Search Results

Search found 51541 results on 2062 pages for 'application pool'.

Page 3/2062 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Chossing an application server for an web application development

    - by harigm
    My manager has asked me to suggest an application server for the web application development work, What are the factors that needs to be considered before we select any application server for web application development in Java J2ee development? If I select one now and IN future, if I want to change to some other application server, Is if that minimum effort to change?

    Read the article

  • Choosing an application server for web application development

    - by harigm
    My manager has asked me to suggest an application server for web application development work. What are the factors that needs to be considered before we select any application server for web application development in Java J2EE development? If I select one now and IN future and I want to change to some other application server, is that minimum effort to change?

    Read the article

  • Data Source Connection Pool Sizing

    - by Steve Felts
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} One of the most time-consuming procedures of a database application is establishing a connection. The connection pooling of the data source can be used to minimize this overhead.  That argues for using the data source instead of accessing the database driver directly. Configuring the size of the pool in the data source is somewhere between an art and science – this article will try to move it closer to science.  From the beginning, WLS data source has had an initial capacity and a maximum capacity configuration values.  When the system starts up and when it shrinks, initial capacity is used.  The pool can grow to maximum capacity.  Customers found that they might want to set the initial capacity to 0 (more on that later) but didn’t want the pool to shrink to 0.  In WLS 10.3.6, we added minimum capacity to specify the lower limit to which a pool will shrink.  If minimum capacity is not set, it defaults to the initial capacity for upward compatibility.   We also did some work on the shrinking in release 10.3.4 to reduce thrashing; the algorithm that used to shrink to the maximum of the currently used connections or the initial capacity (basically the unused connections were all released) was changed to shrink by half of the unused connections. The simple approach to sizing the pool is to set the initial/minimum capacity to the maximum capacity.  Doing this creates all connections at startup, avoiding creating connections on demand and the pool is stable.  However, there are a number of reasons not to take this simple approach. When WLS is booted, the deployment of the data source includes synchronously creating the connections.  The more connections that are configured in initial capacity, the longer the boot time for WLS (there have been several projects for parallel boot in WLS but none that are available).  Related to creating a lot of connections at boot time is the problem of logon storms (the database gets too much work at one time).   WLS has a solution for that by setting the login delay seconds on the pool but that also increases the boot time. There are a number of cases where it is desirable to set the initial capacity to 0.  By doing that, the overhead of creating connections is deferred out of the boot and the database doesn’t need to be available.  An application may not want WLS to automatically connect to the database until it is actually needed, such as for some code/warm failover configurations. There are a number of cases where minimum capacity should be less than maximum capacity.  Connections are generally expensive to keep around.  They cause state to be kept on both the client and the server, and the state on the backend may be heavy (for example, a process).  Depending on the vendor, connection usage may cost money.  If work load is not constant, then database connections can be freed up by shrinking the pool when connections are not in use.  When using Active GridLink, connections can be created as needed according to runtime load balancing (RLB) percentages instead of by connection load balancing (CLB) during data source deployment. Shrinking is an effective technique for clearing the pool when connections are not in use.  In addition to the obvious reason that there times where the workload is lighter,  there are some configurations where the database and/or firewall conspire to make long-unused or too-old connections no longer viable.  There are also some data source features where the connection has state and cannot be used again unless the state matches the request.  Examples of this are identity based pooling where the connection has a particular owner and XA affinity where the connection is associated with a particular RAC node.  At this point, WLS does not re-purpose (discard/replace) connections and shrinking is a way to get rid of the unused existing connection and get a new one with the correct state when needed. So far, the discussion has focused on the relationship of initial, minimum, and maximum capacity.  Computing the maximum size requires some knowledge about the application and the current number of simultaneously active users, web sessions, batch programs, or whatever access patterns are common.  The applications should be written to only reserve and close connections as needed but multiple statements, if needed, should be done in one reservation (don’t get/close more often than necessary).  This means that the size of the pool is likely to be significantly smaller then the number of users.   If possible, you can pick a size and see how it performs under simulated or real load.  There is a high-water mark statistic (ActiveConnectionsHighCount) that tracks the maximum connections concurrently used.  In general, you want the size to be big enough so that you never run out of connections but no bigger.   It will need to deal with spikes in usage, which is where shrinking after the spike is important.  Of course, the database capacity also has a big influence on the decision since it’s important not to overload the database machine.  Planning also needs to happen if you are running in a Multi-Data Source or Active GridLink configuration and expect that the remaining nodes will take over the connections when one of the nodes in the cluster goes down.  For XA affinity, additional headroom is also recommended.  In summary, setting initial and maximum capacity to be the same may be simple but there are many other factors that may be important in making the decision about sizing.

    Read the article

  • Application switcher is broken

    - by Byron Hawkins
    After a normal update of my Ubuntu 12.04 install last week, my application switcher has stopped working. I've tried all different settings in CompizConfig, including a variety of shortcut keys and both switcher versions ("Application Switcher" and "Static Application Switcher"). So far there has been no way to get any form of application switcher to appear on my screen. Can anyone give me an idea what might be wrong, or where I might look for more information? Thanks for your help.

    Read the article

  • How do I crash the App Pool?

    - by willem
    Our ASP.NET 2 web application handles exceptions very elegantly. We catch exceptions in Global ASAX in Application_Error. From there we log the exception and we show a friendly message to the user. However, this morning we deployed the latest version of our site. It ran ok for half an hour, but then the App Pool crashed. The site did not come back up until we restored the previous release. How can I make the app pool crash and skip the normal exception handler? I'm trying to replicate this problem, but with no luck so far. Update: we found the solution. One of our pages was screenscraping another page. But the URL was configured incorrectly and the page ended up screenscraping itself infinitely, thus causing a stack overflow exception.

    Read the article

  • Know more about shared pool subpool

    - by Liu Maclean(???)
    ????T.askmaclean.com???Shared Pool?SubPool?????,????????_kghdsidx_count ? subpool ??subpool????( ???duration)???: SQL> select * from v$version; BANNER ---------------------------------------------------------------- Oracle Database 10g Enterprise Edition Release 10.2.0.5.0 - 64bi PL/SQL Release 10.2.0.5.0 - Production CORE    10.2.0.5.0      Production TNS for Linux: Version 10.2.0.5.0 - Production NLSRTL Version 10.2.0.5.0 - Production SQL> set linesize 200 pagesize 1400 SQL> show parameter kgh NAME                                 TYPE                             VALUE ------------------------------------ -------------------------------- ------------------------------ _kghdsidx_count                      integer                          7 SQL> oradebug setmypid; Statement processed. SQL> oradebug dump heapdump 536870914; Statement processed. SQL> oradebug tracefile_name /s01/admin/G10R25/udump/g10r25_ora_11783.trc [oracle@vrh8 dbs]$ grep "sga heap"  /s01/admin/G10R25/udump/g10r25_ora_11783.trc HEAP DUMP heap name="sga heap"  desc=0x60000058 HEAP DUMP heap name="sga heap(1,0)"  desc=0x60036110 FIVE LARGEST SUB HEAPS for heap name="sga heap(1,0)"   desc=0x60036110 HEAP DUMP heap name="sga heap(2,0)"  desc=0x6003f938 FIVE LARGEST SUB HEAPS for heap name="sga heap(2,0)"   desc=0x6003f938 HEAP DUMP heap name="sga heap(3,0)"  desc=0x60049160 FIVE LARGEST SUB HEAPS for heap name="sga heap(3,0)"   desc=0x60049160 HEAP DUMP heap name="sga heap(4,0)"  desc=0x60052988 FIVE LARGEST SUB HEAPS for heap name="sga heap(4,0)"   desc=0x60052988 HEAP DUMP heap name="sga heap(5,0)"  desc=0x6005c1b0 FIVE LARGEST SUB HEAPS for heap name="sga heap(5,0)"   desc=0x6005c1b0 HEAP DUMP heap name="sga heap(6,0)"  desc=0x600659d8 FIVE LARGEST SUB HEAPS for heap name="sga heap(6,0)"   desc=0x600659d8 HEAP DUMP heap name="sga heap(7,0)"  desc=0x6006f200 FIVE LARGEST SUB HEAPS for heap name="sga heap(7,0)"   desc=0x6006f200 SQL> alter system set "_kghdsidx_count"=6 scope=spfile; System altered. SQL> startup force; ORACLE instance started. Total System Global Area  859832320 bytes Fixed Size                  2100104 bytes Variable Size             746587256 bytes Database Buffers          104857600 bytes Redo Buffers                6287360 bytes Database mounted. Database opened. SQL> SQL> oradebug setmypid; Statement processed. SQL> oradebug dump heapdump 536870914; Statement processed. SQL> oradebug tracefile_name /s01/admin/G10R25/udump/g10r25_ora_11908.trc [oracle@vrh8 dbs]$ grep "sga heap"  /s01/admin/G10R25/udump/g10r25_ora_11908.trc HEAP DUMP heap name="sga heap"  desc=0x60000058 HEAP DUMP heap name="sga heap(1,0)"  desc=0x600360f0 FIVE LARGEST SUB HEAPS for heap name="sga heap(1,0)"   desc=0x600360f0 HEAP DUMP heap name="sga heap(2,0)"  desc=0x6003f918 FIVE LARGEST SUB HEAPS for heap name="sga heap(2,0)"   desc=0x6003f918 HEAP DUMP heap name="sga heap(3,0)"  desc=0x60049140 FIVE LARGEST SUB HEAPS for heap name="sga heap(3,0)"   desc=0x60049140 HEAP DUMP heap name="sga heap(4,0)"  desc=0x60052968 FIVE LARGEST SUB HEAPS for heap name="sga heap(4,0)"   desc=0x60052968 HEAP DUMP heap name="sga heap(5,0)"  desc=0x6005c190 FIVE LARGEST SUB HEAPS for heap name="sga heap(5,0)"   desc=0x6005c190 HEAP DUMP heap name="sga heap(6,0)"  desc=0x600659b8 FIVE LARGEST SUB HEAPS for heap name="sga heap(6,0)"   desc=0x600659b8 SQL> SQL> alter system set "_kghdsidx_count"=2 scope=spfile; System altered. SQL> SQL> startup force; ORACLE instance started. Total System Global Area  851443712 bytes Fixed Size                  2100040 bytes Variable Size             738198712 bytes Database Buffers          104857600 bytes Redo Buffers                6287360 bytes Database mounted. Database opened. SQL> oradebug setmypid; Statement processed. SQL> oradebug dump heapdump 2; Statement processed. SQL> oradebug tracefile_name /s01/admin/G10R25/udump/g10r25_ora_12003.trc [oracle@vrh8 ~]$ grep "sga heap"  /s01/admin/G10R25/udump/g10r25_ora_12003.trc HEAP DUMP heap name="sga heap"  desc=0x60000058 HEAP DUMP heap name="sga heap(1,0)"  desc=0x600360b0 HEAP DUMP heap name="sga heap(2,0)"  desc=0x6003f8d SQL> alter system set cpu_count=16 scope=spfile; System altered. SQL> startup force; ORACLE instance started. Total System Global Area  851443712 bytes Fixed Size                  2100040 bytes Variable Size             738198712 bytes Database Buffers          104857600 bytes Redo Buffers                6287360 bytes Database mounted. Database opened. SQL> oradebug setmypid; Statement processed. SQL>  oradebug dump heapdump 2; Statement processed. SQL> oradebug tracefile_name /s01/admin/G10R25/udump/g10r25_ora_12065.trc [oracle@vrh8 ~]$ grep "sga heap"  /s01/admin/G10R25/udump/g10r25_ora_12065.trc HEAP DUMP heap name="sga heap"  desc=0x60000058 HEAP DUMP heap name="sga heap(1,0)"  desc=0x600360b0 HEAP DUMP heap name="sga heap(2,0)"  desc=0x6003f8d8 SQL> show parameter sga_target NAME                                 TYPE                             VALUE ------------------------------------ -------------------------------- ------------------------------ sga_target                           big integer                      0 SQL> alter system set sga_target=1000M scope=spfile; System altered. SQL> startup force; ORACLE instance started. Total System Global Area 1048576000 bytes Fixed Size                  2101544 bytes Variable Size             738201304 bytes Database Buffers          301989888 bytes Redo Buffers                6283264 bytes Database mounted. Database opened. SQL> alter system set sga_target=1000M scope=spfile; System altered. SQL> startup force; ORACLE instance started. Total System Global Area 1048576000 bytes Fixed Size                  2101544 bytes Variable Size             738201304 bytes Database Buffers          301989888 bytes Redo Buffers                6283264 bytes Database mounted. Database opened. SQL> SQL> SQL> oradebug setmypid; Statement processed. SQL> oradebug dump heapdump 2; Statement processed. SQL>  oradebug tracefile_name /s01/admin/G10R25/udump/g10r25_ora_12148.trc SQL> SQL> Disconnected from Oracle Database 10g Enterprise Edition Release 10.2.0.5.0 - 64bit Production With the Partitioning, OLAP, Data Mining and Real Application Testing options [oracle@vrh8 dbs]$ grep "sga heap"  /s01/admin/G10R25/udump/g10r25_ora_12148.trc HEAP DUMP heap name="sga heap"  desc=0x60000058 HEAP DUMP heap name="sga heap(1,0)"  desc=0x60036690 HEAP DUMP heap name="sga heap(1,1)"  desc=0x60037ee8 HEAP DUMP heap name="sga heap(1,2)"  desc=0x60039740 HEAP DUMP heap name="sga heap(1,3)"  desc=0x6003af98 HEAP DUMP heap name="sga heap(2,0)"  desc=0x6003feb8 HEAP DUMP heap name="sga heap(2,1)"  desc=0x60041710 HEAP DUMP heap name="sga heap(2,2)"  desc=0x60042f68 _enable_shared_pool_durations:?????????10g????shared pool duration??,?????sga_target?0?????false; ???10.2.0.5??cursor_space_for_time???true??????false,???10.2.0.5??cursor_space_for_time????? SQL> alter system set "_enable_shared_pool_durations"=false scope=spfile; System altered. SQL> SQL> startup force; ORACLE instance started. Total System Global Area 1048576000 bytes Fixed Size                  2101544 bytes Variable Size             738201304 bytes Database Buffers          301989888 bytes Redo Buffers                6283264 bytes Database mounted. Database opened. SQL> oradebug setmypid; Statement processed. SQL> oradebug dump heapdump 2; Statement processed. SQL> oradebug tracefile_name /s01/admin/G10R25/udump/g10r25_ora_12233.trc SQL> SQL> Disconnected from Oracle Database 10g Enterprise Edition Release 10.2.0.5.0 - 64bit Production With the Partitioning, OLAP, Data Mining and Real Application Testing options\ [oracle@vrh8 dbs]$ grep "sga heap"   /s01/admin/G10R25/udump/g10r25_ora_12233.trc HEAP DUMP heap name="sga heap"  desc=0x60000058 HEAP DUMP heap name="sga heap(1,0)"  desc=0x60036690 HEAP DUMP heap name="sga heap(2,0)"  desc=0x6003feb8 ??:1._kghdsidx_count ??? shared pool subpool???, _kghdsidx_count???????7 ??? 7? shared pool subpool 2.??????? subpool???4? sub partition ?: sga heap(1,0) sga heap(1,1) sga heap(1,2) sga heap(1,3) ????? cpu??? ?????_kghdsidx_count, ???? ?10g ?AUTO SGA ??? shared pool duration???, duration ??4?: Session duration Instance duration (never freed) Execution duration (freed fastest) Free memory ??? shared pool duration???? ?10gR1?Shared Pool?shrink??????????,?????????????Buffer Cache???????????granule,????Buffer Cache?granule????granule header?Metadata(???buffer header??RAC??Lock Elements)????,?????????????????????shared pool????????duration(?????)?chunk??????granule?,????????????granule??10gR2????Buffer Cache Granule????????granule header?buffer?Metadata(buffer header?LE)????,??shared pool???duration?chunk????????granule,??????buffer cache?shared pool??????????????10gr2?streams pool?????????(???????streams pool duration????) reference : http://www.oracledatabase12g.com/archives/understanding-automatic-sga-memory-management.html

    Read the article

  • Curing the Database-Application mismatch

    - by Phil Factor
    If an application requires access to a database, then you have to be able to deploy it so as to be version-compatible with the database, in phase. If you can deploy both together, then the application and database must normally be deployed at the same version in which they, together, passed integration and functional testing.  When a single database supports more than one application, then the problem gets more interesting. I’ll need to be more precise here. It is actually the application-interface definition of the database that needs to be in a compatible ‘version’.  Most databases that get into production have no separate application-interface; in other words they are ‘close-coupled’.  For this vast majority, the whole database is the application-interface, and applications are free to wander through the bowels of the database scot-free.  If you’ve spurned the perceived wisdom of application architects to have a defined application-interface within the database that is based on views and stored procedures, any version-mismatch will be as sensitive as a kitten.  A team that creates an application that makes direct access to base tables in a database will have to put a lot of energy into keeping Database and Application in sync, to say nothing of having to tackle issues such as security and audit. It is not the obvious route to development nirvana. I’ve been in countless tense meetings with application developers who initially bridle instinctively at the apparent restrictions of being ‘banned’ from the base tables or routines of a database.  There is no good technical reason for needing that sort of access that I’ve ever come across.  Everything that the application wants can be delivered via a set of views and procedures, and with far less pain for all concerned: This is the application-interface.  If more than zero developers are creating a database-driven application, then the project will benefit from the loose-coupling that an application interface brings. What is important here is that the database development role is separated from the application development role, even if it is the same developer performing both roles. The idea of an application-interface with a database is as old as I can remember. The big corporate or government databases generally supported several applications, and there was little option. When a new application wanted access to an existing corporate database, the developers, and myself as technical architect, would have to meet with hatchet-faced DBAs and production staff to work out an interface. Sure, they would talk up the effort involved for budgetary reasons, but it was routine work, because it decoupled the database from its supporting applications. We’d be given our own stored procedures. One of them, I still remember, had ninety-two parameters. All database access was encapsulated in one application-module. If you have a stable defined application-interface with the database (Yes, one for each application usually) you need to keep the external definitions of the components of this interface in version control, linked with the application source,  and carefully track and negotiate any changes between database developers and application developers.  Essentially, the application development team owns the interface definition, and the onus is on the Database developers to implement it and maintain it, in conformance.  Internally, the database can then make all sorts of changes and refactoring, as long as source control is maintained.  If the application interface passes all the comprehensive integration and functional tests for the particular version they were designed for, nothing is broken. Your performance-testing can ‘hang’ on the same interface, since databases are judged on the performance of the application, not an ‘internal’ database process. The database developers have responsibility for maintaining the application-interface, but not its definition,  as they refactor the database. This is easily tested on a daily basis since the tests are normally automated. In this setting, the deployment can proceed if the more stable application-interface, rather than the continuously-changing database, passes all tests for the version of the application. Normally, if all goes well, a database with a well-designed application interface can evolve gracefully without changing the external appearance of the interface, and this is confirmed by integration tests that check the interface, and which hopefully don’t need to be altered at all often.  If the application is rapidly changing its ‘domain model’  in the light of an increased understanding of the application domain, then it can change the interface definitions and the database developers need only implement the interface rather than refactor the underlying database.  The test team will also have to redo the functional and integration tests which are, of course ‘written to’ the definition.  The Database developers will find it easier if these tests are done before their re-wiring  job to implement the new interface. If, at the other extreme, an application receives no further development work but survives unchanged, the database can continue to change and develop to keep pace with the requirements of the other applications it supports, and needs only to take care that the application interface is never broken. Testing is easy since your automated scripts to test the interface do not need to change. The database developers will, of course, maintain their own source control for the database, and will be likely to maintain versions for all major releases. However, this will not need to be shared with the applications that the database servers. On the other hand, the definition of the application interfaces should be within the application source. Changes in it have to be subject to change-control procedures, as they will require a chain of tests. Once you allow, instead of an application-interface, an intimate relationship between application and database, we are in the realms of impedance mismatch, over and above the obvious security problems.  Part of this impedance problem is a difference in development practices. Whereas the application has to be regularly built and integrated, this isn’t necessarily the case with the database.  An RDBMS is inherently multi-user and self-integrating. If the developers work together on the database, then a subsequent integration of the database on a staging server doesn’t often bring nasty surprises. A separate database-integration process is only needed if the database is deliberately built in a way that mimics the application development process, but which hampers the normal database-development techniques.  This process is like demanding a official walking with a red flag in front of a motor car.  In order to closely coordinate databases with applications, entire databases have to be ‘versioned’, so that an application version can be matched with a database version to produce a working build without errors.  There is no natural process to ‘version’ databases.  Each development project will have to define a system for maintaining the version level. A curious paradox occurs in development when there is no formal application-interface. When the strains and cracks happen, the extra meetings, bureaucracy, and activity required to maintain accurate deployments looks to IT management like work. They see activity, and it looks good. Work means progress.  Management then smile on the design choices made. In IT, good design work doesn’t necessarily look good, and vice versa.

    Read the article

  • Recovering ZFS pool with errors on import.

    - by Sqeaky
    I have a machine that had some trouble with some bad RAM. After I diagnosed it and removed the offending stick of RAM, The ZFS pool in the machine was trying to access drives by using incorrect device names. I simply exported the pool and re-imported it to correct this. However I am now getting this error. The pool Storage no longer automatically mounts sqeaky@sqeaky-media-server:/$ sudo zpool status no pools available A regular import says its corrupt sqeaky@sqeaky-media-server:/$ sudo zpool import pool: Storage id: 13247750448079582452 state: UNAVAIL status: The pool is formatted using an older on-disk version. action: The pool cannot be imported due to damaged devices or data. config: Storage UNAVAIL insufficient replicas raidz1 UNAVAIL corrupted data 805066522130738790 ONLINE sdd3 ONLINE sda3 ONLINE sdc ONLINE A specific import says the vdev configuration is invalid sqeaky@sqeaky-media-server:/$ sudo zpool import Storage cannot import 'Storage': invalid vdev configuration I should have 4 devices in my ZFS pool: /dev/sda3 /dev/sdd3 /dev/sdc /dev/sdb I have no clue what 805066522130738790 is but I plan on investigating further. I am also trying to figure out how to use zdb to get more information about what the pool thinks is going on. For reference This was setup this way, because at the time this machine/pool was setup it needed certain Linux features and booting from ZFS wasn't yet supported in Linux. The partitions sda1 and sdd1 are in a raid 1 for the operating system and sdd2 and sda2 are in a raid1 for the swap. Any clue on how to recover this ZFS pool?

    Read the article

  • Help in (re)designing my Swing application

    - by Harihar Das
    I have developed a Swing application that controls execution of several script like jobs. I need to display the interim output of the jobs concurrently. I have followed MVC while writing the application. The application is working as expected. But off late I have the following requirements in hand: A few of the script jobs need special user privileges to execute so as to access specialized resources. There seems to be now way in Java to impersonate as a different user while running an application.[examined in this question]. Also trying to run the Swing application as a scheduled task in windows is not helping. Once started the jobs should be running even if the user logs off after starting the jobs. I am thinking of separating the execution logic from the UI and run that as a service; and introduce JMS in between the two layers so as to store/retrieve the interim the output. Note: I need to run this application on windows Any ideas on meeting my requirements will be highly appreciated.

    Read the article

  • Application workflow

    - by manseuk
    I am in the planning process for a new application, the application will be written in PHP (using the Symfony 2 framework) but I'm not sure how relevant that is. The application will be browser based, although there will eventually be API access for other systems to interact with the data stored within the application, again probably not relavent at this point. The application manages SIM cards for lots of different providers - each SIM card belongs to a single provider but a single customer might have many SIM cards across many providers. The application allows the user to perform actions against the SIM card - for example Activate it, Barr it, Check on its status etc Some of the providers provide an API for doing this - so a single access point with multiple methods eg activateSIM, getStatus, barrSIM etc. The method names differ for each provider and some providers offer methods for extra functions that others don't. Some providers don't have APIs but do offer these methods by sending emails with attachments - the attachments are normally a CSV file that contains the SIM reference and action required - the email is processed by the provider and replied to once the action has been complete. To give you an example - the front end of my application will provide a customer with a list of SIM cards they own and give them access to the actions that are provided by the provider of each specific SIM card - some methods may require extra data which will either be stored in the backend or collected from the user frontend. Once the user has selected their action and added any required data I will handle the process in the backend and provide either instant feedback, in the case of the providers with APIs, or start the process off by sending an email and waiting for its reply before processing it and updating the backend so that next time the user checks the SIM card its status is correct (ie updated by a backend process). My reason for creating this question is because I'm stuck !! I'm confused about how to approach the actual workflow logic. I was thinking about creating a Provider Interface with the most common methods getStatus, activateSIM and barrSIM and then implementing that interface for each provider. So class Provider1 implements Provider - Then use a Factory to create the required class depending on user selected SIM card and invoking the method selected. This would work fine if all providers offered the same methods but they don't - there are a subset which are common but some providers offer extra methods - how can I implement that flexibly ? How can I deal with the processes where the workflow is different - ie some methods require and API call and value returned and some require an email to be sent and the next stage of the process doesn't start until the email reply is recieved ... Please help ! (I hope this is a readable question and that this is the correct place to be asking) Update I guess what I'm trying to avoid is a big if or switch / case statement - some design pattern that gives me a flexible approach to implementing this kind of fluid workflow .. anyone ?

    Read the article

  • IIS 7 Using Domain Account for Application pool identity Invalid Password

    - by Luke Van Diest
    I have an asp.net website containing a WCF service that I am developing on a Windows 7 machine hosted with IIS 7. I am needing to connect to an instance of Reporting Services 2005 with the service, and have been getting 401 errors when trying to execute reports. So, I assume that I need to be running the IIS Application pool under a domain account. The problem is that when I try to change the identity to a domain account, I get the error message "The specified password is invalid. Type a new password." I've rechecked the password multiple times to make sure it is correct. The account I'm using has admin rights on the machine. I saw elsewhere to try running this command: aspnet_regiis.exe -GA domain\username which I did but it didn't help. What else do I need to do?

    Read the article

  • Disable .net completely in a IIS6 Application Pool

    - by David L.-Pratte
    we're managing some web sites for our clients on our servers, some running Windows Server 2003 R2 and others running 2008 R2. In Windows Server 2008 R2, we can disable completely .NET framework usage for some application pools, which is great since most of our websites are still using classic ASP. After some issues with classic ASP applications being configured to run as ASP.NET 4 in a CLR 2.0 pool, we wanted to do the same thing in IIS6 - that is, have application pools without any .NET support. Is this a supported scenario in IIS6? Thanks

    Read the article

  • Warming up an IIS Application Pool automatically?

    - by Michael Stum
    So IIS likes to shut down app pools that aren't in use. While this makes sense, I would like to have certain app pools conterminously running, but I don't want to just disable the automatic app pool restart as some of the settings (e.g., maximum memory limit) are good to have. I know that Microsoft announced the IIS Application Warmup module as an IIS 7.5 feature only then to do a Bait & Switch and pull it again so that they can put it in IIS 8 instead, so I wonder if something exists to run on IIS 7.5/Windows 2008 R2?

    Read the article

  • IIS App Pool Identity Internet Settings

    - by Programming Hero
    How does an IIS App Pool determine its Internet Settings? I'm specifying a custom identity under which to host a .NET web application, a service account that is part of our Active Directory domain. When the application runs, it needs to make HTTP requests to other servers. This action causes it to read web and proxy settings from some location, but I can't understand where it goes for this information. Does it look: At the default account's settings on that box? At the default profile on the AD server? Its own local/roaming profile? A combination of the above? Somewhere completely different?

    Read the article

  • Thread pool stack security issue

    - by elmatador
    In a naive implementation of a thread pool, can a piece of code that is being executed read the data left by some previous code on the stack (if it was running on the same thread instance)? Also, are there any other inherent security issues connected to thread pools?

    Read the article

  • How to trace the connection pool in a Java Web application - DBMS_APPLICATION_INFO

    - by Cleiton Garcia
    Hello, I need improve the traceability in a Web Application that usually run on fixed db user. The DBA should have a fast access for the information about the heavy users that are degrading the database. 5 years ago, I implemented a .NET ORM engine which makes a log of user and the server using the DBMS_APPLICATION_INFO package. Using a wrapper above the connection manager with the following code: DBMS_APPLICATION_INFO.SET_MODULE('" + User + " - " + appServerMachine + "',''); Each time that a connection get a connection from the pool, the package is executed to log the information in the V$SESSION. Has anyone discover or implemented a solution for this problem using the Toplink or Hibernate? Is there a default implementation for this problem? I found here a solutions as I implemented 5 years ago, but I'd like to know with anyone have a better solution and integrated with the ORM. http://stackoverflow.com/questions/53379/using-dbmsapplicationinfo-with-jboss My application is above Spring, the DAO are implemented with JPA (using hibernate) and actually running directly in Tomcat, with plans to (next year) migrate to SAP Netwevare Application Server. Thanks.

    Read the article

  • Which version of ZFS allows shrinking of a pool?

    - by George Bailey
    I found a list of versions and their Solaris release numbers http://download.oracle.com/docs/cd/E19253-01/819-5461/appendixa-1/index.html I know that you can grow a pool by replacing drives with larger ones or adding new drives or mirrors to the pool. I heard that ZFS did not yet support shrinking pools by removing drives/mirrors. But that has probably been changed. Which version (if any) released the ability to shrink a pool?

    Read the article

  • A Consol Application or Windows Application in VS 2010 for Sharepoint 2010 : A common Error

    - by Gino Abraham
    I have seen many Sharepoint Newbies cracking their head to create a Console/Windows  application in VS2010 and make it talk to Sharepoint 2010 Server. I had the same problem when i started with Sharepoint in the begining. It is important for you to acknowledge that SharePoint 2010 is based on .NET Framework version 3.5 and not version 4.0. In VS 2010 when you create a Console/Windows application, Make Sure you select .Net Framework 3.5 in the New Project Dialog Window.If you have missed while creating new Project Go to the Application tab of project properties and verify that .NET Framework Version 3.5 is select as the Target Framework. Now that you have selected the correct framework, will it work? Nope if the application is configured as x86 one it will not work. Sharepoint is a 64 Bit application and when you create a windows application to talk to Sharepoint it should also be a 64 Bit one. Go to Configuration Manager, Select x64. If x64 is not available select <New…> and in the New Solution Platform dialog box select x64 as the new platform copying settings from x86 and checking the Create new project platforms check box. This is not applicable if you are making a console application to talk to sharepoint with Client Object Model.

    Read the article

  • A Console Application or Windows Application in VS 2010 for Sharepoint 2010 : A common Error

    - by Gino Abraham
    I have seen many Sharepoint Newbies cracking their head to create a Console/Windows  application in VS2010 and make it talk to Sharepoint 2010 Server. I had the same problem when i started with Sharepoint in the begining. It is important for you to acknowledge that SharePoint 2010 is based on .NET Framework version 3.5 and not version 4.0. In VS 2010 when you create a Console/Windows application, Make Sure you select .Net Framework 3.5 in the New Project Dialog Window.If you have missed while creating new Project Go to the Application tab of project properties and verify that .NET Framework Version 3.5 is select as the Target Framework. Now that you have selected the correct framework, will it work? Nope if the application is configured as x86 one it will not work. Sharepoint is a 64 Bit application and when you create a windows application to talk to Sharepoint it should also be a 64 Bit one. Go to Configuration Manager, Select x64. If x64 is not available select <New…> and in the New Solution Platform dialog box select x64 as the new platform copying settings from x86 and checking the Create new project platforms check box. This is not applicable if you are making a console application to talk to sharepoint with Client Object Model.

    Read the article

  • The Interaction between Three-Tier Client/Server Model and Three-Tier Application Architecture Model

    The three-tier client/server model is a network architectural approach currently used in modern networking. This approach divides a network in to three distinct components. Three-Tier Client/Server Model Components Client Component Server Component Database Component The Client Component of the network typically represents any device on the network. A basic example of this would be computer or another network/web enabled devices that are connected to a network. Network clients request resources on the network, and are usually equipped with a user interface for the presentation of the data returned from the Server Component. This process is done through the use of various software clients, and example of this can be seen through the use of a web browser client. The web browser request information from the Server Component located on the network and then renders the results for the user to process. The Server Components of the network return data based on specific client request back to the requesting client.  Server Components also inherit the attributes of a Client Component in that they are a device on the network and that they can also request information from other Server Components. However what differentiates a Client Component from a Server Component is that a Server Component response to requests from devices on the network. An example of a Server Component can be seen in a web server. A web server listens for new requests and then interprets the request, processes the web pages, and then returns the processed data back to the web browser client so that it may render the data for the user to interpret. The Database Component of the network returns unprocessed data from databases or other resources. This component also inherits attributes from the Server Component in that it is a device on a network, it can request information from other server components and database components, and it also listens for new requests so that it can return data when needed. The three-tier client/server model is very similar to the three-tier application architecture model, and in fact the layers can be mapped to one another. Three-Tier Application Architecture Model Presentation Layer/Logic Business Layer/Logic Data Layer/Logic The Presentation Layer including its underlying logic is very similar to the Client Component of the three-tiered model. The Presentation Layer focuses on interpreting the data returned by the Business Layer as well as presents the data back to the user.  Both the Presentation Layer and the Client Component focus primarily on the user and their experience. This allows for segments of the Business Layer to be distributable and interchangeable because the Presentation Layer is not directly integrated in with Business Layer. The Presentation Layer does not care where the data comes from as long as it is in the proper format. This allows for the Presentation Layer and Business Layer to be stored on one or more different servers so that it can provide a higher availability to clients requesting data. A good example of this is a web site that uses load balancing. When a web site decides to take on the task of load balancing they must obtain a network device that sits in front of a one or machines in order to distribute the request across multiple servers. When a user comes in through the load balanced device they are redirected to a specific server based on a few factors. Common Load Balancing Factors Current Server Availability Current Server Response Time Current Server Priority The Business Layer and corresponding logic are business rules applied to data prior to it being sent to the Presentation Layer. These rules are used to manipulate the data coming from the Data Access Layer, in addition to validating any data prior to being stored in the Data Access Layer. A good example of this would be when a user is trying to create multiple accounts under one email address. The Business Layer logic can prevent duplicate accounts by enforcing a unique email for every new account before the data is even stored in the Data Access Layer. The Server Component can be directly tied to this layer in that the server typically stores and process the Business Layer before it is returned to the end-user via the Presentation Layer. In addition the Server Component can also run automated process through the Business Layer on the data in the Data Access Layer so that additional business analysis can be derived from the data that has been already collected. The Data Layer and its logic are responsible for storing information so that it can be easily retrieved. Typical in most modern applications data is stored in a database management system however data can also be in the form of files stored on a file server. In addition a database can take on one of several forms. Common Database Formats XML File Pipe Delimited File Tab Delimited File Comma Delimited File (CSV) Plain Text File Microsoft Access Microsoft SQL Server MySql Oracle Sybase The Database component of the Networking model can be directly tied to the Data Layer because this is where the Data Layer obtains the data to return back the Business Layer. The Database Component basically allows for a place on the network to store data for future use. This enables applications to save data when they can and then quickly recall the saved data as needed so that the application does not have to worry about storing the data in memory. This prevents overhead that could be created when an application must retain all data in memory. As you can see the Three-Tier Client/Server Networking Model and the Three-Tiered Application Architecture Model rely very heavily on one another to function especially if different aspects of an application are distributed across an entire network. The use of various servers and database servers are wonderful when an application has a need to distribute work across the network. Network Components and Application Layers Interaction Database components will store all data needed for the Data Access Layer to manipulate and return to the Business Layer Server Component executes the Business Layer that manipulates data so that it can be returned to the Presentation Layer Client Component hosts the Presentation Layer that  interprets the data and present it to the user

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >