Search Results

Search found 7902 results on 317 pages for 'structure'.

Page 298/317 | < Previous Page | 294 295 296 297 298 299 300 301 302 303 304 305  | Next Page >

  • The Birth of a Method - Where did OUM come from?

    - by user702549
    It seemed fitting to start this blog entry with the OUM vision statement. The vision for the Oracle® Unified Method (OUM) is to support the entire Enterprise IT lifecycle, including support for the successful implementation of every Oracle product.  Well, it’s that time of year again; we just finished testing and packaging OUM 5.6.  It will be released for general availability to qualifying customers and partners this month.  Because of this, I’ve been reflecting back on how the birth of Oracle’s Unified method - OUM came about. As the Release Director of OUM, I’ve been honored to package every method release.  No, maybe you’d say it’s not so special.  Of course, anyone can use packaging software to create an .exe file.  But to me, it is pretty special, because so many people work together to make each release come about.  The rich content that results is what makes OUM’s history worth talking about.   To me, professionally speaking, working on OUM, well it’s been “a labor of love”.  My youngest child was just 8 years old when OUM was born, and she’s now in High School!  Watching her grow and change has been fascinating, if you ask her, she’s grown up hearing about OUM.  My son would often walk into my home office and ask “How is OUM today, Mom?”  I am one of many people that take care of OUM, and have watched the method “mature” over these last 6 years.  Maybe that makes me a "Method Mom" (someone in one of my classes last year actually said this outloud) but there are so many others who collaborate and care about OUM Development. I’ve thought about writing this blog entry for a long time just to reflect on how far the Method has come. Each release, as I prepare the OUM Contributors list, I see how many people’s experience and ideas it has taken to create this wealth of knowledge, process and task guidance as well as templates and examples.  If you’re wondering how many people, just go into OUM select the resources button on the top of most pages of the method, and on that resources page click the ABOUT link. So now back to my nostalgic moment as I finished release 5.6 packaging.  I reflected back, on all the things that happened that cause OUM to become not just a dream but to actually come to fruition.  Here are some key conditions that make it possible for each release of the method: A vision to have one method instead of many methods, thereby focusing on deeper, richer content People within Oracle’s consulting Organization  willing to contribute to OUM providing Subject Matter Experts who are willing to write down and share what they know. Oracle’s continued acquisition of software companies, the need to assimilate high quality existing materials from these companies The need to bring together people from very different backgrounds and provide a common language to support Oracle Product implementations that often involve multiple product families What came first, and then what was the strategy? Initially OUM 4.0 was based on Oracle’s J2EE Custom Development Method (JCDM), it was a good “backbone”  (work breakdown structure) it was Unified Process based, and had good content around UML as well as custom software development.  But it needed to be extended in order to achieve the OUM Vision. What happened after that was to take in the “best of the best”, the legacy and acquired methods were scheduled for assimilation into OUM, one release after another.  We incrementally built OUM.  We didn’t want to lose any of the expertise that was reflected in AIM (Oracle’s legacy Application Implementation Method), Compass (People Soft’s Application implementation method) and so many more. When was OUM born? OUM 4.1 published April 30, 2006.  This release allowed Oracles Advanced Technology groups to begin the very first implementations of Fusion Middleware.  In the early days of the Method we would prepare several releases a year.  Our iterative release development cycle began and continues to be refined with each Method release.  Now we typically see one major release each year. The OUM release development cycle is not unlike many Oracle Implementation projects in that we need to gather requirements, prioritize, prepare the content, test package and then go production.  Typically we develop an OUM release MoSCoW (must have, should have, could have, and won’t have) right after the prior release goes out.   These are the high level requirements.  We break the timeframe into increments, frequent checkpoints that help us assess the content and progress is measured through frequent checkpoints.  We work as a team to prioritize what should be done in each increment. Yes, the team provides the estimates for what can be done within a particular increment.  We sometimes have Method Development workshops (physically or virtually) to accelerate content development on a particular subject area, that is where the best content results. As the written content nears the final stages, it goes through edit and evaluation through peer reviews, and then moves into the release staging environment.  Then content freeze and testing of the method pack take place.  This iterative cycle is run using the OUM artifacts that make sense “fit for purpose”, project plans, MoSCoW lists, Test plans are just a few of the OUM work products we use on a Method Release project. In 2007 OUM 4.3, 4.4 and 4.5 were published.  With the release of 4.5 our Custom BI Method (Data Warehouse Method FastTrack) was assimilated into OUM.  These early releases helped us align Oracle’s Unified method with other industry standards Then in 2008 we made significant changes to the OUM “Backbone” to support Applications Implementation projects with that went to the OUM 5.0 release.  Now things started to get really interesting.  Next we had some major developments in the Envision focus area in the area of Enterprise Architecture.  We acquired some really great content from the former BEA, Liquid Enterprise Method (LEM) along with some SMEs who were willing to work at bringing this content into OUM.  The Service Oriented Architecture content in OUM is extensive and can help support the successful implementation of Fusion Middleware, as well as Fusion Applications. Of course we’ve developed a wealth of OUM training materials that work also helps to improve the method content.  It is one thing to write “how to”, and quite another to be able to teach people how to use the materials to improve the success of their projects.  I’ve learned so much by teaching people how to use OUM. What's next? So here toward the end of 2012, what’s in store in OUM 5.6, well, I’m sure you won’t be surprised the answer is Cloud Computing.   More details to come in the next couple of weeks!  The best part of being involved in the development of OUM is to see how many people have “adopted” OUM over these six years, Clients, Partners, and Oracle Consultants.  The content just gets better with each release.   I’d love to hear your comments on how OUM has evolved, and ideas for new content you’d like to see in the upcoming releases.

    Read the article

  • How accurate is "Business logic should be in a service, not in a model"?

    - by Jeroen Vannevel
    Situation Earlier this evening I gave an answer to a question on StackOverflow. The question: Editing of an existing object should be done in repository layer or in service? For example if I have a User that has debt. I want to change his debt. Should I do it in UserRepository or in service for example BuyingService by getting an object, editing it and saving it ? My answer: You should leave the responsibility of mutating an object to that same object and use the repository to retrieve this object. Example situation: class User { private int debt; // debt in cents private string name; // getters public void makePayment(int cents){ debt -= cents; } } class UserRepository { public User GetUserByName(string name){ // Get appropriate user from database } } A comment I received: Business logic should really be in a service. Not in a model. What does the internet say? So, this got me searching since I've never really (consciously) used a service layer. I started reading up on the Service Layer pattern and the Unit Of Work pattern but so far I can't say I'm convinced a service layer has to be used. Take for example this article by Martin Fowler on the anti-pattern of an Anemic Domain Model: There are objects, many named after the nouns in the domain space, and these objects are connected with the rich relationships and structure that true domain models have. The catch comes when you look at the behavior, and you realize that there is hardly any behavior on these objects, making them little more than bags of getters and setters. Indeed often these models come with design rules that say that you are not to put any domain logic in the the domain objects. Instead there are a set of service objects which capture all the domain logic. These services live on top of the domain model and use the domain model for data. (...) The logic that should be in a domain object is domain logic - validations, calculations, business rules - whatever you like to call it. To me, this seemed exactly what the situation was about: I advocated the manipulation of an object's data by introducing methods inside that class that do just that. However I realize that this should be a given either way, and it probably has more to do with how these methods are invoked (using a repository). I also had the feeling that in that article (see below), a Service Layer is more considered as a façade that delegates work to the underlying model, than an actual work-intensive layer. Application Layer [his name for Service Layer]: Defines the jobs the software is supposed to do and directs the expressive domain objects to work out problems. The tasks this layer is responsible for are meaningful to the business or necessary for interaction with the application layers of other systems. This layer is kept thin. It does not contain business rules or knowledge, but only coordinates tasks and delegates work to collaborations of domain objects in the next layer down. It does not have state reflecting the business situation, but it can have state that reflects the progress of a task for the user or the program. Which is reinforced here: Service interfaces. Services expose a service interface to which all inbound messages are sent. You can think of a service interface as a façade that exposes the business logic implemented in the application (typically, logic in the business layer) to potential consumers. And here: The service layer should be devoid of any application or business logic and should focus primarily on a few concerns. It should wrap Business Layer calls, translate your Domain in a common language that your clients can understand, and handle the communication medium between server and requesting client. This is a serious contrast to other resources that talk about the Service Layer: The service layer should consist of classes with methods that are units of work with actions that belong in the same transaction. Or the second answer to a question I've already linked: At some point, your application will want some business logic. Also, you might want to validate the input to make sure that there isn't something evil or nonperforming being requested. This logic belongs in your service layer. "Solution"? Following the guidelines in this answer, I came up with the following approach that uses a Service Layer: class UserController : Controller { private UserService _userService; public UserController(UserService userService){ _userService = userService; } public ActionResult MakeHimPay(string username, int amount) { _userService.MakeHimPay(username, amount); return RedirectToAction("ShowUserOverview"); } public ActionResult ShowUserOverview() { return View(); } } class UserService { private IUserRepository _userRepository; public UserService(IUserRepository userRepository) { _userRepository = userRepository; } public void MakeHimPay(username, amount) { _userRepository.GetUserByName(username).makePayment(amount); } } class UserRepository { public User GetUserByName(string name){ // Get appropriate user from database } } class User { private int debt; // debt in cents private string name; // getters public void makePayment(int cents){ debt -= cents; } } Conclusion All together not much has changed here: code from the controller has moved to the service layer (which is a good thing, so there is an upside to this approach). However this doesn't look like it had anything to do with my original answer. I realize design patterns are guidelines, not rules set in stone to be implemented whenever possible. Yet I have not found a definitive explanation of the service layer and how it should be regarded. Is it a means to simply extract logic from the controller and put it inside a service instead? Is it supposed to form a contract between the controller and the domain? Should there be a layer between the domain and the service layer? And, last but not least: following the original comment Business logic should really be in a service. Not in a model. Is this correct? How would I introduce my business logic in a service instead of the model?

    Read the article

  • The Internet of Things Is Really the Internet of People

    - by HCM-Oracle
    By Mark Hurd - Originally Posted on LinkedIn As I speak with CEOs around the world, our conversations invariably come down to this central question: Can we change our corporate cultures and the ways we train and reward our people as rapidly as new technology is changing the work we do, the products we make and how we engage with customers? It’s a critical consideration given today’s pace of disruption, which already is straining traditional management models and HR strategies. Winning companies will bring innovation and vision to their employees and partners by attracting people who will thrive in this emerging world of relentless data, predictive analytics and unlimited what-if scenarios. So, where are we going to find employees who are as familiar with complex data as I am with orderly financial statements and business plans? I’m not just talking about high-end data scientists who most certainly will sit at or near the top of the new decision-making pyramid. Global organizations will need creative and motivated people who will devote their time to manipulating, reviewing, analyzing, sorting and reshaping data to drive business and delight customers. This might seem evident, but my conversations with business people across the globe indicate that only a small number of companies get it. In the past few years, executives have been busy keeping pace with seismic upheavals, including the rise of social customer engagement, the rapid acceleration of product-development cycles and the relentless move to mobile-first. But all of that, I think, is the start of an uphill climb to the top of a roller-coaster. Today, about 10 billion devices across the globe are connected to the Internet. In a couple of years, that number will probably double, and not because we will have bought 10 billion more computers, smart phones and tablets. This unprecedented explosion of Big Data is being triggered by the Internet of Things, which is another way of saying that the numerous intelligent devices touching our everyday lives are all becoming interconnected. Home appliances, food, industrial equipment, pets, pharmaceutical products, pallets, cars, luggage, packaged goods, athletic equipment, even clothing will be streaming data. Some data will provide important information about how to run our businesses and lead healthier lives. Much of it will be extraneous. How does a CEO cope with this unimaginable volume and velocity of data, much less harness it to excite and delight customers? Here are three things CEOs must do to tackle this challenge: 1) Take care of your employees, take care of your customers. Larry Ellison recently noted that the two most important priorities for any CEO today revolve around people: Taking care of your employees and taking care of your customers. Companies in today’s hypercompetitive business environment simply won’t be able to survive unless they’ve got world-class people at all levels of the organization. CEOs must demonstrate a commitment to employees by becoming champions for HR systems that empower every employee to fully understand his or her job, how it ties into the corporate framework, what’s expected of them, what training is available, and how they can use an embedded social network to communicate, collaborate and excel. Over the next several years, many of the world’s top industrialized economies will see a turnover in the workforce on an unprecedented scale. Across the United States, Europe, China and Japan, the “baby boomer” generation will be retiring and, by 2020, we’ll see turnovers in those regions ranging from 10 to 30 percent. How will companies replace all that brainpower, experience and know-how? How will CEOs perpetuate the best elements of their corporate cultures in the midst of this profound turnover? The challenge will be daunting, but it can be met with world-class HR technology. As companies begin replacing up to 30 percent of their workforce, they will need thousands of new types of data-native workers to exploit the Internet of Things in the service of the Internet of People. The shift in corporate mindset here can’t be overstated. The CEO has to be at the forefront of this new way of recruiting, training, motivating, aligning and developing truly 21-century talent. 2) Start thinking today about the Internet of People. Some forward-looking companies have begun pursuing the “democratization of data.” This allows more people within a company greater access to data that can help them make better decisions, move more quickly and keep pace with the changing interests and demands of their customers. As a result, we’ve seen organizations flatten out, growing numbers of well-informed people authorized to make decisions without corporate approval and a movement of engagement away from headquarters to the point of contact with the customer. These are profound changes, and I’m a huge proponent. As I think about what the next few years will bring as companies become deluged with unprecedented streams of data, I’m convinced that we’ll need dramatically different organizational structures, decision-making models, risk-management profiles and reward systems. For example, if a car company’s marketing department mines incoming data to determine that customers are shifting rapidly toward neon-green models, how many layers of approval, review, analysis and sign-off will be needed before the factory starts cranking out more neon-green cars? Will we continue to have organizations where too many people are empowered to say “No” and too few are allowed to say “Yes”? If so, how will those companies be able to compete in a world in which customers have more choices, instant access to more information and less loyalty than ever before? That’s why I think CEOs need to begin thinking about this problem right now, not in a year or two when competitors are already reshaping their organizations to match the marketplace’s new realities. 3) Partner with universities to help create a new type of highly skilled workers. Several years ago, universities introduced new undergraduate as well as graduate-level programs in analytics and informatics as the business need for deeper insights into the booming world of data began to explode. Today, as the growth rate of data continues to soar, we know that the Internet of Things will only intensify that growth. Moreover, as Big Data fuels insights that can be shaped into products and services that generate revenue, the demand for data scientists and data specialists will go on unabated. Beyond that top-level expertise, companies are going to need data-native thinkers at all levels of the organization. Where will this new type of worker come from? I think it’s incumbent on the business community to collaborate with universities to develop new curricula designed to turn out graduates who can capitalize on the data-driven world that the Internet of Things is surely going to create. These new workers will create opportunities to help their companies in fields as diverse as product design, customer service, marketing, manufacturing and distribution. They will become innovative leaders in fashioning an entirely new type of workforce and organizational structure optimized to fully exploit the Internet of Things so that it becomes a high-value enabler of the Internet of People. Mark Hurd is President of Oracle Corporation and a member of the company's Board of Directors. He joined Oracle in 2010, bringing more than 30 years of technology industry leadership, computer hardware expertise, and executive management experience to his role with the company. As President, Mr. Hurd oversees the corporate direction and strategy for Oracle's global field operations, including marketing, sales, consulting, alliances and channels, and support. He focuses on strategy, leadership, innovation, and customers.

    Read the article

  • Configuration "diff" across Oracle WebCenter Sites instances

    - by Mark Fincham-Oracle
    Problem Statement With many Oracle WebCenter Sites environments - how do you know if the various configuration assets and settings are in sync across all of those environments? Background At Oracle we typically have a "W" shaped set of environments.  For the "Production" environments we typically have a disaster recovery clone as well and sometimes additional QA environments alongside the production management environment. In the case of www.java.com we have 10 different environments. All configuration assets/settings (CSElements, Templates, Start Menus etc..) start life on the Development Management environment and are then published downstream to other environments as part of the software development lifecycle. Ensuring that each of these 10 environments has the same set of Templates, CSElements, StartMenus, TreeTabs etc.. is impossible to do efficiently without automation. Solution Summary  The solution comprises of two components. A JSON data feed from each environment. A simple HTML page that consumes these JSON data feeds.  Data Feed: Create a JSON WebService on each environment. The WebService is no more than a SiteEntry + CSElement. The CSElement queries various DB tables to obtain details of the assets/settings returning this data in a JSON feed. Report: Create a simple HTML page that uses JQuery to fetch the JSON feed from each environment and display the results in a table. Since all assets (CSElements, Templates etc..) are published between environments they will have the same last modified date. If the last modified date of an asset is different in the JSON feed or is mising from an environment entirely then highlight that in the report table. Example Solution Details Step 1: Create a Site Entry + CSElement that outputs JSON Site Entry & CSElement Setup  The SiteEntry should be uncached so that the most recent configuration information is returned at all times. In the CSElement set the contenttype accordingly: Step 2: Write the CSElement Logic The basic logic, that we repeat for each asset or setting that we are interested in, is to query the DB using <ics:sql> and then loop over the resultset with <ics:listloop>. For example: <ics:sql sql="SELECT name,updateddate FROM Template WHERE status != 'VO'" listname="TemplateList" table="Template" /> "templates": [ <ics:listloop listname="TemplateList"> {"name":"<ics:listget listname="TemplateList"  fieldname="name"/>", "modified":"<ics:listget listname="TemplateList"  fieldname="updateddate"/>"}, </ics:listloop> ], A comprehensive list of SQL queries to fetch each configuration asset/settings can be seen in the appendix at the end of this article. For the generation of the JSON data structure you could use Jettison (the library ships with the 11.1.1.8 version of the product), native Java 7 capabilities or (as the above example demonstrates) you could roll-your-own JSON output but that is not advised. Step 3: Create an HTML Report The JavaScript logic looks something like this.. 1) Create a list of JSON feeds to fetch: ENVS['dev-mgmngt'] = 'http://dev-mngmnt.example.com/sites/ContentServer?d=&pagename=settings.json'; ENVS['dev-dlvry'] = 'http://dev-dlvry.example.com/sites/ContentServer?d=&pagename=settings.json';  ENVS['test-mngmnt'] = 'http://test-mngmnt.example.com/sites/ContentServer?d=&pagename=settings.json';  ENVS['test-dlvry'] = 'http://test-dlvry.example.com/sites/ContentServer?d=&pagename=settings.json';   2) Create a function to get the JSON feeds: function getDataForEnvironment(url){ return $.ajax({ type: 'GET', url: url, dataType: 'jsonp', beforeSend: function (jqXHR, settings){ jqXHR.originalEnv = env; jqXHR.originalUrl = url; }, success: function(json, status, jqXHR) { console.log('....success fetching: ' + jqXHR.originalUrl); // store the returned data in ALLDATA ALLDATA[jqXHR.originalEnv] = json; }, error: function(jqXHR, status, e) { console.log('....ERROR: Failed to get data from [' + url + '] ' + status + ' ' + e); } }); } 3) Fetch each JSON feed: for (var env in ENVS) { console.log('Fetching data for env [' + env +'].'); var promisedData = getDataForEnvironment(ENVS[env]); promisedData.success(function (data) {}); }  4) For each configuration asset or setting create a table in the report For example, CSElements: 1) Get a list of unique CSElement names from all of the returned JSON data. 2) For each unique CSElement name, create a row in the table  3) Select 1 environment to represent the master or ideal state (e.g. "Everything should be like Production Delivery") 4) For each environment, compare the last modified date of this envs CSElement to the master. Highlight any differences in last modified date or missing CSElements. 5) Repeat...    Appendix This section contains various SQL statements that can be used to retrieve configuration settings from the DB.  Templates  <ics:sql sql="SELECT name,updateddate FROM Template WHERE status != 'VO'" listname="TemplateList" table="Template" /> CSElements <ics:sql sql="SELECT name,updateddate FROM CSElement WHERE status != 'VO'" listname="CSEList" table="CSElement" /> Start Menus <ics:sql sql="select sm.id, sm.cs_name, sm.cs_description, sm.cs_assettype, sm.cs_assetsubtype, sm.cs_itemtype, smr.cs_rolename, p.name from StartMenu sm, StartMenu_Sites sms, StartMenu_Roles smr, Publication p where sm.id=sms.ownerid and sm.id=smr.cs_ownerid and sms.pubid=p.id order by sm.id" listname="startList" table="Publication,StartMenu,StartMenu_Roles,StartMenu_Sites"/>  Publishing Configurations <ics:sql sql="select id, name, description, type, dest, factors from PubTarget" listname="pubTargetList" table="PubTarget" /> Tree Tabs <ics:sql sql="select tt.id, tt.title, tt.tooltip, p.name as pubname, ttr.cs_rolename, ttsect.name as sectname from TreeTabs tt, TreeTabs_Roles ttr, TreeTabs_Sect ttsect,TreeTabs_Sites ttsites LEFT JOIN Publication p  on p.id=ttsites.pubid where p.id is not null and tt.id=ttsites.ownerid and ttsites.pubid=p.id and tt.id=ttr.cs_ownerid and tt.id=ttsect.ownerid order by tt.id" listname="treeTabList" table="TreeTabs,TreeTabs_Roles,TreeTabs_Sect,TreeTabs_Sites,Publication" />  Filters <ics:sql sql="select name,description,classname from Filters" listname="filtersList" table="Filters" /> Attribute Types <ics:sql sql="select id,valuetype,name,updateddate from AttrTypes where status != 'VO'" listname="AttrList" table="AttrTypes" /> WebReference Patterns <ics:sql sql="select id,webroot,pattern,assettype,name,params,publication from WebReferencesPatterns" listname="WebRefList" table="WebReferencesPatterns" /> Device Groups <ics:sql sql="select id,devicegroupsuffix,updateddate,name from DeviceGroup" listname="DeviceList" table="DeviceGroup" /> Site Entries <ics:sql sql="select se.id,se.name,se.pagename,se.cselement_id,se.updateddate,cse.rootelement from SiteEntry se LEFT JOIN CSElement cse on cse.id = se.cselement_id where se.status != 'VO'" listname="SiteList" table="SiteEntry,CSElement" /> Webroots <ics:sql sql="select id,name,rooturl,updatedby,updateddate from WebRoot" listname="webrootList" table="WebRoot" /> Page Definitions <ics:sql sql="select pd.id, pd.name, pd.updatedby, pd.updateddate, pd.description, pdt.attributeid, pa.name as nameattr, pdt.requiredflag, pdt.ordinal from PageDefinition pd, PageDefinition_TAttr pdt, PageAttribute pa where pd.status != 'VO' and pa.id=pdt.attributeid and pdt.ownerid=pd.id order by pd.id,pdt.ordinal" listname="pageDefList" table="PageDefinition,PageAttribute,PageDefinition_TAttr" /> FW_Application <ics:sql sql="select id,name,updateddate from FW_Application where status != 'VO'" listname="FWList" table="FW_Application" /> Custom Elements <ics:sql sql="select elementname from ElementCatalog where elementname like 'CustomElements%'" listname="elementList" table="ElementCatalog" />

    Read the article

  • Web Site Performance and Assembly Versioning

    - by capgpilk
    I originally wanted to write this post in one, but there is quite a large amount of information which can be broken down into different areas, so I am going to publish it in three posts. Minification and Concatination of JavaScript and CSS Files – this post Versioning Combined Files Using Subversion – published shortly Versioning Combined Files Using Mercurial – published shortly Website Performance There are many ways to improve web site performance, two areas are reducing the amount of data that is served up from the web server and reducing the number of files that are requested. Here I will outline the process of minimizing and concatenating your javascript and css files automatically at build time of your visual studio web site/ application. To edit the project file in Visual Studio, you need to first unload it by right clicking the project in Solution Explorer. I prefer to do this in a third party tool such as Notepad++ and save it there forcing VS to reload it each time I make a change as the whole process in Visual Studio can be a bit tedious. Now you have the project file, you will notice that it is an MSBuild project file. I am going to use a fantastic utility from Microsoft called Ajax Minifier. This tool minifies both javascript and css. 1. Import the tasks for AjaxMin choosing the location you installed to. I keep all third party utilities in a Tools directory within my solution structure and source control. This way I know I can get the entire solution from source control without worrying about what other tools I need to get the project to build locally. 1: <Import Project="..\Tools\MicrosoftAjaxMinifier\AjaxMin.tasks" /> 2. Now create ItemGroups for all your js and css files like this. Separating out your non minified files and minified files. This can go in the AfterBuild container. 1: <Target Name="AfterBuild"> 2:  3: <!-- Javascript files that need minimizing --> 4: <ItemGroup> 5: <JSMin Include="Scripts\jqModal.js" /> 6: <JSMin Include="Scripts\jquery.jcarousel.js" /> 7: <JSMin Include="Scripts\shadowbox.js" /> 8: </ItemGroup> 9: <!-- CSS files that need minimizing --> 10: <ItemGroup> 11: <CSSMin Include="Content\Site.css" /> 12: <CSSMin Include="Content\themes\base\jquery-ui.css" /> 13: <CSSMin Include="Content\shadowbox.css" /> 14: </ItemGroup>   1: <!-- Javascript files to combine --> 2: <ItemGroup> 3: <JSCat Include="Scripts\jqModal.min.js" /> 4: <JSCat Include="Scripts\jquery.jcarousel.min.js" /> 5: <JSCat Include="Scripts\shadowbox.min.js" /> 6: </ItemGroup> 7: <!-- CSS files to combine --> 8: <ItemGroup> 9: <CSSCat Include="Content\Site.min.css" /> 10: <CSSCat Include="Content\themes\base\jquery-ui.min.css" /> 11: <CSSCat Include="Content\shadowbox.min.css" /> 12: </ItemGroup>   3. Call AjaxMin to do the crunching. 1: <Message Text="Minimizing JS and CSS Files..." Importance="High" /> 2: <AjaxMin JsSourceFiles="@(JSMin)" JsSourceExtensionPattern="\.js$" 3: JsTargetExtension=".min.js" JsEvalTreatment="MakeImmediateSafe" 4: CssSourceFiles="@(CSSMin)" CssSourceExtensionPattern="\.css$" 5: CssTargetExtension=".min.css" /> This will create the *.min.css and *.min.js files in the same directory the original files were. 4. Now concatenate the minified files into one for javascript and another for css. Here we write out the files with a default file name. In later posts I will cover versioning these files the same as your project assembly again to help performance. 1: <Message Text="Concat JS Files..." Importance="High" /> 2: <ReadLinesFromFile File="%(JSCat.Identity)"> 3: <Output TaskParameter="Lines" ItemName="JSLinesSite" /> 4: </ReadLinesFromFile> 5: <WriteLinestoFile File="Scripts\site-script.combined.min.js" Lines="@(JSLinesSite)" 6: Overwrite="true" /> 7: <Message Text="Concat CSS Files..." Importance="High" /> 8: <ReadLinesFromFile File="%(CSSCat.Identity)"> 9: <Output TaskParameter="Lines" ItemName="CSSLinesSite" /> 10: </ReadLinesFromFile> 11: <WriteLinestoFile File="Content\site-style.combined.min.css" Lines="@(CSSLinesSite)" 12: Overwrite="true" /> 5. Save the project file, if you have Visual Studio open it will ask you to reload the project. You can now run a build and these minified and combined files will be created automatically. 6. Finally reference these minified combined files in your web page. In the next two posts I will cover versioning these files to match your assembly.

    Read the article

  • how to use serial port in UDK using windows DLL and DLLBind directive?

    - by Shayan Abbas
    I want to use serial port in UDK, For that purpose i use a windows DLL and DLLBind directive. I have a thread in windows DLL for serial port data recieve event. My problem is: this thread doesn't work properly. Please Help me. below is my code SerialPortDLL Code: // SerialPortDLL.cpp : Defines the exported functions for the DLL application. // #include "stdafx.h" #include "Cport.h" extern "C" { // This is an example of an exported variable //SERIALPORTDLL_API int nSerialPortDLL=0; // This is an example of an exported function. //SERIALPORTDLL_API int fnSerialPortDLL(void) //{ // return 42; //} CPort *sp; __declspec(dllexport) void Open(wchar_t* portName) { sp = new CPort(portName); //MessageBox(0,L"ha ha!!!",L"ha ha",0); //MessageBox(0,portName,L"ha ha",0); } __declspec(dllexport) void Close() { sp->Close(); MessageBox(0,L"ha ha!!!",L"ha ha",0); } __declspec(dllexport) wchar_t *GetData() { return sp->GetData(); } __declspec(dllexport) unsigned int GetDSR() { return sp->getDSR(); } __declspec(dllexport) unsigned int GetCTS() { return sp->getCTS(); } __declspec(dllexport) unsigned int GetRing() { return sp->getRing(); } } CPort class code: #include "stdafx.h" #include "CPort.h" #include "Serial.h" CSerial serial; HANDLE HandleOfThread; LONG lLastError = ERROR_SUCCESS; bool fContinue = true; HANDLE hevtOverlapped; HANDLE hevtStop; OVERLAPPED ov = {0}; //char szBuffer[101] = ""; wchar_t *szBuffer = L""; wchar_t *data = L""; DWORD WINAPI ThreadHandler( LPVOID lpParam ) { // Keep reading data, until an EOF (CTRL-Z) has been received do { MessageBox(0,L"ga ga!!!",L"ga ga",0); //Sleep(10); // Wait for an event lLastError = serial.WaitEvent(&ov); if (lLastError != ERROR_SUCCESS) { //LOG( " Unable to wait for a COM-port event" ); } // Setup array of handles in which we are interested HANDLE ahWait[2]; ahWait[0] = hevtOverlapped; ahWait[1] = hevtStop; // Wait until something happens switch (::WaitForMultipleObjects(sizeof(ahWait)/sizeof(*ahWait),ahWait,FALSE,INFINITE)) { case WAIT_OBJECT_0: { // Save event const CSerial::EEvent eEvent = serial.GetEventType(); // Handle break event if (eEvent & CSerial::EEventBreak) { //LOG( " ### BREAK received ###" ); } // Handle CTS event if (eEvent & CSerial::EEventCTS) { //LOG( " ### Clear to send %s ###", serial.GetCTS() ? "on":"off" ); } // Handle DSR event if (eEvent & CSerial::EEventDSR) { //LOG( " ### Data set ready %s ###", serial.GetDSR() ? "on":"off" ); } // Handle error event if (eEvent & CSerial::EEventError) { switch (serial.GetError()) { case CSerial::EErrorBreak: /*LOG( " Break condition" );*/ break; case CSerial::EErrorFrame: /*LOG( " Framing error" );*/ break; case CSerial::EErrorIOE: /*LOG( " IO device error" );*/ break; case CSerial::EErrorMode: /*LOG( " Unsupported mode" );*/ break; case CSerial::EErrorOverrun: /*LOG( " Buffer overrun" );*/ break; case CSerial::EErrorRxOver: /*LOG( " Input buffer overflow" );*/ break; case CSerial::EErrorParity: /*LOG( " Input parity error" );*/ break; case CSerial::EErrorTxFull: /*LOG( " Output buffer full" );*/ break; default: /*LOG( " Unknown" );*/ break; } } // Handle ring event if (eEvent & CSerial::EEventRing) { //LOG( " ### RING ###" ); } // Handle RLSD/CD event if (eEvent & CSerial::EEventRLSD) { //LOG( " ### RLSD/CD %s ###", serial.GetRLSD() ? "on" : "off" ); } // Handle data receive event if (eEvent & CSerial::EEventRecv) { // Read data, until there is nothing left DWORD dwBytesRead = 0; do { // Read data from the COM-port lLastError = serial.Read(szBuffer,33,&dwBytesRead); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to read from COM-port" ); } if( dwBytesRead == 33 && szBuffer[0]=='$' ) { // Finalize the data, so it is a valid string szBuffer[dwBytesRead] = '\0'; ////LOG( "\n%s\n", szBuffer ); data = szBuffer; } } while (dwBytesRead > 0); } } break; case WAIT_OBJECT_0+1: { // Set the continue bit to false, so we'll exit fContinue = false; } break; default: { // Something went wrong //LOG( "Error while calling WaitForMultipleObjects" ); } break; } } while (fContinue); MessageBox(0,L"kka kk!!!",L"kka ga",0); return 0; } CPort::CPort(wchar_t *portName) { // Attempt to open the serial port (COM2) //lLastError = serial.Open(_T(portName),0,0,true); lLastError = serial.Open(portName,0,0,true); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to open COM-port" ); } // Setup the serial port (115200,8N1, which is the default setting) lLastError = serial.Setup(CSerial::EBaud115200,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port setting" ); } // Register only for the receive event lLastError = serial.SetMask(CSerial::EEventBreak | CSerial::EEventCTS | CSerial::EEventDSR | CSerial::EEventError | CSerial::EEventRing | CSerial::EEventRLSD | CSerial::EEventRecv); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port event mask" ); } // Use 'non-blocking' reads, because we don't know how many bytes // will be received. This is normally the most convenient mode // (and also the default mode for reading data). lLastError = serial.SetupReadTimeouts(CSerial::EReadTimeoutNonblocking); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port read timeout" ); } // Create a handle for the overlapped operations hevtOverlapped = ::CreateEvent(0,TRUE,FALSE,0);; if (hevtOverlapped == 0) { //LOG( "Unable to create manual-reset event for overlapped I/O" ); } // Setup the overlapped structure ov.hEvent = hevtOverlapped; // Open the "STOP" handle hevtStop = ::CreateEvent(0,TRUE,FALSE,_T("Overlapped_Stop_Event")); if (hevtStop == 0) { //LOG( "Unable to create manual-reset event for stop event" ); } HandleOfThread = CreateThread( NULL, 0, ThreadHandler, 0, 0, NULL); } CPort::~CPort() { //fContinue = false; //CloseHandle( HandleOfThread ); //serial.Close(); } void CPort::Close() { fContinue = false; CloseHandle( HandleOfThread ); serial.Close(); } wchar_t *CPort::GetData() { return data; } bool CPort::getCTS() { return serial.GetCTS(); } bool CPort::getDSR() { return serial.GetDSR(); } bool CPort::getRing() { return serial.GetRing(); } Unreal Script Code: class MyPlayerController extends GamePlayerController DLLBind(SerialPortDLL); dllimport final function Open(string portName); dllimport final function Close(); dllimport final function string GetData();

    Read the article

  • Automating deployments with the SQL Compare command line

    - by Jonathan Hickford
    In my previous article, “Five Tips to Get Your Organisation Releasing Software Frequently” I looked at how teams can automate processes to speed up release frequency. In this post, I’m looking specifically at automating deployments using the SQL Compare command line. SQL Compare compares SQL Server schemas and deploys the differences. It works very effectively in scenarios where only one deployment target is required – source and target databases are specified, compared, and a change script is automatically generated and applied. But if multiple targets exist, and pressure to increase the frequency of releases builds, this solution quickly becomes unwieldy.   This is where SQL Compare’s command line comes into its own. I’ve put together a PowerShell script that loops through the Servers table and pulls out the server and database, these are then passed to sqlcompare.exe to be used as target parameters. In the example the source database is a scripts folder, a folder structure of scripted-out database objects used by both SQL Source Control and SQL Compare. The script can easily be adapted to use schema snapshots.     -- Create a DeploymentTargets database and a Servers table CREATE DATABASE DeploymentTargets GO USE DeploymentTargets GO CREATE TABLE [dbo].[Servers]( [id] [int] IDENTITY(1,1) NOT NULL, [serverName] [nvarchar](50) NULL, [environment] [nvarchar](50) NULL, [databaseName] [nvarchar](50) NULL, CONSTRAINT [PK_Servers] PRIMARY KEY CLUSTERED ([id] ASC) ) GO -- Now insert your target server and database details INSERT INTO dbo.Servers ( serverName , environment , databaseName) VALUES ( N'myserverinstance' , N'myenvironment1' , N'mydb1') INSERT INTO dbo.Servers ( serverName , environment , databaseName) VALUES ( N'myserverinstance' , N'myenvironment2' , N'mydb2') Here’s the PowerShell script you can adapt for yourself as well. # We're holding the server names and database names that we want to deploy to in a database table. # We need to connect to that server to read these details $serverName = "" $databaseName = "DeploymentTargets" $authentication = "Integrated Security=SSPI" #$authentication = "User Id=xxx;PWD=xxx" # If you are using database authentication instead of Windows authentication. # Path to the scripts folder we want to deploy to the databases $scriptsPath = "SimpleTalk" # Path to SQLCompare.exe $SQLComparePath = "C:\Program Files (x86)\Red Gate\SQL Compare 10\sqlcompare.exe" # Create SQL connection string, and connection $ServerConnectionString = "Data Source=$serverName;Initial Catalog=$databaseName;$authentication" $ServerConnection = new-object system.data.SqlClient.SqlConnection($ServerConnectionString); # Create a Dataset to hold the DataTable $dataSet = new-object "System.Data.DataSet" "ServerList" # Create a query $query = "SET NOCOUNT ON;" $query += "SELECT serverName, environment, databaseName " $query += "FROM dbo.Servers; " # Create a DataAdapter to populate the DataSet with the results $dataAdapter = new-object "System.Data.SqlClient.SqlDataAdapter" ($query, $ServerConnection) $dataAdapter.Fill($dataSet) | Out-Null # Close the connection $ServerConnection.Close() # Populate the DataTable $dataTable = new-object "System.Data.DataTable" "Servers" $dataTable = $dataSet.Tables[0] #For every row in the DataTable $dataTable | FOREACH-OBJECT { "Server Name: $($_.serverName)" "Database Name: $($_.databaseName)" "Environment: $($_.environment)" # Compare the scripts folder to the database and synchronize the database to match # NB. Have set SQL Compare to abort on medium level warnings. $arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/AbortOnWarnings:Medium") # + @("/sync" ) # Commented out the 'sync' parameter for safety, write-host $arguments & $SQLComparePath $arguments "Exit Code: $LASTEXITCODE" # Some interesting variations # Check that every database matches a folder. # For example this might be a pre-deployment step to validate everything is at the same baseline state. # Or a post deployment script to validate the deployment worked. # An exit code of 0 means the databases are identical. # # $arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/Assertidentical") # Generate a report of the difference between the folder and each database. Generate a SQL update script for each database. # For example use this after the above to generate upgrade scripts for each database # Examine the warnings and the HTML diff report to understand how the script will change objects # #$arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/ScriptFile:update_$($_.environment+"_"+$_.databaseName).sql", "/report:update_$($_.environment+"_"+$_.databaseName).html" , "/reportType:Interactive", "/showWarnings", "/include:Identical") } It’s worth noting that the above example generates the deployment scripts dynamically. This approach should be problem-free for the vast majority of changes, but it is still good practice to review and test a pre-generated deployment script prior to deployment. An alternative approach would be to pre-generate a single deployment script using SQL Compare, and run this en masse to multiple targets programmatically using sqlcmd, or using a tool like SQL Multi Script.  You can use the /ScriptFile, /report, and /showWarnings flags to generate change scripts, difference reports and any warnings.  See the commented out example in the PowerShell: #$arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/ScriptFile:update_$($_.environment+"_"+$_.databaseName).sql", "/report:update_$($_.environment+"_"+$_.databaseName).html" , "/reportType:Interactive", "/showWarnings", "/include:Identical") There is a drawback of running a pre-generated deployment script; it assumes that a given database target hasn’t drifted from its expected state. Often there are (rightly or wrongly) many individuals within an organization who have permissions to alter the production database, and changes can therefore be made outside of the prescribed development processes. The consequence is that at deployment time, the applied script has been validated against a target that no longer represents reality. The solution here would be to add a check for drift prior to running the deployment script. This is achieved by using sqlcompare.exe to compare the target against the expected schema snapshot using the /Assertidentical flag. Should this return any differences (sqlcompare.exe Exit Code 79), a drift report is outputted instead of executing the deployment script.  See the commented out example. # $arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/Assertidentical") Any checks and processes that should be undertaken prior to a manual deployment, should also be happen during an automated deployment. You might think about triggering backups prior to deployment – even better, automate the verification of the backup too.   You can use SQL Compare’s command line interface along with PowerShell to automate multiple actions and checks that you need in your deployment process. Automation is a practical solution where multiple targets and a higher release cadence come into play. As we know, with great power comes great responsibility – responsibility to ensure that the necessary checks are made so deployments remain trouble-free.  (The code sample supplied in this post automates the simple dynamic deployment case – if you are considering more advanced automation, e.g. the drift checks, script generation, deploying to large numbers of targets and backup/verification, please email me at [email protected] for further script samples or if you have further questions)

    Read the article

  • Developing a Cost Model for Cloud Applications

    - by BuckWoody
    Note - please pay attention to the date of this post. As much as I attempt to make the information below accurate, the nature of distributed computing means that components, units and pricing will change over time. The definitive costs for Microsoft Windows Azure and SQL Azure are located here, and are more accurate than anything you will see in this post: http://www.microsoft.com/windowsazure/offers/  When writing software that is run on a Platform-as-a-Service (PaaS) offering like Windows Azure / SQL Azure, one of the questions you must answer is how much the system will cost. I will not discuss the comparisons between on-premise costs (which are nigh impossible to calculate accurately) versus cloud costs, but instead focus on creating a general model for estimating costs for a given application. You should be aware that there are (at this writing) two billing mechanisms for Windows and SQL Azure: “Pay-as-you-go” or consumption, and “Subscription” or commitment. Conceptually, you can consider the former a pay-as-you-go cell phone plan, where you pay by the unit used (at a slightly higher rate) and the latter as a standard cell phone plan where you commit to a contract and thus pay lower rates. In this post I’ll stick with the pay-as-you-go mechanism for simplicity, which should be the maximum cost you would pay. From there you may be able to get a lower cost if you use the other mechanism. In any case, the model you create should hold. Developing a good cost model is essential. As a developer or architect, you’ll most certainly be asked how much something will cost, and you need to have a reliable way to estimate that. Businesses and Organizations have been used to paying for servers, software licenses, and other infrastructure as an up-front cost, and power, people to the systems and so on as an ongoing (and sometimes not factored) cost. When presented with a new paradigm like distributed computing, they may not understand the true cost/value proposition, and that’s where the architect and developer can guide the conversation to make a choice based on features of the application versus the true costs. The two big buckets of use-types for these applications are customer-based and steady-state. In the customer-based use type, each successful use of the program results in a sale or income for your organization. Perhaps you’ve written an application that provides the spot-price of foo, and your customer pays for the use of that application. In that case, once you’ve estimated your cost for a successful traversal of the application, you can build that into the price you charge the user. It’s a standard restaurant model, where the price of the meal is determined by the cost of making it, plus any profit you can make. In the second use-type, the application will be used by a more-or-less constant number of processes or users and no direct revenue is attached to the system. A typical example is a customer-tracking system used by the employees within your company. In this case, the cost model is often created “in reverse” - meaning that you pilot the application, monitor the use (and costs) and that cost is held steady. This is where the comparison with an on-premise system becomes necessary, even though it is more difficult to estimate those on-premise true costs. For instance, do you know exactly how much cost the air conditioning is because you have a team of system administrators? This may sound trivial, but that, along with the insurance for the building, the wiring, and every other part of the system is in fact a cost to the business. There are three primary methods that I’ve been successful with in estimating the cost. None are perfect, all are demand-driven. The general process is to lay out a matrix of: components units cost per unit and then multiply that times the usage of the system, based on which components you use in the program. That sounds a bit simplistic, but using those metrics in a calculation becomes more detailed. In all of the methods that follow, you need to know your application. The components for a PaaS include computing instances, storage, transactions, bandwidth and in the case of SQL Azure, database size. In most cases, architects start with the first model and progress through the other methods to gain accuracy. Simple Estimation The simplest way to calculate costs is to architect the application (even UML or on-paper, no coding involved) and then estimate which of the components you’ll use, and how much of each will be used. Microsoft provides two tools to do this - one is a simple slider-application located here: http://www.microsoft.com/windowsazure/pricing-calculator/  The other is a tool you download to create an “Return on Investment” (ROI) spreadsheet, which has the advantage of leading you through various questions to estimate what you plan to use, located here: https://roianalyst.alinean.com/msft/AutoLogin.do?d=176318219048082115  You can also just create a spreadsheet yourself with a structure like this: Program Element Azure Component Unit of Measure Cost Per Unit Estimated Use of Component Total Cost Per Component Cumulative Cost               Of course, the consideration with this model is that it is difficult to predict a system that is not running or hasn’t even been developed. Which brings us to the next model type. Measure and Project A more accurate model is to actually write the code for the application, using the Software Development Kit (SDK) which can run entirely disconnected from Azure. The code should be instrumented to estimate the use of the application components, logging to a local file on the development system. A series of unit and integration tests should be run, which will create load on the test system. You can use standard development concepts to track this usage, and even use Windows Performance Monitor counters. The best place to start with this method is to use the Windows Azure Diagnostics subsystem in your code, which you can read more about here: http://blogs.msdn.com/b/sumitm/archive/2009/11/18/introducing-windows-azure-diagnostics.aspx This set of API’s greatly simplifies tracking the application, and in fact you can use this information for more than just a cost model. After you have the tracking logs, you can plug the numbers into ay of the tools above, which should give a representative cost or in some cases a unit cost. The consideration with this model is that the SDK fabric is not a one-to-one comparison with performance on the actual Windows Azure fabric. Those differences are usually smaller, but they do need to be considered. Also, you may not be able to accurately predict the load on the system, which might lead to an architectural change, which changes the model. This leads us to the next, most accurate method for a cost model. Sample and Estimate Using standard statistical and other predictive math, once the application is deployed you will get a bill each month from Microsoft for your Azure usage. The bill is quite detailed, and you can export the data from it to do analysis, and using methods like regression and so on project out into the future what the costs will be. I normally advise that the architect also extrapolate a unit cost from those metrics as well. This is the information that should be reported back to the executives that pay the bills: the past cost, future projected costs, and unit cost “per click” or “per transaction”, as your case warrants. The challenge here is in the model itself - statistical methods are not foolproof, and the larger the sample (in this case I recommend the entire population, not a smaller sample) is key. References and Tools Articles: http://blogs.msdn.com/b/patrick_butler_monterde/archive/2010/02/10/windows-azure-billing-overview.aspx http://technet.microsoft.com/en-us/magazine/gg213848.aspx http://blog.codingoutloud.com/2011/06/05/azure-faq-how-much-will-it-cost-me-to-run-my-application-on-windows-azure/ http://blogs.msdn.com/b/johnalioto/archive/2010/08/25/10054193.aspx http://geekswithblogs.net/iupdateable/archive/2010/02/08/qampa-how-can-i-calculate-the-tco-and-roi-when.aspx   Other Tools: http://cloud-assessment.com/ http://communities.quest.com/community/cloud_tools

    Read the article

  • How can unrealscript halt event handler execution after an arbitrary number of lines with no return or error?

    - by Dan Cowell
    I have created a class that extends TcpLink and is instantiated in a custom Kismet Sequence Action. It is being instantiated correctly and is making the GET HTTP request that I need it to (I have checked my access log in apache) and Apache is responding to the request with the appropriate content. The problem I have is that I'm using the event receive mode and it appears that somehow the handler for the Opened event is halted after a specific number of lines of code have executed. Here is my code for the Opened event: event Opened() { // A connection was established WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] event opened"); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sending simple HTTP query"); //The HTTP GET request //char(13) and char(10) are carrage returns and new lines requesttext = "userId="$userId$"&apartmentId="$apartmentId; SendText("GET /"$path$"?"$requesttext$" HTTP/1.0"); SendText(chr(13)$chr(10)); SendText("Host: "$TargetHost); SendText(chr(13)$chr(10)); SendText("Connection: Close"); SendText(chr(13)$chr(10)$chr(13)$chr(10)); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sent request: "$requesttext); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] end HTTP query"); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] LinkState: "$LinkState); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] LinkMode: "$LinkMode); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] ReceiveMode: "$ReceiveMode); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Error: "$string(GetLastError())); } As you can see, a number of the Broadcast calls have been commented out. Initially, only the lines up to the Broadcast containing "[DNomad_TcpLinkClient] Sent request: " were being executed and none of the Broadcasts were commented out. After commenting out that line, the next Broadcast was successful and so on and so forth. As a test, I commented out the very first Broadcast to see if the connection closing had any effect: // A connection was established //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] event opened"); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sending simple HTTP query"); Upon doing that, an additional Broadcast at the end of the function executed. Thus the inference that there is an upper limit to the number of lines executed. Additionally, my ReceivedText handler is never called, despite Apache returning the correct HTTP 200 response with a body. My working hypothesis is that somehow after the Sequence Action finishes executing the garbage collector cleans up the TcpLinkClient instance. My biggest source of confusion with that is how on earth it does it during the execution of an event handler. Has anyone ever seen anything like this before? My full TcpLinkClient class is below: /* * TcpLinkClient based on an example usage of the TcpLink class by Michiel 'elmuerte' Hendriks for Epic Games, Inc. * */ class DNomad_TcpLinkClient extends TcpLink; var PlayerController PC; var string TargetHost; var int TargetPort; var string path; var string requesttext; var string userId; var string apartmentId; var string statusCode; var string responseData; event PostBeginPlay() { super.PostBeginPlay(); } function DoTcpLinkRequest(string uid, string id) //removes having to send a host { userId = uid; apartmentId = id; Resolve(targethost); } function string GetStatus() { return statusCode; } event Resolved( IpAddr Addr ) { // The hostname was resolved succefully WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] "$TargetHost$" resolved to "$ IpAddrToString(Addr)); // Make sure the correct remote port is set, resolving doesn't set // the port value of the IpAddr structure Addr.Port = TargetPort; //dont comment out this log because it rungs the function bindport WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Bound to port: "$ BindPort() ); if (!Open(Addr)) { WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Open failed"); } } event ResolveFailed() { WorldInfo.Game.Broadcast(self, "[TcpLinkClient] Unable to resolve "$TargetHost); // You could retry resolving here if you have an alternative // remote host. //send failed message to scaleform UI //JunHud(JunPlayerController(PC).myHUD).JunMovie.CallSetHTML("Failed"); } event Opened() { // A connection was established //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] event opened"); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sending simple HTTP query"); //The HTTP GET request //char(13) and char(10) are carrage returns and new lines requesttext = "userId="$userId$"&apartmentId="$apartmentId; SendText("GET /"$path$"?"$requesttext$" HTTP/1.0"); SendText(chr(13)$chr(10)); SendText("Host: "$TargetHost); SendText(chr(13)$chr(10)); SendText("Connection: Close"); SendText(chr(13)$chr(10)$chr(13)$chr(10)); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Sent request: "$requesttext); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] end HTTP query"); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] LinkState: "$LinkState); //WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] LinkMode: "$LinkMode); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] ReceiveMode: "$ReceiveMode); WorldInfo.Game.Broadcast(self, "[DNomad_TcpLinkClient] Error: "$string(GetLastError())); } event Closed() { // In this case the remote client should have automatically closed // the connection, because we requested it in the HTTP request. WorldInfo.Game.Broadcast(self, "Connection closed."); // After the connection was closed we could establish a new // connection using the same TcpLink instance. } event ReceivedText( string Text ) { WorldInfo.Game.Broadcast(self, "Received Text: "$Text); //we dont want the header info, so we split the string after two new lines Text = Split(Text, chr(13)$chr(10)$chr(13)$chr(10), true); WorldInfo.Game.Broadcast(self, "Split Text: "$Text); statusCode = Text; } event ReceivedLine( string Line ) { WorldInfo.Game.Broadcast(self, "Received Line: "$Line); } event ReceivedBinary( int Count, byte B[255] ) { WorldInfo.Game.Broadcast(self, "Received Binary of length: "$Count); } defaultproperties { TargetHost="127.0.0.1" TargetPort=80 //default for HTTP LinkMode=MODE_Text ReceiveMode=RMODE_Event path = "dnomad/datafeed.php" userId = "0"; apartmentId = "0"; statusCode = ""; send = false; }

    Read the article

  • Need Help in optimizing a loop in C [migrated]

    - by WedaPashi
    I am trying to draw a Checkerboard pattern on a lcd using a GUI library called emWin. I have actually managed to draw it using the following code. But having these many loops in the program body for a single task, that too in the internal flash of the Microcontroller is not a good idea. Those who have not worked with emWin, I will try and explain a few things before we go for actual logic. GUI_REST is a structure which id define source files of emWin and I am blind to it. Rect, REct2,Rec3.. and so on till Rect10 are objects. Elements of the Rect array are {x0,y0,x1,y1}, where x0,y0 are starting locations of rectangle in X-Y plane and x1, y1 are end locations of Rectangle in x-Y plane. So, Rect={0,0,79,79} is a rectangle starts at top left of the LCD and is upto (79,79), so its a square basically. The function GUI_setBkColor(int color); sets the color of the background. The function GUI_setColor(int color); sets the color of the foreground. GUI_WHITE and DM_CHECKERBOARD_COLOR are two color values, #defineed GUI_FillRectEx(&Rect); will draw the Rectangle. The code below works fine but I want to make it smarter. GUI_RECT Rect = {0, 0, 79, 79}; GUI_RECT Rect2 = {80, 0, 159, 79}; GUI_RECT Rect3 = {160, 0, 239, 79}; GUI_RECT Rect4 = {240, 0, 319, 79}; GUI_RECT Rect5 = {320, 0, 399, 79}; GUI_RECT Rect6 = {400, 0, 479, 79}; GUI_RECT Rect7 = {480, 0, 559, 79}; GUI_RECT Rect8 = {560, 0, 639, 79}; GUI_RECT Rect9 = {640, 0, 719, 79}; GUI_RECT Rect10 = {720, 0, 799, 79}; WM_SelectWindow(Win_DM_Main); GUI_SetBkColor(GUI_BLACK); GUI_Clear(); for(i = 0; i < 6; i++) { if(i%2 == 0) GUI_SetColor(GUI_WHITE); else GUI_SetColor(DM_CHECKERBOARD_COLOR); GUI_FillRectEx(&Rect); Rect.y0 += 80; Rect.y1 += 80; } /* for(j=0,j<11;j++) { for(i = 0; i < 6; i++) { if(i%2 == 0) GUI_SetColor(GUI_WHITE); else GUI_SetColor(DM_CHECKERBOARD_COLOR); GUI_FillRectEx(&Rect); Rect.y0 += 80; Rect.y1 += 80; } Rect.x0 += 80; Rect.x1 += 80; } */ for(i = 0; i < 6; i++) { if(i%2 == 0) GUI_SetColor(DM_CHECKERBOARD_COLOR); else GUI_SetColor(GUI_WHITE); GUI_FillRectEx(&Rect2); Rect2.y0 += 80; Rect2.y1 += 80; } for(i = 0; i < 6; i++) { if(i%2 == 0) GUI_SetColor(GUI_WHITE); else GUI_SetColor(DM_CHECKERBOARD_COLOR); GUI_FillRectEx(&Rect3); Rect3.y0 += 80; Rect3.y1 += 80; } for(i = 0; i < 6; i++) { if(i%2 == 0) GUI_SetColor(DM_CHECKERBOARD_COLOR); else GUI_SetColor(GUI_WHITE); GUI_FillRectEx(&Rect4); Rect4.y0 += 80; Rect4.y1 += 80; } for(i = 0; i < 6; i++) { if(i%2 == 0) GUI_SetColor(GUI_WHITE); else GUI_SetColor(DM_CHECKERBOARD_COLOR); GUI_FillRectEx(&Rect5); Rect5.y0 += 80; Rect5.y1 += 80; } for(i = 0; i < 6; i++) { if(i%2 == 0) GUI_SetColor(DM_CHECKERBOARD_COLOR); else GUI_SetColor(GUI_WHITE); GUI_FillRectEx(&Rect6); Rect6.y0 += 80; Rect6.y1 += 80; } for(i = 0; i < 6; i++) { if(i%2 == 0) GUI_SetColor(GUI_WHITE); else GUI_SetColor(DM_CHECKERBOARD_COLOR); GUI_FillRectEx(&Rect7); Rect7.y0 += 80; Rect7.y1 += 80; } for(i = 0; i < 6; i++) { if(i%2 == 0) GUI_SetColor(DM_CHECKERBOARD_COLOR); else GUI_SetColor(GUI_WHITE); GUI_FillRectEx(&Rect8); Rect8.y0 += 80; Rect8.y1 += 80; } for(i = 0; i < 6; i++) { if(i%2 == 0) GUI_SetColor(GUI_WHITE); else GUI_SetColor(DM_CHECKERBOARD_COLOR); GUI_FillRectEx(&Rect9); Rect9.y0 += 80; Rect9.y1 += 80; } for(i = 0; i < 6; i++) { if(i%2 == 0) GUI_SetColor(DM_CHECKERBOARD_COLOR); else GUI_SetColor(GUI_WHITE); GUI_FillRectEx(&Rect10); Rect10.y0 += 80; Rect10.y1 += 80; }

    Read the article

  • RIF PRD: Presentation syntax issues

    - by Charles Young
    Over Christmas I got to play a bit with the W3C RIF PRD and came across a few issues which I thought I would record for posterity. Specifically, I was working on a grammar for the presentation syntax using a GLR grammar parser tool (I was using the current CTP of ‘M’ (MGrammer) and Intellipad – I do so hope the MS guys don’t kill off M and Intellipad now they have dropped the other parts of SQL Server Modelling). I realise that the presentation syntax is non-normative and that any issues with it do not therefore compromise the standard. However, presentation syntax is useful in its own right, and it would be great to iron out any issues in a future revision of the standard. The main issues are actually not to do with the grammar at all, but rather with the ‘running example’ in the RIF PRD recommendation. I started with the code provided in Example 9.1. There are several discrepancies when compared with the EBNF rules documented in the standard. Broadly the problems can be categorised as follows: ·      Parenthesis mismatch – the wrong number of parentheses are used in various places. For example, in GoldRule, the RHS of the rule (the ‘Then’) is nested in the LHS (‘the If’). In NewCustomerAndWidgetRule, the RHS is orphaned from the LHS. Together with additional incorrect parenthesis, this leads to orphanage of UnknownStatusRule from the entire Document. ·      Invalid use of parenthesis in ‘Forall’ constructs. Parenthesis should not be used to enclose formulae. Removal of the invalid parenthesis gave me a feeling of inconsistency when comparing formulae in Forall to formulae in If. The use of parenthesis is not actually inconsistent in these two context, but in an If construct it ‘feels’ as if you are enclosing formulae in parenthesis in a LISP-like fashion. In reality, the parenthesis is simply being used to group subordinate syntax elements. The fact that an If construct can contain only a single formula as an immediate child adds to this feeling of inconsistency. ·      Invalid representation of compact URIs (CURIEs) in the context of Frame productions. In several places the URIs are not qualified with a namespace prefix (‘ex1:’). This conflicts with the definition of CURIEs in the RIF Datatypes and Built-Ins 1.0 document. Here are the productions: CURIE          ::= PNAME_LN                  | PNAME_NS PNAME_LN       ::= PNAME_NS PN_LOCAL PNAME_NS       ::= PN_PREFIX? ':' PN_LOCAL       ::= ( PN_CHARS_U | [0-9] ) ((PN_CHARS|'.')* PN_CHARS)? PN_CHARS       ::= PN_CHARS_U                  | '-' | [0-9] | #x00B7                  | [#x0300-#x036F] | [#x203F-#x2040] PN_CHARS_U     ::= PN_CHARS_BASE                  | '_' PN_CHARS_BASE ::= [A-Z] | [a-z] | [#x00C0-#x00D6] | [#x00D8-#x00F6]                  | [#x00F8-#x02FF] | [#x0370-#x037D] | [#x037F-#x1FFF]                  | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF]                  | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD]                  | [#x10000-#xEFFFF] PN_PREFIX      ::= PN_CHARS_BASE ((PN_CHARS|'.')* PN_CHARS)? The more I look at CURIEs, the more my head hurts! The RIF specification allows prefixes and colons without local names, which surprised me. However, the CURIE Syntax 1.0 working group note specifically states that this form is supported…and then promptly provides a syntactic definition that seems to preclude it! However, on (much) deeper inspection, it appears that ‘ex1:’ (for example) is allowed, but would really represent a ‘fragment’ of the ‘reference’, rather than a prefix! Ouch! This is so completely ambiguous that it surely calls into question the whole CURIE specification.   In any case, RIF does not allow local names without a prefix. ·      Missing ‘External’ specifiers for built-in functions and predicates.  The EBNF specification enforces this for terms within frames, but does not appear to enforce (what I believe is) the correct use of External on built-in predicates. In any case, the running example only specifies ‘External’ once on the predicate in UnknownStatusRule. External() is required in several other places. ·      The List used on the LHS of UnknownStatusRule is comma-delimited. This is not supported by the EBNF definition. Similarly, the argument list of pred:list-contains is illegally comma-delimited. ·      Unnecessary use of conjunction around a single formula in DiscountRule. This is strictly legal in the EBNF, but redundant.   All the above issues concern the presentation syntax used in the running example. There are a few minor issues with the grammar itself. Note that Michael Kiefer stated in his paper “Rule Interchange Format: The Framework” that: “The presentation syntax of RIF … is an abstract syntax and, as such, it omits certain details that might be important for unambiguous parsing.” ·      The grammar cannot differentiate unambiguously between strategies and priorities on groups. A processor is forced to resolve this by detecting the use of IRIs and integers. This could easily be fixed in the grammar.   ·      The grammar cannot unambiguously parse the ‘->’ operator in frames. Specifically, ‘-’ characters are allowed in PN_LOCAL names and hence a parser cannot determine if ‘status->’ is (‘status’ ‘->’) or (‘status-’ ‘>’).   One way to fix this is to amend the PN_LOCAL production as follows: PN_LOCAL ::= ( PN_CHARS_U | [0-9] ) ((PN_CHARS|'.')* ((PN_CHARS)-('-')))? However, unilaterally changing the definition of this production, which is defined in the SPARQL Query Language for RDF specification, makes me uncomfortable. ·      I assume that the presentation syntax is case-sensitive. I couldn’t find this stated anywhere in the documentation, but function/predicate names do appear to be documented as being case-sensitive. ·      The EBNF does not specify whitespace handling. A couple of productions (RULE and ACTION_BLOCK) are crafted to enforce the use of whitespace. This is not necessary. It seems inconsistent with the rest of the specification and can cause parsing issues. In addition, the Const production exhibits whitespaces issues. The intention may have been to disallow the use of whitespace around ‘^^’, but any direct implementation of the EBNF will probably allow whitespace between ‘^^’ and the SYMSPACE. Of course, I am being a little nit-picking about all this. On the whole, the EBNF translated very smoothly and directly to ‘M’ (MGrammar) and proved to be fairly complete. I have encountered far worse issues when translating other EBNF specifications into usable grammars.   I can’t imagine there would be any difficulty in implementing the same grammar in Antlr, COCO/R, gppg, XText, Bison, etc. A general observation, which repeats a point made above, is that the use of parenthesis in the presentation syntax can feel inconsistent and un-intuitive.   It isn’t actually inconsistent, but I think the presentation syntax could be improved by adopting braces, rather than parenthesis, to delimit subordinate syntax elements in a similar way to so many programming languages. The familiarity of braces would communicate the structure of the syntax more clearly to people like me.  If braces were adopted, parentheses could be retained around ‘var (frame | ‘new()’) constructs in action blocks. This use of parenthesis feels very LISP-like, and I think that this is my issue. It’s as if the presentation syntax represents the deformed love-child of LISP and C. In some places (specifically, action blocks), parenthesis is used in a LISP-like fashion. In other places it is used like braces in C. I find this quite confusing. Here is a corrected version of the running example (Example 9.1) in compliant presentation syntax: Document(    Prefix( ex1 <http://example.com/2009/prd2> )    (* ex1:CheckoutRuleset *)  Group rif:forwardChaining (     (* ex1:GoldRule *)    Group 10 (      Forall ?customer such that And(?customer # ex1:Customer                                     ?customer[ex1:status->"Silver"])        (Forall ?shoppingCart such that ?customer[ex1:shoppingCart->?shoppingCart]           (If Exists ?value (And(?shoppingCart[ex1:value->?value]                                  External(pred:numeric-greater-than-or-equal(?value 2000))))            Then Do(Modify(?customer[ex1:status->"Gold"])))))      (* ex1:DiscountRule *)    Group (      Forall ?customer such that ?customer # ex1:Customer        (If Or( ?customer[ex1:status->"Silver"]                ?customer[ex1:status->"Gold"])         Then Do ((?s ?customer[ex1:shoppingCart-> ?s])                  (?v ?s[ex1:value->?v])                  Modify(?s [ex1:value->External(func:numeric-multiply (?v 0.95))]))))      (* ex1:NewCustomerAndWidgetRule *)    Group (      Forall ?customer such that And(?customer # ex1:Customer                                     ?customer[ex1:status->"New"] )        (If Exists ?shoppingCart ?item                   (And(?customer[ex1:shoppingCart->?shoppingCart]                        ?shoppingCart[ex1:containsItem->?item]                        ?item # ex1:Widget ) )         Then Do( (?s ?customer[ex1:shoppingCart->?s])                  (?val ?s[ex1:value->?val])                  (?voucher ?customer[ex1:voucher->?voucher])                  Retract(?customer[ex1:voucher->?voucher])                  Retract(?voucher)                  Modify(?s[ex1:value->External(func:numeric-multiply(?val 0.90))]))))      (* ex1:UnknownStatusRule *)    Group (      Forall ?customer such that ?customer # ex1:Customer        (If Not(Exists ?status                       (And(?customer[ex1:status->?status]                            External(pred:list-contains(List("New" "Bronze" "Silver" "Gold") ?status)) )))         Then Do( Execute(act:print(External(func:concat("New customer: " ?customer))))                  Assert(?customer[ex1:status->"New"]))))  ) )   I hope that helps someone out there :-)

    Read the article

  • JSP Precompilation for ADF Applications

    - by Duncan Mills
    A question that comes up from time to time, particularly in relation to build automation, is how to best pre-compile the .jspx and .jsff files in an ADF application. Thus ensuring that the app is ready to run as soon as it's installed into WebLogic. In the normal run of things, the first poor soul to hit a page pays the price and has to wait a little whilst the JSP is compiled into a servlet. Everyone else subsequently gets a free lunch. So it's a reasonable thing to want to do... Let Me List the Ways So forth to Google (other search engines are available)... which lead me to a fairly old article on WLDJ - Removing Performance Bottlenecks Through JSP Precompilation. Technololgy wise, it's somewhat out of date, but the one good point that it made is that it's really not very useful to try and use the precompile option in the weblogic.xml file. That's a really good observation - particularly if you're trying to integrate a pre-compile step into a Hudson Continuous Integration process. That same article mentioned an alternative approach for programmatic pre-compilation using weblogic.jspc. This seemed like a much more useful approach for a CI environment. However, weblogic.jspc is now obsoleted by weblogic.appc so we'll use that instead.  Thanks to Steve for the pointer there. And So To APPC APPC has documentation - always a great place to start, and supports usage both from Ant via the wlappc task and from the command line using the weblogic.appc command. In my testing I took the latter approach. Usage, as the documentation will show you, is superficially pretty simple.  The nice thing here, is that you can pass an existing EAR file (generated of course using OJDeploy) and that EAR will be updated in place with the freshly compiled servlet classes created from the JSPs. Appc takes care of all the unpacking, compiling and re-packing of the EAR for you. Neat.  So we're done right...? Not quite. The Devil is in the Detail  OK so I'm being overly dramatic but it's not all plain sailing, so here's a short guide to using weblogic.appc to compile a simple ADF application without pain.  Information You'll Need The following is based on the assumption that you have a stand-alone WLS install with the Application Development  Runtime installed and a suitable ADF enabled domain created. This could of course all be run off of a JDeveloper install as well 1. Your Weblogic home directory. Everything you need is relative to this so make a note.  In my case it's c:\builds\wls_ps4. 2. Next deploy your EAR as normal and have a peek inside it using your favourite zip management tool. First of all look at the weblogic-application.xml inside the EAR /META-INF directory. Have a look for any library references. Something like this: <library-ref>    <library-name>adf.oracle.domain</library-name> </library-ref>   Make a note of the library ref (adf.oracle.domain in this case) , you'll need that in a second. 3. Next open the nested WAR file within the EAR and then have a peek inside the weblogic.xml file in the /WEB-INF directory. Again  make a note of the library references. 4. Now start the WebLogic as per normal and run the WebLogic console app (e.g. http://localhost:7001/console). In the Domain Structure navigator, select Deployments. 5. For each of the libraries you noted down drill into the library definition and make a note of the .war, .ear or .jar that defines the library. For example, in my case adf.oracle.domain maps to "C:\ builds\ WLS_PS4\ oracle_common\ modules\ oracle. adf. model_11. 1. 1\ adf. oracle. domain. ear". Note the extra spaces that are salted throughout this string as it is displayed in the console - just to make it annoying, you'll have to strip these out. 6. Finally you'll need the location of the adfsharebean.jar. We need to pass this on the classpath for APPC so that the ADFConfigLifeCycleCallBack listener can be found. In a more complex app of your own you may need additional classpath entries as well.  Now we're ready to go, and it's a simple matter of applying the information we have gathered into the relevant command line arguments for the utility A Simple CMD File to Run APPC  Here's the stub .cmd file I'm using on Windows to run this. @echo offREM Stub weblogic.appc Runner setlocal set WLS_HOME=C:\builds\WLS_PS4 set ADF_LIB_ROOT=%WLS_HOME%\oracle_common\modulesset COMMON_LIB_ROOT=%WLS_HOME%\wlserver_10.3\common\deployable-libraries set ADF_WEBAPP=%ADF_LIB_ROOT%\oracle.adf.view_11.1.1\adf.oracle.domain.webapp.war set ADF_DOMAIN=%ADF_LIB_ROOT%\oracle.adf.model_11.1.1\adf.oracle.domain.ear set JSTL=%COMMON_LIB_ROOT%\jstl-1.2.war set JSF=%COMMON_LIB_ROOT%\jsf-1.2.war set ADF_SHARE=%ADF_LIB_ROOT%\oracle.adf.share_11.1.1\adfsharembean.jar REM Set up the WebLogic Environment so appc can be found call %WLS_HOME%\wlserver_10.3\server\bin\setWLSEnv.cmd CLS REM Now compile away!java weblogic.appc -verbose -library %ADF_WEBAPP%,%ADF_DOMAIN%,%JSTL%,%JSF% -classpath %ADF_SHARE% %1 endlocal Running the above on a target ADF .ear  file will zip through and create all of the relevant compiled classes inside your nested .war file in the \WEB-INF\classes\jsp_servlet\ directory (but don't take my word for it, run it and take a look!) And So... In the immortal words of  the Pet Shop Boys, Was It Worth It? Well, here's where you'll have to do your own testing. In  my case here, with a simple ADF application, pre-compilation shaved an non-scientific "3 Elephants" off of the initial page load time for the first access of each page. That's a pretty significant payback for such a simple step to add into your CI process, so why not give it a go.

    Read the article

  • Real World Nuget

    - by JoshReuben
    Why Nuget A higher level of granularity for managing references When you have solutions of many projects that depend on solutions of many projects etc à escape from Solution Hell. Links · Using A GUI (Package Explorer) to build packages - http://docs.nuget.org/docs/creating-packages/using-a-gui-to-build-packages · Creating a Nuspec File - http://msdn.microsoft.com/en-us/vs2010trainingcourse_aspnetmvcnuget_topic2.aspx · consuming a Nuget Package - http://msdn.microsoft.com/en-us/vs2010trainingcourse_aspnetmvcnuget_topic3 · Nuspec reference - http://docs.nuget.org/docs/reference/nuspec-reference · updating packages - http://nuget.codeplex.com/wikipage?title=Updating%20All%20Packages · versioning - http://docs.nuget.org/docs/reference/versioning POC Folder Structure POC Setup Steps · Install package explorer · Source o Create a source solution – configure output directory for projects (Project > Properties > Build > Output Path) · Package o Add assemblies to package from output directory (D&D)- add net folder o File > Export – save .nuspec files and lib contents <?xml version="1.0" encoding="utf-16"?> <package > <metadata> <id>MyPackage</id> <version>1.0.0.3</version> <title /> <authors>josh-r</authors> <owners /> <requireLicenseAcceptance>false</requireLicenseAcceptance> <description>My package description.</description> <summary /> </metadata> </package> o File > Save – saves .nupkg file · Create Target Solution o In Tools > Options: Configure package source & Add package Select projects: Output from package manager (powershell console) ------- Installing...MyPackage 1.0.0 ------- Added file 'NugetSource.AssemblyA.dll' to folder 'MyPackage.1.0.0\lib'. Added file 'NugetSource.AssemblyA.pdb' to folder 'MyPackage.1.0.0\lib'. Added file 'NugetSource.AssemblyB.dll' to folder 'MyPackage.1.0.0\lib'. Added file 'NugetSource.AssemblyB.pdb' to folder 'MyPackage.1.0.0\lib'. Added file 'MyPackage.1.0.0.nupkg' to folder 'MyPackage.1.0.0'. Successfully installed 'MyPackage 1.0.0'. Added reference 'NugetSource.AssemblyA' to project 'AssemblyX' Added reference 'NugetSource.AssemblyB' to project 'AssemblyX' Added file 'packages.config'. Added file 'packages.config' to project 'AssemblyX' Added file 'repositories.config'. Successfully added 'MyPackage 1.0.0' to AssemblyX. ============================== o Packages folder created at solution level o Packages.config file generated in each project: <?xml version="1.0" encoding="utf-8"?> <packages>   <package id="MyPackage" version="1.0.0" targetFramework="net40" /> </packages> A local Packages folder is created for package versions installed: Each folder contains the downloaded .nupkg file and its unpacked contents – eg of dlls that the project references Note: this folder is not checked in UpdatePackages o Configure Package Manager to automatically check for updates o Browse packages - It automatically picked up the updates Update Procedure · Modify source · Change source version in assembly info · Build source · Open last package in package explorer · Increment package version number and re-add assemblies · Save package with new version number and export its definition · In target solution – Tools > Manage Nuget Packages – click on All to trigger refresh , then click on recent packages to see updates · If problematic, delete packages folder Versioning uninstall-package mypackage install-package mypackage –version 1.0.0.3 uninstall-package mypackage install-package mypackage –version 1.0.0.4 Dependencies · <?xml version="1.0" encoding="utf-16"?> <package xmlns="http://schemas.microsoft.com/packaging/2012/06/nuspec.xsd"> <metadata> <id>MyDependentPackage</id> <version>1.0.0</version> <title /> <authors>josh-r</authors> <owners /> <requireLicenseAcceptance>false</requireLicenseAcceptance> <description>My package description.</description> <dependencies> <group targetFramework=".NETFramework4.0"> <dependency id="MyPackage" version="1.0.0.4" /> </group> </dependencies> </metadata> </package> Using NuGet without committing packages to source control http://docs.nuget.org/docs/workflows/using-nuget-without-committing-packages Right click on the Solution node in Solution Explorer and select Enable NuGet Package Restore. — Recall that packages folder is not part of solution If you get downloading package ‘Nuget.build’ failed, config proxy to support certificate for https://nuget.org/api/v2/ & allow unrestricted access to packages.nuget.org To test connectivity: get-package –listavailable To test Nuget Package Restore – delete packages folder and open vs as admin. In nugget msbuild: <Import Project="$(SolutionDir)\.nuget\nuget.targets" /> TFSBuild Integration Modify Nuget.Targets file <RestorePackages Condition="  '$(RestorePackages)' == '' "> True </RestorePackages> … <PackageSource Include="\\IL-CV-004-W7D\Packages" /> Add System Environment variable EnableNuGetPackageRestore=true & restart the “visual studio team foundation build service host” service. Important: Ensure Network Service has access to Packages folder Nugetter TFS Build integration Add Nugetter build process templates to TFS source control For Build Controller - Specify location of custom assemblies Generate .nuspec file from Package Explorer: File > Export Edit the file elements – remove path info from src and target attributes <?xml version="1.0" encoding="utf-16"?> <package xmlns="http://schemas.microsoft.com/packaging/2012/06/nuspec.xsd">     <metadata>         <id>Common</id>         <version>1.0.0</version>         <title />         <authors>josh-r</authors>         <owners />         <requireLicenseAcceptance>false</requireLicenseAcceptance>         <description>My package description.</description>         <dependencies>             <group targetFramework=".NETFramework3.5" />         </dependencies>     </metadata>     <files>         <file src="CommonTypes.dll" target="CommonTypes.dll" />         <file src="CommonTypes.pdb" target="CommonTypes.pdb" /> … Add .nuspec file to solution so that it is available for build: Dev\NovaNuget\Common\NuSpec\common.1.0.0.nuspec Add a Build Process Definition based on the Nugetter build process template: Configure the build process – specify: · .sln to build · Base path (output directory) · Nuget.exe file path · .nuspec file path Copy DLLs to a binary folder 1) Set copy local for an assembly reference to false 2)  MSBuild Copy Task – modify .csproj file: http://msdn.microsoft.com/en-us/library/3e54c37h.aspx <ItemGroup>     <MySourceFiles Include="$(MSBuildProjectDirectory)\..\SourceAssemblies\**\*.*" />   </ItemGroup>     <Target Name="BeforeBuild">     <Copy SourceFiles="@(MySourceFiles)" DestinationFolder="bin\debug\SourceAssemblies" />   </Target> 3) Set Probing assembly search path from app.config - http://msdn.microsoft.com/en-us/library/823z9h8w(v=vs.80).aspx -                 <?xml version="1.0" encoding="utf-8" ?> <configuration>   <runtime>     <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">       <probing privatePath="SourceAssemblies"/>     </assemblyBinding>   </runtime> </configuration> Forcing 'copy local = false' The following generic powershell script was added to the packages install.ps1: param($installPath, $toolsPath, $package, $project) if( $project.Object.Project.Name -ne "CopyPackages") { $asms = $package.AssemblyReferences | %{$_.Name} foreach ($reference in $project.Object.References) { if ($asms -contains $reference.Name + ".dll") { $reference.CopyLocal = $false; } } } An empty project named "CopyPackages" was added to the solution - it references all the packages and is the only one set to CopyLocal="true". No MSBuild knowledge required.

    Read the article

  • Book Review: Brownfield Application Development in .NET

    - by DotNetBlues
    I recently finished reading the book Brownfield Application Development in .NET by Kyle Baley and Donald Belcham.  The book is available from Manning.  First off, let me say that I'm a huge fan of Manning as a publisher.  I've found their books to be top-quality, over all.  As a Kindle owner, I also appreciate getting an ebook copy along with the dead tree copy.  I find ebooks to be much more convenient to read, but hard-copies are easier to reference. The book covers, surprisingly enough, working with brownfield applications.  Which is well and good, if that term has meaning to you.  It didn't for me.  Without retreading a chunk of the first chapter, the authors break code bases into three broad categories: greenfield, brownfield, and legacy.  Greenfield is, essentially, new development that hasn't had time to rust and is (hopefully) being approached with some discipline.  Legacy applications are those that are more or less stable and functional, that do not expect to see a lot of work done to them, and are more likely to be replaced than reworked. Brownfield code is the gray (brown?) area between the two and the authors argue, quite effectively, that it is the most likely state for an application to be in.  Brownfield code has, in some way, been allowed to tarnish around the edges and can be difficult to work with.  Although I hadn't realized it, most of the code I've worked on has been brownfield.  Sometimes, there's talk of scrapping and starting over.  Sometimes, the team dismisses increased discipline as ivory tower nonsense.  And, sometimes, I've been the ignorant culprit vexing my future self. The book is broken into two major sections, plus an introduction chapter and an appendix.  The first section covers what the authors refer to as "The Ecosystem" which consists of version control, build and integration, testing, metrics, and defect management.  The second section is on actually writing code for brownfield applications and discusses object-oriented principles, architecture, external dependencies, and, of course, how to deal with these when coming into an existing code base. The ecosystem section is just shy of 140 pages long and brings some real meat to the matter.  The focus on "pain points" immediately sets the tone as problem-solution, rather than academic.  The authors also approach some of the topics from a different angle than some essays I've read on similar topics.  For example, the chapter on automated testing is on just that -- automated testing.  It's all well and good to criticize a project as conflating integration tests with unit tests, but it really doesn't make anyone's life better.  The discussion on testing is more focused on the "right" level of testing for existing projects.  Sometimes, an integration test is the best you can do without gutting a section of functional code.  Even if you can sell other developers and/or management on doing so, it doesn't actually provide benefit to your customers to rewrite code that works.  This isn't to say the authors encourage sloppy coding.  Far from it.  Just that they point out the wisdom of ignoring the sleeping bear until after you deal with the snarling wolf. The other sections take a similarly real-world, workable approach to the pain points they address.  As the section moves from technical solutions like version control and continuous integration (CI) to the softer, process issues of metrics and defect tracking, the authors begin to gently suggest moving toward a zero defect count.  While that really sounds like an unreasonable goal for a lot of ongoing projects, it's quite apparent that the authors have first-hand experience with taming some gruesome projects.  The suggestions are grounded and workable, and the difficulty of some situations is explicitly acknowledged. I have to admit that I started getting bored by the end of the ecosystem section.  No matter how valuable I think a good project manager or business analyst is to a successful ALM, at the end of the day, I'm a gear-head.  Also, while I agreed with a lot of the ecosystem ideas, in theory, I didn't necessarily feel that a lot of the single-developer projects that I'm often involved in really needed that level of rigor.  It's only after reading the sidebars and commentary in the coding section that I had the context for the arguments made in favor of a strong ecosystem supporting the development process.  That isn't to say that I didn't support good product management -- indeed, I've probably pushed too hard, on occasion, for a strong ALM outside of just development.  This book gave me deeper insight into why some corners shouldn't be cut and how damaging certain sins of omission can be. The code section, though, kept me engaged for its entirety.  Many technical books can be used as reference material from day one.  The authors were clear, however, that this book is not one of these.  The first chapter of the section (chapter seven, over all) addresses object oriented (OO) practices.  I've read any number of definitions, discussions, and treatises on OO.  None of the chapter was new to me, but it was a good review, and I'm of the opinion that it's good to review the foundations of what you do, from time to time, so I didn't mind. The remainder of the book is really just about how to apply OOP to existing code -- and, just because all your code exists in classes does not mean that it's object oriented.  That topic has the potential to be extremely condescending, but the authors miraculously managed to never once make me feel like a dolt or that they were wagging their finger at me for my prior sins.  Instead, they continue the "pain points" and problem-solution presentation to give concrete examples of how to apply some pretty academic-sounding ideas.  That's a point worth emphasizing, as my experience with most OO discussions is that they stay in the academic realm.  This book gives some very, very good explanations of why things like the Liskov Substitution Principle exist and why a corporate programmer should even care.  Even if you know, with absolute certainty, that you'll never have to work on an existing code-base, I would recommend this book just for the clarity it provides on OOP. This book goes beyond just theory, or even real-world application.  It presents some methods for fixing problems that any developer can, and probably will, encounter in the wild.  First, the authors address refactoring application layers and internal dependencies.  Then, they take you through those layers from the UI to the data access layer and external dependencies.  Finally, they come full circle to tie it all back to the overall process.  By the time the book is done, you're left with a lot of ideas, but also a reasonable plan to begin to improve an existing project structure. Throughout the book, it's apparent that the authors have their own preferred methodology (TDD and domain-driven design), as well as some preferred tools.  The "Our .NET Toolbox" is something of a neon sign pointing to that latter point.  They do not beat the reader over the head with anything resembling a "One True Way" mentality.  Even for the most emphatic points, the tone is quite congenial and helpful.  With some of the near-theological divides that exist within the tech community, I found this to be one of the more remarkable characteristics of the book.  Although the authors favor tools that might be considered Alt.NET, there is no reason the advice and techniques given couldn't be quite successful in a pure Microsoft shop with Team Foundation Server.  For that matter, even though the book specifically addresses .NET, it could be applied to a Java and Oracle shop, as well.

    Read the article

  • Create Auto Customization Criteria OAF Search Page

    - by PRajkumar
    1. Create a New Workspace and Project Right click Workspaces and click create new OAworkspace and name it as PRajkumarCustSearch. Automatically a new OA Project will also be created. Name the project as CustSearchDemo and package as prajkumar.oracle.apps.fnd.custsearchdemo   2. Create a New Application Module (AM) Right Click on CustSearchDemo > New > ADF Business Components > Application Module Name -- CustSearchAM Package -- prajkumar.oracle.apps.fnd.custsearchdemo.server   3. Enable Passivation for the Root UI Application Module (AM) Right Click on CustSearchAM > Edit SearchAM > Custom Properties > Name – RETENTION_LEVEL Value – MANAGE_STATE Click add > Apply > OK   4. Create Test Table and insert data some data in it (For Testing Purpose)   CREATE TABLE xx_custsearch_demo (   -- ---------------------     -- Data Columns     -- ---------------------     column1                  VARCHAR2(100),     column2                  VARCHAR2(100),     column3                  VARCHAR2(100),     column4                  VARCHAR2(100),     -- ---------------------     -- Who Columns     -- ---------------------     last_update_date    DATE         NOT NULL,     last_updated_by     NUMBER   NOT NULL,     creation_date          DATE         NOT NULL,     created_by               NUMBER   NOT NULL,     last_update_login   NUMBER  );   INSERT INTO xx_custsearch_demo VALUES('v1','v2','v3','v4',SYSDATE,0,SYSDATE,0,0); INSERT INTO xx_custsearch_demo VALUES('v1','v3','v4','v5',SYSDATE,0,SYSDATE,0,0); INSERT INTO xx_custsearch_demo VALUES('v2','v3','v4','v5',SYSDATE,0,SYSDATE,0,0); INSERT INTO xx_custsearch_demo VALUES('v3','v4','v5','v6',SYSDATE,0,SYSDATE,0,0); Now we have 4 records in our custom table   5. Create a New Entity Object (EO) Right click on SearchDemo > New > ADF Business Components > Entity Object Name – CustSearchEO Package -- prajkumar.oracle.apps.fnd.custsearchdemo.schema.server Database Objects -- XX_CUSTSEARCH_DEMO   Note – By default ROWID will be the primary key if we will not make any column to be primary key   Check the Accessors, Create Method, Validation Method and Remove Method   6. Create a New View Object (VO) Right click on CustSearchDemo > New > ADF Business Components > View Object Name -- CustSearchVO Package -- prajkumar.oracle.apps.fnd.custsearchdemo.server   In Step2 in Entity Page select CustSearchEO and shuttle them to selected list   In Step3 in Attributes Window select columns Column1, Column2, Column3, Column4, and shuttle them to selected list   In Java page deselect Generate Java file for View Object Class: CustSearchVOImpl and Select Generate Java File for View Row Class: CustSearchVORowImpl   7. Add Your View Object to Root UI Application Module Select Right click on CustSearchAM > Application Modules > Data Model Select CustSearchVO and shuttle to Data Model list   8. Create a New Page Right click on CustSearchDemo > New > Web Tier > OA Components > Page Name -- CustSearchPG Package -- prajkumar.oracle.apps.fnd.custsearchdemo.webui   9. Select the CustSearchPG and go to the strcuture pane where a default region has been created   10. Select region1 and set the following properties: ID -- PageLayoutRN Region Style -- PageLayout AM Definition -- prajkumar.oracle.apps.fnd.custsearchdemo.server.CustSearchAM Window Title – AutoCustomize Search Page Window Title – AutoCustomization Search Page Auto Footer -- True   11. Add a Query Bean to Your Page Right click on PageLayoutRN > New > Region Select new region region1 and set following properties ID – QueryRN Region Style – query Construction Mode – autoCustomizationCriteria Include Simple Panel – False Include Views Panel – False Include Advanced Panel – False   12. Create a New Region of style table Right Click on QueryRN > New > Region Using Wizard Application Module – prajkumar.oracle.apps.fnd.custsearchdemo.server.CustSearchAM Available View Usages – CustSearchVO1   In Step2 in Region Properties set following properties Region ID – CustSearchTable Region Style – Table   In Step3 in View Attributes shuttle all the items (Column1, Column2, Column3, Column4) available in “Available View Attributes” to Selected View Attributes: In Step4 in Region Items page set style to “messageStyledText” for all items   13. Select CustSearchTable in Structure Panel and set property Width to 100%   14. Include Simple Search Panel Right Click on QueryRN > New > simpleSearchPanel Automatically region2 (header Region) and region1 (MessageComponentLayout Region) created Set Following Properties for region2 Id – SimpleSearchHeader Text -- Simple Search   15. Now right click on message Component Layout Region (SimpleSearchMappings) and create two message text input beans and set the below properties to each   Message TextInputBean1 Id – SearchColumn1 Search Allowed – True Data Type – VARCHAR2 Maximum Length – CSS Class – OraFieldText Prompt – Column1   Message TextInputBean2 Id – SearchColumn2 Search Allowed -- True Data Type – VARCHAR2 Maximum Length – 100 CSS Class – OraFieldText Prompt – Column2   16. Now Right Click on query Components and create simple Search Mappings. Then automatically SimpleSearchMappings and QueryCriteriaMap1 created   17.  Now select the QueryCriteriaMap1 and set the below properties Id – SearchColumn1Map Search Item – SearchColumn1 Result Item – Column1   18. Now again right click on simpleSearchMappings -> New -> queryCriteriaMap, and then set the below properties Id – SearchColumn2Map Search Item – SearchColumn2 Result Item – Column2   19. Congratulation you have successfully finished Auto Customization Search page. Run Your CustSearchPG page and Test Your Work            

    Read the article

  • SQL Server Developer Tools &ndash; Codename Juneau vs. Red-Gate SQL Source Control

    - by Ajarn Mark Caldwell
    So how do the new SQL Server Developer Tools (previously code-named Juneau) stack up against SQL Source Control?  Read on to find out. At the PASS Community Summit a couple of weeks ago, it was announced that the previously code-named Juneau software would be released under the name of SQL Server Developer Tools with the release of SQL Server 2012.  This replacement for Database Projects in Visual Studio (also known in a former life as Data Dude) has some great new features.  I won’t attempt to describe them all here, but I will applaud Microsoft for making major improvements.  One of my favorite changes is the way database elements are broken down.  Previously every little thing was in its own file.  For example, indexes were each in their own file.  I always hated that.  Now, SSDT uses a pattern similar to Red-Gate’s and puts the indexes and keys into the same file as the overall table definition. Of course there are really cool features to keep your database model in sync with the actual source scripts, and the rename refactoring feature is now touted as being more than just a search and replace, but rather a “semantic-aware” search and replace.  Funny, it reminds me of SQL Prompt’s Smart Rename feature.  But I’m not writing this just to criticize Microsoft and argue that they are late to the party with this feature set.  Instead, I do see it as a viable alternative for folks who want all of their source code to be version controlled, but there are a couple of key trade-offs that you need to know about when you choose which tool set to use. First, the basics Both tool sets integrate with a wide variety of source control systems including the most popular: Subversion, GIT, Vault, and Team Foundation Server.  Both tools have integrated functionality to produce objects to upgrade your target database when you are ready (DACPACs in SSDT, integration with SQL Compare for SQL Source Control).  If you regularly live in Visual Studio or the Business Intelligence Development Studio (BIDS) then SSDT will likely be comfortable for you.  Like BIDS, SSDT is a Visual Studio Project Type that comes with SQL Server, and if you don’t already have Visual Studio installed, it will install the shell for you.  If you already have Visual Studio 2010 installed, then it will just add this as an available project type.  On the other hand, if you regularly live in SQL Server Management Studio (SSMS) then you will really enjoy the SQL Source Control integration from within SSMS.  Both tool sets store their database model in script files.  In SSDT, these are on your file system like other source files; in SQL Source Control, these are stored in the folder structure in your source control system, and you can always GET them to your file system if you want to browse them directly. For me, the key differentiating factors are 1) a single, unified check-in, and 2) migration scripts.  How you value those two features will likely make your decision for you. Unified Check-In If you do a continuous-integration (CI) style of development that triggers an automated build with unit testing on every check-in of source code, and you use Visual Studio for the rest of your development, then you will want to really consider SSDT.  Because it is just another project in Visual Studio, it can be added to your existing Solution, and you can then do a complete, or unified single check-in of all changes whether they are application or database changes.  This is simply not possible with SQL Source Control because it is in a different development tool (SSMS instead of Visual Studio) and there is no way to do one unified check-in between the two.  You CAN do really fast back-to-back check-ins, but there is the possibility that the automated build that is triggered from the first check-in will cause your unit tests to fail and the CI tool to report that you broke the build.  Of course, the automated build that is triggered from the second check-in which contains the “other half” of your changes should pass and so the amount of time that the build was broken may be very, very short, but if that is very, very important to you, then SQL Source Control just won’t work; you’ll have to use SSDT. Refactoring and Migrations If you work on a mature system, or on a not-so-mature but also not-so-well-designed system, where you want to refactor the database schema as you go along, but you can’t have data suddenly disappearing from your target system, then you’ll probably want to go with SQL Source Control.  As I wrote previously, there are a number of changes which you can make to your database that the comparison tools (both from Microsoft and Red Gate) simply cannot handle without the possibility (or probability) of data loss.  Currently, SSDT only offers you the ability to inject PRE and POST custom deployment scripts.  There is no way to insert your own script in the middle to override the default behavior of the tool.  In version 3.0 of SQL Source Control (Early Access version now available) you have that ability to create your own custom migration script to take the place of the commands that the tool would have done, and ensure the preservation of your data.  Or, even if the default tool behavior would have worked, but you simply know a better way then you can take control and do things your way instead of theirs. You Decide In the environment I work in, our automated builds are not triggered off of check-ins, but off of the clock (currently once per night) and so there is no point at which the automated build and unit tests will be triggered without having both sides of the development effort already checked-in.  Therefore having a unified check-in, while handy, is not critical for us.  As for migration scripts, these are critically important to us.  We do a lot of new development on systems that have already been in production for years, and it is not uncommon for us to need to do a refactoring of the database.  Because of the maturity of the existing system, that often involves data migrations or other additional SQL tasks that the comparison tools just can’t detect on their own.  Therefore, the ability to create a custom migration script to override the tool’s default behavior is very important to us.  And so, you can see why we will continue to use Red Gate SQL Source Control for the foreseeable future.

    Read the article

  • Building an OpenStack Cloud for Solaris Engineering, Part 1

    - by Dave Miner
    One of the signature features of the recently-released Solaris 11.2 is the OpenStack cloud computing platform.  Over on the Solaris OpenStack blog the development team is publishing lots of details about our version of OpenStack Havana as well as some tips on specific features, and I highly recommend reading those to get a feel for how we've leveraged Solaris's features to build a top-notch cloud platform.  In this and some subsequent posts I'm going to look at it from a different perspective, which is that of the enterprise administrator deploying an OpenStack cloud.  But this won't be just a theoretical perspective: I've spent the past several months putting together a deployment of OpenStack for use by the Solaris engineering organization, and now that it's in production we'll share how we built it and what we've learned so far.In the Solaris engineering organization we've long had dedicated lab systems dispersed among our various sites and a home-grown reservation tool for developers to reserve those systems; various teams also have private systems for specific testing purposes.  But as a developer, it can still be difficult to find systems you need, especially since most Solaris changes require testing on both SPARC and x86 systems before they can be integrated.  We've added virtual resources over the years as well in the form of LDOMs and zones (both traditional non-global zones and the new kernel zones).  Fundamentally, though, these were all still deployed in the same model: our overworked lab administrators set up pre-configured resources and we then reserve them.  Sounds like pretty much every traditional IT shop, right?  Which means that there's a lot of opportunity for efficiencies from greater use of virtualization and the self-service style of cloud computing.  As we were well into development of OpenStack on Solaris, I was recruited to figure out how we could deploy it to both provide more (and more efficient) development and test resources for the organization as well as a test environment for Solaris OpenStack.At this point, let's acknowledge one fact: deploying OpenStack is hard.  It's a very complex piece of software that makes use of sophisticated networking features and runs as a ton of service daemons with myriad configuration files.  The web UI, Horizon, doesn't often do a good job of providing detailed errors.  Even the command-line clients are not as transparent as you'd like, though at least you can turn on verbose and debug messaging and often get some clues as to what to look for, though it helps if you're good at reading JSON structure dumps.  I'd already learned all of this in doing a single-system Grizzly-on-Linux deployment for the development team to reference when they were getting started so I at least came to this job with some appreciation for what I was taking on.  The good news is that both we and the community have done a lot to make deployment much easier in the last year; probably the easiest approach is to download the OpenStack Unified Archive from OTN to get your hands on a single-system demonstration environment.  I highly recommend getting started with something like it to get some understanding of OpenStack before you embark on a more complex deployment.  For some situations, it may in fact be all you ever need.  If so, you don't need to read the rest of this series of posts!In the Solaris engineering case, we need a lot more horsepower than a single-system cloud can provide.  We need to support both SPARC and x86 VM's, and we have hundreds of developers so we want to be able to scale to support thousands of VM's, though we're going to build to that scale over time, not immediately.  We also want to be able to test both Solaris 11 updates and a release such as Solaris 12 that's under development so that we can work out any upgrade issues before release.  One thing we don't have is a requirement for extremely high availability, at least at this point.  We surely don't want a lot of down time, but we can tolerate scheduled outages and brief (as in an hour or so) unscheduled ones.  Thus I didn't need to spend effort on trying to get high availability everywhere.The diagram below shows our initial deployment design.  We're using six systems, most of which are x86 because we had more of those immediately available.  All of those systems reside on a management VLAN and are connected with a two-way link aggregation of 1 Gb links (we don't yet have 10 Gb switching infrastructure in place, but we'll get there).  A separate VLAN provides "public" (as in connected to the rest of Oracle's internal network) addresses, while we use VxLANs for the tenant networks. One system is more or less the control node, providing the MySQL database, RabbitMQ, Keystone, and the Nova API and scheduler as well as the Horizon console.  We're curious how this will perform and I anticipate eventually splitting at least the database off to another node to help simplify upgrades, but at our present scale this works.I had a couple of systems with lots of disk space, one of which was already configured as the Automated Installation server for the lab, so it's just providing the Glance image repository for OpenStack.  The other node with lots of disks provides Cinder block storage service; we also have a ZFS Storage Appliance that will help back-end Cinder in the near future, I just haven't had time to get it configured in yet.There's a separate system for Neutron, which is our Elastic Virtual Switch controller and handles the routing and NAT for the guests.  We don't have any need for firewalling in this deployment so we're not doing so.  We presently have only two tenants defined, one for the Solaris organization that's funding this cloud, and a separate tenant for other Oracle organizations that would like to try out OpenStack on Solaris.  Each tenant has one VxLAN defined initially, but we can of course add more.  Right now we have just a single /24 network for the floating IP's, once we get demand up to where we need more then we'll add them.Finally, we have started with just two compute nodes; one is an x86 system, the other is an LDOM on a SPARC T5-2.  We'll be adding more when demand reaches the level where we need them, but as we're still ramping up the user base it's less work to manage fewer nodes until then.My next post will delve into the details of building this OpenStack cloud's infrastructure, including how we're using various Solaris features such as Automated Installation, IPS packaging, SMF, and Puppet to deploy and manage the nodes.  After that we'll get into the specifics of configuring and running OpenStack itself.

    Read the article

  • parallel_for_each from amp.h – part 1

    - by Daniel Moth
    This posts assumes that you've read my other C++ AMP posts on index<N> and extent<N>, as well as about the restrict modifier. It also assumes you are familiar with C++ lambdas (if not, follow my links to C++ documentation). Basic structure and parameters Now we are ready for part 1 of the description of the new overload for the concurrency::parallel_for_each function. The basic new parallel_for_each method signature returns void and accepts two parameters: a grid<N> (think of it as an alias to extent) a restrict(direct3d) lambda, whose signature is such that it returns void and accepts an index of the same rank as the grid So it looks something like this (with generous returns for more palatable formatting) assuming we are dealing with a 2-dimensional space: // some_code_A parallel_for_each( g, // g is of type grid<2> [ ](index<2> idx) restrict(direct3d) { // kernel code } ); // some_code_B The parallel_for_each will execute the body of the lambda (which must have the restrict modifier), on the GPU. We also call the lambda body the "kernel". The kernel will be executed multiple times, once per scheduled GPU thread. The only difference in each execution is the value of the index object (aka as the GPU thread ID in this context) that gets passed to your kernel code. The number of GPU threads (and the values of each index) is determined by the grid object you pass, as described next. You know that grid is simply a wrapper on extent. In this context, one way to think about it is that the extent generates a number of index objects. So for the example above, if your grid was setup by some_code_A as follows: extent<2> e(2,3); grid<2> g(e); ...then given that: e.size()==6, e[0]==2, and e[1]=3 ...the six index<2> objects it generates (and hence the values that your lambda would receive) are:    (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) So what the above means is that the lambda body with the algorithm that you wrote will get executed 6 times and the index<2> object you receive each time will have one of the values just listed above (of course, each one will only appear once, the order is indeterminate, and they are likely to call your code at the same exact time). Obviously, in real GPU programming, you'd typically be scheduling thousands if not millions of threads, not just 6. If you've been following along you should be thinking: "that is all fine and makes sense, but what can I do in the kernel since I passed nothing else meaningful to it, and it is not returning any values out to me?" Passing data in and out It is a good question, and in data parallel algorithms indeed you typically want to pass some data in, perform some operation, and then typically return some results out. The way you pass data into the kernel, is by capturing variables in the lambda (again, if you are not familiar with them, follow the links about C++ lambdas), and the way you use data after the kernel is done executing is simply by using those same variables. In the example above, the lambda was written in a fairly useless way with an empty capture list: [ ](index<2> idx) restrict(direct3d), where the empty square brackets means that no variables were captured. If instead I write it like this [&](index<2> idx) restrict(direct3d), then all variables in the some_code_A region are made available to the lambda by reference, but as soon as I try to use any of those variables in the lambda, I will receive a compiler error. This has to do with one of the direct3d restrictions, where only one type can be capture by reference: objects of the new concurrency::array class that I'll introduce in the next post (suffice for now to think of it as a container of data). If I write the lambda line like this [=](index<2> idx) restrict(direct3d), all variables in the some_code_A region are made available to the lambda by value. This works for some types (e.g. an integer), but not for all, as per the restrictions for direct3d. In particular, no useful data classes work except for one new type we introduce with C++ AMP: objects of the new concurrency::array_view class, that I'll introduce in the post after next. Also note that if you capture some variable by value, you could use it as input to your algorithm, but you wouldn’t be able to observe changes to it after the parallel_for_each call (e.g. in some_code_B region since it was passed by value) – the exception to this rule is the array_view since (as we'll see in a future post) it is a wrapper for data, not a container. Finally, for completeness, you can write your lambda, e.g. like this [av, &ar](index<2> idx) restrict(direct3d) where av is a variable of type array_view and ar is a variable of type array - the point being you can be very specific about what variables you capture and how. So it looks like from a large data perspective you can only capture array and array_view objects in the lambda (that is how you pass data to your kernel) and then use the many threads that call your code (each with a unique index) to perform some operation. You can also capture some limited types by value, as input only. When the last thread completes execution of your lambda, the data in the array_view or array are ready to be used in the some_code_B region. We'll talk more about all this in future posts… (a)synchronous Please note that the parallel_for_each executes as if synchronous to the calling code, but in reality, it is asynchronous. I.e. once the parallel_for_each call is made and the kernel has been passed to the runtime, the some_code_B region continues to execute immediately by the CPU thread, while in parallel the kernel is executed by the GPU threads. However, if you try to access the (array or array_view) data that you captured in the lambda in the some_code_B region, your code will block until the results become available. Hence the correct statement: the parallel_for_each is as-if synchronous in terms of visible side-effects, but asynchronous in reality.   That's all for now, we'll revisit the parallel_for_each description, once we introduce properly array and array_view – coming next. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • SOA Suite Integration: Part 3: Loading files

    - by Anthony Shorten
    One of the most common scenarios in SOA Integration is the loading of a file into the product from an external source. In Oracle SOA Suite there is a File Adapter that can process many file types into your BPEL process. For this example I will use the File Adapter to load a file of user and emails to update the user object within the Oracle Utilities Application Framework. Remember you can repeat this process with other objects and other file types. Again I am illustrating the ease of integration. The first thing is to create an empty BPEL process that will hold our flow. In Oracle JDeveloper this can be achieved by specifying the Define Service Later template (as other templates have predefined inputs and outputs and in this case we want to specify those). So I will create simpleFileLoad process to house our process. You will start with an empty canvas so you need to first specify the load part of the process using the File Adapter. Select the File Adapter from the Component Palette under BPEL Services and drag and drop it to the left side Partner Links (left is input). You name the Service. In this case I chose LoadFile. Press Next. We will define the interface as part of the wizard so select Define from operation and schema (specified later). Press Next. We are going to choose Read File to denote that we will read the file and specify the default Operation Name as Read. Press Next. The next step is to tell the Adapter the location of the files, how to process them and what to do with them after they have been processed. I am using hardcoded locations in this example but you can have logical locations as well. Press Next. I am now going to tell the adapter how to recognize the files I want to load. In my case I am using CSV files and more importantly I am tell the adapter to run the process for each record in the file it encounters. Press Next. Now, I tell the adapter how often I want to poll for the files. I have taken the defaults. Press Next. At this stage I have no explanation of the format of the input. So I am going to invoke the Native Format Wizard which will guide me through the process of creating the file input format. Clicking the purple cog icon will start the wizard. After an introduction screen (not shown), you specify the format of the input file. The File Adapter supports multiple format types. For this example, I will use Delimited as I am going to load a CSV file. Press Next. The best way for the wizard to work is with a sample. I have a sample file and the wizard will ask how much of the file to use as a template. I will use the defaults. Note: If you are using a language that has other languages other than US-ASCII, it is at this point you specify the character set to use.  Press Next. The sample contains multiple instances of a single record type. The wizard supports complex types as well. We will use the appropriate setting for our file. Press Next. You have to specify the file element and the record element. This will be used by the input wizard to translate the CSV data into an XML structure (this will make sense later). I am using LoadUsers as my file delimiter (root element) and User Record as my record root element. Press Next. As the file is CSV the delimiter is "," so I will also specify that the End Of Line (EOL) indicator indicates the end of a record. Press Next. Up until this point your have not given the columns their names. In my case my sample includes the column names in the first record. This is not always the case but you can specify the names and formats of columns in this dialog (not shown). Press Next. The wizard now generates the schema for the input file. You can specify a name for the schema. I have used userupdate.xsd. We want to verify the schema so press Test. You can test the schema by specifying an input sample. and pressing the green play button. You will see the delimiters you specified earlier for the file and the records. Press Ok to continue. A confirmation screen will be displayed showing you the location of the schema in your project. Press Finish to return to the File Adapter configuration. You will now see the schema and elements prepopulated from the wizard. Press Next. The File Adapter configuration is now complete. Press Finish. Now you need to receive the input from the LoadFile component so we need to place a Receive node in the BPEL process by drag and dropping the Receive component from the Component Palette under BPEL Constructs onto the BPEL process. We link the receive process with the LoadFile component by dragging the left most connect node of the Receive node to the LoadFile component. Once the link is established you need to name the Receive node appropriately and as in the post of the last part of this series you need to generate input variables for the BPEL process to hold the input records in. You need to now add the product Web Service. The process is the same as described in the post of the last part of this series. You drop the Web Service BPEL Service onto the right side of the process and fill in the details of the WSDL URL . You also have to add an Invoke node to call the service and generate the input and outputs variables for the call in the Invoke node. Now, to get the inputs from File to the service. You have to use a Transform (you can use an Assign action but a Transform action is more flexible). You drag and drop the Transform component from the Component Palette under Oracle Extensions and place it between the Receive and Invoke nodes. We name the Transform Node, Mapper File and associate the source of the mapping the schema from the Receive node and the output will be the input variable from the Invoke node. We now build the transform. We first map the user and email attributes by drag and drop the elements from the left to the right. The reason we needed to use the transform is that we will be telling the AS-User service that we want to issue an update action. Remember when we registered the service we actually used Read as the default. If we do not otherwise inform the service to use the Update action it will use the Read action instead (which is not desired). To specify the update action you need to click on the transactionType node on the right and select Set Text to set the action. You need to specify the transactionType of UPD (for update). The mapping is now complete. The final BPEL process is ready for deployment. You then deploy the BPEL process to the server and to test the service by simply dropping a file, in the same pattern/name as you specified, in the directory you specified in the File Adapter. You will see each record as a separate instance entry in the Fusion Middleware Control console. You can now load files into the product. You can repeat this process for each type of file to process. While this was a simple example it illustrates the method of loading data can be achieved using SOA Suite in conjunction with our products.

    Read the article

  • Lambda&rsquo;s for .NET made easy&hellip;

    - by mbcrump
    The purpose of my blog is to explain things for a beginner to intermediate c# programmer. I’ve seen several blog post that use lambda expressions always assuming the audience is familiar with them. The purpose of this post is to make them simple and easily understood. Let’s begin with a definition. A lambda expression is an anonymous function that can contain expressions and statements, and can be used to create delegates or expression tree types. So anonymous function… delegates or expression tree types? I don’t get it??? Confused yet?   Lets break this into a few definitions and jump right into the code. anonymous function – is an "inline" statement or expression that can be used wherever a delegate type is expected. delegate - is a type that references a method. Once a delegate is assigned a method, it behaves exactly like that method. The delegate method can be used like any other method, with parameters and a return value. Expression trees - represent code in a tree-like data structure, where each node is an expression, for example, a method call or a binary operation such as x < y.   Don’t worry if this still sounds confusing, lets jump right into the code with a simple 3 line program. We are going to use a Function Delegate (all you need to remember is that this delegate returns a value.) Lambda expressions are used most commonly with the Func and Action delegates, so you will see an example of both of these. Lambda Expression 3 lines. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             Func<int, int> myfunc = x => x *x;             Console.WriteLine(myfunc(6).ToString());             Console.ReadLine();         }       } } Is equivalent to Old way of doing it. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {               Console.WriteLine(myFunc(6).ToString());             Console.ReadLine();         }            static int myFunc(int x)          {              return x * x;            }       } } In the example, there is a single parameter, x, and the expression is x*x. I’m going to stop here to make sure you are still with me. A lambda expression is an unnamed method written in place of a delegate instance. In other words, the compiler converts the lambda expression to either a : A delegate instance An expression tree All lambda have the following form: (parameters) => expression or statement block Now look back to the ones we have created. It should start to sink in. Don’t get stuck on the => form, use it as an identifier of a lambda. A Lamba expression can also be written in the following form: Lambda Expression. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             Func<int, int> myFunc = x =>             {                 return x * x;             };               Console.WriteLine(myFunc(6).ToString());             Console.ReadLine();         }       } } This form may be easier to read but consumes more space. Lets try an Action delegate – this delegate does not return a value. Action Delegate example. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             Action<string> myAction = (string x) => { Console.WriteLine(x); };             myAction("michael has made this so easy");                                   Console.ReadLine();         }       } } Lambdas can also capture outer variables (such as the example below) A lambda expression can reference the local variables and parameters of the method in which it’s defined. Outer variables referenced by a lambda expression are called captured variables. Capturing Outer Variables using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             string mike = "Michael";             Action<string> myAction = (string x) => {                 Console.WriteLine("{0}{1}", mike, x);          };             myAction(" has made this so easy");                                   Console.ReadLine();         }       } } Lamba’s can also with a strongly typed list to loop through a collection.   Used w a strongly typed list. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             List<string> list = new List<string>() { "1", "2", "3", "4" };             list.ForEach(s => Console.WriteLine(s));             Console.ReadLine();         }       } } Outputs: 1 2 3 4 I think this will get you started with Lambda’s, as always consult the MSDN documentation for more information. Still confused? Hopefully you are not.

    Read the article

  • “It’s only test code…”

    - by Chris George
    “Let me hack this in, it’s only test code”, “Don’t worry about getting it reviewed, it’s only test code”, “It doesn’t have to be elegant or efficient, it’s only test code”… do these phrases sound familiar? Chances are if you’ve working with test automation, at one point or other you will have heard these phrases, you have probably even used them yourself! What is certain is that code written under this “it’s only test code” mantra will come back and bite you in the arse! I’ve recently encountered a case where a test was giving a false positive, therefore hiding a real product bug because that test code was very badly written. Firstly it was very difficult to understand what the test was actually trying to achieve let alone how it was doing it, and this complexity masked a simple logic error. These issues are real and they do happen. Let’s take a step back from this and look at what we are trying to do. We are writing test code that tests product code, and we do this to create a suite of tests that will help protect our software against regressions. This test code is making sure that the product behaves as it should by employing some sort of expected result verification. The simple cases of these are generally not a problem. However, automation allows us to explore more complex scenarios in many more permutations. As this complexity increases then so does the complexity of the test code. It is at this point that code which has not been architected properly will cause problems.   Keep your friends close… So, how do we make sure we are doing it right? The development teams I have worked on have always had Test Engineers working very closely with their Software Engineers. This is something that I have always tried to take full advantage of. They are coding experts! So run your ideas past them, ask for advice on how to structure your code, help you design your data structures. This may require a shift in your teams viewpoint, as contrary to this section title and folklore, Software Engineers are not actually the mortal enemy of Test Engineers. As time progresses, and test automation becomes more and more ingrained in what we do, the two roles are converging more than ever. Over the 16 years I have spent as a Test Engineer, I have seen the grey area between the two roles grow significantly larger. This serves to strengthen the relationship and common bond between the two roles which helps to make test code activities so much easier!   Pair for the win Possibly the best thing you could do to write good test code is to pair program on the task. This will serve a few purposes. you will get the benefit of the Software Engineers knowledge and experience the Software Engineer will gain knowledge on the testing process. Sharing the love is a wonderful thing! two pairs of eyes are always better than one… And so are two brains. Between the two of you, I will guarantee you will derive more useful test cases than if it was just one of you.   Code reviews Another policy which certainly pays dividends is the practice of code reviews. By having one of your peers review your code before you commit it serves two purposes. Firstly, it forces you to explain your code. Just the act of doing this will often pick up errors in your code. Secondly, it gets yet another pair of eyes on your code! I cannot stress enough how important code reviews are. The benefits they offer apply as much to product code as test code. In short, Software and Test Engineers should all be doing them! It can be extended even further by getting test code reviewed by a Software Engineer and a Test Engineer, and likewise product code. This serves to keep both functions in the loop with changes going on within your code base.   Learn from your devs I briefly touched on this earlier but I’d like to go into more detail here. Pairing with your Software Engineers when writing your test code is such an amazing opportunity to improve your coding skills. As I sit here writing this article waiting to be called into court for jury service, it reminds me that it takes a lot of patience to be a Test Engineer, almost as much as it takes to be a juror! However tempting it is to go rushing in and start writing your automated tests, resist that urge. Discuss what you want to achieve then talk through the approach you’re going to take. Then code it up together. I find it really enlightening to ask questions like ‘is there a better way to do this?’ Or ‘is this how you would code it?’ The latter question, especially, is where I learn the most. I’ve found that most Software Engineers will be reluctant to show you the ‘right way’ to code something when writing tests because they perceive the ‘right way’ to be too complicated for the Test Engineer (e.g. not mentioning LINQ and instead doing something verbose). So by asking how THEY would code it, it unleashes their true dev-ness and advanced code usually ensues! I would like to point out, however, that you don’t have to accept their method as the final answer. On numerous occasions I have opted for the more simple/verbose solution because I found the code written by the Software Engineer too advanced and therefore I would find it unreadable when I return to the code in a months’ time! Always keep the target audience in mind when writing clever code, and in my case that is mostly Test Engineers.  

    Read the article

  • Restoring databases to a set drive and directory

    - by okeofs
     Restoring databases to a set drive and directory Introduction Often people say that necessity is the mother of invention. In this case I was faced with the dilemma of having to restore several databases, with multiple ‘ndf’ files, and having to restore them with different physical file names, drives and directories on servers other than the servers from which they originated. As most of us would do, I went to Google to see if I could find some code to achieve this task and found some interesting snippets on Pinal Dave’s website. Naturally, I had to take it further than the code snippet, HOWEVER it was a great place to start. Creating a temp table to hold database file details First off, I created a temp table which would hold the details of the individual data files within the database. Although there are a plethora of fields (within the temp table below), I utilize LogicalName only within this example. The temporary table structure may be seen below:   create table #tmp ( LogicalName nvarchar(128)  ,PhysicalName nvarchar(260)  ,Type char(1)  ,FileGroupName nvarchar(128)  ,Size numeric(20,0)  ,MaxSize numeric(20,0), Fileid tinyint, CreateLSN numeric(25,0), DropLSN numeric(25, 0), UniqueID uniqueidentifier, ReadOnlyLSN numeric(25,0), ReadWriteLSN numeric(25,0), BackupSizeInBytes bigint, SourceBlocSize int, FileGroupId int, LogGroupGUID uniqueidentifier, DifferentialBaseLSN numeric(25,0), DifferentialBaseGUID uniqueidentifier, IsReadOnly bit, IsPresent bit,  TDEThumbPrint varchar(50) )    We now declare and populate a variable(@path), setting the variable to the path to our SOURCE database backup. declare @path varchar(50) set @path = 'P:\DATA\MYDATABASE.bak'   From this point, we insert the file details of our database into the temp table. Note that we do so by utilizing a restore statement HOWEVER doing so in ‘filelistonly’ mode.   insert #tmp EXEC ('restore filelistonly from disk = ''' + @path + '''')   At this point, I depart from what I gleaned from Pinal Dave.   I now instantiate a few more local variables. The use of each variable will be evident within the cursor (which follows):   Declare @RestoreString as Varchar(max) Declare @NRestoreString as NVarchar(max) Declare @LogicalName  as varchar(75) Declare @counter as int Declare @rows as int set @counter = 1 select @rows = COUNT(*) from #tmp  -- Count the number of records in the temp                                    -- table   Declaring and populating the cursor At this point I do realize that many people are cringing about the use of a cursor. Being an Oracle professional as well, I have learnt that there is a time and place for cursors. I would remind the reader that the data that will be read into the cursor is from a local temp table and as such, any locking of the records (within the temp table) is not really an issue.   DECLARE MY_CURSOR Cursor  FOR  Select LogicalName  From #tmp   Parsing the logical names from within the cursor. A small caveat that works in our favour,  is that the first logical name (of our database) is the logical name of the primary data file (.mdf). Other files, except for the very last logical name, belong to secondary data files. The last logical name is that of our database log file.   I now open my cursor and populate the variable @RestoreString Open My_Cursor  set @RestoreString =  'RESTORE DATABASE [MYDATABASE] FROM DISK = N''P:\DATA\ MYDATABASE.bak''' + ' with  '   We now fetch the first record from the temp table.   Fetch NEXT FROM MY_Cursor INTO @LogicalName   While there are STILL records left within the cursor, we dynamically build our restore string. Note that we are using concatenation to create ‘one big restore executable string’.   Note also that the target physical file name is hardwired, as is the target directory.   While (@@FETCH_STATUS <> -1) BEGIN IF (@@FETCH_STATUS <> -2) -- As long as there are no rows missing select @RestoreString = case  when @counter = 1 then -- This is the mdf file    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.mdf' + '''' + ', '   -- OK, if it passes through here we are dealing with an .ndf file -- Note that Counter must be greater than 1 and less than the number of rows.   when @counter > 1 and @counter < @rows then -- These are the ndf file(s)    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.ndf' + '''' + ', '   -- OK, if it passes through here we are dealing with the log file When @LogicalName like '%log%' then    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.ldf' +'''' end --Increment the counter   set @counter = @counter + 1 FETCH NEXT FROM MY_CURSOR INTO @LogicalName END   At this point we have populated the varchar(max) variable @RestoreString with a concatenation of all the necessary file names. What we now need to do is to run the sp_executesql stored procedure, to effect the restore.   First, we must place our ‘concatenated string’ into an nvarchar based variable. Obviously this will only work as long as the length of @RestoreString is less than varchar(max) / 2.   set @NRestoreString = @RestoreString EXEC sp_executesql @NRestoreString   Upon completion of this step, the database should be restored to the server. I now close and deallocate the cursor, and to be clean, I would also drop my temp table.   CLOSE MY_CURSOR DEALLOCATE MY_CURSOR GO   Conclusion Restoration of databases on different servers with different physical names and on different drives are a fact of life. Through the use of a few variables and a simple cursor, we may achieve an efficient and effective way to achieve this task.

    Read the article

  • MVC Razor Engine For Beginners Part 1

    - by Humprey Cogay, C|EH, E|CSA
    I. What is MVC? a. http://www.asp.net/mvc/tutorials/older-versions/overview/asp-net-mvc-overview II. Software Requirements for this tutorial a. Visual Studio 2010/2012. You can get your free copy here Microsoft Visual Studio 2012 b. MVC Framework Option 1 - Install using a standalone installer http://www.microsoft.com/en-us/download/details.aspx?id=30683 Option 2 - Install using Web Platform Installer http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MVC4VS2010_Loc III. Creating your first MVC4 Application a. On the Visual Studio click file new solution link b. Click Other Project Type>Visual Studio Solutions and on the templates window select blank solution and let us name our solution MVCPrimer. c. Now Click File>New and select Project d. Select Visual C#>Web> and select ASP.NET MVC 4 Web Application and Enter MyWebSite as Name e. Select Empty, Razor as view engine and uncheck Create a Unit test project f. You can now view a basic MVC 4 Application Structure on your solution explorer g. Now we will add our first controller by right clicking on the controllers folder on your solution explorer and select Add>Controller h. Change the name of the controller to HomeController and under the scaffolding options select Empty MVC Controller. i. You will now see a basic controller with an Index method that returns an ActionResult j. We will now add a new View Folder for our Home Controller. Right click on the views folder on your solution explorer and select Add> New Folder> and name this folder Home k. Add a new View by right clicking on Views>Home Folder and select Add View. l. Name the view Index, and select Razor(CSHTML) as View Engine, All checkbox should be unchecked for now and click add. m. Relationship between our HomeController and Home Views Sub Folder n. Add new HTML Contents to our newly created Index View o. Press F5 to run our MVC Application p. We will create our new model, Right click on the models folder of our solution explorer and select Add> Class. q. Let us name our class Customer r. Edit the Customer class with the following code s. Open the HomeController by double clickin HomeController of our Controllers folder and edit the HomeControllerusing System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Mvc;   namespace MyWebSite.Controllers {     public class HomeController : Controller     {         //         // GET: /Home/           public ActionResult Index()         {             return View();         }           public ActionResult ListCustomers()         {             List<Models.Customer> customers = new List<Models.Customer>();               //Add First Customer to Our Collection             customers.Add(new Models.Customer()                     {                         Id = 1,                         CompanyName = "Volvo",                         ContactNo = "123-0123-0001",                         ContactPerson = "Gustav Larson",                         Description = "Volvo Car Corporation, or Volvo Personvagnar AB, is a Scandinavian automobile manufacturer founded in 1927"                     });                 //Add Second Customer to Our Collection             customers.Add(new Models.Customer()                     {                         Id = 2,                         CompanyName = "BMW",                         ContactNo = "999-9876-9898",                         ContactPerson = "Franz Josef Popp",                         Description = "Bayerische Motoren Werke AG,  (BMW; English: Bavarian Motor Works) is a " +                                       "German automobile, motorcycle and engine manufacturing company founded in 1917. "                     });                 //Add Third Customer to Our Collection             customers.Add(new Models.Customer()             {                 Id = 3,                 CompanyName = "Audi",                 ContactNo = "983-2222-1212",                 ContactPerson = "Karl Benz",                 Description = " is a multinational division of the German manufacturer Daimler AG,"             });               return View(customers);         }     } } t. Let us now create a view for this Class, But before continuing Press Ctrl + Shift + B to rebuild the solution, this will make the previously created model on the Model class drop down of the Add View Menu. Right click on the views>Home folder and select Add>View u. Let us name our View as ListCustomers, Select Razor(CSHTML) as View Engine, Put a check mark on Create a strongly-typed view, and select Customer (MyWebSite.Models) as model class. Slect List on the Scaffold Template and Click OK. v. Run the MVC Application by pressing F5, and on the address bar insert Home/ListCustomers, We should now see a web page similar below.   x. You can edit ListCustomers.CSHTML to remove and add HTML codes @model IEnumerable<MyWebSite.Models.Customer>   @{     Layout = null; }   <!DOCTYPE html>   <html> <head>     <meta name="viewport" content="width=device-width" />     <title>ListCustomers</title> </head> <body>     <h2>List of Customers</h2>     <table border="1">         <tr>             <th>                 @Html.DisplayNameFor(model => model.CompanyName)             </th>             <th>                 @Html.DisplayNameFor(model => model.Description)             </th>             <th>                 @Html.DisplayNameFor(model => model.ContactPerson)             </th>             <th>                 @Html.DisplayNameFor(model => model.ContactNo)             </th>         </tr>         @foreach (var item in Model) {         <tr>             <td>                 @Html.DisplayFor(modelItem => item.CompanyName)             </td>             <td>                 @Html.DisplayFor(modelItem => item.Description)             </td>             <td>                 @Html.DisplayFor(modelItem => item.ContactPerson)             </td>             <td>                 @Html.DisplayFor(modelItem => item.ContactNo)             </td>                   </tr>     }         </table> </body> </html> y. Press F5 to run the MVC Application   z. You will notice some @HTML.DisplayFor codes. These are called HTML Helpers you can read more about HTML Helpers on this site http://www.w3schools.com/aspnet/mvc_htmlhelpers.asp   That’s all. You now have your first MVC4 Razor Engine Web Application . . .

    Read the article

  • Different Not Automatically Implies Better

    - by Alois Kraus
    Originally posted on: http://geekswithblogs.net/akraus1/archive/2013/11/05/154556.aspxRecently I was digging deeper why some WCF hosted workflow application did consume quite a lot of memory although it did basically only load a xaml workflow. The first tool of choice is Process Explorer or even better Process Hacker (has more options and the best feature copy&paste does work). The three most important numbers of a process with regards to memory are Working Set, Private Working Set and Private Bytes. Working set is the currently consumed physical memory (parts can be shared between processes e.g. loaded dlls which are read only) Private Working Set is the physical memory needed by this process which is not shareable Private Bytes is the number of non shareable which is only visible in the current process (e.g. all new, malloc, VirtualAlloc calls do create private bytes) When you have a bigger workflow it can consume under 64 bit easily 500MB for a 1-2 MB xaml file. This does not look very scalable. Under 64 bit the issue is excessive private bytes consumption and not the managed heap. The picture is quite different for 32 bit which looks a bit strange but it seems that the hosted VB compiler is a lot less memory hungry under 32 bit. I did try to repro the issue with a medium sized xaml file (400KB) which does contain 1000 variables and 1000 if which can be represented by C# code like this: string Var1; string Var2; ... string Var1000; if (!String.IsNullOrEmpty(Var1) ) { Console.WriteLine(“Var1”); } if (!String.IsNullOrEmpty(Var2) ) { Console.WriteLine(“Var2”); } ....   Since WF is based on VB.NET expressions you are bound to the hosted VB.NET compiler which does result in (x64) 140 MB of private bytes which is ca. 140 KB for each if clause which is quite a lot if you think about the actually present functionality. But there is hope. .NET 4.5 does allow now C# expressions for WF which is a major step forward for all C# lovers. I did create some simple patcher to “cross compile” my xaml to C# expressions. Lets look at the result: C# Expressions VB Expressions x86 x86 On my home machine I have only 32 bit which gives you quite exactly half of the memory consumption under 64 bit. C# expressions are 10 times more memory hungry than VB.NET expressions! I wanted to do more with less memory but instead it did consume a magnitude more memory. That is surprising to say the least. The workflow does initialize in about the same time under x64 and x86 where the VB code does it in 2s whereas the C# version needs 18s. Also nearly ten times slower. That is a too high price to pay for any bigger sized xaml workflow to convert from VB.NET to C# expressions. If I do reduce the number of expressions to 500 then it does need 400MB which is about half of the memory. It seems that the cost per if does rise linear with the number of total expressions in a xaml workflow.  Expression Language Cost per IF Startup Time C# 1000 Ifs x64 1,5 MB 18s C# 500 Ifs x64 750 KB 9s VB 1000 Ifs x64 140 KB 2s VB 500 Ifs x64 70 KB 1s Now we can directly compare two MS implementations. It is clear that the VB.NET compiler uses the same underlying structure but it has much higher offset compared to the highly inefficient C# expression compiler. I have filed a connect bug here with a harsher wording about recent advances in memory consumption. The funniest thing is that one MS employee did give an Azure AppFabric demo around early 2011 which was so slow that he needed to investigate with xperf. He was after startup time and the call stacks with regards to VB.NET expression compilation were remarkably similar. In fact I only found this post by googling for parts of my call stacks. … “C# expressions will be coming soon to WF, and that will have different performance characteristics than VB” … What did he know Jan 2011 what I did no know until today? ;-). He knew that C# expression will come but that they will not be automatically have better footprint. It is about time to fix that. In its current state C# expressions are not usable for bigger workflows. That also explains the headline for today. You can cheat startup time by prestarting workflows so that the demo looks nice and snappy but it does hurt scalability a lot since you do need much more memory than necessary. I did find the stacks by enabling virtual allocation tracking within XPerf which is still the best tool out there. But first you need to look at your process to check where the memory is hiding: For the C# Expression compiler you do not need xperf. You can directly dump the managed heap and check with a profiler of your choice. But if the allocations are happening on the Private Data ( VirtualAlloc ) you can find it with xperf. There is a nice video on channel 9 explaining VirtualAlloc tracking it in greater detail. If your data allocations are on the Heap it does mean that the C/C++ runtime did create a heap for you where all malloc, new calls do allocate from it. You can enable heap tracing with xperf and full call stack support as well which is doable via xperf like it is shown also on channel 9. Or you can use WPRUI directly: To make “Heap Usage” it work you need to set for your executable the tracing flags (before you start it). For example devenv.exe HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\devenv.exe DWORD TracingFlags 1 Do not forget to disable it after you did complete profiling the process or it will impact the startup time quite a lot. You can with xperf attach directly to a running process and collect heap allocation information from a gone wild process. Very handy if you need to find out what a process was doing which has arrived in a funny state. “VirtualAlloc usage” does work without explicitly enabling stuff for a specific process and is always on machine wide. I had issues on my Windows 7 machines with the call stack collection and the latest Windows 8.1 Performance Toolkit. I was told that WPA from Windows 8.0 should work fine but I do not want to downgrade.

    Read the article

  • OpenGL loading functions error [on hold]

    - by Ghilliedrone
    I'm new to OpenGL, and I bought a book on it for beginners. I finished writing the sample code for making a context/window. I get an error on this line at the part PFNWGLCREATECONTEXTATTRIBSARBPROC, saying "Error: expected a ')'": typedef HGLRC(APIENTRYP PFNWGLCREATECONTEXTATTRIBSARBPROC)(HDC, HGLRC, const int*); Replacing it or adding a ")" makes it error, but the error disappears when I use the OpenGL headers included in the books CD, which are OpenGL 3.0. I would like a way to make this work with the newest gl.h/wglext.h and without libraries. Here's the rest of the class if it's needed: #include <ctime> #include <windows.h> #include <iostream> #include <gl\GL.h> #include <gl\wglext.h> #include "Example.h" #include "GLWindow.h" typedef HGLRC(APIENTRYP PFNWGLCREATECONTEXTATTRIBSARBPROC)(HDC, HGLRC, const int*); PFNWGLCREATECONTEXTATTRIBSARBPROC wglCreateContextAttribsARB = NULL; bool GLWindow::create(int width, int height, int bpp, bool fullscreen) { DWORD dwExStyle; //Window Extended Style DWORD dwStyle; //Window Style m_isFullscreen = fullscreen;//Store the fullscreen flag m_windowRect.left = 0L; m_windowRect.right = (long)width; m_windowRect.top = 0L; m_windowRect.bottom = (long)height;//Set bottom to height // fill out the window class structure m_windowClass.cbSize = sizeof(WNDCLASSEX); m_windowClass.style = CS_HREDRAW | CS_VREDRAW; m_windowClass.lpfnWndProc = GLWindow::StaticWndProc; //We set our static method as the event handler m_windowClass.cbClsExtra = 0; m_windowClass.cbWndExtra = 0; m_windowClass.hInstance = m_hinstance; m_windowClass.hIcon = LoadIcon(NULL, IDI_APPLICATION); // default icon m_windowClass.hCursor = LoadCursor(NULL, IDC_ARROW); // default arrow m_windowClass.hbrBackground = NULL; // don't need background m_windowClass.lpszMenuName = NULL; // no menu m_windowClass.lpszClassName = (LPCWSTR)"GLClass"; m_windowClass.hIconSm = LoadIcon(NULL, IDI_WINLOGO); // windows logo small icon if (!RegisterClassEx(&m_windowClass)) { MessageBox(NULL, (LPCWSTR)"Failed to register window class", NULL, MB_OK); return false; } if (m_isFullscreen)//If we are fullscreen, we need to change the display { DEVMODE dmScreenSettings; //Device mode memset(&dmScreenSettings, 0, sizeof(dmScreenSettings)); dmScreenSettings.dmSize = sizeof(dmScreenSettings); dmScreenSettings.dmPelsWidth = width; //Screen width dmScreenSettings.dmPelsHeight = height; //Screen height dmScreenSettings.dmBitsPerPel = bpp; //Bits per pixel dmScreenSettings.dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT; if (ChangeDisplaySettings(&dmScreenSettings, CDS_FULLSCREEN) != DISP_CHANGE_SUCCESSFUL) { MessageBox(NULL, (LPCWSTR)"Display mode failed", NULL, MB_OK); m_isFullscreen = false; } } if (m_isFullscreen) //Is it fullscreen? { dwExStyle = WS_EX_APPWINDOW; //Window Extended Style dwStyle = WS_POPUP; //Windows Style ShowCursor(false); //Hide mouse pointer } else { dwExStyle = WS_EX_APPWINDOW | WS_EX_WINDOWEDGE; //Window Exteneded Style dwStyle = WS_OVERLAPPEDWINDOW; //Windows Style } AdjustWindowRectEx(&m_windowRect, dwStyle, false, dwExStyle); //Adjust window to true requested size //Class registered, so now create window m_hwnd = CreateWindowEx(NULL, //Extended Style (LPCWSTR)"GLClass", //Class name (LPCWSTR)"Chapter 2", //App name dwStyle | WS_CLIPCHILDREN | WS_CLIPSIBLINGS, 0, 0, //x, y coordinates m_windowRect.right - m_windowRect.left, m_windowRect.bottom - m_windowRect.top, //Width and height NULL, //Handle to parent NULL, //Handle to menu m_hinstance, //Application instance this); //Pass a pointer to the GLWindow here //Check if window creation failed, hwnd would equal NULL if (!m_hwnd) { return 0; } m_hdc = GetDC(m_hwnd); ShowWindow(m_hwnd, SW_SHOW); UpdateWindow(m_hwnd); m_lastTime = GetTickCount() / 1000.0f; return true; } LRESULT CALLBACK GLWindow::StaticWndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { GLWindow* window = nullptr; //If this is the create message if (uMsg == WM_CREATE) { //Get the pointer we stored during create window = (GLWindow*)((LPCREATESTRUCT)lParam)->lpCreateParams; //Associate the window pointer with the hwnd for the other events to access SetWindowLongPtr(hWnd, GWL_USERDATA, (LONG_PTR)window); } else { //If this is not a creation event, then we should have stored a pointer to the window window = (GLWindow*)GetWindowLongPtr(hWnd, GWL_USERDATA); if (!window) { //Do the default event handling return DefWindowProc(hWnd, uMsg, wParam, lParam); } } //Call our window's member WndProc(allows us to access member variables) return window->WndProc(hWnd, uMsg, wParam, lParam); } LRESULT GLWindow::WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch (uMsg) { case WM_CREATE: { m_hdc = GetDC(hWnd); setupPixelFormat(); //Set the version that we want, in this case 3.0 int attribs[] = { WGL_CONTEXT_MAJOR_VERSION_ARB, 3, WGL_CONTEXT_MINOR_VERSION_ARB, 0, 0}; //Create temporary context so we can get a pointer to the function HGLRC tmpContext = wglCreateContext(m_hdc); //Make the context current wglMakeCurrent(m_hdc, tmpContext); //Get the function pointer wglCreateContextAttribsARB = (PFNWGLCREATECONTEXTATTRIBSARBPROC)wglGetProcAddress("wglCreateContextAttribsARB"); //If this is NULL then OpenGl 3.0 is not supported if (!wglCreateContextAttribsARB) { MessageBox(NULL, (LPCWSTR)"OpenGL 3.0 is not supported", (LPCWSTR)"An error occured", MB_ICONERROR | MB_OK); DestroyWindow(hWnd); return 0; } //Create an OpenGL 3.0 context using the new function m_hglrc = wglCreateContextAttribsARB(m_hdc, 0, attribs); //Delete the temporary context wglDeleteContext(tmpContext); //Make the GL3 context current wglMakeCurrent(m_hdc, m_hglrc); m_isRunning = true; } break; case WM_DESTROY: //Window destroy case WM_CLOSE: //Windows is closing wglMakeCurrent(m_hdc, NULL); wglDeleteContext(m_hglrc); m_isRunning = false; //Stop the main loop PostQuitMessage(0); break; case WM_SIZE: { int height = HIWORD(lParam); //Get height and width int width = LOWORD(lParam); getAttachedExample()->onResize(width, height); //Call the example's resize method } break; case WM_KEYDOWN: if (wParam == VK_ESCAPE) //If the escape key was pressed { DestroyWindow(m_hwnd); } break; default: break; } return DefWindowProc(hWnd, uMsg, wParam, lParam); } void GLWindow::processEvents() { MSG msg; //While there are messages in the queue, store them in msg while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { //Process the messages TranslateMessage(&msg); DispatchMessage(&msg); } } Here is the header: #pragma once #include <ctime> #include <windows.h> class Example;//Declare our example class class GLWindow { public: GLWindow(HINSTANCE hInstance); //default constructor bool create(int width, int height, int bpp, bool fullscreen); void destroy(); void processEvents(); void attachExample(Example* example); bool isRunning(); //Is the window running? void swapBuffers() { SwapBuffers(m_hdc); } static LRESULT CALLBACK StaticWndProc(HWND wnd, UINT msg, WPARAM wParam, LPARAM lParam); LRESULT CALLBACK WndProc(HWND wnd, UINT msg, WPARAM wParam, LPARAM lParam); float getElapsedSeconds(); private: Example* m_example; //A link to the example program bool m_isRunning; //Is the window still running? bool m_isFullscreen; HWND m_hwnd; //Window handle HGLRC m_hglrc; //Rendering context HDC m_hdc; //Device context RECT m_windowRect; //Window bounds HINSTANCE m_hinstance; //Application instance WNDCLASSEX m_windowClass; void setupPixelFormat(void); Example* getAttachedExample() { return m_example; } float m_lastTime; };

    Read the article

< Previous Page | 294 295 296 297 298 299 300 301 302 303 304 305  | Next Page >