Search Results

Search found 48847 results on 1954 pages for 'class attribute'.

Page 294/1954 | < Previous Page | 290 291 292 293 294 295 296 297 298 299 300 301  | Next Page >

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • How do I resolve this exercise on C++? [closed]

    - by user40630
    (Card Shuffling and Dealing) Create a program to shuffle and deal a deck of cards. The program should consist of class Card, class DeckOfCards and a driver program. Class Card should provide: a) Data members face and suit of type int. b) A constructor that receives two ints representing the face and suit and uses them to initialize the data members. c) Two static arrays of strings representing the faces and suits. d) A toString function that returns the Card as a string in the form “face of suit.” You can use the + operator to concatenate strings. Class DeckOfCards should contain: a) A vector of Cards named deck to store the Cards. b) An integer currentCard representing the next card to deal. c) A default constructor that initializes the Cards in the deck. The constructor should use vector function push_back to add each Card to the end of the vector after the Card is created and initialized. This should be done for each of the 52 Cards in the deck. d) A shuffle function that shuffles the Cards in the deck. The shuffle algorithm should iterate through the vector of Cards. For each Card, randomly select another Card in the deck and swap the two Cards. e) A dealCard function that returns the next Card object from the deck. f) A moreCards function that returns a bool value indicating whether there are more Cards to deal. The driver program should create a DeckOfCards object, shuffle the cards, then deal the 52 cards. This above is the exercise I'm trying to solve. I'd be very much appreciated if someone could solve it and explain it to me. The main idea of the program is quite simple. What I don't get is how to build the constructor for the class DeckOfCards and how to generate the 52 cards of the deck with different suits and faces. Untill now I've managed to do this: #include <iostream> #include <vector> using namespace std; /* * */ /* a) Data members face and suit of type int. b) A constructor that receives two ints representing the face and suit and uses them to initialize the data members. c) Two static arrays of strings representing the faces and suits. d) A toString function that returns the Card as a string in the form “face of suit.” You can use the + operator to concatenate strings. */ class Card { public: Card(int, int); string toString(); private: int suit, face; static string faceNames[13]; static string suitNames[4]; }; string Card::faceNames[13] = {"Ace","Two","Three","Four","Five","Six","Seven","Eight","Nine","Ten","Queen","Jack","King"}; string Card::suitNames[4] = {"Diamonds","Clubs","Hearts","Spades"}; string Card::toString() { return faceNames[face]+" of "+suitNames[suit]; } Card::Card(int f, int s) :face(f), suit(s) { } /* Class DeckOfCards should contain: a) A vector of Cards named deck to store the Cards. b) An integer currentCard representing the next card to deal. c) A default constructor that initializes the Cards in the deck. The constructor should use vector function push_back to add each Card to the end of the vector after the Card is created and initialized. This should be done for each of the 52 Cards in the deck. d) A shuffle function that shuffles the Cards in the deck. The shuffle algorithm should iterate through the vector of Cards. For each Card, randomly select another Card in the deck and swap the two Cards. e) A dealCard function that returns the next Card object from the deck. f) A moreCards function that returns a bool value indicating whether there are more Cards to deal. */ class DeckOfCards { public: DeckOfCards(); void shuffleCards(); Card dealCard(); bool moreCards(); private: vector<Card> deck(52); int currentCard; }; int main(int argc, char** argv) { return 0; } DeckOfCards::DeckOfCards() { //I'm stuck here I have no idea of what to take out of here. //I still don't fully get the idea of class inside class and that's turning out as a problem. I try to find a way to set the suits and faces members of the class Card but I can't figure out how. for(int i=0; i<deck.size(); i++) { deck[i]//....There is no function to set them. They must be set when initialized. But how?? } } For easier reading: http://pastebin.com/pJeXMH0f

    Read the article

  • Better way to load level content in XNA?

    - by user2002495
    Currently I loaded all my assets in XNA in the main Game class. What I want to achieve later is that I only load specific assets for specific levels (the game will consist of many levels). Here is how I load my main assets into the main class: protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); plane = new Player(Content.Load<Texture2D>(@"Player/playerSprite"), 6, 8); plane.animation = "down"; plane.pos = new Vector2(400, 500); plane.fps = 15; Global.currentPos = plane.pos; lvl1 = new Level1(Content.Load<Texture2D>(@"Levels/bgLvl1"), Content.Load<Texture2D>(@"Levels/bgLvl1-other"), new Vector2(0, 0), new Vector2(0, -600)); CommonBullet.LoadContent(Content); CommonEnemyBullet.LoadContent(Content); } protected override void UnloadContent() { } protected override void Update(GameTime gameTime) { if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); plane.Update(gameTime); lvl1.Update(gameTime); foreach (CommonEnemy ce in cel) { if (ce.CollidesWith(plane)) { ce.hasSpawn = false; } foreach (CommonBullet b in plane.commonBulletList) { if (b.CollidesWith(ce)) { ce.hasSpawn = false; } } ce.Update(gameTime); } LoadCommonEnemy(); base.Update(gameTime); } private void LoadCommonEnemy() { int randY = rand.Next(-600, -10); int randX = rand.Next(0, 750); if (cel.Count < 3) { cel.Add(new CommonEnemy(Content.Load<Texture2D>(@"Enemy/Common/commonEnemySprite"), 7, 2, "left", randX, randY)); } for (int i = 0; i < cel.Count; i++) { if (!cel[i].hasSpawn) { cel.RemoveAt(i); i--; } } } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.Black); spriteBatch.Begin(); lvl1.Draw(spriteBatch); plane.Draw(spriteBatch); foreach (CommonEnemy ce in cel) { ce.Draw(spriteBatch); } spriteBatch.End(); base.Draw(gameTime); } I wish to load my players, enemies, all in Level1 class. However, when I move my player & enemy code into the Level1 class, the gameTime returns null. Here is my Level1 class: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Media; using Microsoft.Xna.Framework.Input; using SpaceShooter_Beta.Animation.PlayerCollection; using SpaceShooter_Beta.Animation.EnemyCollection.Common; namespace SpaceShooter_Beta.Levels { public class Level1 { public Texture2D bgTexture1, bgTexture2; public Vector2 bgPos1, bgPos2; public float speed = 5f; Player plane; public Level1(Texture2D texture1, Texture2D texture2, Vector2 pos1, Vector2 pos2) { this.bgTexture1 = texture1; this.bgTexture2 = texture2; this.bgPos1 = pos1; this.bgPos2 = pos2; } public void LoadContent(ContentManager cm) { plane = new Player(cm.Load<Texture2D>(@"Player/playerSprite"), 6, 8); plane.animation = "down"; plane.pos = new Vector2(400, 500); plane.fps = 15; Global.currentPos = plane.pos; } public void Draw(SpriteBatch sb) { sb.Draw(bgTexture1, bgPos1, Color.White); sb.Draw(bgTexture2, bgPos2, Color.White); plane.Draw(sb); } public void Update(GameTime gt) { bgPos1.Y += speed; bgPos2.Y += speed; if (bgPos1.Y >= 600) { bgPos1.Y = -600; } if (bgPos2.Y >= 600) { bgPos2.Y = -600; } plane.Update(gt); } } } Of course when I did this, I delete all my player's code in the main Game class. All of that works fine (no errors) except that the game cannot start. The debugger says that plane.Update(gt); in Level 1 class has null GameTime, same thing with the Draw method in the Level class. Please help, I appreciate for the time. [EDIT] I know that using switch in the main class can be a solution. But I prefer a cleaner solution than that, since using switch still means I need to load all the assets through the main class, the code will be A LOT later on for each levels

    Read the article

  • Unable to Mange DNS via MMC

    - by IT Helpdesk Team Manager
    When trying to access the DNS service on Microsoft Windows Server 2003 (Build 3790) domain controller/schema master via the MMC DNS snap in or locally via the DNS MMC from Administrative tools I'm getting a red "X" through the icon for the DNS Server. The inability to access DNS management via MMC happens on all domain controllers as well. We've looked at items such as the DHCP client not being started, incorrect DNS setup ( the machine points at itself and another DC ), the DNS service not running ( it is and all DNS queries via NSLOOKUP work correctly ), dslint returns the correct information and functions as expected. There is the following entry in the DNS event log: The DNS server could not initialize the remote procedure call (RPC) service. If it is not running, start the RPC service or reboot the computer. The event data is the error code. For more information, see Help and Support Center at http://go.microsoft.com/fwlink/events.asp. 0000: 0000051b dnscmd fails with RPC server unavailable yet RPC is started: C:\Documents and Settings\Administrator.DOMAIN>dnscmd /Info Info query failed status = 1722 (0x000006ba) Command failed: RPC_S_SERVER_UNAVAILABLE 1722 (000006ba) DCDIAG /TEST:DNS /V /E produces the following errors: Warning: no DNS RPC connectivity (error or non Microsoft DNS server is running) [Error details: 1753 (Type: Win32 - Description: There are no more endpoints available from the endpoint mapper.)] Warning: no DNS RPC connectivity (error or non Microsoft DNS server is running) [Error details: 1722 (Type: Win32 - Description: The RPC server is unavailable.)] The DNS server could not initialize the remote procedure call (RPC) service. If it is not running, start the RPC service or reboot the computer. The event data is the error code. A DNS query for _ldap._tcp.dc._msdcs. returns the correct results. All domain and ADS related activities are working except that I can't manage my DNS via MMC or dnscmd. Any thoughts or solutions would be greatly appreciated. EDIT: Adding Registry export per request: Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc Class Name: <NO CLASS> Last Write Time: 10/18/2012 - 2:29 PM Value 0 Name: DCOM Protocols Type: REG_MULTI_SZ Data: ncacn_ip_tcp Value 1 Name: UuidSequenceNumber Type: REG_DWORD Data: 0xb19bd0f Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ClientProtocols Class Name: <NO CLASS> Last Write Time: 3/9/2007 - 12:11 PM Value 0 Name: ncacn_np Type: REG_SZ Data: rpcrt4.dll Value 1 Name: ncacn_ip_tcp Type: REG_SZ Data: rpcrt4.dll Value 2 Name: ncadg_ip_udp Type: REG_SZ Data: rpcrt4.dll Value 3 Name: ncacn_http Type: REG_SZ Data: rpcrt4.dll Value 4 Name: ncacn_at_dsp Type: REG_SZ Data: rpcrt4.dll Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NameService Class Name: <NO CLASS> Last Write Time: 2/20/2006 - 4:48 PM Value 0 Name: DefaultSyntax Type: REG_SZ Data: 3 Value 1 Name: Endpoint Type: REG_SZ Data: \pipe\locator Value 2 Name: NetworkAddress Type: REG_SZ Data: \\. Value 3 Name: Protocol Type: REG_SZ Data: ncacn_np Value 4 Name: ServerNetworkAddress Type: REG_SZ Data: \\. Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NetBios Class Name: <NO CLASS> Last Write Time: 2/20/2006 - 4:48 PM Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\RpcProxy Class Name: <NO CLASS> Last Write Time: 3/9/2007 - 12:11 PM Value 0 Name: Enabled Type: REG_DWORD Data: 0x1 Value 1 Name: ValidPorts Type: REG_SZ Data: pdc:100-5000 Key Name: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\SecurityService Class Name: <NO CLASS> Last Write Time: 2/20/2006 - 4:48 PM Value 0 Name: 9 Type: REG_SZ Data: secur32.dll Value 1 Name: 10 Type: REG_SZ Data: secur32.dll Value 2 Name: 14 Type: REG_SZ Data: schannel.dll Value 3 Name: 16 Type: REG_SZ Data: secur32.dll Value 4 Name: 1 Type: REG_SZ Data: secur32.dll Value 5 Name: 18 Type: REG_SZ Data: secur32.dll Value 6 Name: 68 Type: REG_SZ Data: netlogon.dll

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 2

    - by shiju
    In my previous post Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1, we have discussed on how to work with ASP.NET MVC 3 and EF Code First for developing web apps. We have created generic repository and unit of work with EF Code First for our ASP.NET MVC 3 application and did basic CRUD operations against a simple domain entity. In this post, I will demonstrate on working with domain entity with deep object graph, Service Layer and View Models and will also complete the rest of the demo application. In the previous post, we have done CRUD operations against Category entity and this post will be focus on Expense entity those have an association with Category entity. You can download the source code from http://efmvc.codeplex.com . The following frameworks will be used for this step by step tutorial.    1. ASP.NET MVC 3 RTM    2. EF Code First CTP 5    3. Unity 2.0 Domain Model Category Entity public class Category   {       public int CategoryId { get; set; }       [Required(ErrorMessage = "Name Required")]       [StringLength(25, ErrorMessage = "Must be less than 25 characters")]       public string Name { get; set;}       public string Description { get; set; }       public virtual ICollection<Expense> Expenses { get; set; }   } Expense Entity public class Expense     {                public int ExpenseId { get; set; }                public string  Transaction { get; set; }         public DateTime Date { get; set; }         public double Amount { get; set; }         public int CategoryId { get; set; }         public virtual Category Category { get; set; }     } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. Repository class for Expense Transaction Let’s create repository class for handling CRUD operations for Expense entity public class ExpenseRepository : RepositoryBase<Expense>, IExpenseRepository     {     public ExpenseRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface IExpenseRepository : IRepository<Expense> { } Service Layer If you are new to Service Layer, checkout Martin Fowler's article Service Layer . According to Martin Fowler, Service Layer defines an application's boundary and its set of available operations from the perspective of interfacing client layers. It encapsulates the application's business logic, controlling transactions and coordinating responses in the implementation of its operations. Controller classes should be lightweight and do not put much of business logic onto it. We can use the service layer as the business logic layer and can encapsulate the rules of the application. Let’s create a Service class for coordinates the transaction for Expense public interface IExpenseService {     IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime ednDate);     Expense GetExpense(int id);             void CreateExpense(Expense expense);     void DeleteExpense(int id);     void SaveExpense(); } public class ExpenseService : IExpenseService {     private readonly IExpenseRepository expenseRepository;            private readonly IUnitOfWork unitOfWork;     public ExpenseService(IExpenseRepository expenseRepository, IUnitOfWork unitOfWork)     {                  this.expenseRepository = expenseRepository;         this.unitOfWork = unitOfWork;     }     public IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime endDate)     {         var expenses = expenseRepository.GetMany(exp => exp.Date >= startDate && exp.Date <= endDate);         return expenses;     }     public void CreateExpense(Expense expense)     {         expenseRepository.Add(expense);         unitOfWork.Commit();     }     public Expense GetExpense(int id)     {         var expense = expenseRepository.GetById(id);         return expense;     }     public void DeleteExpense(int id)     {         var expense = expenseRepository.GetById(id);         expenseRepository.Delete(expense);         unitOfWork.Commit();     }     public void SaveExpense()     {         unitOfWork.Commit();     } }   View Model for Expense Transactions In real world ASP.NET MVC applications, we need to design model objects especially for our views. Our domain objects are mainly designed for the needs for domain model and it is representing the domain of our applications. On the other hand, View Model objects are designed for our needs for views. We have an Expense domain entity that has an association with Category. While we are creating a new Expense, we have to specify that in which Category belongs with the new Expense transaction. The user interface for Expense transaction will have form fields for representing the Expense entity and a CategoryId for representing the Category. So let's create view model for representing the need for Expense transactions. public class ExpenseViewModel {     public int ExpenseId { get; set; }       [Required(ErrorMessage = "Category Required")]     public int CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]     public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]     public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } The ExpenseViewModel is designed for the purpose of View template and contains the all validation rules. It has properties for mapping values to Expense entity and a property Category for binding values to a drop-down for list values of Category. Create Expense transaction Let’s create action methods in the ExpenseController for creating expense transactions public ActionResult Create() {     var expenseModel = new ExpenseViewModel();     var categories = categoryService.GetCategories();     expenseModel.Category = categories.ToSelectListItems(-1);     expenseModel.Date = DateTime.Today;     return View(expenseModel); } [HttpPost] public ActionResult Create(ExpenseViewModel expenseViewModel) {                      if (!ModelState.IsValid)         {             var categories = categoryService.GetCategories();             expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);             return View("Save", expenseViewModel);         }         Expense expense=new Expense();         ModelCopier.CopyModel(expenseViewModel,expense);         expenseService.CreateExpense(expense);         return RedirectToAction("Index");              } In the Create action method for HttpGet request, we have created an instance of our View Model ExpenseViewModel with Category information for the drop-down list and passing the Model object to View template. The extension method ToSelectListItems is shown below   public static IEnumerable<SelectListItem> ToSelectListItems(         this IEnumerable<Category> categories, int  selectedId) {     return           categories.OrderBy(category => category.Name)                 .Select(category =>                     new SelectListItem                     {                         Selected = (category.CategoryId == selectedId),                         Text = category.Name,                         Value = category.CategoryId.ToString()                     }); } In the Create action method for HttpPost, our view model object ExpenseViewModel will map with posted form input values. We need to create an instance of Expense for the persistence purpose. So we need to copy values from ExpenseViewModel object to Expense object. ASP.NET MVC futures assembly provides a static class ModelCopier that can use for copying values between Model objects. ModelCopier class has two static methods - CopyCollection and CopyModel.CopyCollection method will copy values between two collection objects and CopyModel will copy values between two model objects. We have used CopyModel method of ModelCopier class for copying values from expenseViewModel object to expense object. Finally we did a call to CreateExpense method of ExpenseService class for persisting new expense transaction. List Expense Transactions We want to list expense transactions based on a date range. So let’s create action method for filtering expense transactions with a specified date range. public ActionResult Index(DateTime? startDate, DateTime? endDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!startDate.HasValue)     {         startDate = new DateTime(dtNow.Year, dtNow.Month, 1);         endDate = startDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of start date's month, if end date is not passed     if (startDate.HasValue && !endDate.HasValue)     {         endDate = (new DateTime(startDate.Value.Year, startDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }     var expenses = expenseService.GetExpenses(startDate.Value ,endDate.Value);     //if request is Ajax will return partial view     if (Request.IsAjaxRequest())     {         return PartialView("ExpenseList", expenses);     }     //set start date and end date to ViewBag dictionary     ViewBag.StartDate = startDate.Value.ToShortDateString();     ViewBag.EndDate = endDate.Value.ToShortDateString();     //if request is not ajax     return View(expenses); } We are using the above Index Action method for both Ajax requests and normal requests. If there is a request for Ajax, we will call the PartialView ExpenseList. Razor Views for listing Expense information Let’s create view templates in Razor for showing list of Expense information ExpenseList.cshtml @model IEnumerable<MyFinance.Domain.Expense>   <table>         <tr>             <th>Actions</th>             <th>Category</th>             <th>                 Transaction             </th>             <th>                 Date             </th>             <th>                 Amount             </th>         </tr>       @foreach (var item in Model) {              <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.ExpenseId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.ExpenseId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divExpenseList" })             </td>              <td>                 @item.Category.Name             </td>             <td>                 @item.Transaction             </td>             <td>                 @String.Format("{0:d}", item.Date)             </td>             <td>                 @String.Format("{0:F}", item.Amount)             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New Expense", "Create") |         @Html.ActionLink("Create New Category", "Create","Category")     </p> Index.cshtml @using MyFinance.Helpers; @model IEnumerable<MyFinance.Domain.Expense> @{     ViewBag.Title = "Index"; }    <h2>Expense List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery-ui.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.ui.datepicker.js")" type="text/javascript"></script> <link href="@Url.Content("~/Content/jquery-ui-1.8.6.custom.css")" rel="stylesheet" type="text/css" />      @using (Ajax.BeginForm(new AjaxOptions{ UpdateTargetId="divExpenseList", HttpMethod="Get"})) {     <table>         <tr>         <td>         <div>           Start Date: @Html.TextBox("StartDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["StartDate"].ToString())), new { @class = "ui-datepicker" })         </div>         </td>         <td><div>            End Date: @Html.TextBox("EndDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["EndDate"].ToString())), new { @class = "ui-datepicker" })          </div></td>          <td> <input type="submit" value="Search By TransactionDate" /></td>         </tr>     </table>         }   <div id="divExpenseList">             @Html.Partial("ExpenseList", Model)     </div> <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script> Ajax search functionality using Ajax.BeginForm The search functionality of Index view is providing Ajax functionality using Ajax.BeginForm. The Ajax.BeginForm() method writes an opening <form> tag to the response. You can use this method in a using block. In that case, the method renders the closing </form> tag at the end of the using block and the form is submitted asynchronously by using JavaScript. The search functionality will call the Index Action method and this will return partial view ExpenseList for updating the search result. We want to update the response UI for the Ajax request onto divExpenseList element. So we have specified the UpdateTargetId as "divExpenseList" in the Ajax.BeginForm method. Add jQuery DatePicker Our search functionality is using a date range so we are providing two date pickers using jQuery datepicker. You need to add reference to the following JavaScript files to working with jQuery datepicker. jquery-ui.js jquery.ui.datepicker.js For theme support for datepicker, we can use a customized CSS class. In our example we have used a CSS file “jquery-ui-1.8.6.custom.css”. For more details about the datepicker component, visit jquery UI website at http://jqueryui.com/demos/datepicker . In the jQuery ready event, we have used following JavaScript function to initialize the UI element to show date picker. <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script>   Source Code You can download the source code from http://efmvc.codeplex.com/ . Summary In this two-part series, we have created a simple web application using ASP.NET MVC 3 RTM, Razor and EF Code First CTP 5. I have demonstrated patterns and practices  such as Dependency Injection, Repository pattern, Unit of Work, ViewModel and Service Layer. My primary objective was to demonstrate different practices and options for developing web apps using ASP.NET MVC 3 and EF Code First. You can implement these approaches in your own way for building web apps using ASP.NET MVC 3. I will refactor this demo app on later time.

    Read the article

  • Anti-Forgery Request Helpers for ASP.NET MVC and jQuery AJAX

    - by Dixin
    Background To secure websites from cross-site request forgery (CSRF, or XSRF) attack, ASP.NET MVC provides an excellent mechanism: The server prints tokens to cookie and inside the form; When the form is submitted to server, token in cookie and token inside the form are sent in the HTTP request; Server validates the tokens. To print tokens to browser, just invoke HtmlHelper.AntiForgeryToken():<% using (Html.BeginForm()) { %> <%: this.Html.AntiForgeryToken(Constants.AntiForgeryTokenSalt)%> <%-- Other fields. --%> <input type="submit" value="Submit" /> <% } %> This invocation generates a token then writes inside the form:<form action="..." method="post"> <input name="__RequestVerificationToken" type="hidden" value="J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP" /> <!-- Other fields. --> <input type="submit" value="Submit" /> </form> and also writes into the cookie: __RequestVerificationToken_Lw__= J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP When the above form is submitted, they are both sent to server. In the server side, [ValidateAntiForgeryToken] attribute is used to specify the controllers or actions to validate them:[HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult Action(/* ... */) { // ... } This is very productive for form scenarios. But recently, when resolving security vulnerabilities for Web products, some problems are encountered. Specify validation on controller (not on each action) The server side problem is, It is expected to declare [ValidateAntiForgeryToken] on controller, but actually it has be to declared on each POST actions. Because POST actions are usually much more then controllers, this is a little crazy Problem Usually a controller contains actions for HTTP GET and actions for HTTP POST requests, and usually validations are expected for HTTP POST requests. So, if the [ValidateAntiForgeryToken] is declared on the controller, the HTTP GET requests become invalid:[ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public class SomeController : Controller // One [ValidateAntiForgeryToken] attribute. { [HttpGet] public ActionResult Index() // Index() cannot work. { // ... } [HttpPost] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] public ActionResult PostAction2(/* ... */) { // ... } // ... } If browser sends an HTTP GET request by clicking a link: http://Site/Some/Index, validation definitely fails, because no token is provided. So the result is, [ValidateAntiForgeryToken] attribute must be distributed to each POST action:public class SomeController : Controller // Many [ValidateAntiForgeryToken] attributes. { [HttpGet] public ActionResult Index() // Works. { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction2(/* ... */) { // ... } // ... } This is a little bit crazy, because one application can have a lot of POST actions. Solution To avoid a large number of [ValidateAntiForgeryToken] attributes (one for each POST action), the following ValidateAntiForgeryTokenAttribute wrapper class can be helpful, where HTTP verbs can be specified:[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = false, Inherited = true)] public class ValidateAntiForgeryTokenWrapperAttribute : FilterAttribute, IAuthorizationFilter { private readonly ValidateAntiForgeryTokenAttribute _validator; private readonly AcceptVerbsAttribute _verbs; public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs) : this(verbs, null) { } public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs, string salt) { this._verbs = new AcceptVerbsAttribute(verbs); this._validator = new ValidateAntiForgeryTokenAttribute() { Salt = salt }; } public void OnAuthorization(AuthorizationContext filterContext) { string httpMethodOverride = filterContext.HttpContext.Request.GetHttpMethodOverride(); if (this._verbs.Verbs.Contains(httpMethodOverride, StringComparer.OrdinalIgnoreCase)) { this._validator.OnAuthorization(filterContext); } } } When this attribute is declared on controller, only HTTP requests with the specified verbs are validated:[ValidateAntiForgeryTokenWrapper(HttpVerbs.Post, Constants.AntiForgeryTokenSalt)] public class SomeController : Controller { // GET actions are not affected. // Only HTTP POST requests are validated. } Now one single attribute on controller turns on validation for all POST actions. Maybe it would be nice if HTTP verbs can be specified on the built-in [ValidateAntiForgeryToken] attribute, which is easy to implemented. Submit token via AJAX The browser side problem is, if server side turns on anti-forgery validation for POST, then AJAX POST requests will fail be default. Problem For AJAX scenarios, when request is sent by jQuery instead of form:$.post(url, { productName: "Tofu", categoryId: 1 // Token is not posted. }, callback); This kind of AJAX POST requests will always be invalid, because server side code cannot see the token in the posted data. Solution The tokens are printed to browser then sent back to server. So first of all, HtmlHelper.AntiForgeryToken() must be called somewhere. Now the browser has token in HTML and cookie. Then jQuery must find the printed token in the HTML, and append token to the data before sending:$.post(url, { productName: "Tofu", categoryId: 1, __RequestVerificationToken: getToken() // Token is posted. }, callback); To be reusable, this can be encapsulated into a tiny jQuery plugin:/// <reference path="jquery-1.4.2.js" /> (function ($) { $.getAntiForgeryToken = function (tokenWindow, appPath) { // HtmlHelper.AntiForgeryToken() must be invoked to print the token. tokenWindow = tokenWindow && typeof tokenWindow === typeof window ? tokenWindow : window; appPath = appPath && typeof appPath === "string" ? "_" + appPath.toString() : ""; // The name attribute is either __RequestVerificationToken, // or __RequestVerificationToken_{appPath}. tokenName = "__RequestVerificationToken" + appPath; // Finds the <input type="hidden" name={tokenName} value="..." /> from the specified. // var inputElements = $("input[type='hidden'][name='__RequestVerificationToken" + appPath + "']"); var inputElements = tokenWindow.document.getElementsByTagName("input"); for (var i = 0; i < inputElements.length; i++) { var inputElement = inputElements[i]; if (inputElement.type === "hidden" && inputElement.name === tokenName) { return { name: tokenName, value: inputElement.value }; } } return null; }; $.appendAntiForgeryToken = function (data, token) { // Converts data if not already a string. if (data && typeof data !== "string") { data = $.param(data); } // Gets token from current window by default. token = token ? token : $.getAntiForgeryToken(); // $.getAntiForgeryToken(window). data = data ? data + "&" : ""; // If token exists, appends {token.name}={token.value} to data. return token ? data + encodeURIComponent(token.name) + "=" + encodeURIComponent(token.value) : data; }; // Wraps $.post(url, data, callback, type). $.postAntiForgery = function (url, data, callback, type) { return $.post(url, $.appendAntiForgeryToken(data), callback, type); }; // Wraps $.ajax(settings). $.ajaxAntiForgery = function (settings) { settings.data = $.appendAntiForgeryToken(settings.data); return $.ajax(settings); }; })(jQuery); In most of the scenarios, it is Ok to just replace $.post() invocation with $.postAntiForgery(), and replace $.ajax() with $.ajaxAntiForgery():$.postAntiForgery(url, { productName: "Tofu", categoryId: 1 }, callback); // Token is posted. There might be some scenarios of custom token. Here $.appendAntiForgeryToken() is provided:data = $.appendAntiForgeryToken(data, token); // Token is already in data. No need to invoke $.postAntiForgery(). $.post(url, data, callback); And there are scenarios that the token is not in the current window. For example, an HTTP POST request can be sent by iframe, while the token is in the parent window. Here window can be specified for $.getAntiForgeryToken():data = $.appendAntiForgeryToken(data, $.getAntiForgeryToken(window.parent)); // Token is already in data. No need to invoke $.postAntiForgery(). $.post(url, data, callback); If you have better solution, please do tell me.

    Read the article

  • Generating EF Code First model classes from an existing database

    - by Jon Galloway
    Entity Framework Code First is a lightweight way to "turn on" data access for a simple CLR class. As the name implies, the intended use is that you're writing the code first and thinking about the database later. However, I really like the Entity Framework Code First works, and I want to use it in existing projects and projects with pre-existing databases. For example, MVC Music Store comes with a SQL Express database that's pre-loaded with a catalog of music (including genres, artists, and songs), and while it may eventually make sense to load that seed data from a different source, for the MVC 3 release we wanted to keep using the existing database. While I'm not getting the full benefit of Code First - writing code which drives the database schema - I can still benefit from the simplicity of the lightweight code approach. Scott Guthrie blogged about how to use entity framework with an existing database, looking at how you can override the Entity Framework Code First conventions so that it can work with a database which was created following other conventions. That gives you the information you need to create the model classes manually. However, it turns out that with Entity Framework 4 CTP 5, there's a way to generate the model classes from the database schema. Once the grunt work is done, of course, you can go in and modify the model classes as you'd like, but you can save the time and frustration of figuring out things like mapping SQL database types to .NET types. Note that this template requires Entity Framework 4 CTP 5 or later. You can install EF 4 CTP 5 here. Step One: Generate an EF Model from your existing database The code generation system in Entity Framework works from a model. You can add a model to your existing project and delete it when you're done, but I think it's simpler to just spin up a separate project to generate the model classes. When you're done, you can delete the project without affecting your application, or you may choose to keep it around in case you have other database schema updates which require model changes. I chose to add the Model classes to the Models folder of a new MVC 3 application. Right-click the folder and select "Add / New Item..."   Next, select ADO.NET Entity Data Model from the Data Templates list, and name it whatever you want (the name is unimportant).   Next, select "Generate from database." This is important - it's what kicks off the next few steps, which read your database's schema.   Now it's time to point the Entity Data Model Wizard at your existing database. I'll assume you know how to find your database - if not, I covered that a bit in the MVC Music Store tutorial section on Models and Data. Select your database, uncheck the "Save entity connection settings in Web.config" (since we won't be using them within the application), and click Next.   Now you can select the database objects you'd like modeled. I just selected all tables and clicked Finish.   And there's your model. If you want, you can make additional changes here before going on to generate the code.   Step Two: Add the DbContext Generator Like most code generation systems in Visual Studio lately, Entity Framework uses T4 templates which allow for some control over how the code is generated. K Scott Allen wrote a detailed article on T4 Templates and the Entity Framework on MSDN recently, if you'd like to know more. Fortunately for us, there's already a template that does just what we need without any customization. Right-click a blank space in the Entity Framework model surface and select "Add Code Generation Item..." Select the Code groupt in the Installed Templates section and pick the ADO.NET DbContext Generator. If you don't see this listed, make sure you've got EF 4 CTP 5 installed and that you're looking at the Code templates group. Note that the DbContext Generator template is similar to the EF POCO template which came out last year, but with "fix up" code (unnecessary in EF Code First) removed.   As soon as you do this, you'll two terrifying Security Warnings - unless you click the "Do not show this message again" checkbox the first time. It will also be displayed (twice) every time you rebuild the project, so I checked the box and no immediate harm befell my computer (fingers crossed!).   Here's the payoff: two templates (filenames ending with .tt) have been added to the project, and they've generated the code I needed.   The "MusicStoreEntities.Context.tt" template built a DbContext class which holds the entity collections, and the "MusicStoreEntities.tt" template build a separate class for each table I selected earlier. We'll customize them in the next step. I recommend copying all the generated .cs files into your application at this point, since accidentally rebuilding the generation project will overwrite your changes if you leave them there. Step Three: Modify and use your POCO entity classes Note: I made a bunch of tweaks to my POCO classes after they were generated. You don't have to do any of this, but I think it's important that you can - they're your classes, and EF Code First respects that. Modify them as you need for your application, or don't. The Context class derives from DbContext, which is what turns on the EF Code First features. It holds a DbSet for each entity. Think of DbSet as a simple List, but with Entity Framework features turned on.   //------------------------------------------------------------------------------ // <auto-generated> // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Data.Entity; public partial class Entities : DbContext { public Entities() : base("name=Entities") { } public DbSet<Album> Albums { get; set; } public DbSet<Artist> Artists { get; set; } public DbSet<Cart> Carts { get; set; } public DbSet<Genre> Genres { get; set; } public DbSet<OrderDetail> OrderDetails { get; set; } public DbSet<Order> Orders { get; set; } } } It's a pretty lightweight class as generated, so I just took out the comments, set the namespace, removed the constructor, and formatted it a bit. Done. If I wanted, though, I could have added or removed DbSets, overridden conventions, etc. using System.Data.Entity; namespace MvcMusicStore.Models { public class MusicStoreEntities : DbContext { public DbSet Albums { get; set; } public DbSet Genres { get; set; } public DbSet Artists { get; set; } public DbSet Carts { get; set; } public DbSet Orders { get; set; } public DbSet OrderDetails { get; set; } } } Next, it's time to look at the individual classes. Some of mine were pretty simple - for the Cart class, I just need to remove the header and clean up the namespace. //------------------------------------------------------------------------------ // // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Collections.Generic; public partial class Cart { // Primitive properties public int RecordId { get; set; } public string CartId { get; set; } public int AlbumId { get; set; } public int Count { get; set; } public System.DateTime DateCreated { get; set; } // Navigation properties public virtual Album Album { get; set; } } } I did a bit more customization on the Album class. Here's what was generated: //------------------------------------------------------------------------------ // // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Collections.Generic; public partial class Album { public Album() { this.Carts = new HashSet(); this.OrderDetails = new HashSet(); } // Primitive properties public int AlbumId { get; set; } public int GenreId { get; set; } public int ArtistId { get; set; } public string Title { get; set; } public decimal Price { get; set; } public string AlbumArtUrl { get; set; } // Navigation properties public virtual Artist Artist { get; set; } public virtual Genre Genre { get; set; } public virtual ICollection Carts { get; set; } public virtual ICollection OrderDetails { get; set; } } } I removed the header, changed the namespace, and removed some of the navigation properties. One nice thing about EF Code First is that you don't have to have a property for each database column or foreign key. In the Music Store sample, for instance, we build the app up using code first and start with just a few columns, adding in fields and navigation properties as the application needs them. EF Code First handles the columsn we've told it about and doesn't complain about the others. Here's the basic class: using System.ComponentModel; using System.ComponentModel.DataAnnotations; using System.Web.Mvc; using System.Collections.Generic; namespace MvcMusicStore.Models { public class Album { public int AlbumId { get; set; } public int GenreId { get; set; } public int ArtistId { get; set; } public string Title { get; set; } public decimal Price { get; set; } public string AlbumArtUrl { get; set; } public virtual Genre Genre { get; set; } public virtual Artist Artist { get; set; } public virtual List OrderDetails { get; set; } } } It's my class, not Entity Framework's, so I'm free to do what I want with it. I added a bunch of MVC 3 annotations for scaffolding and validation support, as shown below: using System.ComponentModel; using System.ComponentModel.DataAnnotations; using System.Web.Mvc; using System.Collections.Generic; namespace MvcMusicStore.Models { [Bind(Exclude = "AlbumId")] public class Album { [ScaffoldColumn(false)] public int AlbumId { get; set; } [DisplayName("Genre")] public int GenreId { get; set; } [DisplayName("Artist")] public int ArtistId { get; set; } [Required(ErrorMessage = "An Album Title is required")] [StringLength(160)] public string Title { get; set; } [Required(ErrorMessage = "Price is required")] [Range(0.01, 100.00, ErrorMessage = "Price must be between 0.01 and 100.00")] public decimal Price { get; set; } [DisplayName("Album Art URL")] [StringLength(1024)] public string AlbumArtUrl { get; set; } public virtual Genre Genre { get; set; } public virtual Artist Artist { get; set; } public virtual List<OrderDetail> OrderDetails { get; set; } } } The end result was that I had working EF Code First model code for the finished application. You can follow along through the tutorial to see how I built up to the finished model classes, starting with simple 2-3 property classes and building up to the full working schema. Thanks to Diego Vega (on the Entity Framework team) for pointing me to the DbContext template.

    Read the article

  • Windows Azure Service Bus Splitter and Aggregator

    - by Alan Smith
    This article will cover basic implementations of the Splitter and Aggregator patterns using the Windows Azure Service Bus. The content will be included in the next release of the “Windows Azure Service Bus Developer Guide”, along with some other patterns I am working on. I’ve taken the pattern descriptions from the book “Enterprise Integration Patterns” by Gregor Hohpe. I bought a copy of the book in 2004, and recently dusted it off when I started to look at implementing the patterns on the Windows Azure Service Bus. Gregor has also presented an session in 2011 “Enterprise Integration Patterns: Past, Present and Future” which is well worth a look. I’ll be covering more patterns in the coming weeks, I’m currently working on Wire-Tap and Scatter-Gather. There will no doubt be a section on implementing these patterns in my “SOA, Connectivity and Integration using the Windows Azure Service Bus” course. There are a number of scenarios where a message needs to be divided into a number of sub messages, and also where a number of sub messages need to be combined to form one message. The splitter and aggregator patterns provide a definition of how this can be achieved. This section will focus on the implementation of basic splitter and aggregator patens using the Windows Azure Service Bus direct programming model. In BizTalk Server receive pipelines are typically used to implement the splitter patterns, with sequential convoy orchestrations often used to aggregate messages. In the current release of the Service Bus, there is no functionality in the direct programming model that implements these patterns, so it is up to the developer to implement them in the applications that send and receive messages. Splitter A message splitter takes a message and spits the message into a number of sub messages. As there are different scenarios for how a message can be split into sub messages, message splitters are implemented using different algorithms. The Enterprise Integration Patterns book describes the splatter pattern as follows: How can we process a message if it contains multiple elements, each of which may have to be processed in a different way? Use a Splitter to break out the composite message into a series of individual messages, each containing data related to one item. The Enterprise Integration Patterns website provides a description of the Splitter pattern here. In some scenarios a batch message could be split into the sub messages that are contained in the batch. The splitting of a message could be based on the message type of sub-message, or the trading partner that the sub message is to be sent to. Aggregator An aggregator takes a stream or related messages and combines them together to form one message. The Enterprise Integration Patterns book describes the aggregator pattern as follows: How do we combine the results of individual, but related messages so that they can be processed as a whole? Use a stateful filter, an Aggregator, to collect and store individual messages until a complete set of related messages has been received. Then, the Aggregator publishes a single message distilled from the individual messages. The Enterprise Integration Patterns website provides a description of the Aggregator pattern here. A common example of the need for an aggregator is in scenarios where a stream of messages needs to be combined into a daily batch to be sent to a legacy line-of-business application. The BizTalk Server EDI functionality provides support for batching messages in this way using a sequential convoy orchestration. Scenario The scenario for this implementation of the splitter and aggregator patterns is the sending and receiving of large messages using a Service Bus queue. In the current release, the Windows Azure Service Bus currently supports a maximum message size of 256 KB, with a maximum header size of 64 KB. This leaves a safe maximum body size of 192 KB. The BrokeredMessage class will support messages larger than 256 KB; in fact the Size property is of type long, implying that very large messages may be supported at some point in the future. The 256 KB size restriction is set in the service bus components that are deployed in the Windows Azure data centers. One of the ways of working around this size restriction is to split large messages into a sequence of smaller sub messages in the sending application, send them via a queue, and then reassemble them in the receiving application. This scenario will be used to demonstrate the pattern implementations. Implementation The splitter and aggregator will be used to provide functionality to send and receive large messages over the Windows Azure Service Bus. In order to make the implementations generic and reusable they will be implemented as a class library. The splitter will be implemented in the LargeMessageSender class and the aggregator in the LargeMessageReceiver class. A class diagram showing the two classes is shown below. Implementing the Splitter The splitter will take a large brokered message, and split the messages into a sequence of smaller sub-messages that can be transmitted over the service bus messaging entities. The LargeMessageSender class provides a Send method that takes a large brokered message as a parameter. The implementation of the class is shown below; console output has been added to provide details of the splitting operation. public class LargeMessageSender {     private static int SubMessageBodySize = 192 * 1024;     private QueueClient m_QueueClient;       public LargeMessageSender(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public void Send(BrokeredMessage message)     {         // Calculate the number of sub messages required.         long messageBodySize = message.Size;         int nrSubMessages = (int)(messageBodySize / SubMessageBodySize);         if (messageBodySize % SubMessageBodySize != 0)         {             nrSubMessages++;         }           // Create a unique session Id.         string sessionId = Guid.NewGuid().ToString();         Console.WriteLine("Message session Id: " + sessionId);         Console.Write("Sending {0} sub-messages", nrSubMessages);           Stream bodyStream = message.GetBody<Stream>();         for (int streamOffest = 0; streamOffest < messageBodySize;             streamOffest += SubMessageBodySize)         {                                     // Get the stream chunk from the large message             long arraySize = (messageBodySize - streamOffest) > SubMessageBodySize                 ? SubMessageBodySize : messageBodySize - streamOffest;             byte[] subMessageBytes = new byte[arraySize];             int result = bodyStream.Read(subMessageBytes, 0, (int)arraySize);             MemoryStream subMessageStream = new MemoryStream(subMessageBytes);               // Create a new message             BrokeredMessage subMessage = new BrokeredMessage(subMessageStream, true);             subMessage.SessionId = sessionId;               // Send the message             m_QueueClient.Send(subMessage);             Console.Write(".");         }         Console.WriteLine("Done!");     }} The LargeMessageSender class is initialized with a QueueClient that is created by the sending application. When the large message is sent, the number of sub messages is calculated based on the size of the body of the large message. A unique session Id is created to allow the sub messages to be sent as a message session, this session Id will be used for correlation in the aggregator. A for loop in then used to create the sequence of sub messages by creating chunks of data from the stream of the large message. The sub messages are then sent to the queue using the QueueClient. As sessions are used to correlate the messages, the queue used for message exchange must be created with the RequiresSession property set to true. Implementing the Aggregator The aggregator will receive the sub messages in the message session that was created by the splitter, and combine them to form a single, large message. The aggregator is implemented in the LargeMessageReceiver class, with a Receive method that returns a BrokeredMessage. The implementation of the class is shown below; console output has been added to provide details of the splitting operation.   public class LargeMessageReceiver {     private QueueClient m_QueueClient;       public LargeMessageReceiver(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public BrokeredMessage Receive()     {         // Create a memory stream to store the large message body.         MemoryStream largeMessageStream = new MemoryStream();           // Accept a message session from the queue.         MessageSession session = m_QueueClient.AcceptMessageSession();         Console.WriteLine("Message session Id: " + session.SessionId);         Console.Write("Receiving sub messages");           while (true)         {             // Receive a sub message             BrokeredMessage subMessage = session.Receive(TimeSpan.FromSeconds(5));               if (subMessage != null)             {                 // Copy the sub message body to the large message stream.                 Stream subMessageStream = subMessage.GetBody<Stream>();                 subMessageStream.CopyTo(largeMessageStream);                   // Mark the message as complete.                 subMessage.Complete();                 Console.Write(".");             }             else             {                 // The last message in the sequence is our completeness criteria.                 Console.WriteLine("Done!");                 break;             }         }                     // Create an aggregated message from the large message stream.         BrokeredMessage largeMessage = new BrokeredMessage(largeMessageStream, true);         return largeMessage;     } }   The LargeMessageReceiver initialized using a QueueClient that is created by the receiving application. The receive method creates a memory stream that will be used to aggregate the large message body. The AcceptMessageSession method on the QueueClient is then called, which will wait for the first message in a message session to become available on the queue. As the AcceptMessageSession can throw a timeout exception if no message is available on the queue after 60 seconds, a real-world implementation should handle this accordingly. Once the message session as accepted, the sub messages in the session are received, and their message body streams copied to the memory stream. Once all the messages have been received, the memory stream is used to create a large message, that is then returned to the receiving application. Testing the Implementation The splitter and aggregator are tested by creating a message sender and message receiver application. The payload for the large message will be one of the webcast video files from http://www.cloudcasts.net/, the file size is 9,697 KB, well over the 256 KB threshold imposed by the Service Bus. As the splitter and aggregator are implemented in a separate class library, the code used in the sender and receiver console is fairly basic. The implementation of the main method of the sending application is shown below.   static void Main(string[] args) {     // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Open the input file.     FileStream fileStream = new FileStream(AccountDetails.TestFile, FileMode.Open);       // Create a BrokeredMessage for the file.     BrokeredMessage largeMessage = new BrokeredMessage(fileStream, true);       Console.WriteLine("Sending: " + AccountDetails.TestFile);     Console.WriteLine("Message body size: " + largeMessage.Size);     Console.WriteLine();         // Send the message with a LargeMessageSender     LargeMessageSender sender = new LargeMessageSender(queueClient);     sender.Send(largeMessage);       // Close the messaging facory.     factory.Close();  } The implementation of the main method of the receiving application is shown below. static void Main(string[] args) {       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Create a LargeMessageReceiver and receive the message.     LargeMessageReceiver receiver = new LargeMessageReceiver(queueClient);     BrokeredMessage largeMessage = receiver.Receive();       Console.WriteLine("Received message");     Console.WriteLine("Message body size: " + largeMessage.Size);       string testFile = AccountDetails.TestFile.Replace(@"\In\", @"\Out\");     Console.WriteLine("Saving file: " + testFile);       // Save the message body as a file.     Stream largeMessageStream = largeMessage.GetBody<Stream>();     largeMessageStream.Seek(0, SeekOrigin.Begin);     FileStream fileOut = new FileStream(testFile, FileMode.Create);     largeMessageStream.CopyTo(fileOut);     fileOut.Close();       Console.WriteLine("Done!"); } In order to test the application, the sending application is executed, which will use the LargeMessageSender class to split the message and place it on the queue. The output of the sender console is shown below. The console shows that the body size of the large message was 9,929,365 bytes, and the message was sent as a sequence of 51 sub messages. When the receiving application is executed the results are shown below. The console application shows that the aggregator has received the 51 messages from the message sequence that was creating in the sending application. The messages have been aggregated to form a massage with a body of 9,929,365 bytes, which is the same as the original large message. The message body is then saved as a file. Improvements to the Implementation The splitter and aggregator patterns in this implementation were created in order to show the usage of the patterns in a demo, which they do quite well. When implementing these patterns in a real-world scenario there are a number of improvements that could be made to the design. Copying Message Header Properties When sending a large message using these classes, it would be great if the message header properties in the message that was received were copied from the message that was sent. The sending application may well add information to the message context that will be required in the receiving application. When the sub messages are created in the splitter, the header properties in the first message could be set to the values in the original large message. The aggregator could then used the values from this first sub message to set the properties in the message header of the large message during the aggregation process. Using Asynchronous Methods The current implementation uses the synchronous send and receive methods of the QueueClient class. It would be much more performant to use the asynchronous methods, however doing so may well affect the sequence in which the sub messages are enqueued, which would require the implementation of a resequencer in the aggregator to restore the correct message sequence. Handling Exceptions In order to keep the code readable no exception handling was added to the implementations. In a real-world scenario exceptions should be handled accordingly.

    Read the article

  • Get Application Title from Windows Phone

    - by psheriff
    In a Windows Phone application that I am currently developing I needed to be able to retrieve the Application Title of the phone application. You can set the Deployment Title in the Properties of your Windows Phone Application, however getting to this value programmatically can be a little tricky. This article assumes that you have Visual Studio 2010 and the Windows Phone tools installed along with it. The Windows Phone tools must be downloaded separately and installed with Visual Studio2010. You may also download the free Visual Studio2010 Express for Windows Phone developer environment. The WMAppManifest.xml File First off you need to understand that when you set the Deployment Title in the Properties windows of your Windows Phone application, this title actually gets stored into an XML file located under the \Properties folder of your application. This XML file is named WMAppManifest.xml. A portion of this file is shown in the following listing. <?xml version="1.0" encoding="utf-8"?><Deployment  http://schemas.microsoft.com/windowsphone/2009/deployment"http://schemas.microsoft.com/windowsphone/2009/deployment"  AppPlatformVersion="7.0">  <App xmlns=""       ProductID="{71d20842-9acc-4f2f-b0e0-8ef79842ea53}"       Title="Mobile Time Track"       RuntimeType="Silverlight"       Version="1.0.0.0"       Genre="apps.normal"       Author="PDSA, Inc."       Description="Mobile Time Track"       Publisher="PDSA, Inc."> ... ...  </App></Deployment> Notice the “Title” attribute in the <App> element in the above XML document. This is the value that gets set when you modify the Deployment Title in your Properties Window of your Phone project. The only value you can set from the Properties Window is the Title. All of the other attributes you see here must be set by going into the XML file and modifying them directly. Note that this information duplicates some of the information that you can also set from the Assembly Information… button in the Properties Window. Why Microsoft did not just use that information, I don’t know. Reading Attributes from WMAppManifest I searched all over the namespaces and classes within the Windows Phone DLLs and could not find a way to read the attributes within the <App> element. Thus, I had to resort to good old fashioned XML processing. First off I created a WinPhoneCommon class and added two static methods as shown in the snippet below: public class WinPhoneCommon{  /// <summary>  /// Returns the Application Title   /// from the WMAppManifest.xml file  /// </summary>  /// <returns>The application title</returns>  public static string GetApplicationTitle()  {    return GetWinPhoneAttribute("Title");  }   /// <summary>  /// Returns the Application Description   /// from the WMAppManifest.xml file  /// </summary>  /// <returns>The application description</returns>  public static string GetApplicationDescription()  {    return GetWinPhoneAttribute("Description");  }   ... GetWinPhoneAttribute method here ...} In your Windows Phone application you can now simply call WinPhoneCommon.GetApplicationTitle() or WinPhone.GetApplicationDescription() to retrieve the Title or Description properties from the WMAppManifest.xml file respectively. You notice that each of these methods makes a call to the GetWinPhoneAttribute method. This method is shown in the following code snippet: /// <summary>/// Gets an attribute from the Windows Phone WMAppManifest.xml file/// To use this method, add a reference to the System.Xml.Linq DLL/// </summary>/// <param name="attributeName">The attribute to read</param>/// <returns>The Attribute's Value</returns>private static string GetWinPhoneAttribute(string attributeName){  string ret = string.Empty;   try  {    XElement xe = XElement.Load("WMAppManifest.xml");    var attr = (from manifest in xe.Descendants("App")                select manifest).SingleOrDefault();    if (attr != null)      ret = attr.Attribute(attributeName).Value;  }  catch  {    // Ignore errors in case this method is called    // from design time in VS.NET  }   return ret;} I love using the new LINQ to XML classes contained in the System.Xml.Linq.dll. When I did a Bing search the only samples I found for reading attribute information from WMAppManifest.xml used either an XmlReader or XmlReaderSettings objects. These are fine and work, but involve a little extra code. Instead of using these, I added a reference to the System.Xml.Linq.dll, then added two using statements to the top of the WinPhoneCommon class: using System.Linq;using System.Xml.Linq; Now, with just a few lines of LINQ to XML code you can read to the App element and extract the appropriate attribute that you pass into the GetWinPhoneAttribute method. Notice that I added a little bit of exception handling code in this method. I ignore the exception in case you call this method in the Loaded event of a user control. In design-time you cannot access the WMAppManifest file and thus an exception would be thrown. Summary In this article you learned how to retrieve the attributes from the WMAppManifest.xml file. I use this technique to grab information that I would otherwise have to hard-code in my application. Getting the Title or Description for your Windows Phone application is easy with just a little bit of LINQ to XML code. NOTE: You can download the complete sample code at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "Get Application Title from Windows Phone" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free video on Silverlight entitled Silverlight XAML for the Complete Novice - Part 1.  

    Read the article

  • ASP.NET MVC 3 Hosting :: How to Deploy Web Apps Using ASP.NET MVC 3, Razor and EF Code First - Part II

    - by mbridge
    In previous post, I have discussed on how to work with ASP.NET MVC 3 and EF Code First for developing web apps. In this post, I will demonstrate on working with domain entity with deep object graph, Service Layer and View Models and will also complete the rest of the demo application. In the previous post, we have done CRUD operations against Category entity and this post will be focus on Expense entity those have an association with Category entity. Domain Model Category Entity public class Category   {       public int CategoryId { get; set; }       [Required(ErrorMessage = "Name Required")]       [StringLength(25, ErrorMessage = "Must be less than 25 characters")]       public string Name { get; set;}       public string Description { get; set; }       public virtual ICollection<Expense> Expenses { get; set; }   } Expense Entity public class Expense     {                public int ExpenseId { get; set; }                public string  Transaction { get; set; }         public DateTime Date { get; set; }         public double Amount { get; set; }         public int CategoryId { get; set; }         public virtual Category Category { get; set; }     } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. Repository class for Expense Transaction Let’s create repository class for handling CRUD operations for Expense entity public class ExpenseRepository : RepositoryBase<Expense>, IExpenseRepository     {     public ExpenseRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface IExpenseRepository : IRepository<Expense> { } Service Layer If you are new to Service Layer, checkout Martin Fowler's article Service Layer . According to Martin Fowler, Service Layer defines an application's boundary and its set of available operations from the perspective of interfacing client layers. It encapsulates the application's business logic, controlling transactions and coordinating responses in the implementation of its operations. Controller classes should be lightweight and do not put much of business logic onto it. We can use the service layer as the business logic layer and can encapsulate the rules of the application. Let’s create a Service class for coordinates the transaction for Expense public interface IExpenseService {     IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime ednDate);     Expense GetExpense(int id);             void CreateExpense(Expense expense);     void DeleteExpense(int id);     void SaveExpense(); } public class ExpenseService : IExpenseService {     private readonly IExpenseRepository expenseRepository;            private readonly IUnitOfWork unitOfWork;     public ExpenseService(IExpenseRepository expenseRepository, IUnitOfWork unitOfWork)     {                  this.expenseRepository = expenseRepository;         this.unitOfWork = unitOfWork;     }     public IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime endDate)     {         var expenses = expenseRepository.GetMany(exp => exp.Date >= startDate && exp.Date <= endDate);         return expenses;     }     public void CreateExpense(Expense expense)     {         expenseRepository.Add(expense);         unitOfWork.Commit();     }     public Expense GetExpense(int id)     {         var expense = expenseRepository.GetById(id);         return expense;     }     public void DeleteExpense(int id)     {         var expense = expenseRepository.GetById(id);         expenseRepository.Delete(expense);         unitOfWork.Commit();     }     public void SaveExpense()     {         unitOfWork.Commit();     } } View Model for Expense Transactions In real world ASP.NET MVC applications, we need to design model objects especially for our views. Our domain objects are mainly designed for the needs for domain model and it is representing the domain of our applications. On the other hand, View Model objects are designed for our needs for views. We have an Expense domain entity that has an association with Category. While we are creating a new Expense, we have to specify that in which Category belongs with the new Expense transaction. The user interface for Expense transaction will have form fields for representing the Expense entity and a CategoryId for representing the Category. So let's create view model for representing the need for Expense transactions. public class ExpenseViewModel {     public int ExpenseId { get; set; }       [Required(ErrorMessage = "Category Required")]     public int CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]     public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]     public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } The ExpenseViewModel is designed for the purpose of View template and contains the all validation rules. It has properties for mapping values to Expense entity and a property Category for binding values to a drop-down for list values of Category. Create Expense transaction Let’s create action methods in the ExpenseController for creating expense transactions public ActionResult Create() {     var expenseModel = new ExpenseViewModel();     var categories = categoryService.GetCategories();     expenseModel.Category = categories.ToSelectListItems(-1);     expenseModel.Date = DateTime.Today;     return View(expenseModel); } [HttpPost] public ActionResult Create(ExpenseViewModel expenseViewModel) {                      if (!ModelState.IsValid)         {             var categories = categoryService.GetCategories();             expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);             return View("Save", expenseViewModel);         }         Expense expense=new Expense();         ModelCopier.CopyModel(expenseViewModel,expense);         expenseService.CreateExpense(expense);         return RedirectToAction("Index");              } In the Create action method for HttpGet request, we have created an instance of our View Model ExpenseViewModel with Category information for the drop-down list and passing the Model object to View template. The extension method ToSelectListItems is shown below public static IEnumerable<SelectListItem> ToSelectListItems(         this IEnumerable<Category> categories, int  selectedId) {     return           categories.OrderBy(category => category.Name)                 .Select(category =>                     new SelectListItem                     {                         Selected = (category.CategoryId == selectedId),                         Text = category.Name,                         Value = category.CategoryId.ToString()                     }); } In the Create action method for HttpPost, our view model object ExpenseViewModel will map with posted form input values. We need to create an instance of Expense for the persistence purpose. So we need to copy values from ExpenseViewModel object to Expense object. ASP.NET MVC futures assembly provides a static class ModelCopier that can use for copying values between Model objects. ModelCopier class has two static methods - CopyCollection and CopyModel.CopyCollection method will copy values between two collection objects and CopyModel will copy values between two model objects. We have used CopyModel method of ModelCopier class for copying values from expenseViewModel object to expense object. Finally we did a call to CreateExpense method of ExpenseService class for persisting new expense transaction. List Expense Transactions We want to list expense transactions based on a date range. So let’s create action method for filtering expense transactions with a specified date range. public ActionResult Index(DateTime? startDate, DateTime? endDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!startDate.HasValue)     {         startDate = new DateTime(dtNow.Year, dtNow.Month, 1);         endDate = startDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of start date's month, if end date is not passed     if (startDate.HasValue && !endDate.HasValue)     {         endDate = (new DateTime(startDate.Value.Year, startDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }     var expenses = expenseService.GetExpenses(startDate.Value ,endDate.Value);     //if request is Ajax will return partial view     if (Request.IsAjaxRequest())     {         return PartialView("ExpenseList", expenses);     }     //set start date and end date to ViewBag dictionary     ViewBag.StartDate = startDate.Value.ToShortDateString();     ViewBag.EndDate = endDate.Value.ToShortDateString();     //if request is not ajax     return View(expenses); } We are using the above Index Action method for both Ajax requests and normal requests. If there is a request for Ajax, we will call the PartialView ExpenseList. Razor Views for listing Expense information Let’s create view templates in Razor for showing list of Expense information ExpenseList.cshtml @model IEnumerable<MyFinance.Domain.Expense>   <table>         <tr>             <th>Actions</th>             <th>Category</th>             <th>                 Transaction             </th>             <th>                 Date             </th>             <th>                 Amount             </th>         </tr>       @foreach (var item in Model) {              <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.ExpenseId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.ExpenseId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divExpenseList" })             </td>              <td>                 @item.Category.Name             </td>             <td>                 @item.Transaction             </td>             <td>                 @String.Format("{0:d}", item.Date)             </td>             <td>                 @String.Format("{0:F}", item.Amount)             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New Expense", "Create") |         @Html.ActionLink("Create New Category", "Create","Category")     </p> Index.cshtml @using MyFinance.Helpers; @model IEnumerable<MyFinance.Domain.Expense> @{     ViewBag.Title = "Index"; }    <h2>Expense List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery-ui.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.ui.datepicker.js")" type="text/javascript"></script> <link href="@Url.Content("~/Content/jquery-ui-1.8.6.custom.css")" rel="stylesheet" type="text/css" />      @using (Ajax.BeginForm(new AjaxOptions{ UpdateTargetId="divExpenseList", HttpMethod="Get"})) {     <table>         <tr>         <td>         <div>           Start Date: @Html.TextBox("StartDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["StartDate"].ToString())), new { @class = "ui-datepicker" })         </div>         </td>         <td><div>            End Date: @Html.TextBox("EndDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["EndDate"].ToString())), new { @class = "ui-datepicker" })          </div></td>          <td> <input type="submit" value="Search By TransactionDate" /></td>         </tr>     </table>         }   <div id="divExpenseList">             @Html.Partial("ExpenseList", Model)     </div> <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script> Ajax search functionality using Ajax.BeginForm The search functionality of Index view is providing Ajax functionality using Ajax.BeginForm. The Ajax.BeginForm() method writes an opening <form> tag to the response. You can use this method in a using block. In that case, the method renders the closing </form> tag at the end of the using block and the form is submitted asynchronously by using JavaScript. The search functionality will call the Index Action method and this will return partial view ExpenseList for updating the search result. We want to update the response UI for the Ajax request onto divExpenseList element. So we have specified the UpdateTargetId as "divExpenseList" in the Ajax.BeginForm method. Add jQuery DatePicker Our search functionality is using a date range so we are providing two date pickers using jQuery datepicker. You need to add reference to the following JavaScript files to working with jQuery datepicker. - jquery-ui.js - jquery.ui.datepicker.js For theme support for datepicker, we can use a customized CSS class. In our example we have used a CSS file “jquery-ui-1.8.6.custom.css”. For more details about the datepicker component, visit jquery UI website at http://jqueryui.com/demos/datepicker . In the jQuery ready event, we have used following JavaScript function to initialize the UI element to show date picker. <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script> Summary In this two-part series, we have created a simple web application using ASP.NET MVC 3 RTM, Razor and EF Code First CTP 5. I have demonstrated patterns and practices  such as Dependency Injection, Repository pattern, Unit of Work, ViewModel and Service Layer. My primary objective was to demonstrate different practices and options for developing web apps using ASP.NET MVC 3 and EF Code First. You can implement these approaches in your own way for building web apps using ASP.NET MVC 3. I will refactor this demo app on later time.

    Read the article

  • Execution plan warnings–The final chapter

    - by Dave Ballantyne
    In my previous posts (here and here), I showed examples of some of the execution plan warnings that have been added to SQL Server 2012.  There is one other warning that is of interest to me : “Unmatched Indexes”. Firstly, how do I know this is the final one ?  The plan is an XML document, right ? So that means that it can have an accompanying XSD.  As an XSD is a schema definition, we can poke around inside it to find interesting things that *could* be in the final XML file. The showplan schema is stored in the folder Microsoft SQL Server\110\Tools\Binn\schemas\sqlserver\2004\07\showplan and by comparing schemas over releases you can get a really good idea of any new functionality that has been added. Here is the section of the Sql Server 2012 showplan schema that has been interesting me so far : <xsd:complexType name="AffectingConvertWarningType"> <xsd:annotation> <xsd:documentation>Warning information for plan-affecting type conversion</xsd:documentation> </xsd:annotation> <xsd:sequence> <!-- Additional information may go here when available --> </xsd:sequence> <xsd:attribute name="ConvertIssue" use="required"> <xsd:simpleType> <xsd:restriction base="xsd:string"> <xsd:enumeration value="Cardinality Estimate" /> <xsd:enumeration value="Seek Plan" /> <!-- to be extended here --> </xsd:restriction> </xsd:simpleType> </xsd:attribute> <xsd:attribute name="Expression" type ="xsd:string" use="required" /></xsd:complexType><xsd:complexType name="WarningsType"> <xsd:annotation> <xsd:documentation>List of all possible iterator or query specific warnings (e.g. hash spilling, no join predicate)</xsd:documentation> </xsd:annotation> <xsd:choice minOccurs="1" maxOccurs="unbounded"> <xsd:element name="ColumnsWithNoStatistics" type="shp:ColumnReferenceListType" minOccurs="0" maxOccurs="1" /> <xsd:element name="SpillToTempDb" type="shp:SpillToTempDbType" minOccurs="0" maxOccurs="unbounded" /> <xsd:element name="Wait" type="shp:WaitWarningType" minOccurs="0" maxOccurs="unbounded" /> <xsd:element name="PlanAffectingConvert" type="shp:AffectingConvertWarningType" minOccurs="0" maxOccurs="unbounded" /> </xsd:choice> <xsd:attribute name="NoJoinPredicate" type="xsd:boolean" use="optional" /> <xsd:attribute name="SpatialGuess" type="xsd:boolean" use="optional" /> <xsd:attribute name="UnmatchedIndexes" type="xsd:boolean" use="optional" /> <xsd:attribute name="FullUpdateForOnlineIndexBuild" type="xsd:boolean" use="optional" /></xsd:complexType> I especially like the “to be extended here” comment,  high hopes that we will see more of these in the future.   So “Unmatched Indexes” was a warning that I couldn’t get and many thanks must go to Fabiano Amorim (b|t) for showing me the way.   Filtered indexes were introduced in Sql Server 2008 and are really useful if you only need to index only a portion of the data within a table.  However,  if your SQL code uses a variable as a predicate on the filtered data that matches the filtered condition, then the filtered index cannot be used as, naturally,  the value in the variable may ( and probably will ) change and therefore will need to read data outside the index.  As an aside,  you could use option(recompile) here , in which case the optimizer will build a plan specific to the variable values and use the filtered index,  but that can bring about other problems.   To demonstrate this warning, we need to generate some test data :   DROP TABLE #TestTab1GOCREATE TABLE #TestTab1 (Col1 Int not null, Col2 Char(7500) not null, Quantity Int not null)GOINSERT INTO #TestTab1 VALUES (1,1,1),(1,2,5),(1,2,10),(1,3,20), (2,1,101),(2,2,105),(2,2,110),(2,3,120)GO and then add a filtered index CREATE INDEX ixFilter ON #TestTab1 (Col1)WHERE Quantity = 122 Now if we execute SELECT COUNT(*) FROM #TestTab1 WHERE Quantity = 122 We will see the filtered index being scanned But if we parameterize the query DECLARE @i INT = 122SELECT COUNT(*) FROM #TestTab1 WHERE Quantity = @i The plan is very different a table scan, as the value of the variable used in the predicate can change at run time, and also we see the familiar warning triangle. If we now look at the properties pane, we will see two pieces of information “Warnings” and “UnmatchedIndexes”. So, handily, we are being told which filtered index is not being used due to parameterization.

    Read the article

  • Java error: Bad version number in .class file error when trying to run Cassandra on OS X

    - by Sam Lee
    I am trying to get Cassandra to work on OS X. When I run bin/cassandra, I get the following error: ~/apache-cassandra-incubating-0.4.1-src > bin/cassandra -f Listening for transport dt_socket at address: 8888 Exception in thread "main" java.lang.UnsupportedClassVersionError: Bad version number in .class file at java.lang.ClassLoader.defineClass1(Native Method) at java.lang.ClassLoader.defineClass(ClassLoader.java:675) at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:124) at java.net.URLClassLoader.defineClass(URLClassLoader.java:260) at java.net.URLClassLoader.access$100(URLClassLoader.java:56) at java.net.URLClassLoader$1.run(URLClassLoader.java:195) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:188) at java.lang.ClassLoader.loadClass(ClassLoader.java:316) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:280) at java.lang.ClassLoader.loadClass(ClassLoader.java:251) at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:374) From what I could determine by searching, this error is related to incompatible versions of Java. However, as far as I can tell, I have the latest version of Java: ~/apache-cassandra-incubating-0.4.1-src > java -version java version "1.6.0_13" Java(TM) SE Runtime Environment (build 1.6.0_13-b03-211) Java HotSpot(TM) 64-Bit Server VM (build 11.3-b02-83, mixed mode) ~/apache-cassandra-incubating-0.4.1-src > javac -version javac 1.6.0_13 ~/Downloads/apache-cassandra-incubating-0.4.1-src > echo $JAVA_HOME /System/Library/Frameworks/JavaVM.framework/Versions/1.6/Home Any ideas on what I'm doing wrong?

    Read the article

  • How to test a class that makes HTTP request and parse the response data in Obj-C?

    - by GuidoMB
    I Have a Class that needs to make an HTTP request to a server in order to get some information. For example: - (NSUInteger)newsCount { NSHTTPURLResponse *response; NSError *error; NSURLRequest *request = ISKBuildRequestWithURL(ISKDesktopURL, ISKGet, cookie, nil, nil); NSData *data = [NSURLConnection sendSynchronousRequest:request returningResponse:&response error:&error]; if (!data) { NSLog(@"The user's(%@) news count could not be obtained:%@", username, [error description]); return 0; } NSString *regExp = @"Usted tiene ([0-9]*) noticias? no leídas?"; NSString *stringData = [[NSString alloc] initWithData:data encoding:NSASCIIStringEncoding]; NSArray *match = [stringData captureComponentsMatchedByRegex:regExp]; [stringData release]; if ([match count] < 2) return 0; return [[match objectAtIndex:1] intValue]; } The things is that I'm unit testing (using OCUnit) the hole framework but the problem is that I need to simulate/fake what the NSURLConnection is responding in order to test different scenarios and because I can't relay on the server to test my framework. So the question is Which is the best ways to do this?

    Read the article

  • What Qt container class to use for a sorted list?

    - by Dave
    Part of my application involves rendering audio waveforms. The user will be able to zoom in/out of the waveform. Starting at fully zoomed-out, I only want to sample the audio at the necessary internals to draw the waveform at the given resolution. Then, when they zoom in, asynchronously resample the "missing points" and provide a clearer waveform. (Think Google Maps.) I'm not sure the best data structure to use in Qt world. Ideally, I would like to store data samples sorted by time, but with the ability to fill-in points as needed. So, for example, the data points might initially look like: data[0 ms] = 10 data[10 ms] = 32 data[20 ms] = 21 ... But when they zoom in, I would get more points as necessary, perhaps: data[0 ms] = 10 data[2 ms] = 11 data[4 ms] = 18 data[6 ms] = 30 data[10 ms] = 32 data[20 ms] = 21 ... Note that the values in brackets are lookup values (milliseconds), not array indices. In .Net I might have used a SortedList<int, int>. What would be the best class to use in Qt? Or should I use a STL container?

    Read the article

  • How can I stop an auto-generated Linq to SQL class from loading ALL data?

    - by Gary McGill
    DUPLICATE of http://stackoverflow.com/questions/2433422/how-can-i-stop-an-auto-generated-linq-to-sql-class-from-loading-all-data post answers there! I have an ASP.NET MVC project, much like the NerdDinner tutorial example. (I'm using MVC 2, but followed the NerdDinner tutorial in order to create it). As per the instructions in part 3 of the tutorial, I've created a Linq-to-SQL model of my database by creating a "Linq to SQL Classes" (.dbml) surface, and dropping my database tables onto it. The designer has automatically added relationships between the generated classes based on my database tables. Let's say that my classes are as per the NerdDinner example, so I have Dinner and RSVP tables, where each Dinner record is associated with many RSVP records - hence in the generated classes, the Dinner object has a RSVPs property which is a list of RSVP objects. My problem is this: it appears (and I'd be gladly proved wrong on this) that as soon as I access a Dinner object, it's loading all of the corresponding RSVP objects, even if I don't use the RSVPs member. First question: is this really the default behavior for the generated classes? In my particular situation, the object graph contains many more tables (which have an order of magnitude more records), and so this is disastrous behaviour - I'd be loading tons of data when all I want to do is show the details of a single parent record. Second question: are there any properties exposed through the designer UI that would let me modify this behavior? (I can't find any). Third question: I've seen a description of how to control the loading of related records in a DataContext by using a DataShape object associated with the DataContext. Is that what I'm meant to do, and if so are there any tutorials like the NerdDinner one that would show not only how to do it, but also suggest a 'pattern' for normal use?

    Read the article

  • Hey Guy , I want ot streaming video by using VideView class . Can anyone tell me what format is it s

    - by eddyxd
    Hi , I am the newbie of android, but i hava seen the tutorial and implement some simple applications. The question i met is that I am tring to stream some video from my server to android, but the android VideoView class just plays the audition sololy without "image"@@!~ Here is my setting and android code : 1. android core code: mVideoView01.setVideoURI(Uri.parse("rtsp://192.168.16.1:8080/test.sdp")); mVideoView01.start(); 2. my streaming server is VLC and the command is: vlc -vvv d:\nobody.mp4 --sout=#transcode{vcodec=h264,width=320,hegiht=240}:rtp{dst=192.168.16.1,port=4444,sdp=rtsp://192.168.16.1:8080/test.sdp} ps: My ip is got from DHCP but I have checked it really can be connected(Android could play audition after all) ps2: I haved trid to stream some video from "http://www.americafree.tv/" and the playing is good!!@@ So I guess that the problem maybe is caused by streaming Video format, but I have almost tried every figument option form VLC, and it still don't workQQ. So Have anyone done the same test as me can give me some advice?? Thanks a lot!!!!! by eddy

    Read the article

  • How can I load a Class contained in a website from a DLL referenced by that website???

    - by Morgeh
    Ok so this is alittle bit obscure and I'm not sure its the best way of doing what I'm trying to do but here goes. Basically I have a Presentation Layer Dll in my web site which handles the Model View Presenter classes. The presentation layer also handles login for my website and then calls off to a web service. Currently whenever the presentation layer calls to a model it verifies the users details and if they are invalid it calls to a loginHandler which redirects the user to the login page. However I cannot dynamically load a new istance of the Login Page in my website from within my Presentation layer. I've tried to use reflection to dynamically load the class but Since the method call is in the presentation assembly it is only looking within that assembly while the page I want to load is in the website. heres the reflection code that loads the View: public ILoginView LoadView() { string viewName = ConfigurationManager.AppSettings["LoginView"].ToString(); Type type = Type.GetType(viewName, true); object newInstance = Activator.CreateInstance(type); return newInstance as ILoginView; } Anyone got any suggestions on how to search within the website assembly? Ideal I don't want to tie this implementation into the website specifically as the presentation layer is also used in a WPF application.

    Read the article

  • What is the correct way to handle object which is instance of class in apache.xerces?

    - by Roman
    Preface: I'm working on docx parser for java. docx format is based on xml. When I read document its parts are being unmarshalled (with JAXB). And I get a tree of certain elements based on xml markup. Almost problem: But some elements (which are at very deep xml level) returned not as certain class from docx spec (i.e. CTStyle, CTDrawing, CTInline etc) but as Object. Those objects are indeed instances of xerces classes, e.g. ElementNSImpl. Problem: How should I handle these objects. The simplest approach is: CTGraphicData gData = getGraphicData (); Object obj = gData.getAny().get(0); ElementNSImpl element = (ElementNSImpl)obj; But it doesn't seem to be a good solution. I've never worked with xerces directly. What is the better way to do this casting? (If anyone also give me a tip about right way to iterate through nodes it would be great).

    Read the article

  • How to restrict access to a class's data based on state?

    - by Marcus Swope
    In an ETL application I am working on, we have three basic processes: Validate and parse an XML file of customer information from a third party Match values received in the file to values in our system Load customer data in our system The issue here is that we may need to display the customer information from any or all of the above states to an internal user and there is data in our customer class that will never be populated before the values have been matched in our system (step 2). For this reason, I would like to have the values not even be available to be accessed when the customer is in this state, and I would like to have to avoid some repeated logic everywhere like: if (customer.IsMatched) DisplayTextOnWeb(customer.SomeMatchedValue); My first thought for this was to add a couple interfaces on top of Customer that would only expose the properties and behaviors of the current state, and then only deal with those interfaces. The problem with this approach is that there seems to be no good way to move from an ICustomerWithNoMatchedValues to an ICustomerWithMatchedValues without doing direct casts, etc... (or at least I can't find one). I can't be the first to have come across this, how do you normally approach this? As a last caveat, I would like for this solution to play nice with FluentNHibernate :) Thanks in advance...

    Read the article

  • jqGrid : "All in One" approach width jqGridEdit Class > how to set a composite primary key ?

    - by Qualliarys
    Hello, How to set a composite primary key for a "All in One" approach (grid defined in JS file, and data using jqGridEdit Class in php file) ? Please, for me a composite primary key of a table T, is a elementary primary key that is defined with some fields belong to this table T ! Here is my test, but i get no data and cannot use the CRUD operations : In my JS file i have this lines code: ... colModel":[ {"name":"index","index":"index","label":"index"}, // <= THAT'S JUST THE INDEX OF MY TABLE {"name":"user","index":"user","label":"user","key":true}, // <= A PART OF MY COMPOSITE PRIMARY KEY {"name":"pwd","index":"pwd","label":"pwd","key":true}, // <= A PART OF MY COMPOSITE PRIMARY KEY {"name":"state","index":"state","label":"state","key":true}, // <= A PART OF MY COMPOSITE PRIMARY KEY ... <= AND SO ON "url":"mygrid_crud.php", "datatype":"json", "jsonReader":{repeatitems:false}, "editurl": "mygrid_crud.php", "prmNames":{"id":"index"} // <= WHAT I NEED TO WRITE HERE ??? ... In my php file (mygrid_crud.php) : ... $grid = new jqGridEdit($conn); $query = "SELECT * FROM mytable WHERE user='$user' and pwd='$pwd' and state='$state'..."; // <= SELECT * it's ok or i need to specify all fields i need ? $grid->SelectCommand = $query; $grid->dataType = "json"; $grid->table = 'mytable'; $grid->setPrimaryKeyId('index'); // <= WHAT I NEED TO WRITE HERE ??? ... $grid->editGrid(); Please, say me what is wrong, and how to do to set a composite primary key in this approach !? Thank you so much for tour responses.

    Read the article

  • Symfony: How to hide form fields from display and then set values for them in the action class

    - by Tom
    I am fairly new to symfony and I have 2 fields relating to my table "Pages"; created_by and updated_by. These are related to the users table (sfGuardUser) as foreign keys. I want these to be hidden from the edit/new forms so I have set up the generator.yml file to not display these fields: form: display: General: [name, template_id] Meta: [meta_title, meta_description, meta_keywords] Now I need to set the fields on the save. I have been searching for how to do this all day and tried a hundred methods. The method I have got working is this, in the actions class: protected function processForm(sfWebRequest $request, sfForm $form) { $form_params = $request->getParameter($form->getName()); $form_params['updated_by'] = $this->getUser()->getGuardUser()->getId(); if ($form->getObject()->isNew()) $form_params['created_by'] = $this->getUser()->getGuardUser()->getId(); $form->bind($form_params, $request->getFiles($form->getName())); So this works. But I get the feeling that ideally I shouldnt be modifying the web request, but instead modifying the form/object directly. However I havent had any success with things like: $form->getObject()->setUpdatedBy($this->getUser()->getGuardUser()); If anyone could offer any advice on the best ways about solving this type of problem I would be very grateful. Thanks, Tom

    Read the article

  • Can I automatically throw descriptive exceptions with parameter values and class feild information?

    - by Robert H.
    I honestly don't throw exceptions often. I catch them even less, ironically. I currently work in shop where we let them bubble up to avicode. For whatever reason, however, avicode isn't configured to capture some of the critical bits I need when these exceptions come bouncing back to my attention. Specifically, I'd like to see the parameter values and the class’s field data at the time of the exception. I’d guess with the large suite of .Net services that I could create a static method to crawl up the stack, gather these bits and store them in a string that I could stick in my exception message. I really don't are how long such a method would take to execute as performance is no longer a concern when I hit one of these scenarios. If it's possible, I'm sure someone has done it. If that's the case, I'm having a hard time finding it. I think any search containing "exception" brings back too many resutls. Anyway, can this be done? If so, some examples or links would be great. Thanks in advance for your time, Robert

    Read the article

  • Why does the BigFraction class in the Apache-Commons-Math library return incorrect division results?

    - by Timothy Lee Russell
    In the spirit of using existing, tested and stable libraries of code, I started using the Apache-Commons-Math library and its BigFraction class to perform some rational calculations for an Android app I'm writing called RationalCalc. It works great for every task that I have thrown at it, except for one nagging problem. When dividing certain BigFraction values, I am getting incorrect results. If I create a BigFraction with the inverse of the divisor and multiply instead, I get the same incorrect answer but perhaps that is what the library is doing internally anyway. Does anyone know what I am doing wrong? The division works correctly with a BigFraction of 2.5 but not 2.51, 2.49, etc... // *** incorrect! *** BigFraction one = new BigFraction(1.524); //one: 1715871458028159 / 1125899906842624 BigFraction two = new BigFraction(2.51); //two: 1413004383087493 / 562949953421312 BigFraction three = one.divide(two); //three: 0 Log.i("solve", three.toString()); //should be 0.607171315 ?? //returns 0 // *** correct! **** BigFraction four = new BigFraction(1.524); //four: 1715871458028159 / 1125899906842624 BigFraction five = new BigFraction(2.5); //five: 5 / 2 BigFraction six = four.divide(five); //six: 1715871458028159 / 2814749767106560 Log.i("solve", six.toString()); //should be 0.6096 ?? //returns 0.6096

    Read the article

  • Why StrinUtils Apache class is not recognized in android?

    - by Maxood
    Why import org.apache.commons.lang.StringUtils cannot be imported in android by default. Do i have to include an external library? Then where can i find that library on the web? package com.myapps.urlencoding; import android.app.Activity; import org.apache.commons.lang.StringUtils; public class EncodeIdUtil extends Activity { /** Called when the activity is first created. */ private static Long multiplier=Long.parseLong("1zzzz",36); /** * Encodes the id. * @param id the id to encode * @return encoded string */ public static String encode(Long id) { return StringUtils.reverse(Long.toString((id*multiplier), 35)); } /** * Decodes the encoded id. * @param encodedId the encodedId to decode * @return the Id * @throws IllegalArgumentException if encodedId is not a validly encoded id. */ public static Long decode(String encodedId) throws IllegalArgumentException { long product; try { product = Long.parseLong(StringUtils.reverse(encodedId), 35); } catch (Exception e) { throw new IllegalArgumentException(); } if ( 0 != product % multiplier || product < 0) { throw new IllegalArgumentException(); } return product/multiplier; } }

    Read the article

  • How does one create and use a pointer to an array of an unknown number of structures inside a class?

    - by user1658731
    Sorry for the confusing title... I've been playing around with C++, working on a project to parse a game's (Kerbal Space Program) save file so I can modify it and eventually send it over a network. I'm stuck with storing an unknown number of vessels and crew members, so I need to have an array of unknown size. Is this possible? I figured having a pointer to an array would be the way to go. I have: class SaveFileSystem { string version; string UT; int activeVessel; int numCrew; ??? Crews; // !! int numVessels; ??? Vessels; // !! } Where Crews and Vessels should be arrays of structures: struct Crew { string name; //Other stuff }; struct Vessel { string name; //Stuff }; I'm guessing I should have something like: this->Crews = new ???; this->Vessels = new ???; in my constructor to initialize the arrays, and attempt to access it with: this->Crews[0].name = "Ship Number One"; Does this make any sense??? I'd expect the "???"'s to involve a mess of asterisk's, like "*struct (*)Crews" but I have no real idea. I've got normal pointers down and such, but this is a tad over my head... I'd like to access the structures like in the last snippet, but if C++ doesn't like that I could do pointer arithmetic. I've looked into vectors, but I have an unhealthy obsession with efficiency, and it really pains me how you don't know what's going on behind it.

    Read the article

< Previous Page | 290 291 292 293 294 295 296 297 298 299 300 301  | Next Page >