Search Results

Search found 3458 results on 139 pages for 'concurrent queue'.

Page 3/139 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Wordpress Queue like Tumblr?

    - by Michael Hopkins
    Hi. Is there a way to give Wordpress the queue functionality that Tumblr has? Tumblr's queue, for those who don't know, is a way to space posts out without assigning specific post dates. For example, a Tumblr queue might be set to post every four hours between 9am and 5pm. Tumblr would drop the front post in the queue at 9am, 1pm and 5pm every day. Posts are added to the queue by clicking "add to queue" instead of "publish." It's quite simple. How can this feature be added to Wordpress?

    Read the article

  • EBS Concurrent Processing Information Center

    - by LuciaC
    Do you have problems or questions about concurrent request processing?  Do you want to know: How and when to run CP Diagnostics? What are the latest Hot Topics being looked at for Concurrent Processing? All about the Concurrent Process Analyzer self-service Health-Check script? Go to the EBS Concurrent Processing Information Center (Doc ID 1304305.1) and find out the above and lots more!

    Read the article

  • Why does std queue not define a swap method specialisation

    - by Jamie Cook
    I've read that all stl containers provide a specialisation of the swap algorithm so as to avoid calling the copy constructor and two assignment operations that the default method uses. However, when I thought it would be nice to use a queue in some code I was working on I noticed that (unlike vector and deque) queue doesn't provide this method? I just decided to use a deque instead of a queue, but still I'm interested to know why this is?

    Read the article

  • Which Queue implementation to use in Java?

    - by devoured elysium
    I need to use a FIFO structure in my application. It needs to have at most 5 elements. I'd like to have something easy to use (I don't care for concurrency) that implements the Collection interface. I've tried the LinkedList, that seems to come from Queue, but it doesn't seem to allow me to set it's maximum capacity. It feels as if I just want at max 5 elements but try to add 20, it will just keep increasing in size to fit it. I'd like something that'd work the following way: XQueue<Integer> queue = new XQueue<Integer>(5); //where 5 is the maximum number of elements I want in my queue. for (int i = 0; i < 10; ++i) { queue.offer(i); } for (int i = 0; i < 5; ++i) { System.out.println(queue.poll()); } That'd print: 5 6 7 8 9 Thanks

    Read the article

  • Windows Command queue?

    - by Stefano
    i'm thinking if does exist some kind of software that can put in a queue a bunch of windows commands... for example i can say to first copy some file somewhere, then rename those, then delete the old files, then edit one of them etc.... without waiting the effective execution of any of those passages.... this could be useful when copying big files that take a lot and i don't want to sit in front of the computer keeping the eyes on the progress bar... does exist anything like this?

    Read the article

  • Another thread safe queue implementation

    - by jensph
    I have a class, Queue, that I tried to make thread safe. It has these three member variables: std::queue<T> m_queue; pthread_mutex_t m_mutex; pthread_cond_t m_condition; and a push and pop implemented as: template<class T> void Queue<T>::push(T value) { pthread_mutex_lock( &m_mutex ); m_queue.push(value); if( !m_queue.empty() ) { pthread_cond_signal( &m_condition ); } pthread_mutex_unlock( &m_mutex ); } template<class T> bool Queue<T>::pop(T& value, bool block) { bool rtn = false; pthread_mutex_lock( &m_mutex ); if( block ) { while( m_queue.empty() ) { pthread_cond_wait( &m_condition, &m_mutex ); } } if( !m_queue.empty() ) { value = m_queue.front(); m_queue.pop(); rtn = true; } pthread_mutex_unlock( &m_mutex ); return rtn; } Unfortunately there are occasional issues that may be the fault of this code. That is, there are two threads and sometimes thread 1 never comes out of push() and at other times thread 2 never comes out of pop() (the block parameter is true) though the queue isn't empty. I understand there are other implementations available, but I'd like to try to fix this code, if needed. Anyone see any issues? The constructor has the appropriate initializations: Queue() { pthread_mutex_init( &mMutex, NULL ); pthread_cond_init( &mCondition, NULL ); } and the destructor, the corresponding 'destroy' calls.

    Read the article

  • 1600+ 'postfix-queue' processes - OK to have this many?

    - by atomicguava
    I have a Plesk 9.5.4 CentOS server running Postfix. I had been having massive problems with the mailq being full of 'double-bounce' email messages containing errors relating to 'Queue File Write Error', but I believe these are now fixed thanks to this thread. My new problem is that when I run top, I can see lots of processes called 'postfix-queue' and have fairly high load: top - 13:59:44 up 6 days, 21:14, 1 user, load average: 2.33, 2.19, 1.96 Tasks: 1743 total, 1 running, 1742 sleeping, 0 stopped, 0 zombie Cpu(s): 5.1%us, 8.8%sy, 0.0%ni, 85.3%id, 0.8%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 3145728k total, 1950640k used, 1195088k free, 0k buffers Swap: 0k total, 0k used, 0k free, 0k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1324 apache 16 0 344m 33m 5664 S 21.7 1.1 0:03.17 httpd 32443 apache 15 0 350m 36m 6864 S 14.4 1.2 0:13.83 httpd 1678 root 15 0 13948 2568 952 R 2.0 0.1 0:00.37 top 1890 mysql 15 0 689m 318m 7600 S 1.0 10.4 219:45.23 mysqld 1394 apache 15 0 352m 41m 5972 S 0.7 1.3 0:03.91 httpd 1369 apache 15 0 344m 33m 5444 S 0.3 1.1 0:02.03 httpd 1592 apache 15 0 349m 37m 5912 S 0.3 1.2 0:02.52 httpd 1633 apache 15 0 336m 20m 1828 S 0.3 0.7 0:00.01 httpd 1952 root 19 0 335m 28m 10m S 0.3 0.9 1:35.41 httpd 1 root 15 0 10304 732 612 S 0.0 0.0 0:04.41 init 1034 mhandler 15 0 11520 1160 884 S 0.0 0.0 0:00.00 postfix-queue 1036 mhandler 15 0 11516 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1041 mhandler 17 0 11516 1156 884 S 0.0 0.0 0:00.00 postfix-queue 1043 mhandler 15 0 11512 1116 860 S 0.0 0.0 0:00.00 postfix-queue 1063 mhandler 16 0 11516 1160 884 S 0.0 0.0 0:00.00 postfix-queue 1068 mhandler 15 0 11516 1128 860 S 0.0 0.0 0:00.00 postfix-queue 1071 mhandler 17 0 11512 1152 884 S 0.0 0.0 0:00.00 postfix-queue 1072 mhandler 15 0 11512 1116 860 S 0.0 0.0 0:00.00 postfix-queue 1081 mhandler 16 0 11516 1156 884 S 0.0 0.0 0:00.00 postfix-queue 1082 mhandler 15 0 11512 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1089 popuser 15 0 33892 1972 1200 S 0.0 0.1 0:00.02 pop3d 1116 mhandler 16 0 11516 1164 884 S 0.0 0.0 0:00.00 postfix-queue 1117 mhandler 15 0 11516 1124 860 S 0.0 0.0 0:00.00 postfix-queue 1120 mhandler 16 0 11516 1160 884 S 0.0 0.0 0:00.00 postfix-queue 1121 mhandler 15 0 11512 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1130 mhandler 17 0 11516 1160 884 S 0.0 0.0 0:00.00 postfix-queue 1131 mhandler 15 0 11516 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1149 root 17 -4 12572 680 356 S 0.0 0.0 0:00.00 udevd 1181 mhandler 16 0 11516 1160 884 S 0.0 0.0 0:00.00 postfix-queue 1183 mhandler 15 0 11512 1116 860 S 0.0 0.0 0:00.00 postfix-queue 1224 mhandler 16 0 11516 1160 884 S 0.0 0.0 0:00.00 postfix-queue 1225 mhandler 15 0 11516 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1228 apache 15 0 345m 34m 5472 S 0.0 1.1 0:04.64 httpd 1241 mhandler 16 0 11516 1156 884 S 0.0 0.0 0:00.00 postfix-queue 1242 mhandler 15 0 11512 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1251 mhandler 17 0 11516 1156 884 S 0.0 0.0 0:00.00 postfix-queue 1252 mhandler 15 0 11516 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1258 apache 15 0 349m 37m 5444 S 0.0 1.2 0:01.28 httpd When I run ps -Al | grep -c postfix-queue it returns 1618! My question is this: is this normal or is there something else going wrong with Postfix? Right now, if I run mailq it is empty, and qshape deferred / qshape active are empty too. Thanks in advance for your help.

    Read the article

  • Strange ASP.NET Queue Performance Counters Behavior?

    - by LemurTech
    We have an ASP.NET 2.0 site running in classic mode. I am seeing very strange behavior in the performance counter values. Perhaps these are bugs (I've been all over Google trying to verify this, without much luck), or perhaps it is just my inexperience with monitoring these things. This PerfMon graph (http://imgur.com/Jv5io5J) represents a load test where I add up to 350 virtual users to the site, at a rate of about 1/sec, performing relatively simple page browsing. At the end of the test, I gradually taper off the number of users. This is a 4 CPU server. Machine.config settings for are at the defaults. The solid blue line is ASP.NET Apps v2.x\Requests Executing for the application in question. The profile makes perfect sense, with a quick ramp-up to 32 executing requests (minWorkerThreads x 4CPUs), followed by a slower ramp-up to 48 ((maxWorkerThreads - minWorkerThreads) x 4CPUs). The solid yellow line is ASP.NET v2.x\Requests Queued. Again, this makes sense: after the initial 32 request threads are activated, the queue begins to build as new thread initialization can't keep pace with incoming requests. But as executing requests reaches its highest possible value of 48, the counter for ASP.NET Apps v2.x\Requests Queued (green solid line) suddenly springs to life and maintains step with the yellow counter. As far as I can tell, and with no other apps running on the server, these two counters should have had the same values from the start. One other odd thing: The counter for ASP.NET v2.x\Request Wait Time (dotted yellow line) also does not spring to life until executing requests reaches 48. Shouldn't I be seeing values here from the moment ASP.NET v2.x\Requests Queued begins to build? And likewise, why would ASP.NET Apps v2.x\Request Execution Time (dotted blue) increase significantly only after that peak of 48 is reached? Shouldn't it ramp-up gradually along with queued requests?

    Read the article

  • How to implement Priority Queues in Python?

    - by dragosrsupercool
    Sorry for such a silly question but Python docs are confusing.. . Link 1: Queue Implementation http://docs.python.org/library/queue.html It says thats Queue has a contruct for priority queue. But I could not find how to implement it. class Queue.PriorityQueue(maxsize=0) Link 2: Heap Implementation http://docs.python.org/library/heapq.html Here they says that we can implement priority queues indirectly using heapq pq = [] # list of entries arranged in a heap entry_finder = {} # mapping of tasks to entries REMOVED = '<removed-task>' # placeholder for a removed task counter = itertools.count() # unique sequence count def add_task(task, priority=0): 'Add a new task or update the priority of an existing task' if task in entry_finder: remove_task(task) count = next(counter) entry = [priority, count, task] entry_finder[task] = entry heappush(pq, entry) def remove_task(task): 'Mark an existing task as REMOVED. Raise KeyError if not found.' entry = entry_finder.pop(task) entry[-1] = REMOVED def pop_task(): 'Remove and return the lowest priority task. Raise KeyError if empty.' while pq: priority, count, task = heappop(pq) if task is not REMOVED: del entry_finder[task] return task raise KeyError('pop from an empty priority queue' Which is the most efficient priority queue implementation in python? And how to implement it?

    Read the article

  • Problem in creation MDB Queue connection at Jboss StartUp

    - by Amit Ruwali
    I am not able to create a Queue connection in JBOSS4.2.3GA Version & Java1.5, as I am using MDB as per the below details. I am putting this MDB in a jar file(named utsJar.jar) and copied it in deploy folder of JBOSS, In the test env. this MDB works well but in another env. [ env settings and jboss/java ver is same ] it is throwing error at jboss start up [attached below ]. I have searched for this error but couldn't find any solution till now; was there any issue of port confict or something related with configurations ? UTSMessageListner.java @MessageDriven(activationConfig = { @ActivationConfigProperty(propertyName="destinationType", propertyValue="javax.jms.Queue"), @ActivationConfigProperty(propertyName="destination", propertyValue="queue/UTSQueue") }) @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED) public class UTSMessageListner implements MessageListener { public void onMessage(Message msg) { ObjectMessage objmsg = (ObjectMessage) msg; try { UTSListVO utsMessageListVO = (UTSListVO) objmsg.getObject(); if(utsMessageListVO.getUtsMessageList()!=null) { UtsWebServiceLogger.logMessage("UTSMessageListner:onMessage: SIZE Of UTSMessage List =[" +utsMessageListVO.getUtsMessageList().size() + "]"); UTSDataLayerImpl.getInstance().insertUTSMessage(utsMessageListVO); } else { UtsWebServiceLogger.logMessage("UTSMessageListner:onMessage: Message List is NULL"); } } catch (Exception ex) { UtsWebServiceLogger.logMessage("UTSMessageListner:onMessage: Error Receiving Message"+ExceptionUtility.getStackTrace(ex)); } } } [ I have also attached whole server.log as an attach] /// ///////////////////////////////// Error Trace is Below while starting the server /////////////////////////// 2010-03-12 07:05:40,061 WARN [org.jboss.ejb3.mdb.MessagingContainer] Could not find the queue destination-jndi-name=queue/UTSQueue 2010-03-12 07:05:40,061 WARN [org.jboss.ejb3.mdb.MessagingContainer] destination not found: queue/UTSQueue reason: javax.naming.NameNotFoundException: queue not bound 2010-03-12 07:05:40,061 WARN [org.jboss.ejb3.mdb.MessagingContainer] creating a new temporary destination: queue/UTSQueue 2010-03-12 07:05:40,071 WARN [org.jboss.system.ServiceController] Problem starting service jboss.j2ee:ear=uts.ear,jar=utsJar.jar,name=UTSMessageListner,service=EJB3 java.lang.NullPointerException at org.jboss.mq.server.jmx.DestinationManager.createDestination(DestinationManager.java:336) at org.jboss.mq.server.jmx.DestinationManager.createQueue(DestinationManager.java:293) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.ejb3.JmxClientKernelAbstraction.invoke(JmxClientKernelAbstraction.java:44) at org.jboss.ejb3.jms.DestinationManagerJMSDestinationFactory.createDestination(DestinationManagerJMSDestinationFactory.java:75) at org.jboss.ejb3.mdb.MessagingContainer.createTemporaryDestination(MessagingContainer.java:573) at org.jboss.ejb3.mdb.MessagingContainer.createDestination(MessagingContainer.java:512) at org.jboss.ejb3.mdb.MessagingContainer.innerCreateQueue(MessagingContainer.java:438) at org.jboss.ejb3.mdb.MessagingContainer.jmsCreate(MessagingContainer.java:400) at org.jboss.ejb3.mdb.MessagingContainer.innerStart(MessagingContainer.java:166) at org.jboss.ejb3.mdb.MessagingContainer.start(MessagingContainer.java:152) at org.jboss.ejb3.mdb.MDB.start(MDB.java:126) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.ejb3.ServiceDelegateWrapper.startService(ServiceDelegateWrapper.java:103) at org.jboss.system.ServiceMBeanSupport.jbossInternalStart(ServiceMBeanSupport.java:289) at org.jboss.system.ServiceMBeanSupport.jbossInternalLifecycle(ServiceMBeanSupport.java:245) at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.system.ServiceController$ServiceProxy.invoke(ServiceController.java:978) at $Proxy0.start(Unknown Source) at org.jboss.system.ServiceController.start(ServiceController.java:417) at sun.reflect.GeneratedMethodAccessor10.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy53.start(Unknown Source) at org.jboss.ejb3.JmxKernelAbstraction.install(JmxKernelAbstraction.java:120) at org.jboss.ejb3.Ejb3Deployment.registerEJBContainer(Ejb3Deployment.java:301) at org.jboss.ejb3.Ejb3Deployment.start(Ejb3Deployment.java:362) at org.jboss.ejb3.Ejb3Module.startService(Ejb3Module.java:91) at org.jboss.system.ServiceMBeanSupport.jbossInternalStart(ServiceMBeanSupport.java:289) at org.jboss.system.ServiceMBeanSupport.jbossInternalLifecycle(ServiceMBeanSupport.java:245) at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.system.ServiceController$ServiceProxy.invoke(ServiceController.java:978) at $Proxy0.start(Unknown Source) at org.jboss.system.ServiceController.start(ServiceController.java:417) at sun.reflect.GeneratedMethodAccessor10.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy33.start(Unknown Source) at org.jboss.ejb3.EJB3Deployer.start(EJB3Deployer.java:512) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.interceptor.AbstractInterceptor.invoke(AbstractInterceptor.java:133) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.interceptor.ModelMBeanOperationInterceptor.invoke(ModelMBeanOperationInterceptor.java:142) at org.jboss.mx.interceptor.DynamicInterceptor.invoke(DynamicInterceptor.java:97) at org.jboss.system.InterceptorServiceMBeanSupport.invokeNext(InterceptorServiceMBeanSupport.java:238) at org.jboss.wsf.container.jboss42.DeployerInterceptor.start(DeployerInterceptor.java:87) at org.jboss.deployment.SubDeployerInterceptorSupport$XMBeanInterceptor.start(SubDeployerInterceptorSupport.java:188) at org.jboss.deployment.SubDeployerInterceptor.invoke(SubDeployerInterceptor.java:95) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy34.start(Unknown Source) at org.jboss.deployment.MainDeployer.start(MainDeployer.java:1025) at org.jboss.deployment.MainDeployer.start(MainDeployer.java:1015) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:819) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:782) at sun.reflect.GeneratedMethodAccessor20.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.interceptor.AbstractInterceptor.invoke(AbstractInterceptor.java:133) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.interceptor.ModelMBeanOperationInterceptor.invoke(ModelMBeanOperationInterceptor.java:142) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy9.deploy(Unknown Source) at org.jboss.deployment.scanner.URLDeploymentScanner.deploy(URLDeploymentScanner.java:421) at org.jboss.deployment.scanner.URLDeploymentScanner.scan(URLDeploymentScanner.java:634) at org.jboss.deployment.scanner.AbstractDeploymentScanner$ScannerThread.doScan(AbstractDeploymentScanner.java:263) at org.jboss.deployment.scanner.AbstractDeploymentScanner.startService(AbstractDeploymentScanner.java:336) at org.jboss.system.ServiceMBeanSupport.jbossInternalStart(ServiceMBeanSupport.java:289) at org.jboss.system.ServiceMBeanSupport.jbossInternalLifecycle(ServiceMBeanSupport.java:245) at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.system.ServiceController$ServiceProxy.invoke(ServiceController.java:978) at $Proxy0.start(Unknown Source) at org.jboss.system.ServiceController.start(ServiceController.java:417) at sun.reflect.GeneratedMethodAccessor10.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy4.start(Unknown Source) at org.jboss.deployment.SARDeployer.start(SARDeployer.java:304) at org.jboss.deployment.MainDeployer.start(MainDeployer.java:1025) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:819) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:782) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:766) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.interceptor.AbstractInterceptor.invoke(AbstractInterceptor.java:133) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.interceptor.ModelMBeanOperationInterceptor.invoke(ModelMBeanOperationInterceptor.java:142) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy5.deploy(Unknown Source) at org.jboss.system.server.ServerImpl.doStart(ServerImpl.java:482) at org.jboss.system.server.ServerImpl.start(ServerImpl.java:362) at org.jboss.Main.boot(Main.java:200) at org.jboss.Main$1.run(Main.java:508) at java.lang.Thread.run(Thread.java:595)

    Read the article

  • Windows 8 / IIS 8 Concurrent Requests Limit

    - by OWScott
    IIS 8 on Windows Server 2012 doesn’t have any fixed concurrent request limit, apart from whatever limit would be reached when resources are maxed. However, the client version of IIS 8, which is on Windows 8, does have a concurrent connection request limitation to limit high traffic production uses on a client edition of Windows. Starting with IIS 7 (Windows Vista), the behavior changed from previous versions.  In previous client versions of IIS, excess requests would throw a 403.9 error message (Access Forbidden: Too many users are connected.).  Instead, Windows Vista, 7 and 8 queue excessive requests so that they will be handled gracefully, although there is a maximum number of requests that will be processed simultaneously. Thomas Deml provided a concurrent request chart for Windows Vista many years ago, but I have been unable to find an equivalent chart for Windows 8 so I asked Wade Hilmo from the IIS team what the limits are.  Since this is controlled not by the IIS team itself but rather from the Windows licensing team, he asked around and found the authoritative answer, which I’ll provide below. Windows 8 – IIS 8 Concurrent Requests Limit Windows 8 3 Windows 8 Professional 10 Windows RT N/A since IIS does not run on Windows RT Windows 7 – IIS 7.5 Concurrent Requests Limit Windows 7 Home Starter 1 Windows 7 Basic 1 Windows 7 Premium 3 Windows 7 Ultimate, Professional, Enterprise 10 Windows Vista – IIS 7 Concurrent Requests Limit Windows Vista Home Basic (IIS process activation and HTTP processing only) 3 Windows Vista Home Premium 3 Windows Vista Ultimate, Professional 10 Windows Server 2003, Windows Server 2008, Windows Server 2008 R2 and Windows Server 2012 allow an unlimited amount of simultaneously requests.

    Read the article

  • How to reduce java concurrent mode failure and excessive gc

    - by jimx
    In Java, the concurrent mode failure means that the concurrent collector failed to free up enough memory space form tenured and permanent gen and has to give up and let the full stop-the-world gc kicks in. The end result could be very expensive. I understand this concept but never had a good comprehensive understanding of A) what could cause a concurrent mode failure and B) what's the solution?. This sort of unclearness leads me to write/debug code without much of hints in mind and often has to shop around those performance flags from Foo to Bar without particular reasons, just have to try. I'd like to learn from developers here how your experience is. If you had previous encountered such performance issue, what was the cause and how you addressed it? If you have coding recommendations, please don't be too general. Thanks!

    Read the article

  • Simulating Google Appengine's Task Queue with Gearman

    - by sotangochips
    One of the characteristics I love most about Google's Task Queue is its simplicity. More specifically, I love that it takes a URL and some parameters and then posts to that URL when the task queue is ready to execute the task. This structure means that the tasks are always executing the most current version of the code. Conversely, my gearman workers all run code within my django project -- so when I push a new version live, I have to kill off the old worker and run a new one so that it uses the current version of the code. My goal is to have the task queue be independent from the code base so that I can push a new live version without restarting any workers. So, I got to thinking: why not make tasks executable by url just like the google app engine task queue? The process would work like this: User request comes in and triggers a few tasks that shouldn't be blocking. Each task has a unique URL, so I enqueue a gearman task to POST to the specified URL. The gearman server finds a worker, passes the url and post data to a worker The worker simply posts to the url with the data, thus executing the task. Assume the following: Each request from a gearman worker is signed somehow so that we know it's coming from a gearman server and not a malicious request. Tasks are limited to run in less than 10 seconds (There would be no long tasks that could timeout) What are the potential pitfalls of such an approach? Here's one that worries me: The server can potentially get hammered with many requests all at once that are triggered by a previous request. So one user request might entail 10 concurrent http requests. I suppose I could have a single worker with a sleep before every request to rate-limit. Any thoughts?

    Read the article

  • Segmentation fault with queue in C

    - by Trevor
    I am getting a segmentation fault with the following code after adding structs to my queue. The segmentation fault occurs when the MAX_QUEUE is set high but when I set it low (100 or 200), the error doesn't occur. It has been a while since I last programmed in C, so any help is appreciated. #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_QUEUE 1000 struct myInfo { char data[20]; }; struct myInfo* queue; void push(struct myInfo); int queue_head = 0; int queue_size = 0; int main(int argc, char *argv[]) { queue = (struct myInfo*) malloc(sizeof(struct myInfo) * MAX_QUEUE); struct myInfo info; char buf[10]; strcpy(buf, "hello"); while (1) { strcpy(info.data, buf); push(info); } } void push(struct myInfo info) { int next_index = sizeof(struct myInfo) * ((queue_size + queue_head) % MAX_QUEUE); printf("Pushing %s to %d\n", info.data, next_index); *(queue + (next_index)) = info; queue_size++; } Output: Pushing hello to 0 Pushing hello to 20 ... Pushing hello to 7540 Pushing hello to 7560 Pushing hello to 7580 Segmentation fault

    Read the article

  • Message queue proxy in Python + Twisted

    - by gasper_k
    Hi, I want to implement a lightweight Message Queue proxy. It's job is to receive messages from a web application (PHP) and send them to the Message Queue server asynchronously. The reason for this proxy is that the MQ isn't always avaliable and is sometimes lagging, or even down, but I want to make sure the messages are delivered, and the web application returns immediately. So, PHP would send the message to the MQ proxy running on the same host. That proxy would save the messages to SQLite for persistence, in case of crashes. At the same time it would send the messages from SQLite to the MQ in batches when the connection is available, and delete them from SQLite. Now, the way I understand, there are these components in this service: message listener (listens to the messages from PHP and writes them to a Incoming Queue) DB flusher (reads messages from the Incoming Queue and saves them to a database; due to SQLite single-threadedness) MQ connection handler (keeps the connection to the MQ server online by reconnecting) message sender (collects messages from SQlite db and sends them to the MQ server, then removes them from db) I was thinking of using Twisted for #1 (TCPServer), but I'm having problem with integrating it with other points, which aren't event-driven. Intuition tells me that each of these points should be running in a separate thread, because all are IO-bound and independent of each other, but I could easily put them in a single thread. Even though, I couldn't find any good and clear (to me) examples on how to implement this worker thread aside of Twisted's main loop. The example I've started with is the chatserver.py, which uses service.Application and internet.TCPServer objects. If I start my own thread prior to creating TCPServer service, it runs a few times, but the it stops and never runs again. I'm not sure, why this is happening, but it's probably because I don't use threads with Twisted correctly. Any suggestions on how to implement a separate worker thread and keep Twisted? Do you have any alternative architectures in mind?

    Read the article

  • Queue Data structure app crash with front() method

    - by Programer
    I am implementing queue data strcutre but my app gets crashed, I know I am doing something wrong with Node pointer front or front() method of queue class #include <iostream> using namespace std; class Node { public: int get() { return object; }; void set(int object) { this->object = object; }; Node * getNext() { return nextNode; }; void setNext(Node * nextNode) { this->nextNode = nextNode; }; private: int object; Node * nextNode; }; class queue{ private: Node *rear; Node *front; public: int dequeue() { int x = front->get(); Node* p = front; front = front->getNext(); delete p; return x; } void enqueue(int x) { Node* newNode = new Node(); newNode->set(x); newNode->setNext(NULL); rear->setNext(newNode); rear = newNode; } int Front() { return front->get(); } int isEmpty() { return ( front == NULL ); } }; main() { queue q; q.enqueue(2); cout<<q.Front(); system("pause"); }

    Read the article

  • Java queue and multi-dimension array

    - by javaLearner.java
    First of all, this is my code (just started learning java): Queue<String> qe = new LinkedList<String>(); qe.add("b"); qe.add("a"); qe.add("c"); qe.add("d"); qe.add("e"); My question: Is it possible to add element to the queue with two values, like: qe.add("a","1"); // where 1 is integer So, that I know element "a" have value 1. If I want to add a number let say "2" to element a, I will have like a = 3. If this cant be done, what else in java classes that can handle this? I tried to use multi-dimention array, but its kinda hard to do the queue, like pop, push etc. (Maybe I am wrong) How to call specific element in the queue? Like, call element a, to check its value. [Note] Please don't give me links that ask me to read java docs. I was reading, and I still dont get it. The reason why I ask here is because, I know I can find the answer faster and easier.

    Read the article

  • JMS Topic vs Queue - Intent

    - by Sandeep Jindal
    I am trying to understand on the design requirements for using Queue, and could not find this question (with answer). My understanding: Queue means one-to-one. Thus it would be used in a special case (if not rare, very few cases) when a designer is sure that the message would be intended for only one consumer. But even in those cases, I may want to use Topic (just to be future safe). The only extra case I would have to do is to make (each) subscription durable. Or, I special situations, I would use bridging / dispatcher mechanism. Give above, I would always (or in most cases) want to publish to a topic. Subscriber can be either durable topic(s) or dispatched queue(s). Please let me know what I am missing here or I am missing the original intent?

    Read the article

  • Thread safe lockfree mutual ByteArray queue

    - by user313421
    A byte stream should be transferred and there is one producer thread and a consumer one. Speed of producer is higher than consumer most of the time, and I need enough buffered data for QoS of my application. I read about my problem and there are solutions like shared buffer, PipeStream .NET class ... This class is going to be instantiated many times on server so I need and optimized solution. Is it good idea to use a Queue of ByteArray ? If yes, I'll use an optimization algorithm to guess the Queue size and each ByteArray capacity and theoretically it fits my case. If no, I what's the best approach ? Please let me know if there's a good lock free thread safe implementation of ByteArray Queue in C# or VB. Thanks in advance

    Read the article

  • Best Work Queue service for distributed clusters

    - by onewheelgood
    Hi there. I require a simple work queue type system for asynchronous task management. I have looked at both beanstalkd and gearman. However, both these seem to assume that the client and the queue server are on the same network, and therefore that there will always be a reliable network between them. I need one that can support the client and server being in different places in the world, and be able to manage temporary loss of network connection between clusters. Ideally, this would work in such a way where I post a job to a local proxy that attempts to send it to the main queue server. If there is no network connection, it would try again later, however it would not lose the job or delay the client. Any recommendations?

    Read the article

  • Thread-safe blocking queue implementation on .NET

    - by Shrike
    Hello. I'm looking for an implementation of thread-safe blocking queue for .NET. By "thread-safe blocking queue" I mean: - thread-safe access to a queue where Dequeue method call blocks a thread untill other thread puts (Enqueue) some value. By the moment I'v found this one: http://www.eggheadcafe.com/articles/20060414.asp (But it's for .NET 1.1). Could someone comment/criticize correctness of this implementation. Or suggest some another one. Thanks in advance.

    Read the article

  • Iterating through std queue

    - by Ockonal
    Hi, I'm trying to use BOOST_FOREACH for iterating through the std::queue. But there isn't iterators in that class cause I have an error: std::queue<std::string> someList; BOOST_FOREACH(std::string temp, someList) { std::cout << temp; } >no matching function for call to begin(...) >no type named ‘iterator’ in ‘class std::queue<std::basic_string<char> >’ I need in structure like: the first comes, the first goes away.

    Read the article

  • Emails getting stuck in "messages with an unreachable destination queue" in Exchange

    - by Jason T.
    There's an exchange server with a problem that I'm trying to solve. There's a couple hundred messages that have been sent out but need journaled. They have been sent out but can't seem to make it to their journaling server. I have verified that the server they need to get to is valid and that the data center hosting the server is not having any problems. What are some other things I should look for to solve this issue? If any more information is needed please feel free to ask.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >