Search Results

Search found 89926 results on 3598 pages for 'abstract data type'.

Page 3/3598 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • How to allow bind in app armor?

    - by WitchCraft
    Question: I did setup bind9 as described here: http://ubuntuforums.org/showthread.php?p=12149576#post12149576 Now I have a little problem with apparmor: If I switch it off, it works. If apparmor runs, it doesn't work, and I get the following dmesg output: [ 23.809767] type=1400 audit(1344097913.519:11): apparmor="STATUS" operation="profile_replace" name="/sbin/dhclient" pid=1540 comm="apparmor_parser" [ 23.811537] type=1400 audit(1344097913.519:12): apparmor="STATUS" operation="profile_replace" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=1540 comm="apparmor_parser" [ 23.812514] type=1400 audit(1344097913.523:13): apparmor="STATUS" operation="profile_replace" name="/usr/lib/connman/scripts/dhclient-script" pid=1540 comm="apparmor_parser" [ 23.821999] type=1400 audit(1344097913.531:14): apparmor="STATUS" operation="profile_load" name="/usr/sbin/mysqld" pid=1544 comm="apparmor_parser" [ 23.845085] type=1400 audit(1344097913.555:15): apparmor="STATUS" operation="profile_load" name="/usr/sbin/libvirtd" pid=1543 comm="apparmor_parser" [ 23.849051] type=1400 audit(1344097913.559:16): apparmor="STATUS" operation="profile_load" name="/usr/sbin/named" pid=1545 comm="apparmor_parser" [ 23.849509] type=1400 audit(1344097913.559:17): apparmor="STATUS" operation="profile_load" name="/usr/lib/libvirt/virt-aa-helper" pid=1542 comm="apparmor_parser" [ 23.851597] type=1400 audit(1344097913.559:18): apparmor="STATUS" operation="profile_load" name="/usr/sbin/tcpdump" pid=1547 comm="apparmor_parser" [ 24.415193] type=1400 audit(1344097914.123:19): apparmor="STATUS" operation="profile_replace" name="/usr/sbin/mysqld" pid=1625 comm="apparmor_parser" [ 24.738631] ip_tables: (C) 2000-2006 Netfilter Core Team [ 25.005242] nf_conntrack version 0.5.0 (16384 buckets, 65536 max) [ 25.187939] ADDRCONF(NETDEV_UP): virbr0: link is not ready [ 26.004282] Ebtables v2.0 registered [ 26.068783] ip6_tables: (C) 2000-2006 Netfilter Core Team [ 28.158848] postgres (1900): /proc/1900/oom_adj is deprecated, please use /proc/1900/oom_score_adj instead. [ 29.840079] xenbr0: no IPv6 routers present [ 31.502916] type=1400 audit(1344097919.088:20): apparmor="DENIED" operation="mknod" parent=1984 profile="/usr/sbin/named" name="/var/log/query.log" pid=1989 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 34.336141] xenbr0: port 1(eth0) entering forwarding state [ 38.424359] Event-channel device installed. [ 38.853077] XENBUS: Unable to read cpu state [ 38.854215] XENBUS: Unable to read cpu state [ 38.855231] XENBUS: Unable to read cpu state [ 38.858891] XENBUS: Unable to read cpu state [ 47.411497] device vif1.0 entered promiscuous mode [ 47.429245] ADDRCONF(NETDEV_UP): vif1.0: link is not ready [ 49.366219] virbr0: port 1(vif1.0) entering disabled state [ 49.366705] virbr0: port 1(vif1.0) entering disabled state [ 49.368873] virbr0: mixed no checksumming and other settings. [ 97.273028] type=1400 audit(1344097984.861:21): apparmor="DENIED" operation="mknod" parent=3076 profile="/usr/sbin/named" name="/var/log/query.log" pid=3078 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 277.790627] type=1400 audit(1344098165.377:22): apparmor="DENIED" operation="mknod" parent=3384 profile="/usr/sbin/named" name="/var/log/query.log" pid=3389 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 287.812986] type=1400 audit(1344098175.401:23): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/root/tmp-gjnX0c0dDa" pid=3400 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 287.818466] type=1400 audit(1344098175.405:24): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/root/tmp-CpOtH52qU5" pid=3400 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 323.166228] type=1400 audit(1344098210.753:25): apparmor="DENIED" operation="mknod" parent=3422 profile="/usr/sbin/named" name="/var/log/query.log" pid=3427 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 386.512586] type=1400 audit(1344098274.101:26): apparmor="DENIED" operation="mknod" parent=3456 profile="/usr/sbin/named" name="/var/log/query.log" pid=3459 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 808.549049] type=1400 audit(1344098696.137:27): apparmor="DENIED" operation="mknod" parent=3872 profile="/usr/sbin/named" name="/var/log/query.log" pid=3877 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 894.671081] type=1400 audit(1344098782.257:28): apparmor="DENIED" operation="mknod" parent=3922 profile="/usr/sbin/named" name="/var/log/query.log" pid=3927 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 968.514669] type=1400 audit(1344098856.101:29): apparmor="DENIED" operation="mknod" parent=3978 profile="/usr/sbin/named" name="/var/log/query.log" pid=3983 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1021.814582] type=1400 audit(1344098909.401:30): apparmor="DENIED" operation="mknod" parent=4010 profile="/usr/sbin/named" name="/var/log/query.log" pid=4012 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1063.856633] type=1400 audit(1344098951.445:31): apparmor="DENIED" operation="mknod" parent=4041 profile="/usr/sbin/named" name="/var/log/query.log" pid=4043 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1085.404001] type=1400 audit(1344098972.989:32): apparmor="DENIED" operation="mknod" parent=4072 profile="/usr/sbin/named" name="/var/log/query.log" pid=4077 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1108.207402] type=1400 audit(1344098995.793:33): apparmor="DENIED" operation="mknod" parent=4102 profile="/usr/sbin/named" name="/var/log/query.log" pid=4107 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1156.947189] type=1400 audit(1344099044.533:34): apparmor="DENIED" operation="mknod" parent=4134 profile="/usr/sbin/named" name="/var/log/query.log" pid=4136 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1166.768005] type=1400 audit(1344099054.353:35): apparmor="DENIED" operation="mknod" parent=4150 profile="/usr/sbin/named" name="/var/log/query.log" pid=4155 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1168.873385] type=1400 audit(1344099056.461:36): apparmor="DENIED" operation="mknod" parent=4162 profile="/usr/sbin/named" name="/var/log/query.log" pid=4167 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1181.558946] type=1400 audit(1344099069.145:37): apparmor="DENIED" operation="mknod" parent=4177 profile="/usr/sbin/named" name="/var/log/query.log" pid=4182 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 1199.349265] type=1400 audit(1344099086.937:38): apparmor="DENIED" operation="mknod" parent=4191 profile="/usr/sbin/named" name="/var/log/query.log" pid=4196 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 1296.805604] type=1400 audit(1344099184.393:39): apparmor="DENIED" operation="mknod" parent=4232 profile="/usr/sbin/named" name="/var/log/query.log" pid=4237 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1317.730568] type=1400 audit(1344099205.317:40): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/tmp-nuBes0IXwi" pid=4251 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1317.730744] type=1400 audit(1344099205.317:41): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/tmp-ZDJA06ZOkU" pid=4252 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1365.072687] type=1400 audit(1344099252.661:42): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/tmp-EnsuYUrGOC" pid=4290 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1365.074520] type=1400 audit(1344099252.661:43): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/tmp-LVCnpWOStP" pid=4287 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1380.336984] type=1400 audit(1344099267.925:44): apparmor="DENIED" operation="mknod" parent=4617 profile="/usr/sbin/named" name="/var/log/query.log" pid=4622 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1437.924534] type=1400 audit(1344099325.513:45): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/tmp-Uyf1dHIZUU" pid=4648 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1437.924626] type=1400 audit(1344099325.513:46): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/tmp-OABXWclII3" pid=4647 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1526.334959] type=1400 audit(1344099413.921:47): apparmor="DENIED" operation="mknod" parent=4749 profile="/usr/sbin/named" name="/var/log/query.log" pid=4754 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 1601.292548] type=1400 audit(1344099488.881:48): apparmor="DENIED" operation="mknod" parent=4835 profile="/usr/sbin/named" name="/var/log/query.log" pid=4840 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 1639.543733] type=1400 audit(1344099527.129:49): apparmor="DENIED" operation="mknod" parent=4905 profile="/usr/sbin/named" name="/var/log/query.log" pid=4907 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1916.381179] type=1400 audit(1344099803.969:50): apparmor="DENIED" operation="mknod" parent=4959 profile="/usr/sbin/named" name="/var/log/query.log" pid=4961 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 1940.816898] type=1400 audit(1344099828.405:51): apparmor="DENIED" operation="mknod" parent=4991 profile="/usr/sbin/named" name="/var/log/query.log" pid=4996 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 2043.010898] type=1400 audit(1344099930.597:52): apparmor="DENIED" operation="mknod" parent=5048 profile="/usr/sbin/named" name="/var/log/query.log" pid=5053 comm="named" requested_mask="c" denied_mask="c" fsuid=107 ouid=107 [ 2084.956230] type=1400 audit(1344099972.545:53): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/var/log/tmp-XYgr33RqUt" pid=5069 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 2084.959120] type=1400 audit(1344099972.545:54): apparmor="DENIED" operation="mknod" parent=3325 profile="/usr/sbin/named" name="/var/log/tmp-vO24RHwL14" pid=5066 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 2088.169500] type=1400 audit(1344099975.757:55): apparmor="DENIED" operation="mknod" parent=5076 profile="/usr/sbin/named" name="/var/log/query.log" pid=5078 comm="named" requested_mask="c" denied_mask="c" fsuid=0 ouid=0 [ 2165.625096] type=1400 audit(1344100053.213:56): apparmor="STATUS" operation="profile_remove" name="/sbin/dhclient" pid=5124 comm="apparmor" [ 2165.625401] type=1400 audit(1344100053.213:57): apparmor="STATUS" operation="profile_remove" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=5124 comm="apparmor" [ 2165.625608] type=1400 audit(1344100053.213:58): apparmor="STATUS" operation="profile_remove" name="/usr/lib/connman/scripts/dhclient-script" pid=5124 comm="apparmor" [ 2165.625782] type=1400 audit(1344100053.213:59): apparmor="STATUS" operation="profile_remove" name="/usr/lib/libvirt/virt-aa-helper" pid=5124 comm="apparmor" [ 2165.625931] type=1400 audit(1344100053.213:60): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/libvirtd" pid=5124 comm="apparmor" [ 2165.626057] type=1400 audit(1344100053.213:61): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/mysqld" pid=5124 comm="apparmor" [ 2165.626181] type=1400 audit(1344100053.213:62): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/named" pid=5124 comm="apparmor" [ 2165.626319] type=1400 audit(1344100053.213:63): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/tcpdump" pid=5124 comm="apparmor" [ 3709.583927] type=1400 audit(1344101597.169:64): apparmor="STATUS" operation="profile_load" name="/usr/sbin/libvirtd" pid=7484 comm="apparmor_parser" [ 3709.839895] type=1400 audit(1344101597.425:65): apparmor="STATUS" operation="profile_load" name="/usr/sbin/mysqld" pid=7485 comm="apparmor_parser" [ 3710.008892] type=1400 audit(1344101597.597:66): apparmor="STATUS" operation="profile_load" name="/usr/lib/libvirt/virt-aa-helper" pid=7483 comm="apparmor_parser" [ 3710.545232] type=1400 audit(1344101598.133:67): apparmor="STATUS" operation="profile_load" name="/usr/sbin/named" pid=7486 comm="apparmor_parser" [ 3710.655600] type=1400 audit(1344101598.241:68): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=7481 comm="apparmor_parser" [ 3710.656013] type=1400 audit(1344101598.241:69): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=7481 comm="apparmor_parser" [ 3710.656786] type=1400 audit(1344101598.245:70): apparmor="STATUS" operation="profile_load" name="/usr/lib/connman/scripts/dhclient-script" pid=7481 comm="apparmor_parser" [ 3710.832624] type=1400 audit(1344101598.421:71): apparmor="STATUS" operation="profile_load" name="/usr/sbin/tcpdump" pid=7488 comm="apparmor_parser" [ 3717.573123] type=1400 audit(1344101605.161:72): apparmor="DENIED" operation="open" parent=7505 profile="/usr/sbin/named" name="/var/log/query.log" pid=7510 comm="named" requested_mask="ac" denied_mask="ac" fsuid=107 ouid=0 [ 3743.667808] type=1400 audit(1344101631.253:73): apparmor="STATUS" operation="profile_remove" name="/sbin/dhclient" pid=7552 comm="apparmor" [ 3743.668338] type=1400 audit(1344101631.257:74): apparmor="STATUS" operation="profile_remove" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=7552 comm="apparmor" [ 3743.668625] type=1400 audit(1344101631.257:75): apparmor="STATUS" operation="profile_remove" name="/usr/lib/connman/scripts/dhclient-script" pid=7552 comm="apparmor" [ 3743.668834] type=1400 audit(1344101631.257:76): apparmor="STATUS" operation="profile_remove" name="/usr/lib/libvirt/virt-aa-helper" pid=7552 comm="apparmor" [ 3743.668991] type=1400 audit(1344101631.257:77): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/libvirtd" pid=7552 comm="apparmor" [ 3743.669127] type=1400 audit(1344101631.257:78): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/mysqld" pid=7552 comm="apparmor" [ 3743.669282] type=1400 audit(1344101631.257:79): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/named" pid=7552 comm="apparmor" [ 3743.669520] type=1400 audit(1344101631.257:80): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/tcpdump" pid=7552 comm="apparmor" [ 3873.572336] type=1400 audit(1344101761.161:81): apparmor="STATUS" operation="profile_load" name="/usr/sbin/libvirtd" pid=7722 comm="apparmor_parser" [ 3873.826209] type=1400 audit(1344101761.413:82): apparmor="STATUS" operation="profile_load" name="/usr/sbin/mysqld" pid=7723 comm="apparmor_parser" [ 3873.988181] type=1400 audit(1344101761.577:83): apparmor="STATUS" operation="profile_load" name="/usr/lib/libvirt/virt-aa-helper" pid=7721 comm="apparmor_parser" [ 3874.520305] type=1400 audit(1344101762.109:84): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=7719 comm="apparmor_parser" [ 3874.520736] type=1400 audit(1344101762.109:85): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=7719 comm="apparmor_parser" [ 3874.521000] type=1400 audit(1344101762.109:86): apparmor="STATUS" operation="profile_load" name="/usr/lib/connman/scripts/dhclient-script" pid=7719 comm="apparmor_parser" [ 3874.528878] type=1400 audit(1344101762.117:87): apparmor="STATUS" operation="profile_load" name="/usr/sbin/named" pid=7724 comm="apparmor_parser" [ 3874.930712] type=1400 audit(1344101762.517:88): apparmor="STATUS" operation="profile_load" name="/usr/sbin/tcpdump" pid=7726 comm="apparmor_parser" [ 3971.744599] type=1400 audit(1344101859.333:89): apparmor="STATUS" operation="profile_replace" name="/usr/sbin/libvirtd" pid=7899 comm="apparmor_parser" [ 3972.009857] type=1400 audit(1344101859.597:90): apparmor="STATUS" operation="profile_replace" name="/usr/sbin/mysqld" pid=7900 comm="apparmor_parser" [ 3972.165297] type=1400 audit(1344101859.753:91): apparmor="STATUS" operation="profile_replace" name="/usr/lib/libvirt/virt-aa-helper" pid=7898 comm="apparmor_parser" [ 3972.587766] type=1400 audit(1344101860.173:92): apparmor="STATUS" operation="profile_replace" name="/usr/sbin/named" pid=7901 comm="apparmor_parser" [ 3972.847189] type=1400 audit(1344101860.433:93): apparmor="STATUS" operation="profile_replace" name="/sbin/dhclient" pid=7896 comm="apparmor_parser" [ 3972.847705] type=1400 audit(1344101860.433:94): apparmor="STATUS" operation="profile_replace" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=7896 comm="apparmor_parser" [ 3972.848150] type=1400 audit(1344101860.433:95): apparmor="STATUS" operation="profile_replace" name="/usr/lib/connman/scripts/dhclient-script" pid=7896 comm="apparmor_parser" [ 3973.147889] type=1400 audit(1344101860.733:96): apparmor="STATUS" operation="profile_replace" name="/usr/sbin/tcpdump" pid=7903 comm="apparmor_parser" [ 3988.863999] type=1400 audit(1344101876.449:97): apparmor="DENIED" operation="open" parent=7939 profile="/usr/sbin/named" name="/var/log/query.log" pid=7944 comm="named" requested_mask="ac" denied_mask="ac" fsuid=107 ouid=0 [ 4025.826132] type=1400 audit(1344101913.413:98): apparmor="STATUS" operation="profile_remove" name="/sbin/dhclient" pid=7975 comm="apparmor" [ 4025.826627] type=1400 audit(1344101913.413:99): apparmor="STATUS" operation="profile_remove" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=7975 comm="apparmor" [ 4025.826861] type=1400 audit(1344101913.413:100): apparmor="STATUS" operation="profile_remove" name="/usr/lib/connman/scripts/dhclient-script" pid=7975 comm="apparmor" [ 4025.827059] type=1400 audit(1344101913.413:101): apparmor="STATUS" operation="profile_remove" name="/usr/lib/libvirt/virt-aa-helper" pid=7975 comm="apparmor" [ 4025.827214] type=1400 audit(1344101913.413:102): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/libvirtd" pid=7975 comm="apparmor" [ 4025.827352] type=1400 audit(1344101913.413:103): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/mysqld" pid=7975 comm="apparmor" [ 4025.827485] type=1400 audit(1344101913.413:104): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/named" pid=7975 comm="apparmor" [ 4025.827624] type=1400 audit(1344101913.413:105): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/tcpdump" pid=7975 comm="apparmor" [ 4027.862198] type=1400 audit(1344101915.449:106): apparmor="STATUS" operation="profile_load" name="/usr/sbin/libvirtd" pid=8090 comm="apparmor_parser" [ 4039.500920] audit_printk_skb: 21 callbacks suppressed [ 4039.500932] type=1400 audit(1344101927.089:114): apparmor="STATUS" operation="profile_remove" name="/sbin/dhclient" pid=8114 comm="apparmor" [ 4039.501413] type=1400 audit(1344101927.089:115): apparmor="STATUS" operation="profile_remove" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=8114 comm="apparmor" [ 4039.501672] type=1400 audit(1344101927.089:116): apparmor="STATUS" operation="profile_remove" name="/usr/lib/connman/scripts/dhclient-script" pid=8114 comm="apparmor" [ 4039.501861] type=1400 audit(1344101927.089:117): apparmor="STATUS" operation="profile_remove" name="/usr/lib/libvirt/virt-aa-helper" pid=8114 comm="apparmor" [ 4039.502033] type=1400 audit(1344101927.089:118): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/libvirtd" pid=8114 comm="apparmor" [ 4039.502170] type=1400 audit(1344101927.089:119): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/mysqld" pid=8114 comm="apparmor" [ 4039.502305] type=1400 audit(1344101927.089:120): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/named" pid=8114 comm="apparmor" [ 4039.502442] type=1400 audit(1344101927.089:121): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/tcpdump" pid=8114 comm="apparmor" [ 4041.425405] type=1400 audit(1344101929.013:122): apparmor="STATUS" operation="profile_load" name="/usr/lib/libvirt/virt-aa-helper" pid=8240 comm="apparmor_parser" [ 4041.425952] type=1400 audit(1344101929.013:123): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=8238 comm="apparmor_parser" [ 4058.910390] audit_printk_skb: 18 callbacks suppressed [ 4058.910401] type=1400 audit(1344101946.497:130): apparmor="STATUS" operation="profile_remove" name="/sbin/dhclient" pid=8264 comm="apparmor" [ 4058.910757] type=1400 audit(1344101946.497:131): apparmor="STATUS" operation="profile_remove" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=8264 comm="apparmor" [ 4058.910969] type=1400 audit(1344101946.497:132): apparmor="STATUS" operation="profile_remove" name="/usr/lib/connman/scripts/dhclient-script" pid=8264 comm="apparmor" [ 4058.911185] type=1400 audit(1344101946.497:133): apparmor="STATUS" operation="profile_remove" name="/usr/lib/libvirt/virt-aa-helper" pid=8264 comm="apparmor" [ 4058.911335] type=1400 audit(1344101946.497:134): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/libvirtd" pid=8264 comm="apparmor" [ 4058.911595] type=1400 audit(1344101946.497:135): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/mysqld" pid=8264 comm="apparmor" [ 4058.911856] type=1400 audit(1344101946.497:136): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/named" pid=8264 comm="apparmor" [ 4058.912001] type=1400 audit(1344101946.497:137): apparmor="STATUS" operation="profile_remove" name="/usr/sbin/tcpdump" pid=8264 comm="apparmor" [ 4060.266700] type=1400 audit(1344101947.853:138): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=8391 comm="apparmor_parser" [ 4060.268356] type=1400 audit(1344101947.857:139): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=8391 comm="apparmor_parser" [ 5909.432749] audit_printk_skb: 18 callbacks suppressed [ 5909.432759] type=1400 audit(1344103797.021:146): apparmor="DENIED" operation="open" parent=8800 profile="/usr/sbin/named" name="/var/log/query.log" pid=8805 comm="named" requested_mask="ac" denied_mask="ac" fsuid=107 ouid=0 root@zotac:~# What can I do that it still works and I don't have to disable apparmor ?

    Read the article

  • Oracle Financial Analytics for SAP Certified with Oracle Data Integrator EE

    - by denis.gray
    Two days ago Oracle announced the release of Oracle Financial Analytics for SAP.  With the amount of press this has garnered in the past two days, there's a key detail that can't be missed.  This release is certified with Oracle Data Integrator EE - now making the combination of Data Integration and Business Intelligence a force to contend with.  Within the Oracle Press Release there were two important bullets: ·         Oracle Financial Analytics for SAP includes a pre-packaged ABAP code compliant adapter and is certified with Oracle Data Integrator Enterprise Edition to integrate SAP Financial Accounting data directly with the analytic application.  ·         Helping to integrate SAP financial data and disparate third-party data sources is Oracle Data Integrator Enterprise Edition which delivers fast, efficient loading and transformation of timely data into a data warehouse environment through its high-performance Extract Load and Transform (E-LT) technology. This is very exciting news, demonstrating Oracle's overall commitment to Oracle Data Integrator EE.   This is a great way to start off the new year and we look forward to building on this momentum throughout 2011.   The following links contain additional information and media responses about the Oracle Financial Analytics for SAP release. IDG News Service (Also appeared in PC World, Computer World, CIO: "Oracle is moving further into rival SAP's turf with Oracle Financial Analytics for SAP, a new BI (business intelligence) application that can crunch ERP (enterprise resource planning) system financial data for insights." Information Week: "Oracle talks a good game about the appeal of an optimized, all-Oracle stack. But the company also recognizes that we live in a predominantly heterogeneous IT world" CRN: "While some businesses with SAP Financial Accounting already use Oracle BI, those integrations had to be custom developed. The new offering provides pre-built integration capabilities." ECRM Guide:  "Among other features, Oracle Financial Analytics for SAP helps front-line managers improve financial performance and decision-making with what the company says is comprehensive, timely and role-based information on their departments' expenses and revenue contributions."   SAP Getting Started Guide for ODI on OTN: http://www.oracle.com/technetwork/middleware/data-integrator/learnmore/index.html For more information on the ODI and its SAP connectivity please review the Oracle® Fusion Middleware Application Adapters Guide for Oracle Data Integrator11g Release 1 (11.1.1)

    Read the article

  • Why should I declare a class as an abstract class?

    - by Pied Piper
    I know the syntax, rules applied to abstract class and I want know usage of an abstract class Abstract class can not be instantiated directly but can be extended by other class What is the advantage of doing so? How it is different from an Interface? I know that one class can implement multiple interfaces but can only extend one abstract class. Is that only difference between an interface and an abstract class? I am aware about usage of an Interface. I have learned that from Event delegation model of AWT in Java. In which situations I should declare class as an abstract class? What is benefits of that?

    Read the article

  • Interface vs Abstract Class (general OO)

    - by Kave
    Hi, I have had recently two telephone interviews where I've been asked about the differences between an Interface and an Abstract class. I have explained every aspect of them I could think of, but it seems they are waiting for me to mention something specific, and I dont know what it is. From my experience I think the following is true, if i am missing a major point please let me know: Interface: Every single Method declared in an Interface will have to be implemented in the subclass. Only Events, Delegates, Properties (C#) and Methods can exist in a Interface. A class can implement multiple Interfaces. Abstract Class Only Abstract methods have to be implemented by the subclass. An Abstract class can have normal methods with implementations. Abstract class can also have class variables beside Events, Delegates, Properties and Methods. A class can only implement one abstract class only due non-existence of Multi-inheritance in C#. 1) After all that the interviewer came up with the question What if you had an Abstract class with only abstract methods, how would that be different from an interface? I didnt know the answer but I think its the inheritance as mentioned above right? 2) An another interviewer asked me what if you had a Public variable inside the interface, how would that be different than in Abstract Class? I insisted you can't have a public variable inside an interface. I didn't know what he wanted to hear but he wasn't satisfied either. Many Thanks for clarification, Kave See Also: When to use an interface instead of an abstract class and vice versa Interfaces vs. Abstract Classes How do you decide between using an Abstract Class and an Interface?

    Read the article

  • What is the definition of "Big Data"?

    - by Ben
    Is there one? All the definitions I can find describe the size, complexity / variety or velocity of the data. Wikipedia's definition is the only one I've found with an actual number Big data sizes are a constantly moving target, as of 2012 ranging from a few dozen terabytes to many petabytes of data in a single data set. However, this seemingly contradicts the MIKE2.0 definition, referenced in the next paragraph, which indicates that "big" data can be small and that 100,000 sensors on an aircraft creating only 3GB of data could be considered big. IBM despite saying that: Big data is more simply than a matter of size. have emphasised size in their definition. O'Reilly has stressed "volume, velocity and variety" as well. Though explained well, and in more depth, the definition seems to be a re-hash of the others - or vice-versa of course. I think that a Computer Weekly article title sums up a number of articles fairly well "What is big data and how can it be used to gain competitive advantage". But ZDNet wins with the following from 2012: “Big Data” is a catch phrase that has been bubbling up from the high performance computing niche of the IT market... If one sits through the presentations from ten suppliers of technology, fifteen or so different definitions are likely to come forward. Each definition, of course, tends to support the need for that supplier’s products and services. Imagine that. Basically "big data" is "big" in some way shape or form. What is "big"? Is it quantifiable at the current time? If "big" is unquantifiable is there a definition that does not rely solely on generalities?

    Read the article

  • Big Data – Operational Databases Supporting Big Data – Columnar, Graph and Spatial Database – Day 14 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the Key-Value Pair Databases and Document Databases in the Big Data Story. In this article we will understand the role of Columnar, Graph and Spatial Database supporting Big Data Story. Now we will see a few of the examples of the operational databases. Relational Databases (The day before yesterday’s post) NoSQL Databases (The day before yesterday’s post) Key-Value Pair Databases (Yesterday’s post) Document Databases (Yesterday’s post) Columnar Databases (Tomorrow’s post) Graph Databases (Today’s post) Spatial Databases (Today’s post) Columnar Databases  Relational Database is a row store database or a row oriented database. Columnar databases are column oriented or column store databases. As we discussed earlier in Big Data we have different kinds of data and we need to store different kinds of data in the database. When we have columnar database it is very easy to do so as we can just add a new column to the columnar database. HBase is one of the most popular columnar databases. It uses Hadoop file system and MapReduce for its core data storage. However, remember this is not a good solution for every application. This is particularly good for the database where there is high volume incremental data is gathered and processed. Graph Databases For a highly interconnected data it is suitable to use Graph Database. This database has node relationship structure. Nodes and relationships contain a Key Value Pair where data is stored. The major advantage of this database is that it supports faster navigation among various relationships. For example, Facebook uses a graph database to list and demonstrate various relationships between users. Neo4J is one of the most popular open source graph database. One of the major dis-advantage of the Graph Database is that it is not possible to self-reference (self joins in the RDBMS terms) and there might be real world scenarios where this might be required and graph database does not support it. Spatial Databases  We all use Foursquare, Google+ as well Facebook Check-ins for location aware check-ins. All the location aware applications figure out the position of the phone with the help of Global Positioning System (GPS). Think about it, so many different users at different location in the world and checking-in all together. Additionally, the applications now feature reach and users are demanding more and more information from them, for example like movies, coffee shop or places see. They are all running with the help of Spatial Databases. Spatial data are standardize by the Open Geospatial Consortium known as OGC. Spatial data helps answering many interesting questions like “Distance between two locations, area of interesting places etc.” When we think of it, it is very clear that handing spatial data and returning meaningful result is one big task when there are millions of users moving dynamically from one place to another place & requesting various spatial information. PostGIS/OpenGIS suite is very popular spatial database. It runs as a layer implementation on the RDBMS PostgreSQL. This makes it totally unique as it offers best from both the worlds. Courtesy: mushroom network Tomorrow In tomorrow’s blog post we will discuss about very important components of the Big Data Ecosystem – Hive. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Can't save data for a member in a data form

    - by RahulS
    Implied sharing is an old thing everyone knows the reasons and solutions of that, still little theory about that: With Essbase implied sharing, some members are shared even if you do not explicitly set them as shared. These members are implied shared members. When an implied share relationship is created, each implied member assumes the other member’s value. Essbase assumes (or implies) a shared member relationship in these situations: 1. A parent has only one child 2. A parent has only one child that consolidates to the parent In a Planning form that contains members with an implied sharing relationship, when a value is added for the parent, the child assumes the same value after the form is saved. Likewise, if a value is added for the child, the parent usually assumes the same value after a form is saved.For example, when a calculation script or load rule populates an implied share member, the other implied share member assumes the value of the member populated by the calculation script or load rule. The last value calculated or imported takes precedence. The result is the same whether you refer to the parent or the child as a variable in a calculation script. For more information have a look at: http://docs.oracle.com/cd/E17236_01/epm.1112/hp_admin_11122/ch14s11.html Now the issue which we are going to talk about is We loose data on save even when the parent is dynamic calc and has a single child. A dynamic calc parent to a single child:  If we design the form with following selection: In the data form we will find parent below the member and this is by design whenever you make a selection using commands to select all the member below parent, always children will appear before the parent: Lets try to enter data, Save it Now, try to change the way we selected members Here we go: Now the question again why this behavior: 1. Data from Planning data form passes to Essbase row by row, 2. Because in data form the child member appears before the parent, 3. First, data goes to Essbase for child (SingleStoreChild), 4. Then when Planning passes the data for parent there was #Missing or No data,  5. Over writes the data to #missing. PS: As we know that dynamic calc members are calculated on the fly they are not allocated with any memory in the Essbase, here the parent was dynamic calc and it was pointing to same memory as child in the background, when Planning was passing data to Essbase for second row it has updated the child with missing data.(Little confusing, let me know if you need more explanation) 6. As one of the solutions just change the order of appearance of parent and child. Cheers..!!! Rahul S. https://www.facebook.com/pages/HyperionPlanning/117320818374228

    Read the article

  • Is Data Science “Science”?

    - by BuckWoody
    I hold the term “science” in very high esteem. I grew up on the Space Coast in Florida, and eventually worked at the Kennedy Space Center, surrounded by very intelligent people who worked in various scientific fields. Recently a new term has entered the computing dialog – “Data Scientist”. Since it’s not a standard term, it has a lot of definitions, and in fact has been disputed as a correct term. After all, the reasoning goes, if there’s no such thing as “Data Science” then how can there be a Data Scientist? This argument has been made before, albeit with a different term – “Computer Science”. In Peter Denning’s excellent article “Is Computer Science Science” (April  2005/Vol. 48, No. 4 COMMUNICATIONS OF THE ACM) there are many points that separate “science” from “engineering” and even “art”.  I won’t repeat the content of that article here (I recommend you read it on your own) but will leverage the points he makes there. Definition of Science To ask the question “is data science ‘science’” then we need to start with a definition of terms. Various references put the definition into the same basic areas: Study of the physical world Systematic and/or disciplined study of a subject area ...and then they include the things studied, the bodies of knowledge and so on. The word itself comes from Latin, and means merely “to know” or “to study to know”. Greek divides knowledge further into “truth” (episteme), and practical use or effects (tekhne). Normally computing falls into the second realm. Definition of Data Science And now a more controversial definition: Data Science. This term is so new and perhaps so niche that the major dictionaries haven’t yet picked it up (my OED reference is older – can’t afford to pop for the online registration at present). Researching the term's general use I created an amalgam of the definitions this way: “Studying and applying mathematical and other techniques to derive information from complex data sets.” Using this definition, data science certainly seems to be science - it's learning about and studying some object or area using systematic methods. But implicit within the definition is the word “application”, which makes the process more akin to engineering or even technology than science. In fact, I find that using these techniques – and data itself – part of science, not science itself. I leave out the concept of studying data patterns or algorithms as part of this discipline. That is actually a domain I see within research, mathematics or computer science. That of course is a type of science, but does not seek for practical applications. As part of the argument against calling it “Data Science”, some point to the scientific method of creating a hypothesis, testing with controls, testing results against the hypothesis, and documenting for repeatability.  These are not steps that we often take in working with data. We normally start with a question, and fit patterns and algorithms to predict outcomes and find correlations. In this way Data Science is more akin to statistics (and in fact makes heavy use of them) in the process rather than starting with an assumption and following on with it. So, is Data Science “Science”? I’m uncertain – and I’m uncertain it matters. Even if we are facing rampant “title inflation” these days (does anyone introduce themselves as a secretary or supervisor anymore?) I can tolerate the term at least from the intent that we use data to study problems across a wide spectrum, rather than restricting it to a single domain. And I also understand those who have worked hard to achieve the very honorable title of “scientist” who have issues with those who borrow the term without asking. What do you think? Science, or not? Does it matter?

    Read the article

  • Data Modeling Resources

    - by Dejan Sarka
    You can find many different data modeling resources. It is impossible to list all of them. I selected only the most valuable ones for me, and, of course, the ones I contributed to. Books Chris J. Date: An Introduction to Database Systems – IMO a “must” to understand the relational model correctly. Terry Halpin, Tony Morgan: Information Modeling and Relational Databases – meet the object-role modeling leaders. Chris J. Date, Nikos Lorentzos and Hugh Darwen: Time and Relational Theory, Second Edition: Temporal Databases in the Relational Model and SQL – all theory needed to manage temporal data. Louis Davidson, Jessica M. Moss: Pro SQL Server 2012 Relational Database Design and Implementation – the best SQL Server focused data modeling book I know by two of my friends. Dejan Sarka, et al.: MCITP Self-Paced Training Kit (Exam 70-441): Designing Database Solutions by Using Microsoft® SQL Server™ 2005 – SQL Server 2005 data modeling training kit. Most of the text is still valid for SQL Server 2008, 2008 R2, 2012 and 2014. Itzik Ben-Gan, Lubor Kollar, Dejan Sarka, Steve Kass: Inside Microsoft SQL Server 2008 T-SQL Querying – Steve wrote a chapter with mathematical background, and I added a chapter with theoretical introduction to the relational model. Itzik Ben-Gan, Dejan Sarka, Roger Wolter, Greg Low, Ed Katibah, Isaac Kunen: Inside Microsoft SQL Server 2008 T-SQL Programming – I added three chapters with theoretical introduction and practical solutions for the user-defined data types, dynamic schema and temporal data. Dejan Sarka, Matija Lah, Grega Jerkic: Training Kit (Exam 70-463): Implementing a Data Warehouse with Microsoft SQL Server 2012 – my first two chapters are about data warehouse design and implementation. Courses Data Modeling Essentials – I wrote a 3-day course for SolidQ. If you are interested in this course, which I could also deliver in a shorter seminar way, you can contact your closes SolidQ subsidiary, or, of course, me directly on addresses [email protected] or [email protected]. This course could also complement the existing courseware portfolio of training providers, which are welcome to contact me as well. Logical and Physical Modeling for Analytical Applications – online course I wrote for Pluralsight. Working with Temporal data in SQL Server – my latest Pluralsight course, where besides theory and implementation I introduce many original ways how to optimize temporal queries. Forthcoming presentations SQL Bits 12, July 17th – 19th, Telford, UK – I have a full-day pre-conference seminar Advanced Data Modeling Topics there.

    Read the article

  • Deploying Data Mining Models using Model Export and Import

    - by [email protected]
    In this post, we'll take a look at how Oracle Data Mining facilitates model deployment. After building and testing models, a next step is often putting your data mining model into a production system -- referred to as model deployment. The ability to move data mining model(s) easily into a production system can greatly speed model deployment, and reduce the overall cost. Since Oracle Data Mining provides models as first class database objects, models can be manipulated using familiar database techniques and technology. For example, one or more models can be exported to a flat file, similar to a database table dump file (.dmp). This file can be moved to a different instance of Oracle Database EE, and then imported. All methods for exporting and importing models are based on Oracle Data Pump technology and found in the DBMS_DATA_MINING package. Before performing the actual export or import, a directory object must be created. A directory object is a logical name in the database for a physical directory on the host computer. Read/write access to a directory object is necessary to access the host computer file system from within Oracle Database. For our example, we'll work in the DMUSER schema. First, DMUSER requires the privilege to create any directory. This is often granted through the sysdba account. grant create any directory to dmuser; Now, DMUSER can create the directory object specifying the path where the exported model file (.dmp) should be placed. In this case, on a linux machine, we have the directory /scratch/oracle. CREATE OR REPLACE DIRECTORY dmdir AS '/scratch/oracle'; If you aren't sure of the exact name of the model or models to export, you can find the list of models using the following query: select model_name from user_mining_models; There are several options when exporting models. We can export a single model, multiple models, or all models in a schema using the following procedure calls: BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('MY_MODEL.dmp','dmdir','name =''MY_DT_MODEL'''); END; BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('MY_MODELS.dmp','dmdir',              'name IN (''MY_DT_MODEL'',''MY_KM_MODEL'')'); END; BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('ALL_DMUSER_MODELS.dmp','dmdir'); END; A .dmp file can be imported into another schema or database using the following procedure call, for example: BEGIN   DBMS_DATA_MINING.IMPORT_MODEL('MY_MODELS.dmp', 'dmdir'); END; As with models from any data mining tool, when moving a model from one environment to another, care needs to be taken to ensure the transformations that prepare the data for model building are matched (with appropriate parameters and statistics) in the system where the model is deployed. Oracle Data Mining provides automatic data preparation (ADP) and embedded data preparation (EDP) to reduce, or possibly eliminate, the need to explicitly transport transformations with the model. In the case of ADP, ODM automatically prepares the data and includes the necessary transformations in the model itself. In the case of EDP, users can associate their own transformations with attributes of a model. These transformations are automatically applied when applying the model to data, i.e., scoring. Exporting and importing a model with ADP or EDP results in these transformations being immediately available with the model in the production system.

    Read the article

  • What are the safety benefits of a type system?

    - by vandros526
    In Javascript: The Good Parts by Douglas Crockford, he mentions in his inheritance chapter, "The other benefit of classical inheritance is that it includes the specification of a system of types. This mostly frees the programmer from having to write explicit casting operations, which is a very good thing because when casting, the safety benefits of a type system are lost." So first of all, what actually is safety? protection against data corruption, or hackers, or system malfunctions, etc? What are the safety benefits of a type system? What makes a type system different that allows it to provide these safety benefits?

    Read the article

  • Why Oracle Data Integrator for Big Data?

    - by Mala Narasimharajan
    Big Data is everywhere these days - but what exactly is it? It’s data that comes from a multitude of sources – not only structured data, but unstructured data as well.  The sheer volume of data is mindboggling – here are a few examples of big data: climate information collected from sensors, social media information, digital pictures, log files, online video files, medical records or online transaction records.  These are just a few examples of what constitutes big data.   Embedded in big data is tremendous value and being able to manipulate, load, transform and analyze big data is key to enhancing productivity and competitiveness.  The value of big data lies in its propensity for greater in-depth analysis and data segmentation -- in turn giving companies detailed information on product performance, customer preferences and inventory.  Furthermore, by being able to store and create more data in digital form, “big data can unlock significant value by making information transparent and usable at much higher frequency." (McKinsey Global Institute, May 2011) Oracle's flagship product for bulk data movement and transformation, Oracle Data Integrator, is a critical component of Oracle’s Big Data strategy. ODI provides automation, bulk loading, and validation and transformation capabilities for Big Data while minimizing the complexities of using Hadoop.  Specifically, the advantages of ODI in a Big Data scenario are due to pre-built Knowledge Modules that drive processing in Hadoop. This leverages the graphical UI to load and unload data from Hadoop, perform data validations and create mapping expressions for transformations.  The Knowledge Modules provide a key jump-start and eliminate a significant amount of Hadoop development.  Using Oracle Data Integrator together with Oracle Big Data Connectors, you can simplify the complexities of mapping, accessing, and loading big data (via NoSQL or HDFS) but also correlating your enterprise data – this correlation may require integrating across heterogeneous and standards-based environments, connecting to Oracle Exadata, or sourcing via a big data platform such as Oracle Big Data Appliance. To learn more about Oracle Data Integration and Big Data, download our resource kit to see the latest in whitepapers, webinars, downloads, and more… or go to our website on www.oracle.com/bigdata

    Read the article

  • General Policies and Procedures for Maintaining the Value of Data Assets

    Here is a general list for policies and procedures regarding maintaining the value of data assets. Data Backup Policies and Procedures Backups are very important when dealing with data because there is always the chance of losing data due to faulty hardware or a user activity. So the need for a strategic backup system should be mandatory for all companies. This being said, in the real world some companies that I have worked for do not really have a good data backup plan. Typically when companies tend to take this kind of approach in data backups usually the data is not really recoverable.  Unfortunately when companies do not regularly test their backup plans they get a false sense of security because they think that they are covered. However, I can tell you from personal and professional experience that a backup plan/system is never fully implemented until it is regularly tested prior to the time when it actually needs to be used. Disaster Recovery Plan Expanding on Backup Policies and Procedures, a company needs to also have a disaster recovery plan in order to protect its data in case of a catastrophic disaster.  Disaster recovery plans typically encompass how to restore all of a company’s data and infrastructure back to a restored operational status.  Most Disaster recovery plans also include time estimates on how long each step of the disaster recovery plan should take to be executed.  It is important to note that disaster recovery plans are never fully implemented until they have been tested just like backup plans. Disaster recovery plans should be tested regularly so that the business can be confident in not losing any or minimal data due to a catastrophic disaster. Firewall Policies and Content Filters One way companies can protect their data is by using a firewall to separate their internal network from the outside. Firewalls allow for enabling or disabling network access as data passes through it by applying various defined restrictions. Furthermore firewalls can also be used to prevent access from the internal network to the outside by these same factors. Common Firewall Restrictions Destination/Sender IP Address Destination/Sender Host Names Domain Names Network Ports Companies can also desire to restrict what their network user’s view on the internet through things like content filters. Content filters allow a company to track what webpages a person has accessed and can also restrict user’s access based on established rules set up in the content filter. This device and/or software can block access to domains or specific URLs based on a few factors. Common Content Filter Criteria Known malicious sites Specific Page Content Page Content Theme  Anti-Virus/Mal-ware Polices Fortunately, most companies utilize antivirus programs on all computers and servers for good reason, virus have been known to do the following: Corrupt/Invalidate Data, Destroy Data, and Steal Data. Anti-Virus applications are a great way to prevent any malicious application from being able to gain access to a company’s data.  However, anti-virus programs must be constantly updated because new viruses are always being created, and the anti-virus vendors need to distribute updates to their applications so that they can catch and remove them. Data Validation Policies and Procedures Data validation is very important to ensure that only accurate information is stored. The existence of invalid data can cause major problems when businesses attempt to use data for knowledge based decisions and for performance reporting. Data Scrubbing Policies and Procedures Data scrubbing is valuable to companies in one of two ways. The first can be used to clean data prior to being analyzed for report generation. The second is that it allows companies to remove things like personally Identifiable information from its data prior to transmit it between multiple environments or if the information is sent to an external location. An example of this can be seen with medical records in regards to HIPPA laws that prohibit the storage of specific personal and medical information. Additionally, I have professionally run in to a scenario where the Canadian government does not allow any Canadian’s personal information to be stored on a server not located in Canada. Encryption Practices The use of encryption is very valuable when a company needs to any personal information. This allows users with the appropriated access levels to view or confirm the existence or accuracy of data within a system by either decrypting the information or encrypting a piece of data and comparing it to the stored version.  Additionally, if for some unforeseen reason the data got in to the wrong hands then they would have to first decrypt the data before they could even be able to read it. Encryption just adds and additional layer of protection around data itself. Standard Normalization Practices The use of standard data normalization practices is very important when dealing with data because it can prevent allot of potential issues by eliminating the potential for unnecessary data duplication. Issues caused by data duplication include excess use of data storage, increased chance for invalidated data, and over use of data processing. Network and Database Security/Access Policies Every company has some form of network/data access policy even if they have none. These policies help secure data from being seen by inappropriate users along with preventing the data from being updated or deleted by users. In addition, without a good security policy there is a large potential for data to be corrupted by unassuming users or even stolen. Data Storage Policies Data storage polices are very important depending on how they are implemented especially when a company is trying to utilize them in conjunction with other policies like Data Backups. I have worked at companies where all network user folders are constantly backed up, and if a user wanted to ensure the existence of a piece of data in the form of a file then they had to store that file in their network folder. Conversely, I have also worked in places where when a user logs on or off of the network there entire user profile is backed up. Training Policies One of the biggest ways to prevent data loss and ensure that data will remain a company asset is through training. The practice of properly train employees on how to work with in systems that access data is crucial when trying to ensure a company’s data will remain an asset. Users need to be trained on how to manipulate a company’s data in order to perform their tasks to reduce the chances of invalidating data.

    Read the article

  • Workaround for abstract attributes in Java

    - by deamon
    In Scala I would write an abstract class with an abstract attribute path: abstract class Base { val path: String } class Sub extends Base { override val path = "/demo/" } Java doesn't know abstract attributes and I wonder what would be the best way to work around this limitation. My ideas: a) constructor parameter abstract class Base { protected String path; protected Base(String path) { this.path = path; } } class Sub extends Base { public Sub() { super("/demo/"); } } b) abstract method abstract class Base { // could be an interface too abstract String getPath(); } class Sub extends Base { public String getPath() { return "/demo/"; } } Which one do you like better? Other ideas? I tend to use the constructor since the path value should not be computed at runtime.

    Read the article

  • Importing Multiple Schemas to a Model in Oracle SQL Developer Data Modeler

    - by thatjeffsmith
    Your physical data model might stretch across multiple Oracle schemas. Or maybe you just want a single diagram containing tables, views, etc. spanning more than a single user in the database. The process for importing a data dictionary is the same, regardless if you want to suck in objects from one schema, or many schemas. Let’s take a quick look at how to get started with a data dictionary import. I’m using Oracle SQL Developer in this example. The process is nearly identical in Oracle SQL Developer Data Modeler – the only difference being you’ll use the ‘File’ menu to get started versus the ‘File – Data Modeler’ menu in SQL Developer. Remember, the functionality is exactly the same whether you use SQL Developer or SQL Developer Data Modeler when it comes to the data modeling features – you’ll just have a cleaner user interface in SQL Developer Data Modeler. Importing a Data Dictionary to a Model You’ll want to open or create your model first. You can import objects to an existing or new model. The easiest way to get started is to simply open the ‘Browser’ under the View menu. The Browser allows you to navigate your open designs/models You’ll see an ‘Untitled_1′ model by default. I’ve renamed mine to ‘hr_sh_scott_demo.’ Now go back to the File menu, and expand the ‘Data Modeler’ section, and select ‘Import – Data Dictionary.’ This is a fancy way of saying, ‘suck objects out of the database into my model’ Connect! If you haven’t already defined a connection to the database you want to reverse engineer, you’ll need to do that now. I’m going to assume you already have that connection – so select it, and hit the ‘Next’ button. Select the Schema(s) to be imported Select one or more schemas you want to import The schemas selected on this page of the wizard will dictate the lists of tables, views, synonyms, and everything else you can choose from in the next wizard step to import. For brevity, I have selected ALL tables, views, and synonyms from 3 different schemas: HR SCOTT SH Once I hit the ‘Finish’ button in the wizard, SQL Developer will interrogate the database and add the objects to our model. The Big Model and the 3 Little Models I can now see ALL of the objects I just imported in the ‘hr_sh_scott_demo’ relational model in my design tree, and in my relational diagram. Quick Tip: Oracle SQL Developer calls what most folks think of as a ‘Physical Model’ the ‘Relational Model.’ Same difference, mostly. In SQL Developer, a Physical model allows you to define partitioning schemes, advanced storage parameters, and add your PL/SQL code. You can have multiple physical models per relational models. For example I might have a 4 Node RAC in Production that uses partitioning, but in test/dev, only have a single instance with no partitioning. I can have models for both of those physical implementations. The list of tables in my relational model Wouldn’t it be nice if I could segregate the objects based on their schema? Good news, you can! And it’s done by default Several of you might already know where I’m going with this – SUBVIEWS. You can easily create a ‘SubView’ by selecting one or more objects in your model or diagram and add them to a new SubView. SubViews are just mini-models. They contain a subset of objects from the main model. This is very handy when you want to break your model into smaller, more digestible parts. The model information is identical across the model and subviews, so you don’t have to worry about making a change in one place and not having it propagate across your design. SubViews can be used as filters when you create reports and exports as well. So instead of generating a PDF for everything, just show me what’s in my ‘ABC’ subview. But, I don’t want to do any work! Remember, I’m really lazy. More good news – it’s already done by default! The schemas are automatically used to create default SubViews Auto-Navigate to the Object in the Diagram In the subview tree node, right-click on the object you want to navigate to. You can ask to be taken to the main model view or to the SubView location. If you haven’t already opened the SubView in the diagram, it will be automatically opened for you. The SubView diagram only contains the objects from that SubView Your SubView might still be pretty big, many dozens of objects, so don’t forget about the ‘Navigator‘ either! In summary, use the ‘Import’ feature to add existing database objects to your model. If you import from multiple schemas, take advantage of the default schema based SubViews to help you manage your models! Sometimes less is more!

    Read the article

  • Converting Generic Type into reference type after checking its type using GetType(). How ?

    - by Shantanu Gupta
    i am trying to call a function that is defined in a class RFIDeas_Wrapper(dll being used). But when i checked for type of reader and after that i used it to call function it shows me error Cannot convert type T to RFIDeas_Wrapper. EDIT private List<string> GetTagCollection<T>(T Reader) { TagCollection = new List<string>(); if (Reader.GetType() == typeof(RFIDeas_Wrapper)) { ((RFIDeas_Wrapper)Reader).OpenDevice(); // here Reader is of type RFIDeas_Wrapper //, but i m not able to convert Reader into its datatype. string Tag_Id = ((RFIDeas_Wrapper)Reader).TagID(); //Adds Valid Tag Ids into the collection if(Tag_Id!="0") TagCollection.Add(Tag_Id); } else if (Reader.GetType() == typeof(AlienReader)) TagCollection = ((AlienReader)Reader).TagCollection; return TagCollection; } ((RFIDeas_Wrapper)Reader).OpenDevice(); , ((AlienReader)Reader).TagCollection; I want this line to be executed without any issue. As Reader will always be of the type i m specifying. How to make compiler understand the same thing.

    Read the article

  • Deploying Data Mining Models using Model Export and Import, Part 2

    - by [email protected]
    In my last post, Deploying Data Mining Models using Model Export and Import, we explored using DBMS_DATA_MINING.EXPORT_MODEL and DBMS_DATA_MINING.IMPORT_MODEL to enable moving a model from one system to another. In this post, we'll look at two distributed scenarios that make use of this capability and a tip for easily moving models from one machine to another using only Oracle Database, not an external file transport mechanism, such as FTP. The first scenario, consider a company with geographically distributed business units, each collecting and managing their data locally for the products they sell. Each business unit has in-house data analysts that build models to predict which products to recommend to customers in their space. A central telemarketing business unit also uses these models to score new customers locally using data collected over the phone. Since the models recommend different products, each customer is scored using each model. This is depicted in Figure 1.Figure 1: Target instance importing multiple remote models for local scoring In the second scenario, consider multiple hospitals that collect data on patients with certain types of cancer. The data collection is standardized, so each hospital collects the same patient demographic and other health / tumor data, along with the clinical diagnosis. Instead of each hospital building it's own models, the data is pooled at a central data analysis lab where a predictive model is built. Once completed, the model is distributed to hospitals, clinics, and doctor offices who can score patient data locally.Figure 2: Multiple target instances importing the same model from a source instance for local scoring Since this blog focuses on model export and import, we'll only discuss what is necessary to move a model from one database to another. Here, we use the package DBMS_FILE_TRANSFER, which can move files between Oracle databases. The script is fairly straightforward, but requires setting up a database link and directory objects. We saw how to create directory objects in the previous post. To create a database link to the source database from the target, we can use, for example: create database link SOURCE1_LINK connect to <schema> identified by <password> using 'SOURCE1'; Note that 'SOURCE1' refers to the service name of the remote database entry in your tnsnames.ora file. From SQL*Plus, first connect to the remote database and export the model. Note that the model_file_name does not include the .dmp extension. This is because export_model appends "01" to this name.  Next, connect to the local database and invoke DBMS_FILE_TRANSFER.GET_FILE and import the model. Note that "01" is eliminated in the target system file name.  connect <source_schema>/<password>@SOURCE1_LINK; BEGIN  DBMS_DATA_MINING.EXPORT_MODEL ('EXPORT_FILE_NAME' || '.dmp',                                 'MY_SOURCE_DIR_OBJECT',                                 'name =''MY_MINING_MODEL'''); END; connect <target_schema>/<password>; BEGIN  DBMS_FILE_TRANSFER.GET_FILE ('MY_SOURCE_DIR_OBJECT',                               'EXPORT_FILE_NAME' || '01.dmp',                               'SOURCE1_LINK',                               'MY_TARGET_DIR_OBJECT',                               'EXPORT_FILE_NAME' || '.dmp' );  DBMS_DATA_MINING.IMPORT_MODEL ('EXPORT_FILE_NAME' || '.dmp',                                 'MY_TARGET_DIR_OBJECT'); END; To clean up afterward, you may want to drop the exported .dmp file at the source and the transferred file at the target. For example, utl_file.fremove('&directory_name', '&model_file_name' || '.dmp');

    Read the article

  • Abstract Data Type and Data Structure

    - by mark075
    It's quite difficult for me to understand these terms. I searched on google and read a little on Wikipedia but I'm still not sure. I've determined so far that: Abstract Data Type is a definition of new type, describes its properties and operations. Data Structure is an implementation of ADT. Many ADT can be implemented as the same Data Structure. If I think right, array as ADT means a collection of elements and as Data Structure, how it's stored in a memory. Stack is ADT with push, pop operations, but can we say about stack data structure if I mean I used stack implemented as an array in my algorithm? And why heap isn't ADT? It can be implemented as tree or an array.

    Read the article

  • Abstract Methods in "Product" - Factory Method C#

    - by Regina Foo
    I have a simple class library (COM+ service) written in C# to consume 5 web services: Add, Minus, Divide, Multiply and Compare. I've created the abstract product and abstract factory classes. The abstract product named WS's code: public abstract class WS { public abstract double Calculate(double a, double b); public abstract string Compare(double a, double b); } As you see, when one of the subclasses inherits WS, both methods must be overridden which might not be useful in some subclasses. E.g. Compare doesn't need Calculate() method. To instantiate a new CompareWS object, the client class will call the CreateWS() method which returns a WS object type. public class CompareWSFactory : WSFactory { public override WS CreateWS() { return new CompareWS(); } } But if Compare() is not defined as abstract in WS, the Compare() method cannot be invoked. This is only an example with two methods, but what if there are more methods? Is it stupid to define all the methods as abstract in the WS class? My question is: I want to define abstract methods that are common to all subclasses of WS whereas when the factory creates a WS object type, all the methods of the subclasses can be invoked (overridden methods of WS and also the methods in subclasses). How should I do this?

    Read the article

  • How to persist a very abstract data type between sessions: PHP

    - by Greelmo
    I have an abstract data type that behaves much like stack. It represents a history of "graph objects" made by a particular user. Each "graph object" holds one or more "lines", a date range, keys, and a title. Each "line" holds a sql generator configured for a particular subset of data in my db. I would like for these "histories" to be available to users between their sessions. It will be in the form of a tab that reads something like "most recent graphs". What do you believe to be the best way to persist this type of data between sessions. This application could get rather large, so efficiency is a concern. Thanks in advance.

    Read the article

  • Big Data – Various Learning Resources – How to Start with Big Data? – Day 20 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned how to become a Data Scientist for Big Data. In this article we will go over various learning resources related to Big Data. In this series we have covered many of the most essential details about Big Data. At the beginning of this series, I have encouraged readers to send me questions. One of the most popular questions is - “I want to learn more about Big Data. Where can I learn it?” This is indeed a great question as there are plenty of resources out to learn about Big Data and it is indeed difficult to select on one resource to learn Big Data. Hence I decided to write here a few of the very important resources which are related to Big Data. Learn from Pluralsight Pluralsight is a global leader in high-quality online training for hardcore developers.  It has fantastic Big Data Courses and I started to learn about Big Data with the help of Pluralsight. Here are few of the courses which are directly related to Big Data. Big Data: The Big Picture Big Data Analytics with Tableau NoSQL: The Big Picture Understanding NoSQL Data Analysis Fundamentals with Tableau I encourage all of you start with this video course as they are fantastic fundamentals to learn Big Data. Learn from Apache Resources at Apache are single point the most authentic learning resources. If you want to learn fundamentals and go deep about every aspect of the Big Data, I believe you must understand various concepts in Apache’s library. I am pretty impressed with the documentation and I am personally referencing it every single day when I work with Big Data. I strongly encourage all of you to bookmark following all the links for authentic big data learning. Haddop - The Apache Hadoop® project develops open-source software for reliable, scalable, distributed computing. Ambari: A web-based tool for provisioning, managing, and monitoring Apache Hadoop clusters which include support for Hadoop HDFS, Hadoop MapReduce, Hive, HCatalog, HBase, ZooKeeper, Oozie, Pig and Sqoop. Ambari also provides a dashboard for viewing cluster health such as heat maps and ability to view MapReduce, Pig and Hive applications visually along with features to diagnose their performance characteristics in a user-friendly manner. Avro: A data serialization system. Cassandra: A scalable multi-master database with no single points of failure. Chukwa: A data collection system for managing large distributed systems. HBase: A scalable, distributed database that supports structured data storage for large tables. Hive: A data warehouse infrastructure that provides data summarization and ad hoc querying. Mahout: A Scalable machine learning and data mining library. Pig: A high-level data-flow language and execution framework for parallel computation. ZooKeeper: A high-performance coordination service for distributed applications. Learn from Vendors One of the biggest issues with about learning Big Data is setting up the environment. Every Big Data vendor has different environment request and there are lots of things require to set up Big Data framework. Many of the users do not start with Big Data as they are afraid about the resources required to set up framework as well as a time commitment. Here Hortonworks have created fantastic learning environment. They have created Sandbox with everything one person needs to learn Big Data and also have provided excellent tutoring along with it. Sandbox comes with a dozen hands-on tutorial that will guide you through the basics of Hadoop as well it contains the Hortonworks Data Platform. I think Hortonworks did a fantastic job building this Sandbox and Tutorial. Though there are plenty of different Big Data Vendors I have decided to list only Hortonworks due to their unique setup. Please leave a comment if there are any other such platform to learn Big Data. I will include them over here as well. Learn from Books There are indeed few good books out there which one can refer to learn Big Data. Here are few good books which I have read. I will update the list as I will learn more. Ethics of Big Data Balancing Risk and Innovation Big Data for Dummies Head First Data Analysis: A Learner’s Guide to Big Numbers, Statistics, and Good Decisions If you search on Amazon there are millions of the books but I think above three books are a great set of books and it will give you great ideas about Big Data. Once you go through above books, you will have a clear idea about what is the next step you should follow in this series. You will be capable enough to make the right decision for yourself. Tomorrow In tomorrow’s blog post we will wrap up this series of Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Data Storage Options

    - by Kenneth
    When I was working as a website designer/engineer I primarily used databases for storage of much of my dynamic data. It was very easy and convenient to use this method and seemed like a standard practice from my research on the matter. I'm now working on shifting away from websites and into desktop applications. What are the best practices for data storage for desktop applications? I ask because I have noticed that most programs I use on a personal level don't appear to use a database for data storage unless its embedded in the program. (I'm not thinking of an application like a word processor where it makes sense to have data stored in individual files as defined by the user. Rather I'm thinking of something more along the lines of a calendar application which would need to store dates and event info and such where accessing that information would be much easier if stored in a database... at least as far as my experience would indicate.) Thanks for the input!

    Read the article

  • What is a Data Warehouse?

    Typically Data Warehouses are considered to be non-volatile in comparison to traditional databasesdue to the fact that data within the warehouse does not change that often.  In addition, Data Warehouses typically represent data through the use of Multidimensional Conceptual Views that allow data to be extracted based on the view and the current position within the view. Common Data Warehouse Traits Relatively Non-volatile Data Supports Data Extraction and Analysis Optimized for Data Retrieval and Analysis Multidimensional Views of Data Flexible Reporting Multi User Support Generic Dimensionality Transparent Accessible Unlimited Dimensions of Data Unlimited Aggregation levels of Data Normally, Data Warehouses are much larger then there traditional database counterparts due to the fact that they store the basis data along with derived data via Multidimensional Conceptual Views. As companies store larger and larger amounts of data, they will need a way to effectively and accurately extract analysis information that can be used to aide in formulating current and future business decisions. This process can be done currently through data mining within a Data Warehouse. Data Warehouses provide access to data derived through complex analysis, knowledge discovery and decision making. Secondly, they support the demands for high performance in regards to analyzing an organization’s existing and current data. Data Warehouses provide support for an organization’s data and acquired business knowledge.  Within a Data Warehouse multiple types of operations/sub systems are supported. Common Data Warehouse Sub Systems Online Analytical Processing (OLAP) Decision –Support Systems (DSS) Online Transaction Processing (OLTP)

    Read the article

  • How Do You Actually Model Data?

    Since the 1970’s Developers, Analysts and DBAs have been able to represent concepts and relations in the form of data through the use of generic symbols.  But what is data modeling?  The first time I actually heard this term I could not understand why anyone would want to display a computer on a fashion show runway. Hey, what do you expect? At that time I was a freshman in community college, and obviously this was a long time ago.  I have since had the chance to learn what data modeling truly is through using it. Data modeling is a process of breaking down information and/or requirements in to common categories called objects. Once objects start being defined then relationships start to form based on dependencies found amongst other existing objects.  Currently, there are several tools on the market that help data designer actually map out objects and their relationships through the use of symbols and lines.  These diagrams allow for designs to be review from several perspectives so that designers can ensure that they have the optimal data design for their project and that the design is flexible enough to allow for potential changes and/or extension in the future. Additionally these basic models can always be further refined to show different levels of details depending on the target audience through the use of three different types of models. Conceptual Data Model(CDM)Conceptual Data Models include all key entities and relationships giving a viewer a high level understanding of attributes. Conceptual data model are created by gathering and analyzing information from various sources pertaining to a project during the typical planning phase of a project. Logical Data Model (LDM)Logical Data Models are conceptual data models that have been expanded to include implementation details pertaining to the data that it will store. Additionally, this model typically represents an origination’s business requirements and business rules by defining various attribute data types and relationships regarding each entity. This additional information can be directly translated to the Physical Data Model which reduces the actual time need to implement it. Physical Data Model(PDMs)Physical Data Model are transformed Logical Data Models that include the necessary tables, columns, relationships, database properties for the creation of a database. This model also allows for considerations regarding performance, indexing and denormalization that are applied through database rules, data integrity. Further expanding on why we actually use models in modern application/database development can be seen in the benefits that data modeling provides for data modelers and projects themselves, Benefits of Data Modeling according to Applied Information Science Abstraction that allows data designers remove concepts and ideas form hard facts in the form of data. This gives the data designers the ability to express general concepts and/or ideas in a generic form through the use of symbols to represent data items and the relationships between the items. Transparency through the use of data models allows complex ideas to be translated in to simple symbols so that the concept can be understood by all viewpoints and limits the amount of confusion and misunderstanding. Effectiveness in regards to tuning a model for acceptable performance while maintaining affordable operational costs. In addition it allows systems to be built on a solid foundation in terms of data. I shudder at the thought of a world without data modeling, think about it? Data is everywhere in our lives. Data modeling allows for optimizing a design for performance and the reduction of duplication. If one was to design a database without data modeling then I would think that the first things to get impacted would be database performance due to poorly designed database and there would be greater chances of unnecessary data duplication that would also play in to the excessive query times because unneeded records would need to be processed. You could say that a data designer designing a database is like a box of chocolates. You will never know what kind of database you will get until after it is built.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >