Search Results

Search found 737 results on 30 pages for 'anthony shorten'.

Page 3/30 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • JMX Based Monitoring - Part Two - JVM Monitoring

    - by Anthony Shorten
    This the second article in the series focussing on the JMX based monitoring capabilities possible with the Oracle Utilities Application Framework. In all versions of the Oracle utilities Application Framework, it is possible to use the basic JMX based monitoring available with the Java Virtual Machine to provide basic statistics ablut the JVM. In Java 5 and above, the JVM automatically allowed local monitoring of the JVM statistics from an approporiate console. When I say local I mean the monitoring tool must be executed from the same machine (and in some cases the same user that is running the JVM) to connect to the JVM directly. If you are using jconsole, for example, then you must have access to a GUI (X-Windows or Windows) to display the jconsole output. This is the easist way of monitoring without doing too much configration but is not always practical. Java offers a remote monitorig capability to allow yo to connect to a remotely executing JVM from a console (like jconsole). To use this facility additional JVM options must be added to the command line that started the JVM. Details of the additional options for the version of the Java you are running is located at the JMX information site. Typically to remotely connect to a running JVM that JVM must be configured with the following categories of options: JMX Port - The JVM must allow connections on a listening port specified on the command line Connection security - The connection to the JVM can be secured. This is recommended as JMX is not just a monitoring protocol it is a managemet protocol. It is possible to change values in a running JVM using JMX and there are NO "Are you sure?" safeguards. For a Oracle Utilities Application Framework based application there are a few guidelines when configuring and using this JMX based remote monitoring of the JVM's: Online JVM - The JVM used to run the online system is embedded within the J2EE Web Application Server. To enable JMX monitoring on this JVM you can either change the startup script that starts the Web Application Server or check whether your J2EE Web Application natively supports JVM statistics collection. Child JVM's (COBOL only) - The Child JVM's should not be monitored using this method as they are recycled regularly by the configuration and therefore statistics collected are of little value. Batch Threadpoools - Batch already has a JMX interface (which will be covered in another article). Additional monitoring can be enabled but the base supported monitoring is sufficient for most needs. If you are an Oracle Utilities Application Framework site, then you can specify the additional options for JMX Java monitoring on the OPTS paramaters supported for each component of the architecture. Just ensure the port numbers used are unique for each JVM running on any machine.

    Read the article

  • Framework 4 Features: Support for Timed Jobs

    - by Anthony Shorten
    One of the new features of the Oracle Utilities Application Framework V4 is the ability for the batch framework to support Timed Batch. Traditionally batch is associated with set processing in the background in a fixed time frame. For example, billing customers. Over the last few versions their has been functionality required by the products required a more monitoring style batch process. The monitor is a batch process that looks for specific business events based upon record status or other pieces of data. For example, the framework contains a fact monitor (F1-FCTRN) that can be configured to look for specific status's or other conditions. The batch process then uses the instructions on the object to determine what to do. To support monitor style processing, you need to run the process regularly a number of times a day (for example, every ten minutes). Traditional batch could support this but it was not as optimal as expected (if you are a site using the old Workflow subsystem, you understand what I mean). The Batch framework was extended to add additional facilities to support times (and continuous batch which is another new feature for another blog entry). The new facilities include: The batch control now defines the job as Timed or Not Timed. Non-Timed batch are traditional batch jobs. The timer interval (the interval between executions) can be specified The timer can be made active or inactive. Only active timers are executed. Setting the Timer Active to inactive will stop the job at the next time interval. Setting the Timer Active to Active will start the execution of the timed job. You can specify the credentials, language to view the messages and an email address to send the a summary of the execution to. The email address is optional and requires an email server to be specified in the relevant feature configuration. You can specify the thread limits and commit intervals to be sued for the multiple executions. Once a timer job is defined it will be executed automatically by the Business Application Server process if the DEFAULT threadpool is active. This threadpool can be started using the online batch daemon (for non-production) or externally using the threadpoolworker utility. At that time any batch process with the Timer Active set to Active and Batch Control Type of Timed will begin executing. As Timed jobs are executed automatically then they do not appear in any external schedule or are managed by an external scheduler (except via the DEFAULT threadpool itself of course). Now, if the job has no work to do as the timer interval is being reached then that instance of the job is stopped and the next instance started at the timer interval. If there is still work to complete when the interval interval is reached, the instance will continue processing till the work is complete, then the instance will be stopped and the next instance scheduled for the next timer interval. One of the key ways of optimizing this processing is to set the timer interval correctly for the expected workload. This is an interesting new feature of the batch framework and we anticipate it will come in handy for specific business situations with the monitor processes.

    Read the article

  • Web Services for Info Explorer Zones

    - by Anthony Shorten
    One of the most interesting uses for XAI and Configurable objects is the exposure of a query portal as a Web Service. Let me illustrate this with an example. Say you have an interface that requires a list of data from a number of product tables. In the past you would have to build a java program to do this with SQL then use an application service but it is now possible with just configuration. The first step in the process is to create the SQL you want to use for the interface. It can be any valid static SQL or use host variables for the WHERE clause (we call that filtered). Once you are happy with the SQL (and it performs acceptably) you can incorporate that SQL into a Info-Explorer Zone. You can use any of the explorer zone types but I typically recommend F1-DE-SINGLE as it supports a single SQL statement with multiple filters (up to 15) as well as hidden filters (up to 5). Hidden filters are typically not displayed in the UI for criteria (remember explorer zones can be used on the user Interface as well) but for web services they can be used as normal filters (this means you can use up to 20 filters all up). Once you are happy with the zone, you now need to define it as a Business Service. We have a generic service called FWLZDEXP which allows a explorer zone to be defined as a Business Service. If you open any Business Service based upon FWLZDEXP you will see some examples. The schema is standard and pretty self explanatory in terms of the structure. The schema pattern looks like this: Zone element - maps to the ZONE_CD element and the default value is the zone name you just created. This links the business service to the zone. Filter elements - You name the filters as you like but the mapField is set to Fx_VALUE where x is the filter number corresponding to the filter element in the zone definition. Hidden filter elements - You name the filters as you like but the mapField is set to Hx_VALUE where x is the filter number corresponding to the hidden filter element in the zone definition. results group - this holds the elements of the result set. Each element in your result set has a tagname and is linked to the COL_VALUE mapField and the row element is lists the SEQNO of the column. This corresponds to the column number in the results set in the zone. An example schema is shown below for the F1-USGRACML zone, which returns the access modes for a user group and application service filters. In the example, the userGroup and applicationService elements are the filters and the rows would contain a list of accessModeDescr. This is just a simple example to illustrate the point. There are lots of examples in the product that you can investigate. One recommendation, to save time, is that you copy the schema from one of the examples to save you typing it from scratch. You can simply modify the tags and other elements to suit your needs. Once the Business Service is defined it can simply be defined as a Web Service by registering an XAI Inbound Service using the Business Service definition as a basis. You now have a Web Service based upon a Info Explorer Zone. This is one of my favorite components as it allows interfaces to be simplified. This will be my last blog entry for this year. I hope you all have a great and safe Christmas and an even greater new year. Next year promises to be an exciting year and I look forward to communicating exciting developments we are working on at the moment as they are released.

    Read the article

  • JMX Based Monitoring - Part Four - Business App Server Monitoring

    - by Anthony Shorten
    In the last blog entry I talked about the Oracle Utilities Application Framework V4 feature for monitoring and managing aspects of the Web Application Server using JMX. In this blog entry I am going to discuss a similar new feature that allows JMX to be used for management and monitoring the Oracle Utilities business application server component. This feature is primarily focussed on performance tracking of the product. In first release of Oracle Utilities Customer Care And Billing (V1.x I am talking about), we used to use Oracle Tuxedo as part of the architecture. In Oracle Utilities Application Framework V2.0 and above, we removed Tuxedo from the architecture. One of the features that some customers used within Tuxedo was the performance tracking ability. The idea was that you enabled performance logging on the individual Tuxedo servers and then used a utility named txrpt to produce a performance report. This report would list every service called, the number of times it was called and the average response time. When I worked a performance consultant, I used this report to identify badly performing services and also gauge the overall performance characteristics of a site. When Tuxedo was removed from the architecture this information was also lost. While you can get some information from access.log and some Mbeans supplied by the Web Application Server it was not at the same granularity as txrpt or as useful. I am happy to say we have not only reintroduced this facility in Oracle Utilities Application Framework but it is now accessible via JMX and also we have added more detail into the performance tracking. Most of this new design was working with customers around the world to make sure we introduced a new feature that not only satisfied their performance tracking needs but allowed for finer grained performance analysis. As with the Web Application Server, the Business Application Server JMX monitoring is enabled by specifying a JMX port number in RMI Port number for JMX Business and initial credentials in the JMX Enablement System User ID and JMX Enablement System Password configuration options. These options are available using the configureEnv[.sh] -a utility. These credentials are shared across the Web Application Server and Business Application Server for authorization purposes. Once this is information is supplied a number of configuration files are built (by the initialSetup[.sh] utility) to configure the facility: spl.properties - contains the JMX URL, the security configuration and the mbeans that are enabled. For example, on my demonstration machine: spl.runtime.management.rmi.port=6750 spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://localhost:6750/oracle/ouaf/ejbAppConnector jmx.remote.x.password.file=scripts/ouaf.jmx.password.file jmx.remote.x.access.file=scripts/ouaf.jmx.access.file ouaf.jmx.com.splwg.ejb.service.management.PerformanceStatistics=enabled ouaf.jmx.* files - contain the userid and password. The default configuration uses the JMX default configuration. You can use additional security features by altering the spl.properties file manually or using a custom template. For more security options see JMX Security for more details. Once it has been configured and the changes reflected in the product using the initialSetup[.sh] utility the JMX facility can be used. For illustrative purposes I will use jconsole but any JSR160 complaint browser or client can be used (with the appropriate configuration). Once you start jconsole (ensure that splenviron[.sh] is executed prior to execution to set the environment variables or for remote connection, ensure java is in your path and jconsole.jar in your classpath) you specify the URL in the spl.runtime.management.connnector.url.default entry. For example: You are then able to track performance of the product using the PerformanceStatistics Mbean. The attributes of the PerformanceStatistics Mbean are counts of each object type. This is where this facility differs from txrpt. The information that is collected includes the following: The Service Type is captured so you can filter the results in terms of the type of service. For maintenance type services you can even see the transaction type (ADD, CHANGE etc) so you can see the performance of updates against read transactions. The Minimum and Maximum are also collected to give you an idea of the spread of performance. The last call is recorded. The date, time and user of the last call are recorded to give you an idea of the timeliness of the data. The Mbean maintains a set of counters per Service Type to give you a summary of the types of transactions being executed. This gives you an overall picture of the types of transactions and volumes at your site. There are a number of interesting operations that can also be performed: reset - This resets the statistics back to zero. This is an important operation. For example, txrpt is restricted to collecting statistics per hour, which is ok for most people. But what if you wanted to be more granular? This operation allows to set the collection period to anything you wish. The statistics collected will represent values since the last restart or last reset. completeExecutionDump - This is the operation that produces a CSV in memory to allow extraction of the data. All the statistics are extracted (see the Server Administration Guide for a full list). This can be then loaded into a database, a tool or simply into your favourite spreadsheet for analysis. Here is an extract of an execution dump from my demonstration environment to give you an idea of the format: ServiceName, ServiceType, MinTime, MaxTime, Avg Time, # of Calls, Latest Time, Latest Date, Latest User ... CFLZLOUL, EXECUTE_LIST, 15.0, 64.0, 22.2, 10, 16.0, 2009-12-16::11-25-36-932, ASHORTEN CILBBLLP, READ, 106.0, 1184.0, 466.3333333333333, 6, 106.0, 2009-12-16::11-39-01-645, BOBAMA CILBBLLP, DELETE, 70.0, 146.0, 108.0, 2, 70.0, 2009-12-15::12-53-58-280, BPAYS CILBBLLP, ADD, 860.0, 4903.0, 2243.5, 8, 860.0, 2009-12-16::17-54-23-862, LELLISON CILBBLLP, CHANGE, 112.0, 3410.0, 815.1666666666666, 12, 112.0, 2009-12-16::11-40-01-103, ASHORTEN CILBCBAL, EXECUTE_LIST, 8.0, 84.0, 26.0, 22, 23.0, 2009-12-16::17-54-01-643, LJACKMAN InitializeUserInfoService, READ_SYSTEM, 49.0, 962.0, 70.83777777777777, 450, 63.0, 2010-02-25::11-21-21-667, ASHORTEN InitializeUserService, READ_SYSTEM, 130.0, 2835.0, 234.85777777777778, 450, 216.0, 2010-02-25::11-21-21-446, ASHORTEN MenuLoginService, READ_SYSTEM, 530.0, 1186.0, 703.3333333333334, 9, 530.0, 2009-12-16::16-39-31-172, ASHORTEN NavigationOptionDescriptionService, READ_SYSTEM, 2.0, 7.0, 4.0, 8, 2.0, 2009-12-21::09-46-46-892, ASHORTEN ... There are other operations and attributes available. Refer to the Server Administration Guide provided with your product to understand the full et of operations and attributes. This is one of the many features I am proud that we implemented as it allows flexible monitoring of the performance of the product.

    Read the article

  • Accessing JMX for Oracle WebLogic 11g

    - by Anthony Shorten
    In Oracle Utilities Application Framework V4, we use the latest Oracle WebLogic release (11g). The instructions below illustrate a way of allowing a console like jconsole to remotely monitor and manage Oracle WebLogic using the JMX Mbeans. Typically management of Oracle WebLogic is done from Oracle Enterprise Manager or the Oracle Weblogic console application but you can also use JMX. To access the JMX capability for Oracle WebLogic 11g, for an Oracle Utilities Application Framework based product, using a JMX console (such as jconsole) the following process needs to be performed: Enable the JMX Management Server in the Oracle WebLogic console at splapp - Configuration - General - Advanced Settings option. Enable both Compatibility Mbean Server Enabled and Management EJB Enabled (this enables the legacy and new JMX interface). Save the changes This change will require a restart. In the startup of the Oracle WebLogic server in the $SPLSYSTEMLOGS/myserver.log (or %SPLESYSTEMLOGS%\myserver.log on Windows) you will see the BEA-149512 message indicating the Mbean servers have been started. The message will indicate the JMX URL that can be used to access the JMX Mbeans. The URL is in the format: service:jmx:iiop://host:port/jndi/mbeanserver where: host - Oracle WebLogic host name port - Oracle WebLogic port number mbeanserver - Mbean Server to access. Valid Values: weblogic.management.mbeanservers.runtime weblogic.management.mbeanservers.edit weblogic.management.mbeanservers.domainruntime For illustrative purposes we will use the domainruntime Mbean. Ensure that you execute the splenviron[.sh] utility to set the appropriate environment variables for the desired environment. Execute the following jconsole command to initiate the connection to the JMX Mbean server Windows: jconsole -J-Djava.class.path=%JAVA_HOME%\lib\jconsole.jar;%WL_HOME%\server\lib\wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote Linux/Unix jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar;$WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote You will see a New Connection Dialog. Specify the URL from the previous steps into the Remote process (i.,e. service:jmx:iiop...). The credentials are the credentials specified for the Oracle WebLogic console. You are now able to view the JMX classes available. Here is an example from my demonstration machine: Refer to the Oracle WebLogic Mbean documentation to understand the output.

    Read the article

  • IE8 and Windows 7 support for OUAF V2.2

    - by Anthony Shorten
    The browser screens generated and served by an Oracle Utilities Application Framework V2.2 now supports both Microsoft Internet Explorer 8 and Microsoft Windows 7 as a client. To use this compatibility Oracle Utilities Application Framework V2.2 products must download patch 8714458 from My Oracle Support. Details of the changes are included in the patch. This patch applies to the following products: Oracle Utilities Customer Care and Billing V2.2 Oracle Utilities Customer Care and Billing V2.3 Oracle Enterprise Taxation Management V2.2.x Oracle Utilities Business Intelligence V2.2

    Read the article

  • JMX Based Monitoring - Part One

    - by Anthony Shorten
    In all versions of the Oracle Utilities Application Framework there is an ability to use Java Management eXtensions (JMX) to both manage and monitor the various components of the product. This means that sites can use a JSR120 compliant JMX browser or JMX console to view or manage the components of the product with little or no configuration required. In each version we have progressively added JMX capabilities to allow IT groups more detailed information. In Oracle Utilities Application Framework V2.1 and above it was possible to use JMX on the Web Application Server provided Mbeans to allow you to monitor the online component of the product as well as manage the configuration. Also with a few additional java options it is possible to get a good level of detail about the Java Virtual machine including memory and thread usage. In Oracle Utilities Application Framework V2.2 and above, we added support for Java 5 statistics (Java enabled them by default), database pool statistics and also added the ability to manage and moinitor the batch component of the architecture. Now, in Oracle Utilities Application Framework V4 and above, we added support for Java 6 MXBeans, online management of the cache using JMX, additional JVM information and Performance monitoring using JMX. JMX allows the product to be managed from a common console such as Oracle Enterprise Manager, Tivoli, HP OpenView (and a lot more). Over the next week or so I will be compiling a set of blog entries discussing what is available (in summary format) using JMX and how to get access to the JMX statistics for your version of the product.

    Read the article

  • SOA Suite Integration: Part 2: A basic BPEL process

    - by Anthony Shorten
    This is the next in the series about SOA Suite integration with Oracle Utilities Application Framework. One of the first scenarios I am going to illustrate in this series is building a basic BPEL process using Web Service calls to the Oracle Utilities Application Framework. The scenario is this. I will pass in the userid and the BPEL process will call our the AS-User Web Service we created in Part 1. This is just a basic test and illustrate how to import the Web Service into SOA Suite. To use this scenario, you will need access to Oracle SOA Suite, access to a copy of any Oracle Utilities Application Framework based product and Oracle JDeveloper (to build the process). First of all you need to start Oracle JDeveloper and create a new SOA Project to house the BPEL process in. For the purposes of this example I will call the project simpleBPEL and verify that SOA is part of the project. I will select "Composite with BPEL" to denote it as a BPEL process. I can also the same process to create a Mediator or OSB project (refer to the JDeveloper documentation on these technologies). For this example I will use BPEL 1.1 as my specification standard (BPEL 2.0 can also be used if desired). I give the individual BPEL process as simpleBPEL (you can use a different name but I wanted to keep the project and process the same for this example). I will also build a Synchronous BPEL Process as I want a response from the Web Service. I will leave the defaults to save time. I have no have a blank canvas to build my BPEL process against. Note: for simplicity I am going to use as much defaulting as possible. In fact I am not going to specify an input schema for the incoming call as I will use the basic single field used by BPEL as default. The first step is to import the AS-User Web Service into my BPEL project. To do this I use the standard Web Service BPEL component from the Component Palette to import the WSDL into the BPEL project. Now the tricky part (a joke), you drag and drop the component from the Palette onto the right side of the canvas in the Partner Links swim lane. This swim lane is reserved for Partner Links that have a Partner Role (i.e. being called rather than calling). When you drop the Web Service onto the canvas the Create Web Service wizard is invoked to ask for details of the Web Service. At this point you give the BPEL node a name. I have used the name RetrieveUser as a name. I placed the WSDL URL from the XAI Inbound Service screen in the WSDL URL. Once you specify the URL you can press the Find existing WSDL's button to load the information into BPEL from the call. You will notice the Port Type is prefilled with the port from the WSDL. I also suggest that you check copy wsdl and it's dependent artifacts into the project if you intending to work on the BPEL process offline. If you do not check this your target application must be accessible when you work on the BPEL process (that is not always convenient). Note: For the perceptive of you will notice that the URL specified in this example is different to the URL in the last post. The reason is for the demonstrations I shifted to a new server and did not redo all of the past screen captures. If you copy the WSDL into the project you will get an information screen about Localize Files. It is just a confirmation screen. The last confirmation screen is a summary of the partner link (the main tab is locked for editing at this stage). At this stage you have successfully imported the Web Service. To complete the setup of the Web Service you need to set the credentials for the Web Service to use. Refer to the past post on how to do that. Now to use the Web Service. To call the Web Service (as it is just imported not connected to the BPEL process yet), you must add an Invoke action to your BPEL Process. To do this, select Invoke action from the BPEL Constructs zone on the Component Palette and drop it on the edit nodes between the receiveInput and replyOutput nodes This will create an empty Invoke action. You will notice some connectors on the Invoke node. Grab the node closest to your Web Service and drag it to connect the Invoke to your Web Service. This instructs BPEL to use the Invoke to call the Web Service. Once the Invoke action is connected to the Web Service an Edit Invoke edit dialog is displayed. At this point I suggest you name the Invoke node. It is important to name the nodes straightaway and name them appropriately for you to trace the logic. I used InvokeUser as the name in this example. To complete the node configuration you must create Variables to hold the input and output for the call. To do this clock on Automatically Create Input Variable on the Edit Invoke dialog. You will be presented with a default variable name. It uses the node name (that is why it is important to name the node before hitting this button) as a prefix. You can name the variable anything but I usually take the default. Repeat the same for the output variable. You now have a completed node for invoking the service. You have a very basic BPEL process which contains an input, invoke and output node. It is not complete yet though. You need to tell the BPEL process how to pass data from the input to the invoke step and how to take the output from the service call and pass it back to the service. You need to now add an Assign node to assign the input to the Web Service. To do this select Assign activity from BPEL Constructs zone in the Component Palette. Drag and drop the Assign activity between the receiveInput and InvokeUser nodes as you want to pass data between these two nodes. You have now added a new Assign node to your BPEL process Double clicking the node allows you to specify the name of the node. I use AssignUser to describe that I am assigning user data. On the Copy Rules tab you can specify the mapping between the input variable InputVariable/payload/process/input string and the input variable for the Web Service call. We are passing data from the input to BPEL to the relevant input variable on the Web Service. This is simply drag and drop between the two data structures. In the example, I am using the input to pass to the user element in my Web Service as the user is the primary key for the object. The fields become linked (which means data from source will be copied to target). Almost there. You now need to process the output from the Web Service call to the outputVariable of the client call. I have decided to pass back one piece of data, the name associated with the user by concatenating the firstName and lastName elements from the Web Service call. To do this I will use a Transform as it is not just a matter of an Assign action. It is a concatenation operation. This also illustrates how you can use BPEL functionality to transform data from a Web Service call. As with the other components you drag and drop the Transform component to the appropriate place in the BPEL process. In this case we want to transform the output from the Web Service call so we want it after the InvokeUser action and the replyOutput action. The Transform component is actually part of the Oracle Extensions to the BPEL specification. Double clicking the Transform node will allow you to name the node.  In this example I used TransformName. To complete the transform I need to tell the product the source of the transformation and the target of the transform. In the example this is the InvokeUser output variable. I also named the mapper file to TransformName. By clicking the + or pencil icon next to the map I can create the map. The mapping screen is shows the source and target schemas for me to map across. As with the assign I can map the relevant elements. In my example, I first map the firstName from the Web Service to the result element. As I want to concatenate the names, I drop the concat function on the call line. I now attach the last name to the function to indicate the concatenation of the field. By default the names will be concatenated with no space. To make the name legible I add a space between the field by clicking the function and adding a space in the call. I now have a completed mapping. I can now save the whole project as my BPEL process is now complete. As you can see the following happens: We accept input from the client (the userid for the call) in the receiveInput step. We assign that value to the input parameters for the Web Service call in the AssignUser step. We invoke the Web Service call to retrieve the data from the product in the InvokeUser step. We take the output from the InvokeUser step and concatenate the names in the TransformName step. We pass back the data in the replyOutput step. At this point we can deploy the BPEL process to the SOA Suite server. I will not cover this aspect as it really all SOA Suite specific (it is all done via Oracle JDeveloper). Now we need to test the service in SOA Suite. We will use the Fusion Middleware Control test facility. I will assume that credentials have also been setup as per our previous post (else you will get a 401 error). You navigate to the deployed BPEL process within Fusion Middleware Control and select the Test Service option. Specify some test data on the payload at the bottom of the Test Service screen. In my case I am returning my own userid information. On the response tab you will see the result. It works. You can verify the steps using the Audit trace facility on individual calls. As you can see this is a basic BPEL but you get the idea of importing the Web Service is pretty straightforward. You can create more sophisticated BPEL processes using the full facilities in Oracle SOA Suite. I just showed you the basic principals.

    Read the article

  • Oracle SOA Security for OUAF Web Services

    - by Anthony Shorten
    With the ability to use Oracle SOA Suite 11g with the Oracle Utilities Application Framework based products, an additional consideration needs to be configured to ensure correct integration. That additional consideration is security. By default, SOA Suite propagates any credentials from the calling application through to the interfacing applications. In most cases, this behavior is not appropriate as the calling application may use different credential stores and also some interfaces are “disconnected” from a calling application (for example, a file based load using the File Adapter). These situations require that the Web Service calls to the Oracle Utilities Application Framework based products have their own valid credentials. To do this the credentials must be attached at design time or at run time to provide the necessary credentials for the call. There are a number of techniques that can be used to do this: At design time, when integrating a Web Service from an Oracle Utilities Application Framework based product you can attach the security policy “oracle/wss_username_token_client_policy” in the composite.xml view. In this view select the Web Service you want to attach the policy to and right click to display the context menu and select “Configure WS Policies” and select the above policy from the list. If you are using SSL then you can use “oracle/wss_username_token_over_ssl_client_policy” instead. At design time, you can also specify the credential key (csf-key) associated with the above policy by selecting the policy and clicking “Edit Config Override Properties”. You name the key appropriately. Everytime the SOA components are deployed the credential configuration is also sent. You can also do this after deployment, or what I call at “runtime”, by specifying the policy and credential key in the Fusion Middleware Control. Refer to the Fusion Middleware Control documentation on how to do this. To complete the configuration you need to add a map and the key specified earlier to the credential store in the Oracle WebLogic instance used for Oracle SOA Suite. From Fusion Middleware Control, you do this by selecting the domain the SOA Suite is installed in a select “Credentials” from the context menu. You now need to add the credentials by adding the map “oracle.wsm.security” (the name is IMPORTANT) and creating a key with the necessary valid credentials. The example below added a key called “mdm.key”. The name I used is for example only. You can name the key anything you like as long as it corresponds to the key you specified in the design time component. Note: I used SYSUSER as an example credentials in the example, in real life you would use another credential as SYSUSER is not appropriate for production use. This key can be reused for other Oracle Utilities Application Framework Web Service integrations or you can use other keys for individual Web Service calls. Once the key is created and the SOA Suite components deployed the transactions should be able to be called as necessary. If you need to change the password for the credentials it can be done using the Fusion Middleware Control functionality.

    Read the article

  • List of available whitepapers as at 04 May 2010

    - by Anthony Shorten
    The following table lists the whitepapers available, from My Oracle Support, for any Oracle Utilities Application Framework based product: KB Id Document Title Contents 559880.1 ConfigLab Design Guidelines Whitepaper outlining how to design and implement a ConfigLab solution. 560367.1 Technical Best Practices for Oracle Utilities Application Framework Based Products Whitepaper summarizing common technical best practices used by partners, implementation teams and customers.  560382.1 Performance Troubleshooting Guideline Series A set of whitepapers on tracking performance at each tier in the framework. The individual whitepapers are as follows: Concepts - General Concepts and Performance Troublehooting processes Client Troubleshooting - General troubleshooting of the browser client with common issues and resolutions. Network Troubleshooting - General troubleshooting of the network with common issues and resolutions. Web Application Server Troubleshooting - General troubleshooting of the Web Application Server with common issues and resolutions. Server Troubleshooting - General troubleshooting of the Operating system with common issues and resolutions. Database Troubleshooting - General troubleshooting of the database with common issues and resolutions. Batch Troubleshooting - General troubleshooting of the background processing component of the product with common issues and resolutions. 560401.1 Software Configuration Management Series  A set of whitepapers on how to manage customization (code and data) using the tools provided with the framework. The individual whitepapers are as follows: Concepts - General concepts and introduction. Environment Management - Principles and techniques for creating and managing environments. Version Management - Integration of Version control and version management of configuration items.  Release Management - Packaging configuration items into a release.  Distribution - Distribution and installation of  releases across environments  Change Management - Generic change management processes for product implementations. Status Accounting -Status reporting techniques using product facilities.  Defect Management -Generic defect management processes for product implementations. Implementing Single Fixes - Discussion on the single fix architecture and how to use it in an implementation. Implementing Service Packs - Discussion on the service packs and how to use them in an implementation. Implementing Upgrades - Discussion on the the upgrade process and common techniques for minimizing the impact of upgrades. 773473.1 Oracle Utilities Application Framework Security Overview Whitepaper summarizing the security facilities in the framework. Updated for OUAF 4.0.1 774783.1 LDAP Integration for Oracle Utilities Application Framework based products Whitepaper summarizing how to integrate an external LDAP based security repository with the framework.  789060.1 Oracle Utilities Application Framework Integration Overview Whitepaper summarizing all the various common integration techniques used with the product (with case studies). 799912.1 Single Sign On Integration for Oracle Utilities Application Framework based products Whitepaper outlining a generic process for integrating an SSO product with the framework. 807068.1 Oracle Utilities Application Framework Architecture Guidelines This whitepaper outlines the different variations of architecture that can be considered. Each variation will include advice on configuration and other considerations. 836362.1 Batch Best Practices for Oracle Utilities Application Framework based products This whitepaper oulines the common and best practices implemented by sites all over the world. Updated for OUAF 4.0.1 856854.1 Technical Best Practices V1 Addendum  Addendum to Technical Best Practices for Oracle Utilities Application Framework Based Products containing only V1.x specific advice. 942074.1 XAI Best Practices This whitepaper outlines the common integration tasks and best practices for the Web Services Integration provided by the Oracle Utilities Application Framework. Updated for OUAF 4.0.1 970785.1 Oracle Identity Manager Integration Overview This whitepaper outlines the principals of the prebuilt intergration between Oracle Utilities Application Framework Based Products and Orade Identity Manager used to provision user and user group secuity information 1068958.1 Production Environment Configuration Guidelines (New!) Whitepaper outlining common production level settings for the products

    Read the article

  • Camera Projection back Into 3D world, offset error

    - by Anthony
    I'm using XNA to simulate a robot in a 3D world and then do image analysis on what the camera sees. I have my camera looking down in front of the direction that the robot is going, and I have the robot detecting white pixels. I'm trying to take the white pixels that it finds and project them back into the 3D world so that I can see if it is actually detecting the correct pixels. I almost have it working, but there is an offset between where the white is in in the World and were I put my orange triangles (which represent what the robot things is white). /// <summary> /// Takes a bool map of and makes vertex positions based on the map. /// </summary> /// <param name="c"> The bool map</param> private void ProjectBoolMapOnGroundAnthony2(bool[,] c) { float triangleSize = 0.04f; // Point of interest in World W cordinate system. Vector3 pointOfInterest_W = Vector3.Zero; // Point of interest in Robot Cordinate system R Vector3 pointOfInterest_R = Vector3.Zero; // alpha is the angle from the robot camera to where it is looking in the center. //double alpha = Math.Atan(1.8f / 1); /// Matrix representation of the view determined by the position, target, and updirection. Matrix View = ((SimulationMain)Game).mainRobot.robotCameraView.View; /// Matrix representation of the view determined by the angle of the field of view (Pi/4), aspectRatio, nearest plane visible (1), and farthest plane visible (1200) Matrix Projection = ((SimulationMain)Game).mainRobot.robotCameraView.Projection; /// Matrix representing how the real world cordinates differ from that of the rendering by the camera. Matrix World = ((SimulationMain)Game).mainRobot.robotCameraView.World; Plane groundPlan = new Plane(Vector3.UnitZ, 0.0f); for (int x = 0; x < this.screenWidth; x++) { for (int y = 0; y < this.screenHeight; ) { if (c[x, y] == true && this.count1D < 62000) { int j = 1; Vector3 nearPlanePoint = Game.GraphicsDevice.Viewport.Unproject(new Vector3(x, y, 0), Projection, View, World); Vector3 farPlanePoint = Game.GraphicsDevice.Viewport.Unproject(new Vector3(x, y, 1), Projection, View, World); //Vector3 pointOfInterest_W = Vector3.in Ray ray = new Ray(nearPlanePoint, farPlanePoint); pointOfInterest_W = ray.Position + ray.Direction * (float) ray.Intersects(groundPlan); this.vertexArray2[this.count1D + 0].Position.X = pointOfInterest_W.X - triangleSize; this.vertexArray2[this.count1D + 0].Position.Y = pointOfInterest_W.Y - triangleSize * j; this.vertexArray2[this.count1D + 0].Position.Z = pointOfInterest_W.Z; this.vertexArray2[this.count1D + 0].Color = Color.DarkOrange; // Put another vertex a the position but +1 in the X direction triangleSize //this.vertexArray2[this.count1D + 1].Position.X = pointOnGroud.X + 3; //this.vertexArray2[this.count1D + 1].Position.Y = pointOnGroud.Y + j; this.vertexArray2[this.count1D + 1].Position.X = pointOfInterest_W.X; this.vertexArray2[this.count1D + 1].Position.Y = pointOfInterest_W.Y + triangleSize * j; this.vertexArray2[this.count1D + 1].Position.Z = pointOfInterest_W.Z; this.vertexArray2[this.count1D + 1].Color = Color.Red; // Put another vertex a the position but +1 in the X direction //this.vertexArray2[this.count1D + 0].Position.X = pointOnGroud.X; //this.vertexArray2[this.count1D + 0].Position.Y = pointOnGroud.Y + 3 + j; this.vertexArray2[this.count1D + 2].Position.X = pointOfInterest_W.X + triangleSize; this.vertexArray2[this.count1D + 2].Position.Y = pointOfInterest_W.Y - triangleSize * j; this.vertexArray2[this.count1D + 2].Position.Z = pointOfInterest_W.Z; this.vertexArray2[this.count1D + 2].Color = Color.Orange; this.count1D += 3; y += j; } else { y++; } } } } The world is a grass texture with lines on it. The world plane is normal at (0,0,1). Any ideas on why there is an offset? Any Ideas? Thanks for the help, Anthony G.

    Read the article

  • Oracle Utilities Customer Care And Billing Supported Platforms

    - by Anthony Shorten
    An updated list of the supported platforms (for all tiers) for Oracle Utilities Customer Care And Billing V2.1.x, V2.2.x and V2.3.x is now available from My Oracle Support KB Id: 1123876.1. Please refer to this document and article for any clarification on specific platforms and related software supported for the above versions of Oracle Utilities Customer Care And Billing.

    Read the article

  • Oracle Utilities Mobile Workforce Management V2.0 has arrived

    - by Anthony Shorten
    it is finally upon us. Oracle Utilities Mobile Workforce Management (MWM) V2.0 has been released and is now available (see Press Release). This is significant for me as this is the first product to use the new version of the Oracle Utilities Application Framework V4.0.1. This release is very significant as it adds a lot of new functionality to the framework, not just for MWM but will progressively rolled out across a few moew Oracle Utilities products over the next 12 months. Watch the skies for more annoucements. Now that Framework 4.0.1 has been released I will be updating this blog ona regular basis outlining significant features (there are over 60+ features in the new Framework) for you too understand. It has been hard work but it finally has been released and used by the first product off the assembly line we call product development.

    Read the article

  • Password Management for Oracle WebLogic customers

    - by Anthony Shorten
    One of the most common requests for enhancements I get across my desk is that customers wish to allow end users to change their passwords from our products. Now, typically password management is not in the realm of individual applications but it is an infrastructure requirement, so we don't usually add this to our roadmaps by default. The issue is that with the vast range of security stores that can be used with our product line across the Web Application Servers we support, it is almost impossible to come up with a generic enough API to work across them. If you have a specific security store on a specific Web Application Server platform then there are simpler solutions. There are a number of ways of implementing this without providing functionality specific functionality: Oracle sells Identity Management software that offers common API's to manage passwords. You can purchase those products and link to the password change dialog in those products using Navigation Keys. If you are a customer using Oracle WebLogic, then there is a sample JSP's that can be linked to provide this functionality under Oracle TechNet (registration required) under Code Samples (project S20). These can be added as a Navigation Key to complete the functionality. This will allow end users to manage their own passwords. Obviously these are all samples and should be treated as customizations when you implement them. If you wish to understand Navigation Keys, then look at the Oracle Utilities Application Framework Integration Guidelines (Doc Id: 789060.1) available from My Oracle Support.

    Read the article

  • Framework 4 Features: User Propogation to the Database

    - by Anthony Shorten
    Once of the features I mentioned in a previous entry was the ability for Oracle Utilities Application Framework V4 to automatically propogate the end user to the database connection. This bears more explanation. In the past releases of the Oracle Utilities Application Framework, all database connections are pooled and shared within a channel of access. So for example, the online connections on the Business Application Server share a common pool of connections and the batch in a thread pool shares a seperate pool of connections. The connections are pooled for performance reasons (the most expensive part of a typical transaction is opening and closing connections so we save time by having them ready beforehand). The idea is that when a business function needs some SQL to be execute it takes a spare connection from the pool, executes the SQL and then returns the connection back to the pool for reuse. Unfortunelty to support the pool being started and ready before the transactions arrives means that you need to have a shared userid (as you dont know the users who need them beforehand). Therefore each connection uses the same database user to execute the SQL it needs. This is acceptable for executing transactions, generally but does not allow the DBA or other tools to ascertain which end user is actually running the transaction. In Oracle Utilities Application Framework V4, we now set the CLIENT_IDENTIFIER to the end userid (not the Login Id) when the connection is taken from the pool and used and reset it back to blank when returned to the pool. The CLIENT_IDENTIFIER is a feature that is present in the Oracle Database connection information. From a monitoring perspective, when a connection to the database is actively running SQL, the end user is now able to be determined by querying the CLIENT_IDENTIFIER on the session object within the database. This can be done in the DBA's favorite monitoring tool (even just some SQL on the v$session table is enough). This has other implications as well. Oracle sells a lot of other security addons to the database and so do third parties. If a site wants to have additional levels of security or auditing in the database then the CLIENT_IDENTIFIER, if supported, is now available to be recorded or used by those products to provide additional levels of security. This facility was one of the highly "nice to haves" that customers would ask us about so we now allow it to be used to allow finer grained monitoring and additional security facilities. Note: This facility is only available for customers using the Oracle Database versions of our products.

    Read the article

  • It is not quiet....

    - by Anthony Shorten
    You may of noticed that the blog entries have been not so frequent lately. I have been extremely busy with putting the final touches on the release of the next generation of our products. It is an exciting time for me to see the release of new functionality from start to finish for the first time becoming a Product Manager (good to see one's designs actually implemented). Once the next generation of the products have been released there will be a flood of entries outlining all the new and exciting features. Watch the skies....

    Read the article

  • Framework 4 Features: Login Id Support

    - by Anthony Shorten
    Given that Oracle Utilities Application Framework 4 is available as part of Mobile Work Force Management and other product progressively I am preparing a number of short but sweet blog entries highlighting some of the new functionality that has been implemented. This is the first entry and it is on a new security feature called Login Id. In past releases of the Oracle Utilities Application Framework, the userid used for authentication and authorization was limited to eight (8) characters in length. This mirrored what the market required in the past with LAN userids and even legacy userids being that length. The technology market has since progressed to longer userid lengths. It is very common to hear that email addresses are being used as credentials for production systems. To achieve this in past versions of the Oracle Utilities Application Framework, sites had to introduce a short userid (8 characters in length) as an alias in your preferred security store. You then configured your J2EE Web Application Server to use the alias as credentials. This sometimes was a standard feaure of the security store and/or the J2EE Web Application Server, if you were lucky. If not, some java code has to be written to implement the solution. In Oracle Utilities Application Framework 4 we introduced a new attribute on the user object called Login Id. The Login Id can be up to 256 characters in length and is an alternative to the existing userid stored on the user object. This means the Oracle Utilities Application Framework can support both long and short userids. For backward compatibility we use the Login Id for authentication but the short userid for authorization and auditing. The user object within the Oracle Utilities Application Framework holds the translation. Backward compatibility is always a consideration in any of our designs for future or changed functionality. You will see reference to this fact in the blog entries I will be composing over the next few months. We have also thought about the flexibility in implementing this feature. The Login Id can be the same value of the Userid (the default for backward compatibility) or can be different. Both the Login Id and Userid have to be unique. This avoids sharing of credentials and is also backward compatible. You can manually enter the Login Id or provision it from Oracle Identity Manager (or other tool). If you use the Login Id only, then we will not autogenerate a short userid automatically as the rules for this can vary from site to site. You have a number of options there. Most Identity provisioning tools can generate a short userid at user creation time and this can be used. If you do not use provisioning tools, then you can write a class extension using the SDK to autoegenerate the userid based upon your sites preference. When we designed the feature there were lots of styles of generating userids (random, initial and surname, numbers etc). We could not really see a clear winner in that respect so we just allowed the extension to be inserted in if necessary. Most customers indicated to us that identity provisioning was the preferred way. This is why we released an Oracle Identity Manager integration with the framework. The Login id is case sensitive now which was not supported under userid. The introduction of the Login Id allows the product to offer flexible options when configuring security whilst maintaining backward compatibility.

    Read the article

  • Configurable Objects - Introduction

    - by Anthony Shorten
    One of the interesting facilities in the framework is Configurable Object functionality (it is also known as Task Optimization and also known as Cool Tools). The idea is that any implementation can create their own views of the base product objects and services and implement functionality against those new views. For example, in Oracle Utilities Customer Care and Billing, there is a Person object. That object is used to store and manage information about individuals as well as companies. In the base product you would use the Person Maintenance screen and fill in some of the screen when you wanted to register or maintain and individual as well and fill out other parts of the screen when you wanted to register or maintain a company. This can be somewhat confusing to some customers. Using Configurable Objects this can be simplified. A business object can be created that is a view of the any object. For example, you could create a Human business object which would cover the aspects of the Person object pertaining to an individual and a Company business object to cover the aspects unique to a company. Even the tag names (i.e. Field Names) in the object can be changed to be more what the implementation is familiar with. The object can also restructure the object. For example, a common identifier for an individual in the USA is the Social Security number, this value is a Person Identifier (as this varies in each country). In the new Human object you can remap the Person Identifier as a Social Security number. To define a Business Object you use a schema editor built into the browser user interface and use a mapping language to setup the business objects. An example of the language is shown below in an extract of the schema for the Human business object. As you can see there are mapping as well as formatting and other tags. This information can be built manually or using a wizard which generates the base structure for you to alter. This is all stored as meta data when saved. Once a Business object is built it can be used as basis for code, other business objects (we support inheritance), called by a screen (called a UI Map) or even as a Web Service. This is just a start with Configurable Objects as you can also create views of base services called Business Services, Service Scripts used for non-object or complex object processing (as well as other things), UI Maps used for screens and Data Areas to reuse definitions across multiple objects. Configurable Objects are powerful and I only really touched on them here. Over the next few months I hope to add lots more entries about them.

    Read the article

  • Smart Grid Gateway and New Meter Data Management released

    - by Anthony Shorten
    Two products have just been released and are available from edlivery.oracle.com. Smart Grid Gateway 2.0.0 - A new product to integrate to Smart Grid networks Meter Data Management 2.0.1 - A new version of the Meter Data Management product. These products are the first products to use the brand new version of the Oracle Utilities Applicaton Framework (V4.1). The new framework builds up on FW2.2 and FW4.0.2 to add exciting new features (this is just a subset): Support for Database Vault Enhancements to Business Object Maintenance Batch Statistics Portal for benchmarking Custom template user exit support File permissions now consistent with other Oracle products Use of Universal Connection Pool for all database pool access Ability to manage the batch data cache Over the next few weeks I will be publishing articles and updates to existing whitepapers to highlight all the new features.

    Read the article

  • Custom Templates: Using user exits

    - by Anthony Shorten
    One of the features of Oracle Utilities Application Framework V4.1 is the ability to use templates and user exits to extend the base configuration files. The configuration files used by the product are based upon a set of templates shipped with the product. When the configureEnv utility asks for configuration settings they are stored in a configuration file ENVIRON.INI which outlines the environment settings. These settings are then used by the initialSetup utility to populate the various configuration files used by the product using templates located in the templates directory of the installation. Now, whilst the majority of the installations at any site are non-production and the templates provided are generally adequate for that need, there are circumstances where extension of templates are needed to take advantage of more advanced facilities (such as advanced security and environment settings). The issue then becomes that if you alter the configuration files manually (directly or indirectly) then you may lose all your custom settings the next time you run initialSetup. To counter this we allow customers to either override templates with their own template or we now provide user exits in the templates to add fragments of configuration unique to that part of the configuration file. The latter means that the base template is still used but additions are included to provide the extensions. The provision of custom templates is supported but as soon as you use a custom template you are then responsible for reflecting any changes we put in the base template over time. Not a big task but annoying if you have to do it for multiple copies of the product. I prefer to use user exits as they seem to represent the least effort solution. The way to find the user exits available is to either read the Server Administration Guide that comes with your product or look at individual templates and look for the lines: #ouaf_user_exit <user exit name> Where <user exit name> is the name of the user exit. User exits are not always present but are in places that we feel are the most likely to be changed. If a user exit does not exist the you can always use a custom template instead. Now lets show an example. By default, the product generates a config.xml file to be used with Oracle WebLogic. This configuration file has the basic setting contained in it to manage the product. If you want to take advantage of the Oracle WebLogic advanced settings, you can use the console to make those changes and it will be reflected in the config.xml automatically. To retain those changes across invocations of initialSetup, you need to alter the template that generates the config.xml or use user exits. The technique is this. Make the change in the console and when you save the change, WebLogic will reflect it in the config.xml for you. Compare the old version and new version of the config.xml and determine what to add and then find the user exit to put it in by examining the base template. For example, by default, the console is not automatically deployed (it is deployed on demand) in the base config.xml. To make the console deploy, you can add the following line to the templates/CM_config.xml.win.exit_3.include file (for windows) or templates/CM_config.xml.exit_3.include file (for linux/unix): <internal-apps-deploy-on-demand-enabled>false</internal-apps-deploy-on-demand-enabled> Now run initialSetup to reflect the change and if you check the splapp/config/config.xml file you will see the change applied for you. Now how did I know which include file? I check the template for config.xml and found there was an user exit at the right place. I prefixed my include filename with "CM_" to denote it as a custom user exit. This will tell the upgrade tools to leave that file alone whenever you decide to upgrade (or even apply fixes). User exits can be powerful and allow customizations to be added for advanced configuration. You will see products using Oracle Utilities Application Framework use this exits themselves (usually prefixed with the product code). You are also taking advantage of them.

    Read the article

  • Updated Whitepapers for OUFW 4.0.1

    - by Anthony Shorten
    The whitepapers are progressively being updated for new facilities in Oracle Utilities Application Framework V4.0.1. The documents now will cover other versions of Oracle Utilities Application Framework (V2.1, V2.2, V4.0.1). The first round of updates are now available on My Oracle Support: 942074.1 - XAI Best Practices 836362.1 - Batch Best Practices 773473.1 - Oracle Utilities Application Framework Security Overview These have been updated for the new whitepaper format as well as the content. Content that is related to specific versions of the Framework are marked accordingly. New content since the last update are also indicated accordingly.

    Read the article

  • Message Driven Bean JMS integration

    - by Anthony Shorten
    In Oracle Utilities Application Framework V4.1 and above the product introduced the concept of real time JMS integration within the Framework for interfacing. Customer familiar with older versions of the Framework will recall that we used a component called the Multi-purpose Listener (MPL) which was a very light service bus for calling interface channels (including JMS). The MPL is not supplied with all products and customers prefer to use Oracle SOA Suite and native methods rather then MPL. In Oracle Utilities Application Framework V4.1 (and for Oracle Utilities Application Framework V2.2 via Patches 9454971, 9256359, 9672027 and 9838219) we introduced real time JMS integration natively for outbound JMS integration and using Message Driven Beans (MDB) for incoming integration. The outbound integration has not changed a lot between releases where you create an Outbound Message Type to indicate the record types to send out, create a JMS sender (though now you use the Real Time Sender) and then create an External System definition to complete the configuration. When an outbound message appears in the table of the type and external system configured (via a business event such as an algorithm or plug-in script) the Oracle Utilities Application Framework will place the message on the configured Queue linked to the JMS Sender. The inbound integration has changed. In the past you created XAI Receivers and specified configuration about what types of transactions to process. This is now all configuration file driven. The configuration files for the Business Application Server (ejb-jar.xml and weblogic-ejb-jar.xml) define Message Driven Beans and the queues to monitor. When a message appears on the queue, the MDB processes it through our web services interface. Configuration of the MDB can be native (via editing the configuration files) or through the new user exit capabilities (which is aimed at maintaining custom configuration across upgrades). The latter is better as you build fragments of configuration to make it easier to maintain. In the next few weeks a number of new whitepaper will be released to illustrate the features of the Oracle WebLogic JMS and Oracle SOA Suite integration capabilities.

    Read the article

  • Database Vault integration available

    - by Anthony Shorten
    One of the major features of Oracle Utilities Application Framework V4.1 is the provision of a base solution for integration to the Database Vault product. Database Vault is part of Oracle’s security portfolio of product and allows database user permissions to be locked down to only allow appropriate users appropriate access to the product data. By default, when you install the product database, administrators and SYSDBA users have full DML (SELECT, INSERT, UPDATE and DELETE access) to the schemas they own and in the case of the SYSDBA users, all schemas on the database. This can be perceived as an issue. Database Vault allows an additional layer of security to disable inappropriate access. In Oracle Utilities Application Framework, a prebuilt Database Vault solution has been provided to provide base DML access to product data for product users only. The solution is shipped with the database installation files and includes a set of SQL files to create, disable, enable and delete the Database Vault objects. The solution contains a Database Vault Realm, RuleSets, Rules and Command Rules that can be used as is or extended to meet site specific needs. The solution is consistent with other Database Vault solutions provided for other Oracle applications such as PeopleSoft, E-Business Suite, JD-Edwards and Siebel. Customers familiar with the database vault solutions for those products will recognize the similarities between the solutions. For more details of the solution, refer to the Database Vault Integration for Oracle Utilities Application Framework Based Products on My Oracle Support at KB Id: 1290700.1.

    Read the article

  • SOA Suite Integration: Part 3: Loading files

    - by Anthony Shorten
    One of the most common scenarios in SOA Integration is the loading of a file into the product from an external source. In Oracle SOA Suite there is a File Adapter that can process many file types into your BPEL process. For this example I will use the File Adapter to load a file of user and emails to update the user object within the Oracle Utilities Application Framework. Remember you can repeat this process with other objects and other file types. Again I am illustrating the ease of integration. The first thing is to create an empty BPEL process that will hold our flow. In Oracle JDeveloper this can be achieved by specifying the Define Service Later template (as other templates have predefined inputs and outputs and in this case we want to specify those). So I will create simpleFileLoad process to house our process. You will start with an empty canvas so you need to first specify the load part of the process using the File Adapter. Select the File Adapter from the Component Palette under BPEL Services and drag and drop it to the left side Partner Links (left is input). You name the Service. In this case I chose LoadFile. Press Next. We will define the interface as part of the wizard so select Define from operation and schema (specified later). Press Next. We are going to choose Read File to denote that we will read the file and specify the default Operation Name as Read. Press Next. The next step is to tell the Adapter the location of the files, how to process them and what to do with them after they have been processed. I am using hardcoded locations in this example but you can have logical locations as well. Press Next. I am now going to tell the adapter how to recognize the files I want to load. In my case I am using CSV files and more importantly I am tell the adapter to run the process for each record in the file it encounters. Press Next. Now, I tell the adapter how often I want to poll for the files. I have taken the defaults. Press Next. At this stage I have no explanation of the format of the input. So I am going to invoke the Native Format Wizard which will guide me through the process of creating the file input format. Clicking the purple cog icon will start the wizard. After an introduction screen (not shown), you specify the format of the input file. The File Adapter supports multiple format types. For this example, I will use Delimited as I am going to load a CSV file. Press Next. The best way for the wizard to work is with a sample. I have a sample file and the wizard will ask how much of the file to use as a template. I will use the defaults. Note: If you are using a language that has other languages other than US-ASCII, it is at this point you specify the character set to use.  Press Next. The sample contains multiple instances of a single record type. The wizard supports complex types as well. We will use the appropriate setting for our file. Press Next. You have to specify the file element and the record element. This will be used by the input wizard to translate the CSV data into an XML structure (this will make sense later). I am using LoadUsers as my file delimiter (root element) and User Record as my record root element. Press Next. As the file is CSV the delimiter is "," so I will also specify that the End Of Line (EOL) indicator indicates the end of a record. Press Next. Up until this point your have not given the columns their names. In my case my sample includes the column names in the first record. This is not always the case but you can specify the names and formats of columns in this dialog (not shown). Press Next. The wizard now generates the schema for the input file. You can specify a name for the schema. I have used userupdate.xsd. We want to verify the schema so press Test. You can test the schema by specifying an input sample. and pressing the green play button. You will see the delimiters you specified earlier for the file and the records. Press Ok to continue. A confirmation screen will be displayed showing you the location of the schema in your project. Press Finish to return to the File Adapter configuration. You will now see the schema and elements prepopulated from the wizard. Press Next. The File Adapter configuration is now complete. Press Finish. Now you need to receive the input from the LoadFile component so we need to place a Receive node in the BPEL process by drag and dropping the Receive component from the Component Palette under BPEL Constructs onto the BPEL process. We link the receive process with the LoadFile component by dragging the left most connect node of the Receive node to the LoadFile component. Once the link is established you need to name the Receive node appropriately and as in the post of the last part of this series you need to generate input variables for the BPEL process to hold the input records in. You need to now add the product Web Service. The process is the same as described in the post of the last part of this series. You drop the Web Service BPEL Service onto the right side of the process and fill in the details of the WSDL URL . You also have to add an Invoke node to call the service and generate the input and outputs variables for the call in the Invoke node. Now, to get the inputs from File to the service. You have to use a Transform (you can use an Assign action but a Transform action is more flexible). You drag and drop the Transform component from the Component Palette under Oracle Extensions and place it between the Receive and Invoke nodes. We name the Transform Node, Mapper File and associate the source of the mapping the schema from the Receive node and the output will be the input variable from the Invoke node. We now build the transform. We first map the user and email attributes by drag and drop the elements from the left to the right. The reason we needed to use the transform is that we will be telling the AS-User service that we want to issue an update action. Remember when we registered the service we actually used Read as the default. If we do not otherwise inform the service to use the Update action it will use the Read action instead (which is not desired). To specify the update action you need to click on the transactionType node on the right and select Set Text to set the action. You need to specify the transactionType of UPD (for update). The mapping is now complete. The final BPEL process is ready for deployment. You then deploy the BPEL process to the server and to test the service by simply dropping a file, in the same pattern/name as you specified, in the directory you specified in the File Adapter. You will see each record as a separate instance entry in the Fusion Middleware Control console. You can now load files into the product. You can repeat this process for each type of file to process. While this was a simple example it illustrates the method of loading data can be achieved using SOA Suite in conjunction with our products.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >