a printing hot folder that access "all" but it can't see any subdirectories in "all"). When Images and Assets are updated (e.g. with files being added or deleted), "all" should automatically update as well. How can I do this? This is what I have tried: Libraries: This is a feature built into Windows. It works exactly as I want. However, the print hot folder cannot recognise the library as a folder. Sym Link Extension: I can use this to make the "images" and "assets" folders appear as a sub directories of "all". However, I want the contents of "images"/"assets" to appear in the "all" folder (I don't want the directories to appear as sub directories, because as stated, the print hot folder cannot access sub directories).

    Read the article

  • Looking for VCS wrapper that tracks system files changing across the whole *nix OS and sends diffs through email

    - by nextus
    I need some software that looks after custom directories across the whole OS (i.e. /etc) and alerting me if someone edit something file inside. Additionally, this tool must automatically commit and push changes into backup server, so I can easily determine when specific change in specific file was made. I'm using cvsbackup right now but I want to create or found something more modern. I think using git as VCS is a great idea. I could have local repository and easily revert changes in my configuration files. Furthermore, pushing changes to the remote repository would helps me to recover my configuration files when the server is fault. It doesn't seems difficult to write some wrapper around the git but there are a lot of problems. For example, I need to track custom directories: /usr/local/nginx/ and /etc/. So the destination point for my git repository is /. I don't need to track the other directories so I must to write overwhelming .gitignore rule: * !.gitignore !/etc/ !etc/* !/usr /usr/* !/usr/local /usr/local/* !/usr/local/nginx !/usr/local/nginx/* It's very daunting and prone to error. So it's maybe a good idea to create intermediate file that wrapper reads and converts to .gitignore format. Additionally, I don't want to keep my .git folder in / partition so I need to set appropriate GIT_DIR and GIT_WORK_TREE variables for git. Is there any ready to use tools for implementation this task? I don't found any but I don't believe that no one needs this feature.

    Read the article

  • How to ensure local file is up-to-date or ahead (dropbox sync) before truecrypt auto-mount it?

    - by user620965
    There are a lot tutorials out there that states that dropbox build-in encryption is not secure enought. That tutorials recommands to sync a truecrypt container file to have all files in it securely encrypted. This setup is know to be limited. You can NOT have that truecrypt container file mounted on the same time on more than one location - if you have inserted changes to the contents of the container in more then one location at a time then this setup produces a conflict on the container file in the dropbox system - resulting in one container file for each location. In my case that issue is not relevant - i do not use my data on more than one location at a time. I want to use the auto-mount feature of truecrypt on startup of windows 7 to have a zero configuration environment - and start working right away. But i want to ensure that the local truecrypt container file is up-to-date before truecrypt mounts it automatically - imagine you updated the contents of the container on your primary location and your secondary location was off for a long time. In that case it can take "a long time" till dropbox sync is complete (e.g. depending on your internet connection and the size of the container file). There is a option in truecrypt that ensures that truecrypt do not update the timestamp of the container file - which speeds up the sync, because dropbox client is doing a differential sync then instead of a time consuming full-sync. That is an improvement to that setup, but this do not fix my issue. The question is how to make the auto-mount function wait for the container file to be up-to-date (updated by dropbox)? In contrast: if the file was changed local, but remote file (in the dropbox cloud system) is still old (not jet updated by the sync process / or process is progress), should not make truecrypt to wait for the sync. Suggestions?

    Read the article

  • BYOD (accessing files) on a domain without joining?

    - by Philip White
    I run a Samba 4 instance at a small private school. This makes a regular Linux server appear as a directory controller. There are two relevant benefits to this: I have a Samba share for people's documents, and I use the Redirected Folders feature to allow any employee to sit down at any PC, log in with their domain credentials, and their My Documents points to network storage. Everyone has a mapped drive (using Group Policy Preferences) to a share specific to their account type. Students can access one share (one share for all students), teachers have another, and office staff have another. However, I would like to allow BYOD (Bring Your Own Device). Some employees are already asking for it with their personal laptops, and I know eventually most everyone will want to. Is there any way to replicate the two features above without having to join PCs to the domain? Joining personal PCs is impractical if only because only professional editions of Windows support this. Ideally, any operating system (including mobile) could access the relevant shares, but of course Windows is key. Offline caching is optional. (I could set up OpenVPN for teachers who want to access their files from home.) The problem with simply giving SSH access to the relevant shares is primarily that Samba 4 relies on ext4 ACLs and ext4 extended attributes to maintain NTFS permissions. Writing files directly to the Linux server would bypass this and would (probably) not be interoperable with Samba4. Right now I am completely flexible. I am even fine with scrapping the whole domain and using some other software for the two features above. How can I allow school employees and students freedom to securely share files without requiring everyone to have specific editions of Windows?

    Read the article

  • Would a USB hub work in reverse?

    - by Tim
    Imagine for a moment with a 4 port USB hub. Normally how this would work is the hub has one plug that goes to the computer, then 4 ports that you can plug in other things to (thumb drive, keyboard, mouse etc). I am wondering if I can use it in reverse. So I would have 1 keyboard going in to the hub, and then plug in male to male usb cables from the 4 ports to 4 different PCs, my aim is that when a key is pressed on the keyboard all 4 PCs will receive it as if the keyboard were plugged in to them. Does anyone know if this would work? And if not does anyone have any ideas how I could get the same effect? EDIT: So I am looking for more of a KVM switch type device rather than a USB hub. However all of the KVM switches I've found use some sort of mechanism to select which computer you'll be using. (some are physical switches / buttons, others do it via software "automatically" some how) However I need to have 1 keyboard hooked up to 2 computers and when I press a key on the keyboard I want the keypress to be sent to both computers simultaneously, not to one or the other. Does anyone know if KVMs with this feature exist?

    Read the article

  • ORDER BY job failed in the Pig script while running EmbeddedPig using Java

    - by C.c. Huang
    I have this following pig script, which works perfectly using grunt shell (stored the results to HDFS without any issues); however, the last job (ORDER BY) failed if I ran the same script using Java EmbeddedPig. If I replace the ORDER BY job by others, such as GROUP or FOREACH GENERATE, the whole script then succeeded in Java EmbeddedPig. So I think it's the ORDER BY which causes the issue. Anyone has any experience with this? Any help would be appreciated! The Pig script: REGISTER pig-udf-0.0.1-SNAPSHOT.jar; user_similarity = LOAD '/tmp/sample-sim-score-results-31/part-r-00000' USING PigStorage('\t') AS (user_id: chararray, sim_user_id: chararray, basic_sim_score: float, alt_sim_score: float); simplified_user_similarity = FOREACH user_similarity GENERATE $0 AS user_id, $1 AS sim_user_id, $2 AS sim_score; grouped_user_similarity = GROUP simplified_user_similarity BY user_id; ordered_user_similarity = FOREACH grouped_user_similarity { sorted = ORDER simplified_user_similarity BY sim_score DESC; top = LIMIT sorted 10; GENERATE group, top; }; top_influencers = FOREACH ordered_user_similarity GENERATE com.aol.grapevine.similarity.pig.udf.AssignPointsToTopInfluencer($1, 10); all_influence_scores = FOREACH top_influencers GENERATE FLATTEN($0); grouped_influence_scores = GROUP all_influence_scores BY bag_of_topSimUserTuples::user_id; influence_scores = FOREACH grouped_influence_scores GENERATE group AS user_id, SUM(all_influence_scores.bag_of_topSimUserTuples::points) AS influence_score; ordered_influence_scores = ORDER influence_scores BY influence_score DESC; STORE ordered_influence_scores INTO '/tmp/cc-test-results-1' USING PigStorage(); The error log from Pig: 12/04/05 10:00:56 INFO pigstats.ScriptState: Pig script settings are added to the job 12/04/05 10:00:56 INFO mapReduceLayer.JobControlCompiler: mapred.job.reduce.markreset.buffer.percent is not set, set to default 0.3 12/04/05 10:00:58 INFO mapReduceLayer.JobControlCompiler: Setting up single store job 12/04/05 10:00:58 INFO jvm.JvmMetrics: Cannot initialize JVM Metrics with processName=JobTracker, sessionId= - already initialized 12/04/05 10:00:58 INFO mapReduceLayer.MapReduceLauncher: 1 map-reduce job(s) waiting for submission. 12/04/05 10:00:58 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. 12/04/05 10:00:58 INFO input.FileInputFormat: Total input paths to process : 1 12/04/05 10:00:58 INFO util.MapRedUtil: Total input paths to process : 1 12/04/05 10:00:58 INFO util.MapRedUtil: Total input paths (combined) to process : 1 12/04/05 10:00:58 INFO filecache.TrackerDistributedCacheManager: Creating tmp-1546565755 in /var/lib/hadoop-0.20/cache/cchuang/mapred/local/archive/4334795313006396107_361978491_57907159/localhost/tmp/temp1725960134-work-6955502337234509704 with rwxr-xr-x 12/04/05 10:00:58 INFO filecache.TrackerDistributedCacheManager: Cached hdfs://localhost/tmp/temp1725960134/tmp-1546565755#pigsample_854728855_1333645258470 as /var/lib/hadoop-0.20/cache/cchuang/mapred/local/archive/4334795313006396107_361978491_57907159/localhost/tmp/temp1725960134/tmp-1546565755 12/04/05 10:00:58 INFO filecache.TrackerDistributedCacheManager: Cached hdfs://localhost/tmp/temp1725960134/tmp-1546565755#pigsample_854728855_1333645258470 as /var/lib/hadoop-0.20/cache/cchuang/mapred/local/archive/4334795313006396107_361978491_57907159/localhost/tmp/temp1725960134/tmp-1546565755 12/04/05 10:00:58 WARN mapred.LocalJobRunner: LocalJobRunner does not support symlinking into current working dir. 12/04/05 10:00:58 INFO mapred.TaskRunner: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/local/archive/4334795313006396107_361978491_57907159/localhost/tmp/temp1725960134/tmp-1546565755 <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/pigsample_854728855_1333645258470 12/04/05 10:00:58 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/.job.jar.crc <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/.job.jar.crc 12/04/05 10:00:58 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/.job.split.crc <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/.job.split.crc 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/.job.splitmetainfo.crc <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/.job.splitmetainfo.crc 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/.job.xml.crc <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/.job.xml.crc 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/job.jar <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/job.jar 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/job.split <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/job.split 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/job.splitmetainfo <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/job.splitmetainfo 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Creating symlink: /var/lib/hadoop-0.20/cache/cchuang/mapred/staging/cchuang402164468/.staging/job_local_0004/job.xml <- /var/lib/hadoop-0.20/cache/cchuang/mapred/local/localRunner/job.xml 12/04/05 10:00:59 INFO mapred.Task: Using ResourceCalculatorPlugin : null 12/04/05 10:00:59 INFO mapred.MapTask: io.sort.mb = 100 12/04/05 10:00:59 INFO mapred.MapTask: data buffer = 79691776/99614720 12/04/05 10:00:59 INFO mapred.MapTask: record buffer = 262144/327680 12/04/05 10:00:59 WARN mapred.LocalJobRunner: job_local_0004 java.lang.RuntimeException: org.apache.hadoop.mapreduce.lib.input.InvalidInputException: Input path does not exist: file:/Users/cchuang/workspace/grapevine-rec/pigsample_854728855_1333645258470 at org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.partitioners.WeightedRangePartitioner.setConf(WeightedRangePartitioner.java:139) at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:62) at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:117) at org.apache.hadoop.mapred.MapTask$NewOutputCollector.<init>(MapTask.java:560) at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:639) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:323) at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:210) Caused by: org.apache.hadoop.mapreduce.lib.input.InvalidInputException: Input path does not exist: file:/Users/cchuang/workspace/grapevine-rec/pigsample_854728855_1333645258470 at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.listStatus(FileInputFormat.java:231) at org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.PigFileInputFormat.listStatus(PigFileInputFormat.java:37) at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.getSplits(FileInputFormat.java:248) at org.apache.pig.impl.io.ReadToEndLoader.init(ReadToEndLoader.java:153) at org.apache.pig.impl.io.ReadToEndLoader.<init>(ReadToEndLoader.java:115) at org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.partitioners.WeightedRangePartitioner.setConf(WeightedRangePartitioner.java:112) ... 6 more 12/04/05 10:00:59 INFO filecache.TrackerDistributedCacheManager: Deleted path /var/lib/hadoop-0.20/cache/cchuang/mapred/local/archive/4334795313006396107_361978491_57907159/localhost/tmp/temp1725960134/tmp-1546565755 12/04/05 10:00:59 INFO mapReduceLayer.MapReduceLauncher: HadoopJobId: job_local_0004 12/04/05 10:01:04 INFO mapReduceLayer.MapReduceLauncher: job job_local_0004 has failed! Stop running all dependent jobs 12/04/05 10:01:04 INFO mapReduceLayer.MapReduceLauncher: 100% complete 12/04/05 10:01:04 ERROR pigstats.PigStatsUtil: 1 map reduce job(s) failed! 12/04/05 10:01:04 INFO pigstats.PigStats: Script Statistics: HadoopVersion PigVersion UserId StartedAt FinishedAt Features 0.20.2-cdh3u3 0.8.1-cdh3u3 cchuang 2012-04-05 10:00:34 2012-04-05 10:01:04 GROUP_BY,ORDER_BY Some jobs have failed! Stop running all dependent jobs Job Stats (time in seconds): JobId Maps Reduces MaxMapTime MinMapTIme AvgMapTime MaxReduceTime MinReduceTime AvgReduceTime Alias Feature Outputs job_local_0001 0 0 0 0 0 0 0 0 all_influence_scores,grouped_user_similarity,simplified_user_similarity,user_similarity GROUP_BY job_local_0002 0 0 0 0 0 0 0 0 grouped_influence_scores,influence_scores GROUP_BY,COMBINER job_local_0003 0 0 0 0 0 0 0 0 ordered_influence_scores SAMPLER Failed Jobs: JobId Alias Feature Message Outputs job_local_0004 ordered_influence_scores ORDER_BY Message: Job failed! Error - NA /tmp/cc-test-results-1, Input(s): Successfully read 0 records from: "/tmp/sample-sim-score-results-31/part-r-00000" Output(s): Failed to produce result in "/tmp/cc-test-results-1" Counters: Total records written : 0 Total bytes written : 0 Spillable Memory Manager spill count : 0 Total bags proactively spilled: 0 Total records proactively spilled: 0 Job DAG: job_local_0001 -> job_local_0002, job_local_0002 -> job_local_0003, job_local_0003 -> job_local_0004, job_local_0004 12/04/05 10:01:04 INFO mapReduceLayer.MapReduceLauncher: Some jobs have failed! Stop running all dependent jobs

    Read the article

  • HTML client-side portable file generation - no external resources or server calls

    - by awashburn
    I have the following situation: I have set up a series of Cron jobs on an internal company server to run various PHP scripts designed to check data integrity. Each PHP script queries a company database, formats the returned query data into an HTML file containing one or more <tables>, and then mails the HTML file to several client emails as an attachment. From my experience, most of the PHP scripts generate HTML files with only a few tables, however there are a few PHP scripts the create HTML files with around 30 tables. HTML files have been chosen as the distribution format of these scans because HTML makes it easy to view many tables at once in a browser window. I would like to add the functionality for the clients to download a table in the HTML file as a CSV file. I anticipate clients using this feature when they suspect a data integrity issue based on the table data. It would be ideal for them to be able to take the table in question, export the data out to a CSV file, and then study it further. Because need for exporting the data to CSV format is at the discretion of the client, unpredictable as to what table will be under scrutiny, and intermittently used I do not want to create CSV files for every table. Normally creating a CSV file wouldn't be too difficult, using JavaScript/jQuery to preform DOM traversal and generate the CSV file data into a string utilizing a server call or flash library to facilitate the download process; but I have one limiting constraint: The HTML file needs to be "portable." I would like the clients to be able to take their HTML file and preform analysis of the data outside the company intranet. Also it is likely these HTML files will be archived, so making the export functionality "self contained" in the HTML files is a highly desirable feature for the two previous reasons. The "portable" constraint of CSV file generation from a HTML file means: I cannot make a server call. This means ALL the file generation must be done client-side. I want the single HTML file attached to the email to contain all the resources to generate the CSV file. This means I cannot use jQuery or flash libraries to generate the file. I understand, for obvious security reasons, that writing out files to disk using JavaScript isn't supported by any browser. I don't want to create a file without the user knowledge; I would like to generate the file using JavaScript in memory and then prompt the user the "download" the file from memory. I have looked into generating the CSV file as a URI however, according to my research and testing, this approach has a few problems: URIs for files are not supported by IE (See Here) URIs in FireFox saves the file with a random file name and as a .part file As much as it pains me, I can accept the fact the IE<=v9 won't create a URI for files. I would like to create a semi-cross-browser solution in which Chrome, Firefox, and Safari create a URI to download the CSV file after JavaScript DOM traversal compiles the data. My Example Table: <table> <thead class="resulttitle"> <tr> <th style="text-align:center;" colspan="3"> NameOfTheTable</th> </tr> </thead> <tbody> <tr class="resultheader"> <td>VEN_PK</td> <td>VEN_CompanyName</td> <td>VEN_Order</td> </tr> <tr> <td class='resultfield'>1</td> <td class='resultfield'>Brander Ranch</td> <td class='resultfield'>Beef</td> </tr> <tr> <td class='resultfield'>2</td> <td class='resultfield'>Super Tree Produce</td> <td class='resultfield'>Apples</td> </tr> <tr> <td class='resultfield'>3</td> <td class='resultfield'>John's Distilery</td> <td class='resultfield'>Beer</td> </tr> </tbody> <tfoot> <tr> <td colspan="3" style="text-align:right;"> <button onclick="doSomething(this);">Export to CSV File</button></td> </tr> </tfoot> </table> My Example JavaScript: <script type="text/javascript"> function doSomething(inButton) { /* locate elements */ var table = inButton.parentNode.parentNode.parentNode.parentNode; var name = table.rows[0].cells[0].textContent; var tbody = table.tBodies[0]; /* create CSV String through DOM traversal */ var rows = tbody.rows; var csvStr = ""; for (var i=0; i < rows.length; i++) { for (var j=0; j < rows[i].cells.length; j++) { csvStr += rows[i].cells[j].textContent +","; } csvStr += "\n"; } /* temporary proof DOM traversal was successful */ alert("Table Name:\t" + name + "\nCSV String:\n" + csvStr); /* Create URI Here! * (code I am missing) */ /* Approach 1 : Auto-download * downloads CSV data but: * In FireFox downloads as randomCharacers.part instead of name.csv * In Chrome downloads without prompting the user * In Safari opens the files in browser (textfile) */ //var hrefData = "data:text/csv;charset=US-ASCII," + encodeURIComponent(csvStr); //document.location.href = hrefData; /* Approach 2 : Right-Click Save As... */ var hrefData = "data:text/csv;charset=US-ASCII," + encodeURIComponent(csvStr); var fileLink = document.createElement("a"); fileLink.href = hrefData; fileLink.innerHTML = "download"; parentTD = inButton.parentNode; parentTD.appendChild(fileLink); parentTD.removeChild(inButton); } </script> I am looking for an example solution in which the above example table can be downloaded as a CSV file: using a URI the user is prompted to save the file the default filename is the name of the table. code works as described in modern versions of FireFox, Safari, & Chrome I have added a <script> tag with the DOM traversal function doSomething(). The real help I need is with formatting the URI to what I want within the doSomething() function.

    Read the article

  • Will these optimizations to my Ruby implementation of diff improve performance in a Rails app?

    - by grg-n-sox
    <tl;dr> In source version control diff patch generation, would it be worth it to use the optimizations listed at the very bottom of this writing (see <optimizations>) in my Ruby implementation of diff for making diff patches? </tl;dr> <introduction> I am programming something I have never done before and there might already be tools out there to do the exact thing I am programming but at this point I am having too much fun to care so I am still going to do it from scratch, even if there is a tool for this. So anyways, I am working on a Ruby on Rails app and need a certain feature. Basically I want each entry in a table of mine, let's say for example a table of video games, to have a stored chunk of text that represents a review or something of the sort for that table entry. However, I want this text to be both editable by any registered user and also keep track of different submissions in a version control system. The simplest solution I could think of is just implement a solution that keeps track of the text body and the diff patch history of different versions of the text body as objects in Ruby and then serialize it, preferably in human readable form (so I'll most likely use YAML for this) for editing if needed due to corruption by a software bug or a mistake is made by an admin doing some version editing. So at first I just tried to dive in head first into this feature to find that the problem of generating a diff patch is more difficult that I thought to do efficiently. So I did some research and came across some ideas. Some I have implemented already and some I have not. However, it all pretty much revolves around the longest common subsequence problem, as you would already know if you have already done anything with diff or diff-like features, and optimization the function that solves it. Currently I have it so it truncates the compared versions of the text body from the beginning and end until non-matching lines are found. Then it solves the problem using a comparison matrix, but instead of incrementing the value stored in a cell when it finds a matching line like in most longest common subsequence algorithms I have seen examples of, I increment when I have a non-matching line so as to calculate edit distance instead of longest common subsequence. Although as far as I can tell between the two approaches, they are essentially two sides of the same coin so either could be used to derive an answer. It then back-traces through the comparison matrix and notes when there was an incrementation and in which adjacent cell (West, Northwest, or North) to determine that line's diff entry and assumes all other lines to be unchanged. Normally I would leave it at that, but since this is going into a Rails environment and not just some stand-alone Ruby script, I started getting worried about needing to optimize at least enough so if a spammer that somehow knew how I implemented the version control system and knew my worst case scenario entry still wouldn't be able to hit the server that bad. After some searching and reading of research papers and articles through the internet, I've come across several that seem decent but all seem to have pros and cons and I am having a hard time deciding how well in this situation that the pros and cons balance out. So are the ones listed here worth it? I have listed them with known pros and cons. </introduction> <optimizations> Chop the compared sequences into multiple chucks of subsequences by splitting where lines are unchanged, and then truncating each section of unchanged lines at the beginning and end of each section. Then solve the edit distance of each subsequence. Pro: Changes the time increase as the changed area gets bigger from a quadratic increase to something more similar to a linear increase. Con: Figuring out where to split already seems like you have to solve edit distance except now you don't care how it is changed. Would be fine if this was solvable by a process closer to solving hamming distance but a single insertion would throw this off. Use a cryptographic hash function to both convert all sequence elements into integers and ensure uniqueness. Then solve the edit distance comparing the hash integers instead of the sequence elements themselves. Pro: The operation of comparing two integers is faster than the operation of comparing two strings, so a slight performance gain is received after every comparison, which can be a lot overall. Con: Using a cryptographic hash function takes time to convert all the sequence elements and may end up costing more time to do the conversion that you gain back from the integer comparisons. You could use the built in hash function for a string but that will not guarantee uniqueness. Use lazy evaluation to only calculate the three center-most diagonals of the comparison matrix and then only calculate additional diagonals as needed. And then also use this approach to possibly remove the need on some comparisons to compare all three adjacent cells as desribed here. Pro: Can turn an algorithm that always takes O(n * m) time and make it so only worst case scenario is that time, best case becomes practically linear, and average case is somewhere between the two. Con: It is an algorithm I've only seen implemented in functional programming languages and I am having a difficult time comprehending how to convert this into Ruby based on how it is described at the site linked to above. Make a C module and do the hard work at the native level in C and just make a Ruby wrapper for it so Ruby can make all the calls to it that it needs. Pro: I have to imagine that evaluating something like this in could be a LOT faster. Con: I have no idea how Rails handles apps with ruby code that has C extensions and it hurts the portability of the app. This is an optimization for after the solving of edit distance, but idea is to store additional combined diffs with the ones produced by each version to make a delta-tree data structure with the most recently made diff as the root node of the tree so getting to any version takes worst case time of O(log n) instead of O(n). Pro: Would make going back to an old version a lot faster. Con: It would mean every new commit, the delta-tree would get a new root node that will cost time to reorganize the delta-tree for an operation that will be carried out a lot more often than going back a version, not to mention the unlikelihood it will be an old version. </optimizations> So are these things worth the effort?

    Read the article

  • Understanding Request Validation in ASP.NET MVC 3

    - by imran_ku07
         Introduction:             A fact that you must always remember "never ever trust user inputs". An application that trusts user inputs may be easily vulnerable to XSS, XSRF, SQL Injection, etc attacks. XSS and XSRF are very dangerous attacks. So to mitigate these attacks ASP.NET introduced request validation in ASP.NET 1.1. During request validation, ASP.NET will throw HttpRequestValidationException: 'A potentially dangerous XXX value was detected from the client', if he found, < followed by an exclamation(like <!) or < followed by the letters a through z(like <s) or & followed by a pound sign(like &#123) as a part of query string, posted form and cookie collection. In ASP.NET 4.0, request validation becomes extensible. This means that you can extend request validation. Also in ASP.NET 4.0, by default request validation is enabled before the BeginRequest phase of an HTTP request. ASP.NET MVC 3 moves one step further by making request validation granular. This allows you to disable request validation for some properties of a model while maintaining request validation for all other cases. In this article I will show you the use of request validation in ASP.NET MVC 3. Then I will briefly explain the internal working of granular request validation.       Description:             First of all create a new ASP.NET MVC 3 application. Then create a simple model class called MyModel,     public class MyModel { public string Prop1 { get; set; } public string Prop2 { get; set; } }             Then just update the index action method as follows,   public ActionResult Index(MyModel p) { return View(); }             Now just run this application. You will find that everything works just fine. Now just append this query string ?Prop1=<s to the url of this application, you will get the HttpRequestValidationException exception.           Now just decorate the Index action method with [ValidateInputAttribute(false)],   [ValidateInput(false)] public ActionResult Index(MyModel p) { return View(); }             Run this application again with same query string. You will find that your application run without any unhandled exception.           Up to now, there is nothing new in ASP.NET MVC 3 because ValidateInputAttribute was present in the previous versions of ASP.NET MVC. Any problem with this approach? Yes there is a problem with this approach. The problem is that now users can send html for both Prop1 and Prop2 properties and a lot of developers are not aware of it. This means that now everyone can send html with both parameters(e.g, ?Prop1=<s&Prop2=<s). So ValidateInput attribute does not gives you the guarantee that your application is safe to XSS or XSRF. This is the reason why ASP.NET MVC team introduced granular request validation in ASP.NET MVC 3. Let's see this feature.           Remove [ValidateInputAttribute(false)] on Index action and update MyModel class as follows,   public class MyModel { [AllowHtml] public string Prop1 { get; set; } public string Prop2 { get; set; } }             Note that AllowHtml attribute is only decorated on Prop1 property. Run this application again with ?Prop1=<s query string. You will find that your application run just fine. Run this application again with ?Prop1=<s&Prop2=<s query string, you will get HttpRequestValidationException exception. This shows that the granular request validation in ASP.NET MVC 3 only allows users to send html for properties decorated with AllowHtml attribute.            Sometimes you may need to access Request.QueryString or Request.Form directly. You may change your code as follows,   [ValidateInput(false)] public ActionResult Index() { var prop1 = Request.QueryString["Prop1"]; return View(); }             Run this application again, you will get the HttpRequestValidationException exception again even you have [ValidateInput(false)] on your Index action. The reason is that Request flags are still not set to unvalidate. I will explain this later. For making this work you need to use Unvalidated extension method,     public ActionResult Index() { var q = Request.Unvalidated().QueryString; var prop1 = q["Prop1"]; return View(); }             Unvalidated extension method is defined in System.Web.Helpers namespace . So you need to add using System.Web.Helpers; in this class file. Run this application again, your application run just fine.             There you have it. If you are not curious to know the internal working of granular request validation then you can skip next paragraphs completely. If you are interested then carry on reading.             Create a new ASP.NET MVC 2 application, then open global.asax.cs file and the following lines,     protected void Application_BeginRequest() { var q = Request.QueryString; }             Then make the Index action method as,    [ValidateInput(false)] public ActionResult Index(string id) { return View(); }             Please note that the Index action method contains a parameter and this action method is decorated with [ValidateInput(false)]. Run this application again, but now with ?id=<s query string, you will get HttpRequestValidationException exception at Application_BeginRequest method. Now just add the following entry in web.config,   <httpRuntime requestValidationMode="2.0"/>             Now run this application again. This time your application will run just fine. Now just see the following quote from ASP.NET 4 Breaking Changes,   In ASP.NET 4, by default, request validation is enabled for all requests, because it is enabled before the BeginRequest phase of an HTTP request. As a result, request validation applies to requests for all ASP.NET resources, not just .aspx page requests. This includes requests such as Web service calls and custom HTTP handlers. Request validation is also active when custom HTTP modules are reading the contents of an HTTP request.             This clearly state that request validation is enabled before the BeginRequest phase of an HTTP request. For understanding what does enabled means here, we need to see HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly. Here is the implementation of HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly,     public NameValueCollection Form { get { if (this._form == null) { this._form = new HttpValueCollection(); if (this._wr != null) { this.FillInFormCollection(); } this._form.MakeReadOnly(); } if (this._flags[2]) { this._flags.Clear(2); this.ValidateNameValueCollection(this._form, RequestValidationSource.Form); } return this._form; } } public NameValueCollection QueryString { get { if (this._queryString == null) { this._queryString = new HttpValueCollection(); if (this._wr != null) { this.FillInQueryStringCollection(); } this._queryString.MakeReadOnly(); } if (this._flags[1]) { this._flags.Clear(1); this.ValidateNameValueCollection(this._queryString, RequestValidationSource.QueryString); } return this._queryString; } } public void ValidateInput() { if (!this._flags[0x8000]) { this._flags.Set(0x8000); this._flags.Set(1); this._flags.Set(2); this._flags.Set(4); this._flags.Set(0x40); this._flags.Set(0x80); this._flags.Set(0x100); this._flags.Set(0x200); this._flags.Set(8); } }             The above code indicates that HttpRequest.QueryString and HttpRequest.Form will only validate the querystring and form collection if certain flags are set. These flags are automatically set if you call HttpRequest.ValidateInput method. Now run the above application again(don't forget to append ?id=<s query string in the url) with the same settings(i.e, requestValidationMode="2.0" setting in web.config and Application_BeginRequest method in global.asax.cs), your application will run just fine. Now just update the Application_BeginRequest method as,   protected void Application_BeginRequest() { Request.ValidateInput(); var q = Request.QueryString; }             Note that I am calling Request.ValidateInput method prior to use Request.QueryString property. ValidateInput method will internally set certain flags(discussed above). These flags will then tells the Request.QueryString (and Request.Form) property that validate the query string(or form) when user call Request.QueryString(or Request.Form) property. So running this application again with ?id=<s query string will throw HttpRequestValidationException exception. Now I hope it is clear to you that what does requestValidationMode do. It just tells the ASP.NET that not invoke the Request.ValidateInput method internally before the BeginRequest phase of an HTTP request if requestValidationMode is set to a value less than 4.0 in web.config. Here is the implementation of HttpRequest.ValidateInputIfRequiredByConfig method which will prove this statement(Don't be confused with HttpRequest and Request. Request is the property of HttpRequest class),    internal void ValidateInputIfRequiredByConfig() { ............................................................... ............................................................... ............................................................... ............................................................... if (httpRuntime.RequestValidationMode >= VersionUtil.Framework40) { this.ValidateInput(); } }              Hopefully the above discussion will clear you how requestValidationMode works in ASP.NET 4. It is also interesting to note that both HttpRequest.QueryString and HttpRequest.Form only throws the exception when you access them first time. Any subsequent access to HttpRequest.QueryString and HttpRequest.Form will not throw any exception. Continuing with the above example, just update Application_BeginRequest method in global.asax.cs file as,   protected void Application_BeginRequest() { try { var q = Request.QueryString; var f = Request.Form; } catch//swallow this exception { } var q1 = Request.QueryString; var f1 = Request.Form; }             Without setting requestValidationMode to 2.0 and without decorating ValidateInput attribute on Index action, your application will work just fine because both HttpRequest.QueryString and HttpRequest.Form will clear their flags after reading HttpRequest.QueryString and HttpRequest.Form for the first time(see the implementation of HttpRequest.QueryString and HttpRequest.Form above).           Now let's see ASP.NET MVC 3 granular request validation internal working. First of all we need to see type of HttpRequest.QueryString and HttpRequest.Form properties. Both HttpRequest.QueryString and HttpRequest.Form properties are of type NameValueCollection which is inherited from the NameObjectCollectionBase class. NameObjectCollectionBase class contains _entriesArray, _entriesTable, NameObjectEntry.Key and NameObjectEntry.Value fields which granular request validation uses internally. In addition granular request validation also uses _queryString, _form and _flags fields, ValidateString method and the Indexer of HttpRequest class. Let's see when and how granular request validation uses these fields.           Create a new ASP.NET MVC 3 application. Then put a breakpoint at Application_BeginRequest method and another breakpoint at HomeController.Index method. Now just run this application. When the break point inside Application_BeginRequest method hits then add the following expression in quick watch window, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                                              Now Press F5 so that the second breakpoint inside HomeController.Index method hits. When the second breakpoint hits then add the following expression in quick watch window again, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                            First screen shows that _entriesTable field is of type System.Collections.Hashtable and _entriesArray field is of type System.Collections.ArrayList during the BeginRequest phase of the HTTP request. While the second screen shows that _entriesTable type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingHashtable and _entriesArray type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingArrayList during executing the Index action method. In addition to these members, ASP.NET MVC 3 also perform some operation on _flags, _form, _queryString and other members of HttpRuntime class internally. This shows that ASP.NET MVC 3 performing some operation on the members of HttpRequest class for making granular request validation possible.           Both LazilyValidatingArrayList and LazilyValidatingHashtable classes are defined in the Microsoft.Web.Infrastructure assembly. You may wonder why their name starts with Lazily. The fact is that now with ASP.NET MVC 3, request validation will be performed lazily. In simple words, Microsoft.Web.Infrastructure assembly is now taking the responsibility for request validation from System.Web assembly. See the below screens. The first screen depicting HttpRequestValidationException exception in ASP.NET MVC 2 application while the second screen showing HttpRequestValidationException exception in ASP.NET MVC 3 application.   In MVC 2:                 In MVC 3:                          The stack trace of the second screenshot shows that Microsoft.Web.Infrastructure assembly (instead of System.Web assembly) is now performing request validation in ASP.NET MVC 3. Now you may ask: where Microsoft.Web.Infrastructure assembly is performing some operation on the members of HttpRequest class. There are at least two places where the Microsoft.Web.Infrastructure assembly performing some operation , Microsoft.Web.Infrastructure.DynamicValidationHelper.GranularValidationReflectionUtil.GetInstance method and Microsoft.Web.Infrastructure.DynamicValidationHelper.ValidationUtility.CollectionReplacer.ReplaceCollection method, Here is the implementation of these methods,   private static GranularValidationReflectionUtil GetInstance() { try { if (DynamicValidationShimReflectionUtil.Instance != null) { return null; } GranularValidationReflectionUtil util = new GranularValidationReflectionUtil(); Type containingType = typeof(NameObjectCollectionBase); string fieldName = "_entriesArray"; bool isStatic = false; Type fieldType = typeof(ArrayList); FieldInfo fieldInfo = CommonReflectionUtil.FindField(containingType, fieldName, isStatic, fieldType); util._del_get_NameObjectCollectionBase_entriesArray = MakeFieldGetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); util._del_set_NameObjectCollectionBase_entriesArray = MakeFieldSetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); Type type6 = typeof(NameObjectCollectionBase); string str2 = "_entriesTable"; bool flag2 = false; Type type7 = typeof(Hashtable); FieldInfo info2 = CommonReflectionUtil.FindField(type6, str2, flag2, type7); util._del_get_NameObjectCollectionBase_entriesTable = MakeFieldGetterFunc<NameObjectCollectionBase, Hashtable>(info2); util._del_set_NameObjectCollectionBase_entriesTable = MakeFieldSetterFunc<NameObjectCollectionBase, Hashtable>(info2); Type targetType = CommonAssemblies.System.GetType("System.Collections.Specialized.NameObjectCollectionBase+NameObjectEntry"); Type type8 = targetType; string str3 = "Key"; bool flag3 = false; Type type9 = typeof(string); FieldInfo info3 = CommonReflectionUtil.FindField(type8, str3, flag3, type9); util._del_get_NameObjectEntry_Key = MakeFieldGetterFunc<string>(targetType, info3); Type type10 = targetType; string str4 = "Value"; bool flag4 = false; Type type11 = typeof(object); FieldInfo info4 = CommonReflectionUtil.FindField(type10, str4, flag4, type11); util._del_get_NameObjectEntry_Value = MakeFieldGetterFunc<object>(targetType, info4); util._del_set_NameObjectEntry_Value = MakeFieldSetterFunc(targetType, info4); Type type12 = typeof(HttpRequest); string methodName = "ValidateString"; bool flag5 = false; Type[] argumentTypes = new Type[] { typeof(string), typeof(string), typeof(RequestValidationSource) }; Type returnType = typeof(void); MethodInfo methodInfo = CommonReflectionUtil.FindMethod(type12, methodName, flag5, argumentTypes, returnType); util._del_validateStringCallback = CommonReflectionUtil.MakeFastCreateDelegate<HttpRequest, ValidateStringCallback>(methodInfo); Type type = CommonAssemblies.SystemWeb.GetType("System.Web.HttpValueCollection"); util._del_HttpValueCollection_ctor = CommonReflectionUtil.MakeFastNewObject<Func<NameValueCollection>>(type); Type type14 = typeof(HttpRequest); string str6 = "_form"; bool flag6 = false; Type type15 = type; FieldInfo info6 = CommonReflectionUtil.FindField(type14, str6, flag6, type15); util._del_get_HttpRequest_form = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info6); util._del_set_HttpRequest_form = MakeFieldSetterFunc(typeof(HttpRequest), info6); Type type16 = typeof(HttpRequest); string str7 = "_queryString"; bool flag7 = false; Type type17 = type; FieldInfo info7 = CommonReflectionUtil.FindField(type16, str7, flag7, type17); util._del_get_HttpRequest_queryString = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info7); util._del_set_HttpRequest_queryString = MakeFieldSetterFunc(typeof(HttpRequest), info7); Type type3 = CommonAssemblies.SystemWeb.GetType("System.Web.Util.SimpleBitVector32"); Type type18 = typeof(HttpRequest); string str8 = "_flags"; bool flag8 = false; Type type19 = type3; FieldInfo flagsFieldInfo = CommonReflectionUtil.FindField(type18, str8, flag8, type19); Type type20 = type3; string str9 = "get_Item"; bool flag9 = false; Type[] typeArray4 = new Type[] { typeof(int) }; Type type21 = typeof(bool); MethodInfo itemGetter = CommonReflectionUtil.FindMethod(type20, str9, flag9, typeArray4, type21); Type type22 = type3; string str10 = "set_Item"; bool flag10 = false; Type[] typeArray6 = new Type[] { typeof(int), typeof(bool) }; Type type23 = typeof(void); MethodInfo itemSetter = CommonReflectionUtil.FindMethod(type22, str10, flag10, typeArray6, type23); MakeRequestValidationFlagsAccessors(flagsFieldInfo, itemGetter, itemSetter, out util._del_BitVector32_get_Item, out util._del_BitVector32_set_Item); return util; } catch { return null; } } private static void ReplaceCollection(HttpContext context, FieldAccessor<NameValueCollection> fieldAccessor, Func<NameValueCollection> propertyAccessor, Action<NameValueCollection> storeInUnvalidatedCollection, RequestValidationSource validationSource, ValidationSourceFlag validationSourceFlag) { NameValueCollection originalBackingCollection; ValidateStringCallback validateString; SimpleValidateStringCallback simpleValidateString; Func<NameValueCollection> getActualCollection; Action<NameValueCollection> makeCollectionLazy; HttpRequest request = context.Request; Func<bool> getValidationFlag = delegate { return _reflectionUtil.GetRequestValidationFlag(request, validationSourceFlag); }; Func<bool> func = delegate { return !getValidationFlag(); }; Action<bool> setValidationFlag = delegate (bool value) { _reflectionUtil.SetRequestValidationFlag(request, validationSourceFlag, value); }; if ((fieldAccessor.Value != null) && func()) { storeInUnvalidatedCollection(fieldAccessor.Value); } else { originalBackingCollection = fieldAccessor.Value; validateString = _reflectionUtil.MakeValidateStringCallback(context.Request); simpleValidateString = delegate (string value, string key) { if (((key == null) || !key.StartsWith("__", StringComparison.Ordinal)) && !string.IsNullOrEmpty(value)) { validateString(value, key, validationSource); } }; getActualCollection = delegate { fieldAccessor.Value = originalBackingCollection; bool flag = getValidationFlag(); setValidationFlag(false); NameValueCollection col = propertyAccessor(); setValidationFlag(flag); storeInUnvalidatedCollection(new NameValueCollection(col)); return col; }; makeCollectionLazy = delegate (NameValueCollection col) { simpleValidateString(col[null], null); LazilyValidatingArrayList array = new LazilyValidatingArrayList(_reflectionUtil.GetNameObjectCollectionEntriesArray(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesArray(col, array); LazilyValidatingHashtable table = new LazilyValidatingHashtable(_reflectionUtil.GetNameObjectCollectionEntriesTable(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesTable(col, table); }; Func<bool> hasValidationFired = func; Action disableValidation = delegate { setValidationFlag(false); }; Func<int> fillInActualFormContents = delegate { NameValueCollection values = getActualCollection(); makeCollectionLazy(values); return values.Count; }; DeferredCountArrayList list = new DeferredCountArrayList(hasValidationFired, disableValidation, fillInActualFormContents); NameValueCollection target = _reflectionUtil.NewHttpValueCollection(); _reflectionUtil.SetNameObjectCollectionEntriesArray(target, list); fieldAccessor.Value = target; } }             Hopefully the above code will help you to understand the internal working of granular request validation. It is also important to note that Microsoft.Web.Infrastructure assembly invokes HttpRequest.ValidateInput method internally. For further understanding please see Microsoft.Web.Infrastructure assembly code. Finally you may ask: at which stage ASP NET MVC 3 will invoke these methods. You will find this answer by looking at the following method source,   Unvalidated extension method for HttpRequest class defined in System.Web.Helpers.Validation class. System.Web.Mvc.MvcHandler.ProcessRequestInit method. System.Web.Mvc.ControllerActionInvoker.ValidateRequest method. System.Web.WebPages.WebPageHttpHandler.ProcessRequestInternal method.       Summary:             ASP.NET helps in preventing XSS attack using a feature called request validation. In this article, I showed you how you can use granular request validation in ASP.NET MVC 3. I explain you the internal working of  granular request validation. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Tips on Migrating from AquaLogic .NET Accelerator to WebCenter WSRP Producer for .NET

    - by user647124
    This year I embarked on a journey to migrate a group of ASP.NET web applications developed to integrate with WebLogic Portal 9.2 via the AquaLogic® Interaction .NET Application Accelerator 1.0 to instead use the Oracle WebCenter WSRP Producer for .NET and integrated with WebLogic Portal 10.3.4. It has been a very winding path and this blog entry is intended to share both the lessons learned and relevant approaches that led to those learnings. Like most journeys of discovery, it was not a direct path, and there are notes to let you know when it is practical to skip a section if you are in a hurry to get from here to there. For the Curious From the perspective of necessity, this section would be better at the end. If it were there, though, it would probably be read by far fewer people, including those that are actually interested in these types of sections. Those in a hurry may skip past and be none the worst for it in dealing with the hands-on bits of performing a migration from .NET Accelerator to WSRP Producer. For others who want to talk about why they did what they did after they did it, or just want to know for themselves, enjoy. A Brief (and edited) History of the WSRP for .NET Technologies (as Relevant to the this Post) Note: This section is for those who are curious about why the migration path is not as simple as many other Oracle technologies. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The currently deployed architecture that was to be migrated and upgraded achieved initial integration between .NET and J2EE over the WSRP protocol through the use of The AquaLogic Interaction .NET Application Accelerator. The .NET Accelerator allowed the applications that were written in ASP.NET and deployed on a Microsoft Internet Information Server (IIS) to interact with a WebLogic Portal application deployed on a WebLogic (J2EE application) Server (both version 9.2, the state of the art at the time of its creation). At the time this architectural decision for the application was made, both the AquaLogic and WebLogic brands were owned by BEA Systems. The AquaLogic brand included products acquired by BEA through the acquisition of Plumtree, whose flagship product was a portal platform available in both J2EE and .NET versions. As part of this dual technology support an adaptor was created to facilitate the use of WSRP as a communication protocol where customers wished to integrate components from both versions of the Plumtree portal. The adapter evolved over several product generations to include a broad array of both standard and proprietary WSRP integration capabilities. Later, BEA Systems was acquired by Oracle. Over the course of several years Oracle has acquired a large number of portal applications and has taken the strategic direction to migrate users of these myriad (and formerly competitive) products to the Oracle WebCenter technology stack. As part of Oracle’s strategic technology roadmap, older portal products are being schedule for end of life, including the portal products that were part of the BEA acquisition. The .NET Accelerator has been modified over a very long period of time with features driven by users of that product and developed under three different vendors (each a direct competitor in the same solution space prior to merger). The Oracle WebCenter WSRP Producer for .NET was introduced much more recently with the key objective to specifically address the needs of the WebCenter customers developing solutions accessible through both J2EE and .NET platforms utilizing the WSRP specifications. The Oracle Product Development Team also provides these insights on the drivers for developing the WSRP Producer: ***************************************** Support for ASP.NET AJAX. Controls using the ASP.NET AJAX script manager do not function properly in the Application Accelerator for .NET. Support 2 way SSL in WLP. This was not possible with the proxy/bridge set up in the existing Application Accelerator for .NET. Allow developers to code portlets (Web Parts) using the .NET framework rather than a proprietary framework. Developers had to use the Application Accelerator for .NET plug-ins to Visual Studio to manage preferences and profile data. This is now replaced with the .NET Framework Personalization (for preferences) and Profile providers. The WSRP Producer for .NET was created as a new way of developing .NET portlets. It was never designed to be an upgrade path for the Application Accelerator for .NET. .NET developers would create new .NET portlets with the WSRP Producer for .NET and leave any existing .NET portlets running in the Application Accelerator for .NET. ***************************************** The advantage to creating a new solution for WSRP is a product that is far easier for Oracle to maintain and support which in turn improves quality, reliability and maintainability for their customers. No changes to J2EE applications consuming the WSRP portlets previously rendered by the.NET Accelerator is required to migrate from the Aqualogic WSRP solution. For some customers using the .NET Accelerator the challenge is adapting their current .NET applications to work with the WSRP Producer (or any other WSRP adapter as they are proprietary by nature). Part of this adaptation is the need to deploy the .NET applications as a child to the WSRP producer web application as root. Differences between .NET Accelerator and WSRP Producer Note: This section is for those who are curious about why the migration is not as pluggable as something such as changing security providers in WebLogic Server. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The basic terminology used to describe the participating applications in a WSRP environment are the same when applied to either the .NET Accelerator or the WSRP Producer: Producer and Consumer. In both cases the .NET application serves as what is referred to as a WSRP environment as the Producer. The difference lies in how the two adapters create the WSRP translation of the .NET application. The .NET Accelerator, as the name implies, is meant to serve as a quick way of adding WSRP capability to a .NET application. As such, at a high level, the .NET Accelerator behaves as a proxy for requests between the .NET application and the WSRP Consumer. A WSRP request is sent from the consumer to the .NET Accelerator, the.NET Accelerator transforms this request into an ASP.NET request, receives the response, then transforms the response into a WSRP response. The .NET Accelerator is deployed as a stand-alone application on IIS. The WSRP Producer is deployed as a parent application on IIS and all ASP.NET modules that will be made available over WSRP are deployed as children of the WSRP Producer application. In this manner, the WSRP Producer acts more as a Request Filter than a proxy in the WSRP transactions between Producer and Consumer. Highly Recommended Enabling Logging Note: You can skip this section now, but you will most likely want to come back to it later, so why not just read it now? Logging is very helpful in tracking down the causes of any anomalies during testing of migrated portlets. To enable the WSRP Producer logging, update the Application_Start method in the Global.asax.cs for your .NET application by adding log4net.Config.XmlConfigurator.Configure(); IIS logs will usually (in a standard configuration) be in a sub folder under C:\WINDOWS\system32\LogFiles\W3SVC. WSRP Producer logs will be found at C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\Logs\WSRPProducer.log InputTrace.webinfo and OutputTrace.webinfo are located under C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault and can be useful in debugging issues related to markup transformations. Things You Must Do Merge Web.Config Note: If you have been skipping all the sections that you can, now is the time to stop and pay attention J Because the existing .NET application will become a sub-application to the WSRP Producer, you will want to merge required settings from the existing Web.Config to the one in the WSRP Producer. Use the WSRP Producer Master Page The Master Page installed for the WSRP Producer provides common, hiddenform fields and JavaScripts to facilitate portlet instance management and display configuration when the child page is being rendered over WSRP. You add the Master Page by including it in the <@ Page declaration with MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" . You then replace: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > <HTML> <HEAD> With <asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead" Runat="Server"> And </HEAD> <body> <form id="theForm" method="post" runat="server"> With </asp:Content> <asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server"> And finally </form> </body> </HTML> With </asp:Content> In the event you already use Master Pages, adapt your existing Master Pages to be sub masters. See Nested ASP.NET Master Pages for a detailed reference of how to do this. It Happened to Me, It Might Happen to You…Or Not Watch for Use of Session or Request in OnInit In the event the .NET application being modified has pages developed to assume the user has been authenticated in an earlier page request there may be direct or indirect references in the OnInit method to request or session objects that may not have been created yet. This will vary from application to application, so the recommended approach is to test first. If there is an issue with a page running as a WSRP portlet then check for potential references in the OnInit method (including references by methods called within OnInit) to session or request objects. If there are, the simplest solution is to create a new method and then call that method once the necessary object(s) is fully available. I find doing this at the start of the Page_Load method to be the simplest solution. Case Sensitivity .NET languages are not case sensitive, but Java is. This means it is possible to have many variations of SRC= and src= or .JPG and .jpg. The preferred solution is to make these mark up instances all lower case in your .NET application. This will allow the default Rewriter rules in wsrp-producer.xml to work as is. If this is not practical, then make duplicates of any rules where an issue is occurring due to upper or mixed case usage in the .NET application markup and match the case in use with the duplicate rule. For example: <RewriterRule> <LookFor>(href=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> May need to be duplicated as: <RewriterRule> <LookFor>(HREF=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> While it is possible to write a regular expression that will handle mixed case usage, it would be long and strenous to test and maintain, so the recommendation is to use duplicate rules. Is it Still Relative? Some .NET applications base relative paths with a fixed root location. With the introduction of the WSRP Producer, the root has moved up one level. References to ~/ will need to be updated to ~/portlets and many ../ paths will need another ../ in front. I Can See You But I Can’t Find You This issue was first discovered while debugging modules with code that referenced the form on a page from the code-behind by name and/or id. The initial error presented itself as run-time error that was difficult to interpret over WSRP but seemed clear when run as straight ASP.NET as it indicated that the object with the form name did not exist. Since the form name was no longer valid after implementing the WSRP Master Page, the likely fix seemed to simply update the references in the code. However, as the WSRP Master Page is external to the code, a compile time error resulted: Error      155         The name 'form1' does not exist in the current context                C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\portlets\legacywebsite\module\Screens \Reporting.aspx.cs                51           52           legacywebsite.module Much hair-pulling research later it was discovered that it was the use of the FindControl method causing the issue. FindControl doesn’t work quite as expected once a Master Page has been introduced as the controls become embedded in controls, require a recursion to find them that is not part of the FindControl method. In code where the page form is referenced by name, there are two steps to the solution. First, the form needs to be referenced in code generically with Page.Form. For example, this: ToggleControl ctrl = new ToggleControl(frmManualEntry, FunctionLibrary.ParseArrayLst(userObj.Roles)); Becomes this: ToggleControl ctrl = new ToggleControl(Page.Form, FunctionLibrary.ParseArrayLst(userObj.Roles)); Generally the form id is referenced in most ASP.NET applications as a path to a control on the form. To reach the control once a MasterPage has been added requires an additional method to recurse through the controls collections within the form and find the control ID. The following method (found at Rick Strahl's Web Log) corrects this very nicely: public static Control FindControlRecursive(Control Root, string Id) { if (Root.ID == Id) return Root; foreach (Control Ctl in Root.Controls) { Control FoundCtl = FindControlRecursive(Ctl, Id); if (FoundCtl != null) return FoundCtl; } return null; } Where the form name is not referenced, simply using the FindControlRecursive method in place of FindControl will be all that is necessary. Following the second part of the example referenced earlier, the method called with Page.Form changes its value extraction code block from this: Label lblErrMsg = (Label)frmRef.FindControl("lblBRMsg" To this: Label lblErrMsg = (Label) FunctionLibrary.FindControlRecursive(frmRef, "lblBRMsg" The Master That Won’t Step Aside In most migrations it is preferable to make as few changes as possible. In one case I ran across an existing Master Page that would not function as a sub-Master Page. While it would probably have been educational to trace down why, the expedient process of updating it to take the place of the WSRP Master Page is the route I took. The changes are highlighted below: … <asp:ContentPlaceHolder ID="wsrphead" runat="server"></asp:ContentPlaceHolder> </head> <body leftMargin="0" topMargin="0"> <form id="TheForm" runat="server"> <input type="hidden" name="key" id="key" value="" /> <input type="hidden" name="formactionurl" id="formactionurl" value="" /> <input type="hidden" name="handle" id="handle" value="" /> <asp:ScriptManager ID="ScriptManager1" runat="server" EnablePartialRendering="true" > </asp:ScriptManager> This approach did not work for all existing Master Pages, but fortunately all of the other existing Master Pages I have run across worked fine as a sub-Master to the WSRP Master Page. Moving On In Enterprise Portals, even after you get everything working, the work is not finished. Next you need to get it where everyone will work with it. Migration Planning Providing that the server where IIS is running is adequately sized, it is possible to run both the .NET Accelerator and the WSRP Producer on the same server during the upgrade process. The upgrade can be performed incrementally, i.e., one portlet at a time, if server administration processes support it. Those processes would include the ability to manage a second producer in the consuming portal and to change over individual portlet instances from one provider to the other. If processes or requirements demand that all portlets be cut over at the same time, it needs to be determined if this cut over should include a new producer, updating all of the portlets in the consumer, or if the WSRP Producer portlet configuration must maintain the naming conventions used by the .NET Accelerator and simply change the WSRP end point configured in the consumer. In some enterprises it may even be necessary to maintain the same WSDL end point, at which point the IIS configuration will be where the updates occur. The downside to such a requirement is that it makes rolling back very difficult, should the need arise. Location, Location, Location Not everyone wants the web application to have the descriptively obvious wsrpdefault location, or needs to create a second WSRP site on the same server. The instructions below are from the product team and, while targeted towards making a second site, will work for creating a site with a different name and then remove the old site. You can also change just the name in IIS. Manually Creating a WSRP Producer Site Instructions (NOTE: all executables used are the same ones used by the installer and “wsrpdev” will be the name of the new instance): 1. Copy C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault to C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev. 2. Bring up a command window as an administrator 3. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\IISAppAccelSiteCreator.exe install WSRPProducers wsrpdev "C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev" 8678 2.0.50727 4. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev "NETWORK SERVICE" 3 1 5. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev EVERYONE 1 1 6. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\1.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev 7. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\2.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev Tests: 1. Bring up a browser on the host itself and go to http://localhost:8678/wsrpdev/wsdl/1.0/WSRPService.wsdl and make sure that the URLs in the XML returned include the wsrpdev changes you made in step 6. 2. Bring up a browser on the host itself and see if the default sample comes up: http://localhost:8678/wsrpdev/portlets/ASPNET_AJAX_sample/default.aspx 3. Register the producer in WLP and test the portlet. Changing the Port used by WSRP Producer The pre-configured port for the WSRP Producer is 8678. You can change this port by updating both the IIS configuration and C:\Oracle\Middleware\WSRPProducerForDotNet\[WSRP_APP_NAME]\wsdl\1.0\WSRPService.wsdl. Do You Need to Migrate? Oracle Premier Support ended in November of 2010 for AquaLogic Interaction .NET Application Accelerator 1.x and Extended Support ends in November 2012 (see http://www.oracle.com/us/support/lifetime-support/lifetime-support-software-342730.html for other related dates). This means that integration with products released after November of 2010 is not supported. If having such support is the policy within your enterprise, you do indeed need to migrate. If changes in your enterprise cause your current solution with the .NET Accelerator to no longer function properly, you may need to migrate. Migration is a choice, and if the goals of your enterprise are to take full advantage of newer technologies then migration is certainly one activity you should be planning for.

    Read the article

  • Using HTML 5 SessionState to save rendered Page Content

    - by Rick Strahl
    HTML 5 SessionState and LocalStorage are very useful and super easy to use to manage client side state. For building rich client side or SPA style applications it's a vital feature to be able to cache user data as well as HTML content in order to swap pages in and out of the browser's DOM. What might not be so obvious is that you can also use the sessionState and localStorage objects even in classic server rendered HTML applications to provide caching features between pages. These APIs have been around for a long time and are supported by most relatively modern browsers and even all the way back to IE8, so you can use them safely in your Web applications. SessionState and LocalStorage are easy The APIs that make up sessionState and localStorage are very simple. Both object feature the same API interface which  is a simple, string based key value store that has getItem, setItem, removeitem, clear and  key methods. The objects are also pseudo array objects and so can be iterated like an array with  a length property and you have array indexers to set and get values with. Basic usage  for storing and retrieval looks like this (using sessionStorage, but the syntax is the same for localStorage - just switch the objects):// set var lastAccess = new Date().getTime(); if (sessionStorage) sessionStorage.setItem("myapp_time", lastAccess.toString()); // retrieve in another page or on a refresh var time = null; if (sessionStorage) time = sessionStorage.getItem("myapp_time"); if (time) time = new Date(time * 1); else time = new Date(); sessionState stores data that is browser session specific and that has a liftetime of the active browser session or window. Shut down the browser or tab and the storage goes away. localStorage uses the same API interface, but the lifetime of the data is permanently stored in the browsers storage area until deleted via code or by clearing out browser cookies (not the cache). Both sessionStorage and localStorage space is limited. The spec is ambiguous about this - supposedly sessionStorage should allow for unlimited size, but it appears that most WebKit browsers support only 2.5mb for either object. This means you have to be careful what you store especially since other applications might be running on the same domain and also use the storage mechanisms. That said 2.5mb worth of character data is quite a bit and would go a long way. The easiest way to get a feel for how sessionState and localStorage work is to look at a simple example. You can go check out the following example online in Plunker: http://plnkr.co/edit/0ICotzkoPjHaWa70GlRZ?p=preview which looks like this: Plunker is an online HTML/JavaScript editor that lets you write and run Javascript code and similar to JsFiddle, but a bit cleaner to work in IMHO (thanks to John Papa for turning me on to it). The sample has two text boxes with counts that update session/local storage every time you click the related button. The counts are 'cached' in Session and Local storage. The point of these examples is that both counters survive full page reloads, and the LocalStorage counter survives a complete browser shutdown and restart. Go ahead and try it out by clicking the Reload button after updating both counters and then shutting down the browser completely and going back to the same URL (with the same browser). What you should see is that reloads leave both counters intact at the counted values, while a browser restart will leave only the local storage counter intact. The code to deal with the SessionStorage (and LocalStorage not shown here) in the example is isolated into a couple of wrapper methods to simplify the code: function getSessionCount() { var count = 0; if (sessionStorage) { var count = sessionStorage.getItem("ss_count"); count = !count ? 0 : count * 1; } $("#txtSession").val(count); return count; } function setSessionCount(count) { if (sessionStorage) sessionStorage.setItem("ss_count", count.toString()); } These two functions essentially load and store a session counter value. The two key methods used here are: sessionStorage.getItem(key); sessionStorage.setItem(key,stringVal); Note that the value given to setItem and return by getItem has to be a string. If you pass another type you get an error. Don't let that limit you though - you can easily enough store JSON data in a variable so it's quite possible to pass complex objects and store them into a single sessionStorage value:var user = { name: "Rick", id="ricks", level=8 } sessionStorage.setItem("app_user",JSON.stringify(user)); to retrieve it:var user = sessionStorage.getItem("app_user"); if (user) user = JSON.parse(user); Simple! If you're using the Chrome Developer Tools (F12) you can also check out the session and local storage state on the Resource tab:   You can also use this tool to refresh or remove entries from storage. What we just looked at is a purely client side implementation where a couple of counters are stored. For rich client centric AJAX applications sessionStorage and localStorage provide a very nice and simple API to store application state while the application is running. But you can also use these storage mechanisms to manage server centric HTML applications when you combine server rendering with some JavaScript to perform client side data caching. You can both store some state information and data on the client (ie. store a JSON object and carry it forth between server rendered HTML requests) or you can use it for good old HTTP based caching where some rendered HTML is saved and then restored later. Let's look at the latter with a real life example. Why do I need Client-side Page Caching for Server Rendered HTML? I don't know about you, but in a lot of my existing server driven applications I have lists that display a fair amount of data. Typically these lists contain links to then drill down into more specific data either for viewing or editing. You can then click on a link and go off to a detail page that provides more concise content. So far so good. But now you're done with the detail page and need to get back to the list, so you click on a 'bread crumbs trail' or an application level 'back to list' button and… …you end up back at the top of the list - the scroll position, the current selection in some cases even filters conditions - all gone with the wind. You've left behind the state of the list and are starting from scratch in your browsing of the list from the top. Not cool! Sound familiar? This a pretty common scenario with server rendered HTML content where it's so common to display lists to drill into, only to lose state in the process of returning back to the original list. Look at just about any traditional forums application, or even StackOverFlow to see what I mean here. Scroll down a bit to look at a post or entry, drill in then use the bread crumbs or tab to go back… In some cases returning to the top of a list is not a big deal. On StackOverFlow that sort of works because content is turning around so quickly you probably want to actually look at the top posts. Not always though - if you're browsing through a list of search topics you're interested in and drill in there's no way back to that position. Essentially anytime you're actively browsing the items in the list, that's when state becomes important and if it's not handled the user experience can be really disrupting. Content Caching If you're building client centric SPA style applications this is a fairly easy to solve problem - you tend to render the list once and then update the page content to overlay the detail content, only hiding the list temporarily until it's used again later. It's relatively easy to accomplish this simply by hiding content on the page and later making it visible again. But if you use server rendered content, hanging on to all the detail like filters, selections and scroll position is not quite as easy. Or is it??? This is where sessionStorage comes in handy. What if we just save the rendered content of a previous page, and then restore it when we return to this page based on a special flag that tells us to use the cached version? Let's see how we can do this. A real World Use Case Recently my local ISP asked me to help out with updating an ancient classifieds application. They had a very busy, local classifieds app that was originally an ASP classic application. The old app was - wait for it: frames based - and even though I lobbied against it, the decision was made to keep the frames based layout to allow rapid browsing of the hundreds of posts that are made on a daily basis. The primary reason they wanted this was precisely for the ability to quickly browse content item by item. While I personally hate working with Frames, I have to admit that the UI actually works well with the frames layout as long as you're running on a large desktop screen. You can check out the frames based desktop site here: http://classifieds.gorge.net/ However when I rebuilt the app I also added a secondary view that doesn't use frames. The main reason for this of course was for mobile displays which work horribly with frames. So there's a somewhat mobile friendly interface to the interface, which ditches the frames and uses some responsive design tweaking for mobile capable operation: http://classifeds.gorge.net/mobile  (or browse the base url with your browser width under 800px)   Here's what the mobile, non-frames view looks like:   As you can see this means that the list of classifieds posts now is a list and there's a separate page for drilling down into the item. And of course… originally we ran into that usability issue I mentioned earlier where the browse, view detail, go back to the list cycle resulted in lost list state. Originally in mobile mode you scrolled through the list, found an item to look at and drilled in to display the item detail. Then you clicked back to the list and BAM - you've lost your place. Because there are so many items added on a daily basis the full list is never fully loaded, but rather there's a "Load Additional Listings"  entry at the button. Not only did we originally lose our place when coming back to the list, but any 'additionally loaded' items are no longer there because the list was now rendering  as if it was the first page hit. The additional listings, and any filters, the selection of an item all were lost. Major Suckage! Using Client SessionStorage to cache Server Rendered Content To work around this problem I decided to cache the rendered page content from the list in SessionStorage. Anytime the list renders or is updated with Load Additional Listings, the page HTML is cached and stored in Session Storage. Any back links from the detail page or the login or write entry forms then point back to the list page with a back=true query string parameter. If the server side sees this parameter it doesn't render the part of the page that is cached. Instead the client side code retrieves the data from the sessionState cache and simply inserts it into the page. It sounds pretty simple, and the overall the process is really easy, but there are a few gotchas that I'll discuss in a minute. But first let's look at the implementation. Let's start with the server side here because that'll give a quick idea of the doc structure. As I mentioned the server renders data from an ASP.NET MVC view. On the list page when returning to the list page from the display page (or a host of other pages) looks like this: https://classifieds.gorge.net/list?back=True The query string value is a flag, that indicates whether the server should render the HTML. Here's what the top level MVC Razor view for the list page looks like:@model MessageListViewModel @{ ViewBag.Title = "Classified Listing"; bool isBack = !string.IsNullOrEmpty(Request.QueryString["back"]); } <form method="post" action="@Url.Action("list")"> <div id="SizingContainer"> @if (!isBack) { @Html.Partial("List_CommandBar_Partial", Model) <div id="PostItemContainer" class="scrollbox" xstyle="-webkit-overflow-scrolling: touch;"> @Html.Partial("List_Items_Partial", Model) @if (Model.RequireLoadEntry) { <div class="postitem loadpostitems" style="padding: 15px;"> <div id="LoadProgress" class="smallprogressright"></div> <div class="control-progress"> Load additional listings... </div> </div> } </div> } </div> </form> As you can see the query string triggers a conditional block that if set is simply not rendered. The content inside of #SizingContainer basically holds  the entire page's HTML sans the headers and scripts, but including the filter options and menu at the top. In this case this makes good sense - in other situations the fact that the menu or filter options might be dynamically updated might make you only cache the list rather than essentially the entire page. In this particular instance all of the content works and produces the proper result as both the list along with any filter conditions in the form inputs are restored. Ok, let's move on to the client. On the client there are two page level functions that deal with saving and restoring state. Like the counter example I showed earlier, I like to wrap the logic to save and restore values from sessionState into a separate function because they are almost always used in several places.page.saveData = function(id) { if (!sessionStorage) return; var data = { id: id, scroll: $("#PostItemContainer").scrollTop(), html: $("#SizingContainer").html() }; sessionStorage.setItem("list_html",JSON.stringify(data)); }; page.restoreData = function() { if (!sessionStorage) return; var data = sessionStorage.getItem("list_html"); if (!data) return null; return JSON.parse(data); }; The data that is saved is an object which contains an ID which is the selected element when the user clicks and a scroll position. These two values are used to reset the scroll position when the data is used from the cache. Finally the html from the #SizingContainer element is stored, which makes for the bulk of the document's HTML. In this application the HTML captured could be a substantial bit of data. If you recall, I mentioned that the server side code renders a small chunk of data initially and then gets more data if the user reads through the first 50 or so items. The rest of the items retrieved can be rather sizable. Other than the JSON deserialization that's Ok. Since I'm using SessionStorage the storage space has no immediate limits. Next is the core logic to handle saving and restoring the page state. At first though this would seem pretty simple, and in some cases it might be, but as the following code demonstrates there are a few gotchas to watch out for. Here's the relevant code I use to save and restore:$( function() { … var isBack = getUrlEncodedKey("back", location.href); if (isBack) { // remove the back key from URL setUrlEncodedKey("back", "", location.href); var data = page.restoreData(); // restore from sessionState if (!data) { // no data - force redisplay of the server side default list window.location = "list"; return; } $("#SizingContainer").html(data.html); var el = $(".postitem[data-id=" + data.id + "]"); $(".postitem").removeClass("highlight"); el.addClass("highlight"); $("#PostItemContainer").scrollTop(data.scroll); setTimeout(function() { el.removeClass("highlight"); }, 2500); } else if (window.noFrames) page.saveData(null); // save when page loads $("#SizingContainer").on("click", ".postitem", function() { var id = $(this).attr("data-id"); if (!id) return true; if (window.noFrames) page.saveData(id); var contentFrame = window.parent.frames["Content"]; if (contentFrame) contentFrame.location.href = "show/" + id; else window.location.href = "show/" + id; return false; }); … The code starts out by checking for the back query string flag which triggers restoring from the client cache. If cached the cached data structure is read from sessionStorage. It's important here to check if data was returned. If the user had back=true on the querystring but there is no cached data, he likely bookmarked this page or otherwise shut down the browser and came back to this URL. In that case the server didn't render any detail and we have no cached data, so all we can do is redirect to the original default list view using window.location. If we continued the page would render no data - so make sure to always check the cache retrieval result. Always! If there is data the it's loaded and the data.html data is restored back into the document by simply injecting the HTML back into the document's #SizingContainer element:$("#SizingContainer").html(data.html); It's that simple and it's quite quick even with a fully loaded list of additional items and on a phone. The actual HTML data is stored to the cache on every page load initially and then again when the user clicks on an element to navigate to a particular listing. The former ensures that the client cache always has something in it, and the latter updates with additional information for the selected element. For the click handling I use a data-id attribute on the list item (.postitem) in the list and retrieve the id from that. That id is then used to navigate to the actual entry as well as storing that Id value in the saved cached data. The id is used to reset the selection by searching for the data-id value in the restored elements. The overall process of this save/restore process is pretty straight forward and it doesn't require a bunch of code, yet it yields a huge improvement in the usability of the site on mobile devices (or anybody who uses the non-frames view). Some things to watch out for As easy as it conceptually seems to simply store and retrieve cached content, you have to be quite aware what type of content you are caching. The code above is all that's specific to cache/restore cycle and it works, but it took a few tweaks to the rest of the script code and server code to make it all work. There were a few gotchas that weren't immediately obvious. Here are a few things to pay attention to: Event Handling Logic Timing of manipulating DOM events Inline Script Code Bookmarking to the Cache Url when no cache exists Do you have inline script code in your HTML? That script code isn't going to run if you restore from cache and simply assign or it may not run at the time you think it would normally in the DOM rendering cycle. JavaScript Event Hookups The biggest issue I ran into with this approach almost immediately is that originally I had various static event handlers hooked up to various UI elements that are now cached. If you have an event handler like:$("#btnSearch").click( function() {…}); that works fine when the page loads with server rendered HTML, but that code breaks when you now load the HTML from cache. Why? Because the elements you're trying to hook those events to may not actually be there - yet. Luckily there's an easy workaround for this by using deferred events. With jQuery you can use the .on() event handler instead:$("#SelectionContainer").on("click","#btnSearch", function() {…}); which monitors a parent element for the events and checks for the inner selector elements to handle events on. This effectively defers to runtime event binding, so as more items are added to the document bindings still work. For any cached content use deferred events. Timing of manipulating DOM Elements Along the same lines make sure that your DOM manipulation code follows the code that loads the cached content into the page so that you don't manipulate DOM elements that don't exist just yet. Ideally you'll want to check for the condition to restore cached content towards the top of your script code, but that can be tricky if you have components or other logic that might not all run in a straight line. Inline Script Code Here's another small problem I ran into: I use a DateTime Picker widget I built a while back that relies on the jQuery date time picker. I also created a helper function that allows keyboard date navigation into it that uses JavaScript logic. Because MVC's limited 'object model' the only way to embed widget content into the page is through inline script. This code broken when I inserted the cached HTML into the page because the script code was not available when the component actually got injected into the page. As the last bullet - it's a matter of timing. There's no good work around for this - in my case I pulled out the jQuery date picker and relied on native <input type="date" /> logic instead - a better choice these days anyway, especially since this view is meant to be primarily to serve mobile devices which actually support date input through the browser (unlike desktop browsers of which only WebKit seems to support it). Bookmarking Cached Urls When you cache HTML content you have to make a decision whether you cache on the client and also not render that same content on the server. In the Classifieds app I didn't render server side content so if the user comes to the page with back=True and there is no cached content I have to a have a Plan B. Typically this happens when somebody ends up bookmarking the back URL. The easiest and safest solution for this scenario is to ALWAYS check the cache result to make sure it exists and if not have a safe URL to go back to - in this case to the plain uncached list URL which amounts to effectively redirecting. This seems really obvious in hindsight, but it's easy to overlook and not see a problem until much later, when it's not obvious at all why the page is not rendering anything. Don't use <body> to replace Content Since we're practically replacing all the HTML in the page it may seem tempting to simply replace the HTML content of the <body> tag. Don't. The body tag usually contains key things that should stay in the page and be there when it loads. Specifically script tags and elements and possibly other embedded content. It's best to create a top level DOM element specifically as a placeholder container for your cached content and wrap just around the actual content you want to replace. In the app above the #SizingContainer is that container. Other Approaches The approach I've used for this application is kind of specific to the existing server rendered application we're running and so it's just one approach you can take with caching. However for server rendered content caching this is a pattern I've used in a few apps to retrofit some client caching into list displays. In this application I took the path of least resistance to the existing server rendering logic. Here are a few other ways that come to mind: Using Partial HTML Rendering via AJAXInstead of rendering the page initially on the server, the page would load empty and the client would render the UI by retrieving the respective HTML and embedding it into the page from a Partial View. This effectively makes the initial rendering and the cached rendering logic identical and removes the server having to decide whether this request needs to be rendered or not (ie. not checking for a back=true switch). All the logic related to caching is made on the client in this case. Using JSON Data and Client RenderingThe hardcore client option is to do the whole UI SPA style and pull data from the server and then use client rendering or databinding to pull the data down and render using templates or client side databinding with knockout/angular et al. As with the Partial Rendering approach the advantage is that there's no difference in the logic between pulling the data from cache or rendering from scratch other than the initial check for the cache request. Of course if the app is a  full on SPA app, then caching may not be required even - the list could just stay in memory and be hidden and reactivated. I'm sure there are a number of other ways this can be handled as well especially using  AJAX. AJAX rendering might simplify the logic, but it also complicates search engine optimization since there's no content loaded initially. So there are always tradeoffs and it's important to look at all angles before deciding on any sort of caching solution in general. State of the Session SessionState and LocalStorage are easy to use in client code and can be integrated even with server centric applications to provide nice caching features of content and data. In this post I've shown a very specific scenario of storing HTML content for the purpose of remembering list view data and state and making the browsing experience for lists a bit more friendly, especially if there's dynamically loaded content involved. If you haven't played with sessionStorage or localStorage I encourage you to give it a try. There's a lot of cool stuff that you can do with this beyond the specific scenario I've covered here… Resources Overview of localStorage (also applies to sessionStorage) Web Storage Compatibility Modernizr Test Suite© Rick Strahl, West Wind Technologies, 2005-2013Posted in JavaScript  HTML5  ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • FreeBSD performance tuning. Sysctls, loader.conf, kernel

    - by SaveTheRbtz
    I wanted to share knowledge of tuning FreeBSD via sysctl.conf/loader.conf/KENCONF. It was initially based on Igor Sysoev's (author of nginx) presentation about FreeBSD tuning up to 100,000-200,000 active connections. Tunings are for FreeBSD-CURRENT. Since 7.2 amd64 some of them are tuned well by default. Prior 7.0 some of them are boot only (set via /boot/loader.conf) or does not exist at all. sysctl.conf: # No zero mapping feature # May break wine # (There are also reports about broken samba3) #security.bsd.map_at_zero=0 # If you have really busy webserver with apache13 you may run out of processes #kern.maxproc=10000 # Same for servers with apache2 / Pound #kern.threads.max_threads_per_proc=4096 # Max. backlog size kern.ipc.somaxconn=4096 # Shared memory // 7.2+ can use shared memory > 2Gb kern.ipc.shmmax=2147483648 # Sockets kern.ipc.maxsockets=204800 # Can cause this on older kernels: # http://old.nabble.com/Significant-performance-regression-for-increased-maxsockbuf-on-8.0-RELEASE-tt26745981.html#a26745981 ) kern.ipc.maxsockbuf=10485760 # Mbuf 2k clusters (on amd64 7.2+ 25600 is default) # For such high value vm.kmem_size must be increased to 3G kern.ipc.nmbclusters=262144 # Jumbo pagesize(_SC_PAGESIZE) clusters # Used as general packet storage for jumbo frames # can be monitored via `netstat -m` #kern.ipc.nmbjumbop=262144 # Jumbo 9k/16k clusters # If you are using them #kern.ipc.nmbjumbo9=65536 #kern.ipc.nmbjumbo16=32768 # For lower latency you can decrease scheduler's maximum time slice # default: stathz/10 (~ 13) #kern.sched.slice=1 # Increase max command-line length showed in `ps` (e.g for Tomcat/Java) # Default is PAGE_SIZE / 16 or 256 on x86 # This avoids commands to be presented as [executable] in `ps` # For more info see: http://www.freebsd.org/cgi/query-pr.cgi?pr=120749 kern.ps_arg_cache_limit=4096 # Every socket is a file, so increase them kern.maxfiles=204800 kern.maxfilesperproc=200000 kern.maxvnodes=200000 # On some systems HPET is almost 2 times faster than default ACPI-fast # Useful on systems with lots of clock_gettime / gettimeofday calls # See http://old.nabble.com/ACPI-fast-default-timecounter,-but-HPET-83--faster-td23248172.html # After revision 222222 HPET became default: http://svnweb.freebsd.org/base?view=revision&revision=222222 kern.timecounter.hardware=HPET # Small receive space, only usable on http-server, on file server this # should be increased to 65535 or even more #net.inet.tcp.recvspace=8192 # This is useful on Fat-Long-Pipes #net.inet.tcp.recvbuf_max=10485760 #net.inet.tcp.recvbuf_inc=65535 # Small send space is useful for http servers that serve small files # Autotuned since 7.x net.inet.tcp.sendspace=16384 # This is useful on Fat-Long-Pipes #net.inet.tcp.sendbuf_max=10485760 #net.inet.tcp.sendbuf_inc=65535 # Turn off receive autotuning # You can play with it. #net.inet.tcp.recvbuf_auto=0 #net.inet.tcp.sendbuf_auto=0 # This should be enabled if you going to use big spaces (>64k) # Also timestamp field is useful when using syncookies net.inet.tcp.rfc1323=1 # Turn this off on high-speed, lossless connections (LAN 1Gbit+) # If you set it there is no need in TCP_NODELAY sockopt (see man tcp) net.inet.tcp.delayed_ack=0 # This feature is useful if you are serving data over modems, Gigabit Ethernet, # or even high speed WAN links (or any other link with a high bandwidth delay product), # especially if you are also using window scaling or have configured a large send window. # Automatically disables on small RTT ( http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/tcp_subr.c?#rev1.237 ) # This sysctl was removed in 10-CURRENT: # See: http://www.mail-archive.com/[email protected]/msg06178.html #net.inet.tcp.inflight.enable=0 # TCP slowstart algorithm tunings # We assuming we have very fast clients #net.inet.tcp.slowstart_flightsize=100 #net.inet.tcp.local_slowstart_flightsize=100 # Disable randomizing of ports to avoid false RST # Before usage check SA here www.bsdcan.org/2006/papers/ImprovingTCPIP.pdf # (it's also says that port randomization auto-disables at some conn.rates, but I didn't checked it thou) #net.inet.ip.portrange.randomized=0 # Increase portrange # For outgoing connections only. Good for seed-boxes and ftp servers. net.inet.ip.portrange.first=1024 net.inet.ip.portrange.last=65535 # # stops route cache degregation during a high-bandwidth flood # http://www.freebsd.org/doc/en/books/handbook/securing-freebsd.html #net.inet.ip.rtexpire=2 net.inet.ip.rtminexpire=2 net.inet.ip.rtmaxcache=1024 # Security net.inet.ip.redirect=0 net.inet.ip.sourceroute=0 net.inet.ip.accept_sourceroute=0 net.inet.icmp.maskrepl=0 net.inet.icmp.log_redirect=0 net.inet.icmp.drop_redirect=1 net.inet.tcp.drop_synfin=1 # # There is also good example of sysctl.conf with comments: # http://www.thern.org/projects/sysctl.conf # # icmp may NOT rst, helpful for those pesky spoofed # icmp/udp floods that end up taking up your outgoing # bandwidth/ifqueue due to all that outgoing RST traffic. # #net.inet.tcp.icmp_may_rst=0 # Security net.inet.udp.blackhole=1 net.inet.tcp.blackhole=2 # IPv6 Security # For more info see http://www.fosslc.org/drupal/content/security-implications-ipv6 # Disable Node info replies # To see this vulnerability in action run `ping6 -a sglAac ::1` or `ping6 -w ::1` on unprotected node net.inet6.icmp6.nodeinfo=0 # Turn on IPv6 privacy extensions # For more info see proposal http://unix.derkeiler.com/Mailing-Lists/FreeBSD/net/2008-06/msg00103.html net.inet6.ip6.use_tempaddr=1 net.inet6.ip6.prefer_tempaddr=1 # Disable ICMP redirect net.inet6.icmp6.rediraccept=0 # Disable acceptation of RA and auto linklocal generation if you don't use them #net.inet6.ip6.accept_rtadv=0 #net.inet6.ip6.auto_linklocal=0 # Increases default TTL, sometimes useful # Default is 64 net.inet.ip.ttl=128 # Lessen max segment life to conserve resources # ACK waiting time in miliseconds # (default: 30000. RFC from 1979 recommends 120000) net.inet.tcp.msl=5000 # Max bumber of timewait sockets net.inet.tcp.maxtcptw=200000 # Don't use tw on local connections # As of 15 Apr 2009. Igor Sysoev says that nolocaltimewait has some buggy realization. # So disable it or now till get fixed #net.inet.tcp.nolocaltimewait=1 # FIN_WAIT_2 state fast recycle net.inet.tcp.fast_finwait2_recycle=1 # Time before tcp keepalive probe is sent # default is 2 hours (7200000) #net.inet.tcp.keepidle=60000 # Should be increased until net.inet.ip.intr_queue_drops is zero net.inet.ip.intr_queue_maxlen=4096 # Interrupt handling via multiple CPU, but with context switch. # You can play with it. Default is 1; #net.isr.direct=0 # This is for routers only #net.inet.ip.forwarding=1 #net.inet.ip.fastforwarding=1 # This speed ups dummynet when channel isn't saturated net.inet.ip.dummynet.io_fast=1 # Increase dummynet(4) hash #net.inet.ip.dummynet.hash_size=2048 #net.inet.ip.dummynet.max_chain_len # Should be increased when you have A LOT of files on server # (Increase until vfs.ufs.dirhash_mem becomes lower) vfs.ufs.dirhash_maxmem=67108864 # Note from commit http://svn.freebsd.org/base/head@211031 : # For systems with RAID volumes and/or virtualization envirnments, where # read performance is very important, increasing this sysctl tunable to 32 # or even more will demonstratively yield additional performance benefits. vfs.read_max=32 # Explicit Congestion Notification (see http://en.wikipedia.org/wiki/Explicit_Congestion_Notification) net.inet.tcp.ecn.enable=1 # Flowtable - flow caching mechanism # Useful for routers #net.inet.flowtable.enable=1 #net.inet.flowtable.nmbflows=65535 # Extreme polling tuning #kern.polling.burst_max=1000 #kern.polling.each_burst=1000 #kern.polling.reg_frac=100 #kern.polling.user_frac=1 #kern.polling.idle_poll=0 # IPFW dynamic rules and timeouts tuning # Increase dyn_buckets till net.inet.ip.fw.curr_dyn_buckets is lower net.inet.ip.fw.dyn_buckets=65536 net.inet.ip.fw.dyn_max=65536 net.inet.ip.fw.dyn_ack_lifetime=120 net.inet.ip.fw.dyn_syn_lifetime=10 net.inet.ip.fw.dyn_fin_lifetime=2 net.inet.ip.fw.dyn_short_lifetime=10 # Make packets pass firewall only once when using dummynet # i.e. packets going thru pipe are passing out from firewall with accept #net.inet.ip.fw.one_pass=1 # shm_use_phys Wires all shared pages, making them unswappable # Use this to lessen Virtual Memory Manager's work when using Shared Mem. # Useful for databases #kern.ipc.shm_use_phys=1 # ZFS # Enable prefetch. Useful for sequential load type i.e fileserver. # FreeBSD sets vfs.zfs.prefetch_disable to 1 on any i386 systems and # on any amd64 systems with less than 4GB of avaiable memory # For additional info check this nabble thread http://old.nabble.com/Samba-read-speed-performance-tuning-td27964534.html #vfs.zfs.prefetch_disable=0 # On highload servers you may notice following message in dmesg: # "Approaching the limit on PV entries, consider increasing either the # vm.pmap.shpgperproc or the vm.pmap.pv_entry_max tunable" vm.pmap.shpgperproc=2048 loader.conf: # Accept filters for data, http and DNS requests # Useful when your software uses select() instead of kevent/kqueue or when you under DDoS # DNS accf available on 8.0+ accf_data_load="YES" accf_http_load="YES" accf_dns_load="YES" # Async IO system calls aio_load="YES" # Linux specific devices in /dev # As for 8.1 it only /dev/full #lindev_load="YES" # Adds NCQ support in FreeBSD # WARNING! all ad[0-9]+ devices will be renamed to ada[0-9]+ # 8.0+ only #ahci_load="YES" #siis_load="YES" # FreeBSD 8.2+ # New Congestion Control for FreeBSD # http://caia.swin.edu.au/urp/newtcp/tools/cc_chd-readme-0.1.txt # http://www.ietf.org/proceedings/78/slides/iccrg-5.pdf # Initial merge commit message http://www.mail-archive.com/[email protected]/msg31410.html #cc_chd_load="YES" # Increase kernel memory size to 3G. # # Use ONLY if you have KVA_PAGES in kernel configuration, and you have more than 3G RAM # Otherwise panic will happen on next reboot! # # It's required for high buffer sizes: kern.ipc.nmbjumbop, kern.ipc.nmbclusters, etc # Useful on highload stateful firewalls, proxies or ZFS fileservers # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #vm.kmem_size="3G" # If your server has lots of swap (>4Gb) you should increase following value # according to http://lists.freebsd.org/pipermail/freebsd-hackers/2009-October/029616.html # Otherwise you'll be getting errors # "kernel: swap zone exhausted, increase kern.maxswzone" # kern.maxswzone="256M" # Older versions of FreeBSD can't tune maxfiles on the fly #kern.maxfiles="200000" # Useful for databases # Sets maximum data size to 1G # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #kern.maxdsiz="1G" # Maximum buffer size(vfs.maxbufspace) # You can check current one via vfs.bufspace # Should be lowered/upped depending on server's load-type # Usually decreased to preserve kmem # (default is 10% of mem) #kern.maxbcache="512M" # Sendfile buffers # For i386 only #kern.ipc.nsfbufs=10240 # FreeBSD 9+ # HPET "legacy route" support. It should allow HPET to work per-CPU # See http://www.mail-archive.com/[email protected]/msg03603.html #hint.atrtc.0.clock=0 #hint.attimer.0.clock=0 #hint.hpet.0.legacy_route=1 # syncache Hash table tuning net.inet.tcp.syncache.hashsize=1024 net.inet.tcp.syncache.bucketlimit=512 net.inet.tcp.syncache.cachelimit=65536 # Increased hostcache # Later host cache can be viewed via net.inet.tcp.hostcache.list hidden sysctl # Very useful for it's RTT RTTVAR # Must be power of two net.inet.tcp.hostcache.hashsize=65536 # hashsize * bucketlimit (which is 30 by default) # It allocates 255Mb (1966080*136) of RAM net.inet.tcp.hostcache.cachelimit=1966080 # TCP control-block Hash table tuning net.inet.tcp.tcbhashsize=4096 # Disable ipfw deny all # Should be uncommented when there is a chance that # kernel and ipfw binary may be out-of sync on next reboot #net.inet.ip.fw.default_to_accept=1 # # SIFTR (Statistical Information For TCP Research) is a kernel module that # logs a range of statistics on active TCP connections to a log file. # See prerelease notes http://groups.google.com/group/mailing.freebsd.current/browse_thread/thread/b4c18be6cdce76e4 # and man 4 sitfr #siftr_load="YES" # Enable superpages, for 7.2+ only # Also read http://lists.freebsd.org/pipermail/freebsd-hackers/2009-November/030094.html vm.pmap.pg_ps_enabled=1 # Usefull if you are using Intel-Gigabit NIC #hw.em.rxd=4096 #hw.em.txd=4096 #hw.em.rx_process_limit="-1" # Also if you have ALOT interrupts on NIC - play with following parameters # NOTE: You should set them for every NIC #dev.em.0.rx_int_delay: 250 #dev.em.0.tx_int_delay: 250 #dev.em.0.rx_abs_int_delay: 250 #dev.em.0.tx_abs_int_delay: 250 # There is also multithreaded version of em/igb drivers can be found here: # http://people.yandex-team.ru/~wawa/ # # for additional em monitoring and statistics use # sysctl dev.em.0.stats=1 ; dmesg # sysctl dev.em.0.debug=1 ; dmesg # Also after r209242 (-CURRENT) there is a separate sysctl for each stat variable; # Same tunings for igb #hw.igb.rxd=4096 #hw.igb.txd=4096 #hw.igb.rx_process_limit=100 # Some useful netisr tunables. See sysctl net.isr #net.isr.maxthreads=4 #net.isr.defaultqlimit=4096 #net.isr.maxqlimit: 10240 # Bind netisr threads to CPUs #net.isr.bindthreads=1 # # FreeBSD 9.x+ # Increase interface send queue length # See commit message http://svn.freebsd.org/viewvc/base?view=revision&revision=207554 #net.link.ifqmaxlen=1024 # Nicer boot logo =) loader_logo="beastie" And finally here is KERNCONF: # Just some of them, see also # cat /sys/{i386,amd64,}/conf/NOTES # This one useful only on i386 #options KVA_PAGES=512 # You can play with HZ in environments with high interrupt rate (default is 1000) # 100 is for my notebook to prolong it's battery life #options HZ=100 # Polling is goot on network loads with high packet rates and low-end NICs # NB! Do not enable it if you want more than one netisr thread #options DEVICE_POLLING # Eliminate datacopy on socket read-write # To take advantage with zero copy sockets you should have an MTU >= 4k # This req. is only for receiving data. # Read more in man zero_copy_sockets # Also this epic thread on kernel trap: # http://kerneltrap.org/node/6506 # Here Linus says that "anybody that does it that way (FreeBSD) is totally incompetent" #options ZERO_COPY_SOCKETS # Support TCP sign. Used for IPSec options TCP_SIGNATURE # There was stackoverflow found in KAME IPSec stack: # See http://secunia.com/advisories/43995/ # For quick workaround you can use `ipfw add deny proto ipcomp` options IPSEC # This ones can be loaded as modules. They described in loader.conf section #options ACCEPT_FILTER_DATA #options ACCEPT_FILTER_HTTP # Adding ipfw, also can be loaded as modules options IPFIREWALL # On 8.1+ you can disable verbose to see blocked packets on ipfw0 interface. # Also there is no point in compiling verbose into the kernel, because # now there is net.inet.ip.fw.verbose tunable. #options IPFIREWALL_VERBOSE #options IPFIREWALL_VERBOSE_LIMIT=10 options IPFIREWALL_FORWARD # Adding kernel NAT options IPFIREWALL_NAT options LIBALIAS # Traffic shaping options DUMMYNET # Divert, i.e. for userspace NAT options IPDIVERT # This is for OpenBSD's pf firewall device pf device pflog # pf's QoS - ALTQ options ALTQ options ALTQ_CBQ # Class Bases Queuing (CBQ) options ALTQ_RED # Random Early Detection (RED) options ALTQ_RIO # RED In/Out options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC) options ALTQ_PRIQ # Priority Queuing (PRIQ) options ALTQ_NOPCC # Required for SMP build # Pretty console # Manual can be found here http://forums.freebsd.org/showthread.php?t=6134 #options VESA #options SC_PIXEL_MODE # Disable reboot on Ctrl Alt Del #options SC_DISABLE_REBOOT # Change normal|kernel messages color options SC_NORM_ATTR=(FG_GREEN|BG_BLACK) options SC_KERNEL_CONS_ATTR=(FG_YELLOW|BG_BLACK) # More scroll space options SC_HISTORY_SIZE=8192 # Adding hardware crypto device device crypto device cryptodev # Useful network interfaces device vlan device tap #Virtual Ethernet driver device gre #IP over IP tunneling device if_bridge #Bridge interface device pfsync #synchronization interface for PF device carp #Common Address Redundancy Protocol device enc #IPsec interface device lagg #Link aggregation interface device stf #IPv4-IPv6 port # Also for my notebook, but may be used with Opteron device amdtemp # Same for Intel processors device coretemp # man 4 cpuctl device cpuctl # CPU control pseudo-device # Support for ECMP. More than one route for destination # Works even with default route so one can use it as LB for two ISP # For now code is unstable and panics (panic: rtfree 2) on route deletions. #options RADIX_MPATH # Multicast routing #options MROUTING #options PIM # Debug & DTrace options KDB # Kernel debugger related code options KDB_TRACE # Print a stack trace for a panic options KDTRACE_FRAME # amd64-only(?) options KDTRACE_HOOKS # all architectures - enable general DTrace hooks #options DDB #options DDB_CTF # all architectures - kernel ELF linker loads CTF data # Adaptive spining in lockmgr (8.x+) # See http://www.mail-archive.com/[email protected]/msg10782.html options ADAPTIVE_LOCKMGRS # UTF-8 in console (8.x+) #options TEKEN_UTF8 # FreeBSD 8.1+ # Deadlock resolver thread # For additional information see http://www.mail-archive.com/[email protected]/msg18124.html # (FYI: "resolution" is panic so use with caution) #options DEADLKRES # Increase maximum size of Raw I/O and sendfile(2) readahead #options MAXPHYS=(1024*1024) #options MAXBSIZE=(1024*1024) # For scheduler debug enable following option. # Debug will be available via `kern.sched.stats` sysctl # For more information see http://svnweb.freebsd.org/base/head/sys/conf/NOTES?view=markup #options SCHED_STATS If you are tuning network for maximum performance you may wish to play with ifconfig options like: # You can list all capabilities via `ifconfig -m` ifconfig [-]rxcsum [-]txcsum [-]tso [-]lro mtu In case you've enabled DDB in kernel config, you should edit your /etc/ddb.conf and add something like this to enable automatic reboot (and textdump as bonus): script kdb.enter.panic=textdump set; capture on; show pcpu; bt; ps; alltrace; capture off; call doadump; reset script kdb.enter.default=textdump set; capture on; bt; ps; capture off; call doadump; reset And do not forget to add ddb_enable="YES" to /etc/rc.conf Since FreeBSD 9 you can select to enable/disable flowcontrol on your NIC: # See http://en.wikipedia.org/wiki/Ethernet_flow_control and # http://www.mail-archive.com/[email protected]/msg07927.html for additional info ifconfig bge0 media auto mediaopt flowcontrol PS. Also most of FreeBSD's limits can be monitored by # vmstat -z and # limits PPS. variety of network counters can be monitored via # netstat -s In FreeBSD-9 netstat's -Q option appeared, try following command to display netisr stats # netstat -Q PPPS. also see # man 7 tuning PPPPS. I wanted to thank FreeBSD community, especially author of nginx - Igor Sysoev, nginx-ru@ and FreeBSD-performance@ mailing lists for providing useful information about FreeBSD tuning. FreeBSD WIP * Whats cooking for FreeBSD 7? * Whats cooking for FreeBSD 8? * Whats cooking for FreeBSD 9? So here is the question: What tunings are you using on yours FreeBSD servers? You can also post your /etc/sysctl.conf, /boot/loader.conf, kernel options, etc with description of its' meaning (do not copy-paste from sysctl -d). Don't forget to specify server type (web, smb, gateway, etc) Let's share experience!

    Read the article

  • Apache + Codeigniter + New Server + Unexpected Errors

    - by ngl5000
    Alright here is the situation: I use to have my codeigniter site at bluehost were I did not have root access, I have since moved that site to rackspace. I have not changed any of the PHP code yet there has been some unexpected behavior. Unexpected Behavior: http://mysite.com/robots.txt Both old and new resolve to the robots file http://mysite.com/robots.txt/ The old bluehost setup resolves to my codeigniter 404 error page. The rackspace config resolves to: Not Found The requested URL /robots.txt/ was not found on this server. **This instance leads me to believe that there could be a problem with my mod rewrites or lack there of. The first one produces the error correctly through php while it seems the second senario lets the server handle this error. The next instance of this problem is even more troubling: 'http://mysite.com/search/term/9 x 1-1%2F2 white/' New site results in: Bad Request Your browser sent a request that this server could not understand. Old site results in: The actual page being loaded and the search term being unencoded. I have to assume that this has something to do with the fact that when I went to the new server I went from root level htaccess file to httpd.conf file and virtual server default and default-ssl. Here they are: Default file: <VirtualHost *:80> ServerAdmin webmaster@localhost ServerName mysite.com DocumentRoot /var/www <Directory /> Options +FollowSymLinks AllowOverride None </Directory> <Directory /var/www> Options -Indexes +FollowSymLinks -MultiViews AllowOverride None Order allow,deny allow from all RewriteEngine On RewriteBase / # force no www. (also does the IP thing) RewriteCond %{HTTPS} !=on RewriteCond %{HTTP_HOST} !^mysite\.com [NC] RewriteRule ^(.*)$ http://mysite.com/$1 [R=301,L] RewriteCond %{REQUEST_FILENAME} !-f RewriteCond %{REQUEST_FILENAME} !-d RewriteRule ^(.+)\.(\d+)\.(js|css|png|jpg|gif)$ $1.$3 [L] # index.php remove any index.php parts RewriteCond %{THE_REQUEST} /index\.(php|html) RewriteRule (.*)index\.(php|html)(.*)$ /$1$3 [r=301,L] # codeigniter direct RewriteCond $0 !^(index\.php|assets|robots\.txt|sitemap\.xml|favicon\.ico) RewriteRule ^.*$ index.php [L] </Directory> ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ <Directory "/usr/lib/cgi-bin"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch Order allow,deny Allow from all </Directory> ErrorLog ${APACHE_LOG_DIR}/error.log # Possible values include: debug, info, notice, warn, error, crit, # alert, emerg. LogLevel warn CustomLog ${APACHE_LOG_DIR}/access.log combined Alias /doc/ "/usr/share/doc/" <Directory "/usr/share/doc/"> Options Indexes MultiViews FollowSymLinks AllowOverride None Order deny,allow Deny from all Allow from 127.0.0.0/255.0.0.0 ::1/128 </Directory> </VirtualHost> Default-ssl File <IfModule mod_ssl.c> <VirtualHost _default_:443> ServerAdmin webmaster@localhost ServerName mysite.com DocumentRoot /var/www <Directory /> Options +FollowSymLinks AllowOverride None </Directory> <Directory /var/www> Options -Indexes +FollowSymLinks -MultiViews AllowOverride None Order allow,deny allow from all RewriteEngine On RewriteBase / RewriteCond %{SERVER_PORT} !^443 RewriteRule ^ https://mysite.com%{REQUEST_URI} [R=301,L] RewriteCond %{REQUEST_FILENAME} !-f RewriteCond %{REQUEST_FILENAME} !-d RewriteRule ^(.+)\.(\d+)\.(js|css|png|jpg|gif)$ $1.$3 [L] # index.php remove any index.php parts RewriteCond %{THE_REQUEST} /index\.(php|html) RewriteRule (.*)index\.(php|html)(.*)$ /$1$3 [r=301,L] # codeigniter direct RewriteCond $0 !^(index\.php|assets|robots\.txt|sitemap\.xml|favicon\.ico) RewriteRule ^.*$ index.php [L] </Directory> ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ <Directory "/usr/lib/cgi-bin"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch Order allow,deny Allow from all </Directory> ErrorLog ${APACHE_LOG_DIR}/error.log # Possible values include: debug, info, notice, warn, error, crit, # alert, emerg. LogLevel warn CustomLog ${APACHE_LOG_DIR}/ssl_access.log combined Alias /doc/ "/usr/share/doc/" <Directory "/usr/share/doc/"> Options Indexes MultiViews FollowSymLinks AllowOverride None Order deny,allow Deny from all Allow from 127.0.0.0/255.0.0.0 ::1/128 </Directory> # SSL Engine Switch: # Enable/Disable SSL for this virtual host. SSLEngine on # Use our self-signed certificate by default SSLCertificateFile /etc/apache2/ssl/certs/www.mysite.com.crt SSLCertificateKeyFile /etc/apache2/ssl/private/www.mysite.com.key # A self-signed (snakeoil) certificate can be created by installing # the ssl-cert package. See # /usr/share/doc/apache2.2-common/README.Debian.gz for more info. # If both key and certificate are stored in the same file, only the # SSLCertificateFile directive is needed. # SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem # SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key # Server Certificate Chain: # Point SSLCertificateChainFile at a file containing the # concatenation of PEM encoded CA certificates which form the # certificate chain for the server certificate. Alternatively # the referenced file can be the same as SSLCertificateFile # when the CA certificates are directly appended to the server # certificate for convinience. #SSLCertificateChainFile /etc/apache2/ssl.crt/server-ca.crt # Certificate Authority (CA): # Set the CA certificate verification path where to find CA # certificates for client authentication or alternatively one # huge file containing all of them (file must be PEM encoded) # Note: Inside SSLCACertificatePath you need hash symlinks # to point to the certificate files. Use the provided # Makefile to update the hash symlinks after changes. #SSLCACertificatePath /etc/ssl/certs/ #SSLCACertificateFile /etc/apache2/ssl.crt/ca-bundle.crt # Certificate Revocation Lists (CRL): # Set the CA revocation path where to find CA CRLs for client # authentication or alternatively one huge file containing all # of them (file must be PEM encoded) # Note: Inside SSLCARevocationPath you need hash symlinks # to point to the certificate files. Use the provided # Makefile to update the hash symlinks after changes. #SSLCARevocationPath /etc/apache2/ssl.crl/ #SSLCARevocationFile /etc/apache2/ssl.crl/ca-bundle.crl # Client Authentication (Type): # Client certificate verification type and depth. Types are # none, optional, require and optional_no_ca. Depth is a # number which specifies how deeply to verify the certificate # issuer chain before deciding the certificate is not valid. #SSLVerifyClient require #SSLVerifyDepth 10 # Access Control: # With SSLRequire you can do per-directory access control based # on arbitrary complex boolean expressions containing server # variable checks and other lookup directives. The syntax is a # mixture between C and Perl. See the mod_ssl documentation # for more details. #<Location /> #SSLRequire ( %{SSL_CIPHER} !~ m/^(EXP|NULL)/ \ # and %{SSL_CLIENT_S_DN_O} eq "Snake Oil, Ltd." \ # and %{SSL_CLIENT_S_DN_OU} in {"Staff", "CA", "Dev"} \ # and %{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5 \ # and %{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 20 ) \ # or %{REMOTE_ADDR} =~ m/^192\.76\.162\.[0-9]+$/ #</Location> # SSL Engine Options: # Set various options for the SSL engine. # o FakeBasicAuth: # Translate the client X.509 into a Basic Authorisation. This means that # the standard Auth/DBMAuth methods can be used for access control. The # user name is the `one line' version of the client's X.509 certificate. # Note that no password is obtained from the user. Every entry in the user # file needs this password: `xxj31ZMTZzkVA'. # o ExportCertData: # This exports two additional environment variables: SSL_CLIENT_CERT and # SSL_SERVER_CERT. These contain the PEM-encoded certificates of the # server (always existing) and the client (only existing when client # authentication is used). This can be used to import the certificates # into CGI scripts. # o StdEnvVars: # This exports the standard SSL/TLS related `SSL_*' environment variables. # Per default this exportation is switched off for performance reasons, # because the extraction step is an expensive operation and is usually # useless for serving static content. So one usually enables the # exportation for CGI and SSI requests only. # o StrictRequire: # This denies access when "SSLRequireSSL" or "SSLRequire" applied even # under a "Satisfy any" situation, i.e. when it applies access is denied # and no other module can change it. # o OptRenegotiate: # This enables optimized SSL connection renegotiation handling when SSL # directives are used in per-directory context. #SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire <FilesMatch "\.(cgi|shtml|phtml|php)$"> SSLOptions +StdEnvVars </FilesMatch> <Directory /usr/lib/cgi-bin> SSLOptions +StdEnvVars </Directory> # SSL Protocol Adjustments: # The safe and default but still SSL/TLS standard compliant shutdown # approach is that mod_ssl sends the close notify alert but doesn't wait for # the close notify alert from client. When you need a different shutdown # approach you can use one of the following variables: # o ssl-unclean-shutdown: # This forces an unclean shutdown when the connection is closed, i.e. no # SSL close notify alert is send or allowed to received. This violates # the SSL/TLS standard but is needed for some brain-dead browsers. Use # this when you receive I/O errors because of the standard approach where # mod_ssl sends the close notify alert. # o ssl-accurate-shutdown: # This forces an accurate shutdown when the connection is closed, i.e. a # SSL close notify alert is send and mod_ssl waits for the close notify # alert of the client. This is 100% SSL/TLS standard compliant, but in # practice often causes hanging connections with brain-dead browsers. Use # this only for browsers where you know that their SSL implementation # works correctly. # Notice: Most problems of broken clients are also related to the HTTP # keep-alive facility, so you usually additionally want to disable # keep-alive for those clients, too. Use variable "nokeepalive" for this. # Similarly, one has to force some clients to use HTTP/1.0 to workaround # their broken HTTP/1.1 implementation. Use variables "downgrade-1.0" and # "force-response-1.0" for this. BrowserMatch "MSIE [2-6]" \ nokeepalive ssl-unclean-shutdown \ downgrade-1.0 force-response-1.0 # MSIE 7 and newer should be able to use keepalive BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown httpd.conf File Just a lot of stuff from html5 boiler plate, I will post it if need be Old htaccess file <IfModule mod_rewrite.c> # index.php remove any index.php parts RewriteCond %{THE_REQUEST} /index\.(php|html) RewriteRule (.*)index\.(php|html)(.*)$ /$1$3 [r=301,L] RewriteCond $1 !^(index\.php|assets|robots\.txt|sitemap\.xml|favicon\.ico) RewriteRule ^(.*)/$ /$1 [r=301,L] # codeigniter direct RewriteCond $1 !^(index\.php|assets|robots\.txt|sitemap\.xml|favicon\.ico) RewriteRule ^(.*)$ /index.php/$1 [L] </IfModule> Any Help would be hugely appreciated!!

    Read the article

  • Qt vs WPF/.NET

    - by aaronc
    My company is trying to make the decision between using Qt/C++ for our GUI framework or migrating to .NET and using WPF. We have up to this point been using MFC. It seems that .NET/WPF is technically the most advanced and feature-rich platform. I do, however, have several concerns. These include: Platform support Framework longevity (i.e. future-proofing) Performance and overhead For this application we are willing to sacrifice support for Windows 2000, Macs, and Linux. But, the issue is more related to Microsoft's commitment to the framework and their extant platforms. It seems like Microsoft has a bad habit of coming up with something new, hyping it for a few years, and then relegating it to the waste-bin essentially abandoning the developers who chose it. First it was MFC and VB6, then Windows Forms, and now there's WPF. Also with .NET, versions of Windows were progressively nicked off the support list. Looks like WPF could be here to stay for a while, but since its not open source its really in Microsoft's hands. I'm also concerned about the overhead and performance of WPF since some of our applications involve processing large amounts of information and doing real-time data capture. Qt seems like a really good option, but it doesn't have all the features of WPF/.NET couldn't use languages like C#. Basically, what does the community think about Microsoft's commitment to WPF compared with previous frameworks? Are the performance considerations significant enough to avoid using it for a realtime app? And, how significant are the benefits of WPF/.NET in terms of productivity and features compared to Qt?

    Read the article

  • The "CreateRiaClientFilesTask" task failed unexpectedly.

    - by Mohammadreza
    Hi guys. I've VS 2010 and recently installed WCF RIA Services V1.0. For testing I have created a new Silverligh Business project but now every now and then when I rebuild the solution I receive the following error: Does anybody know why I get this? Thanks Error 1 The "CreateRiaClientFilesTask" task failed unexpectedly. System.IO.FileNotFoundException: Could not load file or assembly 'Microsoft.ServiceModel.DomainServices.Tools, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' or one of its dependencies. The system cannot find the file specified. File name: 'Microsoft.ServiceModel.DomainServices.Tools, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' at System.RuntimeTypeHandle.GetTypeByName(String name, Boolean throwOnError, Boolean ignoreCase, Boolean reflectionOnly, StackCrawlMarkHandle stackMark, Boolean loadTypeFromPartialName, ObjectHandleOnStack type) at System.RuntimeTypeHandle.GetTypeByName(String name, Boolean throwOnError, Boolean ignoreCase, Boolean reflectionOnly, StackCrawlMark& stackMark, Boolean loadTypeFromPartialName) at System.RuntimeType.GetType(String typeName, Boolean throwOnError, Boolean ignoreCase, Boolean reflectionOnly, StackCrawlMark& stackMark) at System.Type.GetType(String typeName, Boolean throwOnError) at System.Web.Hosting.HostingEnvironment.CreateWellKnownObjectInstance(String assemblyQualifiedName, Boolean failIfExists) at System.Web.Hosting.HostingEnvironment.CreateWellKnownObjectInstance(String assemblyQualifiedName, Boolean failIfExists) at System.Web.Hosting.ApplicationManager.CreateObjectInternal(String appId, Type type, IApplicationHost appHost, Boolean failIfExists, HostingEnvironmentParameters hostingParameters) at System.Web.Hosting.ApplicationManager.CreateObjectInternal(String appId, Type type, IApplicationHost appHost, Boolean failIfExists) at System.Web.Compilation.ClientBuildManager.CreateObject(Type type, Boolean failIfExists) at Microsoft.ServiceModel.DomainServices.Tools.CreateRiaClientFilesTask.CreateSharedTypeService(ClientBuildManager clientBuildManager, IEnumerable`1 serverAssemblies, ILogger logger) at Microsoft.ServiceModel.DomainServices.Tools.CreateRiaClientFilesTask.GenerateClientProxies() at Microsoft.ServiceModel.DomainServices.Tools.CreateRiaClientFilesTask.ExecuteInternal() at Microsoft.ServiceModel.DomainServices.Tools.RiaClientFilesTask.Execute() at Microsoft.Build.BackEnd.TaskExecutionHost.Microsoft.Build.BackEnd.ITaskExecutionHost.Execute() at Microsoft.Build.BackEnd.TaskBuilder.ExecuteInstantiatedTask(ITaskExecutionHost taskExecutionHost, TaskLoggingContext taskLoggingContext, TaskHost taskHost, ItemBucket bucket, TaskExecutionMode howToExecuteTask, Boolean& taskResult) WRN: Assembly binding logging is turned OFF. To enable assembly bind failure logging, set the registry value [HKLM\Software\Microsoft\Fusion!EnableLog] (DWORD) to 1. Note: There is some performance penalty associated with assembly bind failure logging. To turn this feature off, remove the registry value [HKLM\Software\Microsoft\Fusion!EnableLog]. BusinessApplication2

    Read the article

  • UnauthorizedAccessException on MemoryMappedFile in C# 4.

    - by Kevin Nisbet
    Hey, I wanted to play around with using a MemoryMappedFile to access an existing binary file. If this even at all possible or am I a crazy person? The idea would be to map the existing binary file directly to memory for some preferably higher-speed operations. Or to atleast see how these things worked. using System.IO.MemoryMappedFiles; System.IO.FileInfo fi = new System.IO.FileInfo(@"C:\testparsercap.pcap"); MemoryMappedFileSecurity sec = new MemoryMappedFileSecurity(); System.IO.FileStream file = fi.Open(System.IO.FileMode.Open, System.IO.FileAccess.ReadWrite, System.IO.FileShare.ReadWrite); MemoryMappedFile mf = MemoryMappedFile.CreateFromFile(file, "testpcap", fi.Length, MemoryMappedFileAccess.Read, sec, System.IO.HandleInheritability.Inheritable, true); MemoryMappedViewAccessor FileMapView = mf.CreateViewAccessor(); PcapHeader head = new PcapHeader(); FileMapView.Read<PcapHeader>(0, out head); I get System.UnauthorizedAccessException was unhandled (Message=Access to the path is denied.) on the mf.CreateViewAccessor() line. I don't think it's file-permissions, since I'm running as a nice insecure administrator user, and there aren't any other programs open that might have a read-lock on the file. This is on Vista with UAC disabled. If it's simply not possible and I missed something in the documentation, please let me know. I could barely find anything at all referencing this feature of .net 4.0 Thanks!

    Read the article

  • Detect blocked popup in Chrome

    - by Andrew
    I am aware of javascript techniques to detect whether a popup is blocked in other browsers (as described in the answer to this question). Here's the basic test: var newWin = window.open(url); if(!newWin || newWin.closed || typeof newWin.closed=='undefined') { //POPUP BLOCKED } But this does not work in Chrome. The "POPUP BLOCKED" section is never reached when the popup is blocked. Of course, the test is working to an extent since Chrome doesn't actually block the popup, but opens it in a tiny minimized window at the lower right corner which lists "blocked" popups. What I would like to do is be able to tell if the popup was blocked by Chrome's popup blocker. I try to avoid browser sniffing in favor of feature detection. Is there a way to do this without browser sniffing? Edit: I have now tried making use of newWin.outerHeight, newWin.left, and other similar properties to accomplish this. Google Chrome returns all position and height values as 0 when the popup is blocked. Unfortunately, it also returns the same values even if the popup is actually opened for an unknown amount of time. After some magical period (a couple of seconds in my testing), the location and size information is returned as the correct values. In other words, I'm still no closer to figuring this out. Any help would be appreciated.

    Read the article

  • export data from WCF Service to excel

    - by Dave
    I need to provide an export to excel feature for a large amount of data returned from a WCF web service. The code to load the datalist is as below: List<resultSet> r = myObject.ReturnResultSet(myWebRequestUrl); //call to WCF service myDataList.DataSource = r; myDataList.DataBind(); I am using the Reponse object to do the job: Response.Clear(); Response.Buffer = true; Response.ContentType = "application/vnd.ms-excel"; Response.AddHeader("Content-Disposition", "attachment; filename=MyExcel.xls"); StringBuilder sb = new StringBuilder(); StringWriter sw = new StringWriter(sb); HtmlTextWriter tw = new HtmlTextWriter(sw); myDataList.RenderControl(tw); Response.Write(sb.ToString()); Response.End(); The problem is that WCF Service times out for large amount of data (about 5000 rows) and the result set is null. When I debug the service, I can see the window for saving/opening the excel sheet appear before the service returns the result and hence the excel sheet is always empty. Please help me figure this out.

    Read the article

  • SPException: Catastrophic failure (Exception from HRESULT: 0x8000FFF (E_UNEXPECTED) in Sharepoint

    - by BeraCim
    I've been trying to programmatically copy custom content type and its custom columns from one web to another for some time now, and I always get different errors or exceptions every time. After yet more tries, I received more strange and cryptic exception from Sharepoint after clicking onto a newly copied custom column in a custom content type. I checked the logs, and this is what I got: Unknown SPRequest erorr occurred. More information: 0x80070002 Unable to locate the xml-definition for FieldName with FieldId 'guid without braces', exception: Microsoft.SharePoint.SPException: Catastrophic failure (Exception from HRESULT: 0x8000FFF (E_UNEXPECTED)) ---> System.Runtime.InteropServices.COMException... ... at Microsoft.SharePoint.Library.SPRequestInternalClass.GetGlobalContentTypeXml(String bstrUrl, Int32 type, UInt 32 lcid, Object varIdBytes... Failed to find the content type schema for ct-1033-0x1000blahblahblahcontenttypeId while caching feature data. Unknown SPRequest error occurred. More informationL 0x8000ffff Unable to locate the xml-definition for CType with SPContentTypeId '0x0100MorecontenttypeId', exception: Microsoft.SharePoint.SPException: Catastrophic failure(Exception from HRESULT: 0x8000FFFF (E_UNEXPECTED)) ---> System.Runtime.InteropServices.COMException (0x8000FFFF): Catastrophic failure... ... at Microsoft.SharePoint.Library.SPRequestInternalClass.GetGlobalContentTypeXml(String bstrUrl, Int32 type, UInt 32 lcid, Object varIdBytes... It failed to find quite a few content type schema. I'm confused with what Sharepoint is trying to do here, and why a simple process of copying a custom content type from one web to another just wouldn't work in contrast to the information found on the web e.g. this. Appreciate any help to get over this problem. Thanks.

    Read the article

< Previous Page | 288 289 290 291 292 293 294 295 296 297 298 299  | Next Page >