Search Results

Search found 51884 results on 2076 pages for 'custom type'.

Page 3/2076 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Apache serving wrong Content-Type for Rails files

    - by NudeCanalTroll
    Apache keeps serving up my Rails files with a Content-Type of 'text/plain' in the header. I have mod_mime installed, a mime.types files with all the correct MIME assignments, and the following code in my configuration. Any thoughts? DefaultType text/plain <IfModule mime_module> TypesConfig /etc/apache2/mime.types AddType application/x-compress .Z AddType application/x-gzip .gz .tgz </IfModule>

    Read the article

  • Is conditional return type ever a good idea?

    - by qegal
    So I have a method that's something like this: -(BOOL)isSingleValueRecord And another method like this: -(Type)typeOfSingleValueRecord And it occurred to me that I could combine them into something like this: -(id)isSingleValueRecord And have the implementation be something like this: -(id)isSingleValueRecord { //If it is single value if(self.recordValue = 0) { //Do some stuff to determine type, then return it return typeOfSingleValueRecord; } //If its not single value else { //Return "NO" return [NSNumber numberWithBool:NO]; } } So combining the two methods makes it more efficient but makes the readability go down. In my gut, I feel like I should go with the two-method version, but is that really right? Is there any case that I should go with the combined version?

    Read the article

  • .NET Type Conversion Issue: Simple but difficult

    - by jaderanderson
    Well, the question is kinda simple. I have a object defined as: public class FullListObject : System.Collections.ArrayList, IPagedCollection And when i try to: IPagedCollection pagedCollection = (IPagedCollection)value; It don't work... value is a FullListObject... this is my new code trying to get around a issue with the "is" operator. When the system tests (value is IPagedCollection) it never gets true for FullListObject. How to cast the object to another object with a interface type?

    Read the article

  • AdSense Custom Search Ads - custom quesry

    - by Alex
    i'm trying to set up a custom search ad, but I am nost sure about the query. On the site it says (https://developers.google.com/custom-search-ads/docs/implementation-guide) 'query' should be dynamic based on your page. This variable targets the ads and therefore should always match what the user on your site has just performed a search for. Now, what I understand is: I have to program my page so that the query variable contains some custom words. Am I right? If a user gets to my site through clicking on an adsense, there is no way to "know" what the user looked for and display my query accordingly, right? Thanks for any help!

    Read the article

  • Dynamically creating a Generic Type at Runtime

    - by Rick Strahl
    I learned something new today. Not uncommon, but it's a core .NET runtime feature I simply did not know although I know I've run into this issue a few times and worked around it in other ways. Today there was no working around it and a few folks on Twitter pointed me in the right direction. The question I ran into is: How do I create a type instance of a generic type when I have dynamically acquired the type at runtime? Yup it's not something that you do everyday, but when you're writing code that parses objects dynamically at runtime it comes up from time to time. In my case it's in the bowels of a custom JSON parser. After some thought triggered by a comment today I realized it would be fairly easy to implement two-way Dictionary parsing for most concrete dictionary types. I could use a custom Dictionary serialization format that serializes as an array of key/value objects. Basically I can use a custom type (that matches the JSON signature) to hold my parsed dictionary data and then add it to the actual dictionary when parsing is complete. Generic Types at Runtime One issue that came up in the process was how to figure out what type the Dictionary<K,V> generic parameters take. Reflection actually makes it fairly easy to figure out generic types at runtime with code like this: if (arrayType.GetInterface("IDictionary") != null) { if (arrayType.IsGenericType) { var keyType = arrayType.GetGenericArguments()[0]; var valueType = arrayType.GetGenericArguments()[1]; … } } The GetArrayType method gets passed a type instance that is the array or array-like object that is rendered in JSON as an array (which includes IList, IDictionary, IDataReader and a few others). In my case the type passed would be something like Dictionary<string, CustomerEntity>. So I know what the parent container class type is. Based on the the container type using it's then possible to use GetGenericTypeArguments() to retrieve all the generic types in sequential order of definition (ie. string, CustomerEntity). That's the easy part. Creating a Generic Type and Providing Generic Parameters at RunTime The next problem is how do I get a concrete type instance for the generic type? I know what the type name and I have a type instance is but it's generic, so how do I get a type reference to keyvaluepair<K,V> that is specific to the keyType and valueType above? Here are a couple of things that come to mind but that don't work (and yes I tried that unsuccessfully first): Type elementType = typeof(keyvalue<keyType, valueType>); Type elementType = typeof(keyvalue<typeof(keyType), typeof(valueType)>); The problem is that this explicit syntax expects a type literal not some dynamic runtime value, so both of the above won't even compile. I turns out the way to create a generic type at runtime is using a fancy bit of syntax that until today I was completely unaware of: Type elementType = typeof(keyvalue<,>).MakeGenericType(keyType, valueType); The key is the type(keyvalue<,>) bit which looks weird at best. It works however and produces a non-generic type reference. You can see the difference between the full generic type and the non-typed (?) generic type in the debugger: The nonGenericType doesn't show any type specialization, while the elementType type shows the string, CustomerEntity (truncated above) in the type name. Once the full type reference exists (elementType) it's then easy to create an instance. In my case the parser parses through the JSON and when it completes parsing the value/object it creates a new keyvalue<T,V> instance. Now that I know the element type that's pretty trivial with: // Objects start out null until we find the opening tag resultObject = Activator.CreateInstance(elementType); Here the result object is picked up by the JSON array parser which creates an instance of the child object (keyvalue<K,V>) and then parses and assigns values from the JSON document using the types  key/value property signature. Internally the parser then takes each individually parsed item and adds it to a list of  List<keyvalue<K,V>> items. Parsing through a Generic type when you only have Runtime Type Information When parsing of the JSON array is done, the List needs to be turned into a defacto Dictionary<K,V>. This should be easy since I know that I'm dealing with an IDictionary, and I know the generic types for the key and value. The problem is again though that this needs to happen at runtime which would mean using several Convert.ChangeType() calls in the code to dynamically cast at runtime. Yuk. In the end I decided the easier and probably only slightly slower way to do this is a to use the dynamic type to collect the items and assign them to avoid all the dynamic casting madness: else if (IsIDictionary) { IDictionary dict = Activator.CreateInstance(arrayType) as IDictionary; foreach (dynamic item in items) { dict.Add(item.key, item.value); } return dict; } This code creates an instance of the generic dictionary type first, then loops through all of my custom keyvalue<K,V> items and assigns them to the actual dictionary. By using Dynamic here I can side step all the explicit type conversions that would be required in the three highlighted areas (not to mention that this nested method doesn't have access to the dictionary item generic types here). Static <- -> Dynamic Dynamic casting in a static language like C# is a bitch to say the least. This is one of the few times when I've cursed static typing and the arcane syntax that's required to coax types into the right format. It works but it's pretty nasty code. If it weren't for dynamic that last bit of code would have been a pretty ugly as well with a bunch of Convert.ChangeType() calls to litter the code. Fortunately this type of type convulsion is rather rare and reserved for system level code. It's not every day that you create a string to object parser after all :-)© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • ASP.Net MVC 2 Auto Complete Textbox With Custom View Model Attribute & EditorTemplate

    - by SeanMcAlinden
    In this post I’m going to show how to create a generic, ajax driven Auto Complete text box using the new MVC 2 Templates and the jQuery UI library. The template will be automatically displayed when a property is decorated with a custom attribute within the view model. The AutoComplete text box in action will look like the following:   The first thing to do is to do is visit my previous blog post to put the custom model metadata provider in place, this is necessary when using custom attributes on the view model. http://weblogs.asp.net/seanmcalinden/archive/2010/06/11/custom-asp-net-mvc-2-modelmetadataprovider-for-using-custom-view-model-attributes.aspx Once this is in place, make sure you visit the jQuery UI and download the latest stable release – in this example I’m using version 1.8.2. You can download it here. Add the jQuery scripts and css theme to your project and add references to them in your master page. Should look something like the following: Site.Master <head runat="server">     <title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>     <link href="../../Content/Site.css" rel="stylesheet" type="text/css" />     <link href="../../css/ui-lightness/jquery-ui-1.8.2.custom.css" rel="stylesheet" type="text/css" />     <script src="../../Scripts/jquery-1.4.2.min.js" type="text/javascript"></script>     <script src="../../Scripts/jquery-ui-1.8.2.custom.min.js" type="text/javascript"></script> </head> Once this is place we can get started. Creating the AutoComplete Custom Attribute The auto complete attribute will derive from the abstract MetadataAttribute created in my previous post. It will look like the following: AutoCompleteAttribute using System.Collections.Generic; using System.Web.Mvc; using System.Web.Routing; namespace Mvc2Templates.Attributes {     public class AutoCompleteAttribute : MetadataAttribute     {         public RouteValueDictionary RouteValueDictionary;         public AutoCompleteAttribute(string controller, string action, string parameterName)         {             this.RouteValueDictionary = new RouteValueDictionary();             this.RouteValueDictionary.Add("Controller", controller);             this.RouteValueDictionary.Add("Action", action);             this.RouteValueDictionary.Add(parameterName, string.Empty);         }         public override void Process(ModelMetadata modelMetaData)         {             modelMetaData.AdditionalValues.Add("AutoCompleteUrlData", this.RouteValueDictionary);             modelMetaData.TemplateHint = "AutoComplete";         }     } } As you can see, the constructor takes in strings for the controller, action and parameter name. The parameter name will be used for passing the search text within the auto complete text box. The constructor then creates a new RouteValueDictionary which we will use later to construct the url for getting the auto complete results via ajax. The main interesting method is the method override called Process. With the process method, the route value dictionary is added to the modelMetaData AdditionalValues collection. The TemplateHint is also set to AutoComplete, this means that when the view model is parsed for display, the MVC 2 framework will look for a view user control template called AutoComplete, if it finds one, it uses that template to display the property. The View Model To show you how the attribute will look, this is the view model I have used in my example which can be downloaded at the end of this post. View Model using System.ComponentModel; using Mvc2Templates.Attributes; namespace Mvc2Templates.Models {     public class TemplateDemoViewModel     {         [AutoComplete("Home", "AutoCompleteResult", "searchText")]         [DisplayName("European Country Search")]         public string SearchText { get; set; }     } } As you can see, the auto complete attribute is called with the controller name, action name and the name of the action parameter that the search text will be passed into. The AutoComplete Template Now all of this is in place, it’s time to create the AutoComplete template. Create a ViewUserControl called AutoComplete.ascx at the following location within your application – Views/Shared/EditorTemplates/AutoComplete.ascx Add the following code: AutoComplete.ascx <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %> <%     var propertyName = ViewData.ModelMetadata.PropertyName;     var propertyValue = ViewData.ModelMetadata.Model;     var id = Guid.NewGuid().ToString();     RouteValueDictionary urlData =         (RouteValueDictionary)ViewData.ModelMetadata.AdditionalValues.Where(x => x.Key == "AutoCompleteUrlData").Single().Value;     var url = Mvc2Templates.Views.Shared.Helpers.RouteHelper.GetUrl(this.ViewContext.RequestContext, urlData); %> <input type="text" name="<%= propertyName %>" value="<%= propertyValue %>" id="<%= id %>" class="autoComplete" /> <script type="text/javascript">     $(function () {         $("#<%= id %>").autocomplete({             source: function (request, response) {                 $.ajax({                     url: "<%= url %>" + request.term,                     dataType: "json",                     success: function (data) {                         response(data);                     }                 });             },             minLength: 2         });     }); </script> There is a lot going on in here but when you break it down it’s quite simple. Firstly, the property name and property value are retrieved through the model meta data. These are required to ensure that the text box input has the correct name and data to allow for model binding. If you look at line 14 you can see them being used in the text box input creation. The interesting bit is on line 8 and 9, this is the code to retrieve the route value dictionary we added into the model metada via the custom attribute. Line 11 is used to create the url, in order to do this I created a quick helper class which looks like the code below titled RouteHelper. The last bit of script is the code to initialise the jQuery UI AutoComplete control with the correct url for calling back to our controller action. RouteHelper using System.Web.Mvc; using System.Web.Routing; namespace Mvc2Templates.Views.Shared.Helpers {     public static class RouteHelper     {         const string Controller = "Controller";         const string Action = "Action";         const string ReplaceFormatString = "REPLACE{0}";         public static string GetUrl(RequestContext requestContext, RouteValueDictionary routeValueDictionary)         {             RouteValueDictionary urlData = new RouteValueDictionary();             UrlHelper urlHelper = new UrlHelper(requestContext);                          int i = 0;             foreach(var item in routeValueDictionary)             {                 if (item.Value == string.Empty)                 {                     i++;                     urlData.Add(item.Key, string.Format(ReplaceFormatString, i.ToString()));                 }                 else                 {                     urlData.Add(item.Key, item.Value);                 }             }             var url = urlHelper.RouteUrl(urlData);             for (int index = 1; index <= i; index++)             {                 url = url.Replace(string.Format(ReplaceFormatString, index.ToString()), string.Empty);             }             return url;         }     } } See it in action All you need to do to see it in action is pass a view model from your controller with the new AutoComplete attribute attached and call the following within your view: <%= this.Html.EditorForModel() %> NOTE: The jQuery UI auto complete control expects a JSON string returned from your controller action method… as you can’t use the JsonResult to perform GET requests, use a normal action result, convert your data into json and return it as a string via a ContentResult. If you download the solution it will be very clear how to handle the controller and action for this demo. The full source code for this post can be downloaded here. It has been developed using MVC 2 and Visual Studio 2010. As always, I hope this has been interesting/useful. Kind Regards, Sean McAlinden.

    Read the article

  • SHAREPOINT: Custom Field type property storage defined for custom field

    - by Eric Rockenbach
    ok here is a great question. I have a set of generic custom fields that are highly configurable from an end user perspective and the configuration is getting overbearing as there are nearly 100 plus items each custom field allows you to perform in the areas of Server/Client Validation, Server/Client Events/Actions, Server/Client Bindings parent/child, display properties for form/control, etc, etc. Right now I'm storing most of these values as "Text" in my field xml for my propertyschema. I'm very familiar with the multi column value, but this is not a complex custom type in sense it's an array. I also considered creating serilzable objects and stuffing them into the text field and then pulling out and de-serilizing them when editing through the field editor or acting on the rules through the custom spfield. So I'm trying to take the following for example <PropertySchema> <Fields> <Field Name="EntityColumnName" Hidden="TRUE" DisplayName="EntityColumnName" MaxLength="500" DisplaySize="200" Type="Text"> <default></default> </Field> <Field Name="EntityColumnParentPK" Hidden="TRUE" DisplayName="EntityColumnParentPK" MaxLength="500" DisplaySize="200" Type="Text"> <default></default> </Field> <Field Name="EntityColumnValueName" Hidden="TRUE" DisplayName="EntityColumnValueName" MaxLength="500" DisplaySize="200" Type="Text"> <default></default> </Field> <Field Name="EntityListName" Hidden="TRUE" DisplayName="EntityListName" MaxLength="500" DisplaySize="200" Type="Text"> <default></default> </Field> <Field Name="EntitySiteUrl" Hidden="TRUE" DisplayName="EntitySiteUrl" MaxLength="500" DisplaySize="200" Type="Text"> <default></default> </Field> </Fields> <PropertySchema> And turn it into this... <PropertySchema> <Fields> <Field Name="ServerValidationRules" Hidden="TRUE" DisplayName="ServerValidationRules" Type="ServerValidationRulesType"> <default></default> </Field> </Fields> <PropertySchema> Ideas?????

    Read the article

  • Types in Haskell

    - by Linda Cohen
    I'm kind of new in Haskell and I have difficulty understanding how inferred types and such works. map :: (a -> b) -> [a] -> [b] (.) :: (a -> b) -> (c -> a) -> c -> b What EXACTLY does that mean? foldr :: (a -> b -> b) -> b -> [a] -> b foldl :: (a -> b -> a) -> a -> [b] -> a foldl1 :: (a -> a -> a) -> [a] -> a What are the differences between these? And how would I define the inferred type of something like foldr map THANKS!

    Read the article

  • Convert Dynamic to Type and convert Type to Dynamic

    - by Jon Canning
    public static class DynamicExtensions     {         public static T FromDynamic<T>(this IDictionary<string, object> dictionary)         {             var bindings = new List<MemberBinding>();             foreach (var sourceProperty in typeof(T).GetProperties().Where(x => x.CanWrite))             {                 var key = dictionary.Keys.SingleOrDefault(x => x.Equals(sourceProperty.Name, StringComparison.OrdinalIgnoreCase));                 if (string.IsNullOrEmpty(key)) continue;                 var propertyValue = dictionary[key];                 bindings.Add(Expression.Bind(sourceProperty, Expression.Constant(propertyValue)));             }             Expression memberInit = Expression.MemberInit(Expression.New(typeof(T)), bindings);             return Expression.Lambda<Func<T>>(memberInit).Compile().Invoke();         }         public static dynamic ToDynamic<T>(this T obj)         {             IDictionary<string, object> expando = new ExpandoObject();             foreach (var propertyInfo in typeof(T).GetProperties())             {                 var propertyExpression = Expression.Property(Expression.Constant(obj), propertyInfo);                 var currentValue = Expression.Lambda<Func<string>>(propertyExpression).Compile().Invoke();                 expando.Add(propertyInfo.Name.ToLower(), currentValue);             }             return expando as ExpandoObject;         }     }

    Read the article

  • Starcraft 2 - Third Person Custom Map

    - by Norla
    I would like to try my hand at creating a custom map in Starcraft 2 that has a third-person camera follow an individual unit. There are a few custom maps that exist with this feature already, so I do know this is possible. What I'm having trouble wrapping my head around are the features that are new to the SC2 map editor that didn't exist in the Warcraft 3 editor. For instance, to do a third-person map, do I need a custom mods file, or can everything be done in the map file? Regardless, is it worth using a mod file? What map settings do I NEED to edit/implement? Which are not necessary, but recommended?

    Read the article

  • What is the evidence that an API has exceeded its orthogonality in the context of types?

    - by hawkeye
    Wikipedia defines software orthogonality as: orthogonality in a programming language means that a relatively small set of primitive constructs can be combined in a relatively small number of ways to build the control and data structures of the language. The term is most-frequently used regarding assembly instruction sets, as orthogonal instruction set. Jason Coffin has defined software orthogonality as Highly cohesive components that are loosely coupled to each other produce an orthogonal system. C.Ross has defined software orthogonality as: the property that means "Changing A does not change B". An example of an orthogonal system would be a radio, where changing the station does not change the volume and vice-versa. Now there is a hypothesis published in the the ACM Queue by Tim Bray - that some have called the Bánffy Bray Type System Criteria - which he summarises as: Static typings attractiveness is a direct function (and dynamic typings an inverse function) of API surface size. Dynamic typings attractiveness is a direct function (and static typings an inverse function) of unit testing workability. Now Stuart Halloway has reformulated Banfy Bray as: the more your APIs exceed orthogonality, the better you will like static typing My question is: What is the evidence that an API has exceeded its orthogonality in the context of types? Clarification Tim Bray introduces the idea of orthogonality and APIs. Where you have one API and it is mainly dealing with Strings (ie a web server serving requests and responses), then a uni-typed language (python, ruby) is 'aligned' to that API - because the the type system of these languages isn't sophisticated, but it doesn't matter since you're dealing with Strings anyway. He then moves on to Android programming, which has a whole bunch of sensor APIs, which are all 'different' to the web server API that he was working on previously. Because you're not just dealing with Strings, but with different types, the API is non-orthogonal. Tim's point is that there is a empirical relationship between your 'liking' of types and the API you're programming against. (ie a subjective point is actually objective depending on your context).

    Read the article

  • ASP.NET: Custom MembershipProvider with a custom user table

    - by blahblah
    I've recently started tinkering with ASP.NET MVC, but this question should apply to classic ASP.NET as well. For what it's worth, I don't know very much about forms authentication and membership providers either. I'm trying to write my own MembershipProvider which will be connected to my own custom user table in my database. My user table contains all of the basic user information such as usernames, passwords, password salts, e-mail addresses and so on, but also information such as first name, last name and country of residence. As far as I understand, the standard way of doing this in ASP.NET is to create a user table without the extra information and then a "profile" table with the extra information. However, this doesn't sound very good to me, because whenever I need to access that extra information I would have to make one extra database query to get it. I read in the book "Pro ASP.NET 3.5 in C# 2008" that having a separate table for the profiles is not a very good idea if you need to access the profile table a lot and have many different pages in your website. Now for the problem at hand... As I said, I'm writing my own custom MembershipProvider subclass and it's going pretty well so far, but now I've come to realize that the CreateUser doesn't allow me to create users in the way I'd like. The method only takes a fixed number of arguments and first name, last name and country of residence are not part of them. So how would I create an entry for the new user in my custom table without this information at hand in CreateUser of my MembershipProvider?

    Read the article

  • T-SQL Tuesday #005: Creating SSMS Custom Reports

    - by Mike C
    This is my contribution to the T-SQL Tuesday blog party, started by Adam Machanic and hosted this month by Aaron Nelson . Aaron announced this month's topic is "reporting" so I figured I'd throw a blog up on a reporting topic I've been interested in for a while -- namely creating custom reports in SSMS. Creating SSMS custom reports isn't difficult, but like most technical work it's very detailed with a lot of little steps involved. So this post is a little longer than usual and includes a lot of...(read more)

    Read the article

  • T-SQL Tuesday #005: Creating SSMS Custom Reports

    - by Mike C
    This is my contribution to the T-SQL Tuesday blog party, started by Adam Machanic and hosted this month by Aaron Nelson . Aaron announced this month's topic is "reporting" so I figured I'd throw a blog up on a reporting topic I've been interested in for a while -- namely creating custom reports in SSMS. Creating SSMS custom reports isn't difficult, but like most technical work it's very detailed with a lot of little steps involved. So this post is a little longer than usual and includes a lot of...(read more)

    Read the article

  • ActionScript Custom Class With Return Type?

    - by TheDarkIn1978
    i just know this is a dumb question, so excuse me in advance. i want to essentially classify a simple function in it's own .as file. the function compares integers. but i don't know how to call the class and receive a boolean return. here's my class package { public class CompareInts { public function CompareInts(small:int, big:int) { compare(small, big); } private function compare(small:int, big:int):Boolean { if (small < big) return true; else return false; } } } so now i'd like to write something like this: if (CompareInts(1, 5) == true). or output 'true' by writing trace(CompareInts(1, 5));

    Read the article

  • UppercuT &ndash; Custom Extensions Now With PowerShell and Ruby

    - by Robz / Fervent Coder
    Arguably, one of the most powerful features of UppercuT (UC) is the ability to extend any step of the build process with a pre, post, or replace hook. This customization is done in a separate location from the build so you can upgrade without wondering if you broke the build. There is a hook before each step of the build has run. There is a hook after. And back to power again, there is a replacement hook. If you don’t like what the step is doing and/or you want to replace it’s entire functionality, you just drop a custom replacement extension and UppercuT will perform the custom step instead. Up until recently all custom hooks had to be written in NAnt. Now they are a little sweeter because you no longer need to use NAnt to extend UC if you don’t want to. You can use PowerShell. Or Ruby.   Let that sink in for a moment. You don’t have to even need to interact with NAnt at all now. Extension Points On the wiki, all of the extension points are shown. The basic idea is that you would put whatever customization you are doing in a separate folder named build.custom. Each step Let’s take a look at all we can customize: The start point is default.build. It calls build.custom/default.pre.build if it exists, then it runs build/default.build (normal tasks) OR build.custom/default.replace.build if it exists, and finally build.custom/default.post.build if it exists. Every step below runs with the same extension points but changes on the file name it is looking for. NOTE: If you include default.replace.build, nothing else will run because everything is called from default.build.    * policyChecks.step    * versionBuilder.step NOTE: If you include build.custom/versionBuilder.replace.step, the items below will not run.      - svn.step, tfs.step, or git.step (the custom tasks for these need to go in build.custom/versioners)    * generateBuildInfo.step    * compile.step    * environmentBuilder.step    * analyze.step NOTE: If you include build.custom/analyze.replace.step, the items below will not run.      - test.step (the custom tasks for this need to go in build.custom/analyzers) NOTE: If you include build.custom/analyzers/test.replace.step, the items below will not run.        + mbunit2.step, gallio.step, or nunit.step (the custom tasks for these need to go in build.custom/analyzers)      - ncover.step (the custom tasks for this need to go in build.custom/analyzers)      - ndepend.step (the custom tasks for this need to go in build.custom/analyzers)      - moma.step (the custom tasks for this need to go in build.custom/analyzers)    * package.step NOTE: If you include build.custom/package.replace.step, the items below will not run.      - deploymentBuilder.step Customize UppercuT Builds With PowerShell UppercuT can now be extended with PowerShell (PS). To customize any extension point with PS, just add .ps1 to the end of the file name and write your custom tasks in PowerShell. If you are not signing your scripts you will need to change a setting in the UppercuT.config file. This does impose a security risk, because this allows PS to now run any PS script. This setting stays that way on ANY machine that runs the build until manually changed by someone. I’m not responsible if you mess up your machine or anyone else’s by doing this. You’ve been warned. Now that you are fully aware of any security holes you may open and are okay with that, let’s move on. Let’s create a file called default.replace.build.ps1 in the build.custom folder. Open that file in notepad and let’s add this to it: write-host "hello - I'm a custom task written in Powershell!" Now, let’s run build.bat. You could get some PSake action going here. I won’t dive into that in this post though. Customize UppercuT Builds With Ruby If you want to customize any extension point with Ruby, just add .rb to the end of the file name and write your custom tasks in Ruby.  Let’s write a custom ruby task for UC. If you were thinking it would be the same as the one we just wrote for PS, you’d be right! In the build.custom folder, lets create a file called default.replace.build.rb. Open that file in notepad and let’s put this in there: puts "I'm a custom ruby task!" Now, let’s run build.bat again. That’s chunky bacon. UppercuT and Albacore.NET Just for fun, I wanted to see if I could replace the compile.step with a Rake task. Not just any rake task, Albacore’s msbuild task. Albacore is a suite of rake tasks brought about by Derick Bailey to make building .NET with Rake easier. It has quite a bit of support with developers that are using Rake to build code. In my build.custom folder, I drop a compile.replace.step.rb. I also put in a separate file that will contain my Albacore rake task and I call that compile.rb. What are the contents of compile.replace.step.rb? rake = 'rake' arguments= '-f ' + Dir.pwd + '/../build.custom/compile.rb' #puts "Calling #{rake} " + arguments system("#{rake} " + arguments) Since the custom extensions call ruby, we have to shell back out and call rake. That’s what we are doing here. We also realize that ruby is called from the build folder, so we need to back out and dive into the build.custom folder to find the file that is technically next to us. What are the contents of compile.rb? require 'rubygems' require 'fileutils' require 'albacore' task :default => [:compile] puts "Using Ruby to compile UppercuT with Albacore Tasks" desc 'Compile the source' msbuild :compile do |msb| msb.properties = { :configuration => :Release, :outputpath => '../../build_output/UppercuT' } msb.targets [:clean, :build] msb.verbosity = "quiet" msb.path_to_command = 'c:/Windows/Microsoft.NET/Framework/v3.5/MSBuild.exe' msb.solution = '../uppercut.sln' end We are using the msbuild task here. We change the output path to the build_output/UppercuT folder. The output path has “../../” because this is based on every project. We could grab the current directory and then point the task specifically to a folder if we have projects that are at different levels. We want the verbosity to be quiet so we set that as well. So what kind of output do you get for this? Let’s run build.bat custom_tasks_replace:      [echo] Running custom tasks instead of normal tasks if C:\code\uppercut\build\..\build.custom\compile.replace.step exists.      [exec] (in C:/code/uppercut/build)      [exec] Using Ruby to compile UppercuT with Albacore Tasks      [exec] Microsoft (R) Build Engine Version 3.5.30729.4926      [exec] [Microsoft .NET Framework, Version 2.0.50727.4927]      [exec] Copyright (C) Microsoft Corporation 2007. All rights reserved. If you think this is awesome, you’d be right!   With this knowledge you shall build.

    Read the article

  • Alternatives to type casting in your domain

    - by Mr Happy
    In my Domain I have an entity Activity which has a list of ITasks. Each implementation of this task has it's own properties beside the implementation of ITask itself. Now each operation of the Activity entity (e.g. Execute()) only needs to loop over this list and call an ITask method (e.g. ExecuteTask()). Where I'm having trouble is when a specific tasks' properties need to be updated. How do I get an instance of that task? The options I see are: Get the Activity by Id and cast the task I need. This'll either sprinkle my code with: Tasks.OfType<SpecificTask>().Single(t => t.Id == taskId) or Tasks.Single(t => t.Id == taskId) as SpecificTask Make each task unique in the whole system (make each task an entity), and create a new repository for each ITask implementation I don't like either option, the first because I don't like casting: I'm using NHibernate and I'm sure this'll come back and bite me when I start using Lazy Loading (NHibernate currently uses proxies to implement this). I don't like the second option because there are/will be dozens of different kind of tasks. Which would mean I'd have to create as many repositories. Am I missing a third option here? Or are any of my objections to the two options not justified? How have you solved this problem in the past?

    Read the article

  • How to associate jquery validation when only one button if there are many??

    - by Eyla
    Greetings, In my current project, I have gridview, search button, text box for search, text box, and submit button. -I should input string in the search box then click search button. -when click search button, it will retrieve all matches records then bind them to the view grid. -then when I click a record in the gridview, it should bound a field to the second text box. finally I should submit the page by clicking in submit button. where is the problem: -the problme that I'm using jquery validation plugin that will make second text box is required. -when I click search button will not allow postback until I write some thing in second text box. How can I make scond text box only do validation for required field only when click asp.net submit button. here is my code: <%@ Page Title="" Language="C#" MasterPageFile="~/Master.Master" AutoEventWireup="true" CodeBehind="WebForm1.aspx.cs" Inherits="IMAM_APPLICATION.WebForm1" %> <%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit" TagPrefix="cc1" %> <asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1" runat="server"> <script src="js/jquery-1.4.1-vsdoc.js" type="text/javascript"></script> <script src="js/jquery.validate.js" type="text/javascript"></script> <script src="js/js.js" type="text/javascript"></script> <script type="text/javascript"> $(document).ready(function() { $("#aspnetForm").validate({ // debug: true, rules: { "<%=txtFirstName.UniqueID %>": { required: true } }, errorElement: "mydiv", wrapper: "mydiv", // a wrapper around the error message errorPlacement: function(error, element) { offset = element.offset(); error.insertBefore(element) error.addClass('message'); // add a class to the wrapper error.css('position', 'absolute'); error.css('left', offset.left + element.outerWidth()); error.css('top', offset.top - (element.height() / 2)); } }); }) </script> <div id="mydiv"> <asp:GridView ID="GridView1" runat="server" style="position:absolute; top: 280px; left: 30px; height: 240px; width: 915px;" PageSize="5" onselectedindexchanged="GridView1_SelectedIndexChanged" AutoGenerateColumns="False" DataKeyNames="idcontact_info"> <Columns> <asp:CommandField ShowSelectButton="True" InsertVisible="False" ShowCancelButton="False" /> <asp:BoundField DataField="First_Name" HeaderText="First Name" /> <asp:BoundField AccessibleHeaderText="Midle Name" DataField="Midle_Name" /> <asp:BoundField DataField="Last_Name" HeaderText="Last Name" /> <asp:BoundField DataField="Phone_home" HeaderText="Phone Home" /> <asp:BoundField DataField="cell_home" HeaderText="Mobile Home" /> <asp:BoundField DataField="phone_work" HeaderText="Phone Work" /> <asp:BoundField DataField="cell_Work" HeaderText="Mobile Work" /> <asp:BoundField DataField="Email_Home" HeaderText="Personal Home" /> <asp:BoundField DataField="Email_work" HeaderText="Work Email" /> </Columns> </asp:GridView> <asp:ObjectDataSource ID="ObjectDataSource1" runat="server" DeleteMethod="Delete" InsertMethod="Insert" OldValuesParameterFormatString="original_{0}" SelectMethod="GetData" TypeName="IMAM_APPLICATION.DSContactTableAdapters.contact_infoTableAdapter" UpdateMethod="Update"> <DeleteParameters> <asp:Parameter Name="Original_idcontact_info" Type="Int32" /> </DeleteParameters> <UpdateParameters> <asp:Parameter Name="Title" Type="String" /> <asp:Parameter Name="First_Name" Type="String" /> <asp:Parameter Name="Midle_Name" Type="String" /> <asp:Parameter Name="Last_Name" Type="String" /> <asp:Parameter Name="Address1_Home" Type="String" /> <asp:Parameter Name="Address2_Home" Type="String" /> <asp:Parameter Name="City_Home" Type="String" /> <asp:Parameter Name="State_Home" Type="String" /> <asp:Parameter Name="Prov_Home" Type="String" /> <asp:Parameter Name="ZipCode_Home" Type="String" /> <asp:Parameter Name="Country_Home" Type="String" /> <asp:Parameter Name="Phone_home" Type="String" /> <asp:Parameter Name="Phone_Home_Ext" Type="String" /> <asp:Parameter Name="Cell_home" Type="String" /> <asp:Parameter Name="Fax_home" Type="String" /> <asp:Parameter Name="Email_Home" Type="String" /> <asp:Parameter Name="material_status" Type="String" /> <asp:Parameter Name="DateOfBrith" Type="String" /> <asp:Parameter Name="company" Type="String" /> <asp:Parameter Name="Work_Field" Type="String" /> <asp:Parameter Name="Occupation" Type="String" /> <asp:Parameter Name="sub_Occupation" Type="String" /> <asp:Parameter Name="Other" Type="String" /> <asp:Parameter Name="Address1_work" Type="String" /> <asp:Parameter Name="Address2_work" Type="String" /> <asp:Parameter Name="City_Work" Type="String" /> <asp:Parameter Name="State_Work" Type="String" /> <asp:Parameter Name="Prov_Work" Type="String" /> <asp:Parameter Name="ZipCode_Work" Type="String" /> <asp:Parameter Name="Country_Work" Type="String" /> <asp:Parameter Name="Phone_Work" Type="String" /> <asp:Parameter Name="Phone_Work_Ext" Type="String" /> <asp:Parameter Name="Cell_Work" Type="String" /> <asp:Parameter Name="Fax_Work" Type="String" /> <asp:Parameter Name="Email_work" Type="String" /> <asp:Parameter Name="WebSite" Type="String" /> <asp:Parameter Name="Note" Type="String" /> <asp:Parameter Name="Groups" Type="String" /> <asp:Parameter Name="InterPhoneHome" Type="Int32" /> <asp:Parameter Name="InterMobileHome" Type="Int32" /> <asp:Parameter Name="InterFaxHome" Type="Int32" /> <asp:Parameter Name="InterPhoneWork" Type="Int32" /> <asp:Parameter Name="InterMobileWork" Type="Int32" /> <asp:Parameter Name="InterFaxWork" Type="Int32" /> <asp:Parameter Name="rdoPhoneHome" Type="Int32" /> <asp:Parameter Name="rdoMobileHome" Type="Int32" /> <asp:Parameter Name="rdoEmailHome" Type="Int32" /> <asp:Parameter Name="rdoPhoneWork" Type="Int32" /> <asp:Parameter Name="rdoMobileWork" Type="Int32" /> <asp:Parameter Name="rdoEmailWork" Type="Int32" /> <asp:Parameter Name="locationHome" Type="Int32" /> <asp:Parameter Name="locationWork" Type="Int32" /> <asp:Parameter Name="Original_idcontact_info" Type="Int32" /> </UpdateParameters> <InsertParameters> <asp:Parameter Name="Title" Type="String" /> <asp:Parameter Name="First_Name" Type="String" /> <asp:Parameter Name="Midle_Name" Type="String" /> <asp:Parameter Name="Last_Name" Type="String" /> <asp:Parameter Name="Address1_Home" Type="String" /> <asp:Parameter Name="Address2_Home" Type="String" /> <asp:Parameter Name="City_Home" Type="String" /> <asp:Parameter Name="State_Home" Type="String" /> <asp:Parameter Name="Prov_Home" Type="String" /> <asp:Parameter Name="ZipCode_Home" Type="String" /> <asp:Parameter Name="Country_Home" Type="String" /> <asp:Parameter Name="Phone_home" Type="String" /> <asp:Parameter Name="Phone_Home_Ext" Type="String" /> <asp:Parameter Name="Cell_home" Type="String" /> <asp:Parameter Name="Fax_home" Type="String" /> <asp:Parameter Name="Email_Home" Type="String" /> <asp:Parameter Name="material_status" Type="String" /> <asp:Parameter Name="DateOfBrith" Type="String" /> <asp:Parameter Name="company" Type="String" /> <asp:Parameter Name="Work_Field" Type="String" /> <asp:Parameter Name="Occupation" Type="String" /> <asp:Parameter Name="sub_Occupation" Type="String" /> <asp:Parameter Name="Other" Type="String" /> <asp:Parameter Name="Address1_work" Type="String" /> <asp:Parameter Name="Address2_work" Type="String" /> <asp:Parameter Name="City_Work" Type="String" /> <asp:Parameter Name="State_Work" Type="String" /> <asp:Parameter Name="Prov_Work" Type="String" /> <asp:Parameter Name="ZipCode_Work" Type="String" /> <asp:Parameter Name="Country_Work" Type="String" /> <asp:Parameter Name="Phone_Work" Type="String" /> <asp:Parameter Name="Phone_Work_Ext" Type="String" /> <asp:Parameter Name="Cell_Work" Type="String" /> <asp:Parameter Name="Fax_Work" Type="String" /> <asp:Parameter Name="Email_work" Type="String" /> <asp:Parameter Name="WebSite" Type="String" /> <asp:Parameter Name="Note" Type="String" /> <asp:Parameter Name="Groups" Type="String" /> <asp:Parameter Name="InterPhoneHome" Type="Int32" /> <asp:Parameter Name="InterMobileHome" Type="Int32" /> <asp:Parameter Name="InterFaxHome" Type="Int32" /> <asp:Parameter Name="InterPhoneWork" Type="Int32" /> <asp:Parameter Name="InterMobileWork" Type="Int32" /> <asp:Parameter Name="InterFaxWork" Type="Int32" /> <asp:Parameter Name="rdoPhoneHome" Type="Int32" /> <asp:Parameter Name="rdoMobileHome" Type="Int32" /> <asp:Parameter Name="rdoEmailHome" Type="Int32" /> <asp:Parameter Name="rdoPhoneWork" Type="Int32" /> <asp:Parameter Name="rdoMobileWork" Type="Int32" /> <asp:Parameter Name="rdoEmailWork" Type="Int32" /> <asp:Parameter Name="locationHome" Type="Int32" /> <asp:Parameter Name="locationWork" Type="Int32" /> </InsertParameters> </asp:ObjectDataSource> <asp:TextBox ID="txtSearch" runat="server" style="position:absolute; top: 560px; left: 170px;" ></asp:TextBox> <asp:Button ID="btnSearch" runat="server" Text="Search" style="position:absolute; top: 555px; left: 375px;" CausesValidation="False" onclick="btnSearch_Click"/> <asp:Label ID="Label7" runat="server" Style="position: absolute; top: 630px; left: 85px;" Text="First Name"></asp:Label> <asp:TextBox ID="txtFirstName" runat="server" Style="top: 630px; left: 185px; position: absolute; height: 22px; width: 128px"></asp:TextBox> <asp:Button ID="submit" runat="server" Text="submit" /> </div> </asp:Content>

    Read the article

  • How to associate jquery validation with only one button if there are many?

    - by Eyla
    Greetings, In my current project, I have gridview, search button, text box for search, text box, and submit button. -I should input string in the search box then click search button. -when click search button, it will retrieve all matches records then bind them to the view grid. -then when I click a record in the gridview, it should bound a field to the second text box. finally I should submit the page by clicking in submit button. where is the problem: -the problme that I'm using jquery validation plugin that will make second text box is required. -when I click search button will not allow postback until I write some thing in second text box. How can I make scond text box only do validation for required field only when click asp.net submit button. here is my code: <%@ Page Title="" Language="C#" MasterPageFile="~/Master.Master" AutoEventWireup="true" CodeBehind="WebForm1.aspx.cs" Inherits="IMAM_APPLICATION.WebForm1" %> <%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit" TagPrefix="cc1" %> <asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1" runat="server"> <script src="js/jquery-1.4.1-vsdoc.js" type="text/javascript"></script> <script src="js/jquery.validate.js" type="text/javascript"></script> <script src="js/js.js" type="text/javascript"></script> <script type="text/javascript"> $(document).ready(function() { $("#aspnetForm").validate({ // debug: true, rules: { "<%=txtFirstName.UniqueID %>": { required: true } }, errorElement: "mydiv", wrapper: "mydiv", // a wrapper around the error message errorPlacement: function(error, element) { offset = element.offset(); error.insertBefore(element) error.addClass('message'); // add a class to the wrapper error.css('position', 'absolute'); error.css('left', offset.left + element.outerWidth()); error.css('top', offset.top - (element.height() / 2)); } }); }) </script> <div id="mydiv"> <asp:GridView ID="GridView1" runat="server" style="position:absolute; top: 280px; left: 30px; height: 240px; width: 915px;" PageSize="5" onselectedindexchanged="GridView1_SelectedIndexChanged" AutoGenerateColumns="False" DataKeyNames="idcontact_info"> <Columns> <asp:CommandField ShowSelectButton="True" InsertVisible="False" ShowCancelButton="False" /> <asp:BoundField DataField="First_Name" HeaderText="First Name" /> <asp:BoundField AccessibleHeaderText="Midle Name" DataField="Midle_Name" /> <asp:BoundField DataField="Last_Name" HeaderText="Last Name" /> <asp:BoundField DataField="Phone_home" HeaderText="Phone Home" /> <asp:BoundField DataField="cell_home" HeaderText="Mobile Home" /> <asp:BoundField DataField="phone_work" HeaderText="Phone Work" /> <asp:BoundField DataField="cell_Work" HeaderText="Mobile Work" /> <asp:BoundField DataField="Email_Home" HeaderText="Personal Home" /> <asp:BoundField DataField="Email_work" HeaderText="Work Email" /> </Columns> </asp:GridView> <asp:ObjectDataSource ID="ObjectDataSource1" runat="server" DeleteMethod="Delete" InsertMethod="Insert" OldValuesParameterFormatString="original_{0}" SelectMethod="GetData" TypeName="IMAM_APPLICATION.DSContactTableAdapters.contact_infoTableAdapter" UpdateMethod="Update"> <DeleteParameters> <asp:Parameter Name="Original_idcontact_info" Type="Int32" /> </DeleteParameters> <UpdateParameters> <asp:Parameter Name="Title" Type="String" /> <asp:Parameter Name="First_Name" Type="String" /> <asp:Parameter Name="Midle_Name" Type="String" /> <asp:Parameter Name="Last_Name" Type="String" /> <asp:Parameter Name="Address1_Home" Type="String" /> <asp:Parameter Name="Address2_Home" Type="String" /> <asp:Parameter Name="City_Home" Type="String" /> <asp:Parameter Name="State_Home" Type="String" /> <asp:Parameter Name="Prov_Home" Type="String" /> <asp:Parameter Name="ZipCode_Home" Type="String" /> <asp:Parameter Name="Country_Home" Type="String" /> <asp:Parameter Name="Phone_home" Type="String" /> <asp:Parameter Name="Phone_Home_Ext" Type="String" /> <asp:Parameter Name="Cell_home" Type="String" /> <asp:Parameter Name="Fax_home" Type="String" /> <asp:Parameter Name="Email_Home" Type="String" /> <asp:Parameter Name="material_status" Type="String" /> <asp:Parameter Name="DateOfBrith" Type="String" /> <asp:Parameter Name="company" Type="String" /> <asp:Parameter Name="Work_Field" Type="String" /> <asp:Parameter Name="Occupation" Type="String" /> <asp:Parameter Name="sub_Occupation" Type="String" /> <asp:Parameter Name="Other" Type="String" /> <asp:Parameter Name="Address1_work" Type="String" /> <asp:Parameter Name="Address2_work" Type="String" /> <asp:Parameter Name="City_Work" Type="String" /> <asp:Parameter Name="State_Work" Type="String" /> <asp:Parameter Name="Prov_Work" Type="String" /> <asp:Parameter Name="ZipCode_Work" Type="String" /> <asp:Parameter Name="Country_Work" Type="String" /> <asp:Parameter Name="Phone_Work" Type="String" /> <asp:Parameter Name="Phone_Work_Ext" Type="String" /> <asp:Parameter Name="Cell_Work" Type="String" /> <asp:Parameter Name="Fax_Work" Type="String" /> <asp:Parameter Name="Email_work" Type="String" /> <asp:Parameter Name="WebSite" Type="String" /> <asp:Parameter Name="Note" Type="String" /> <asp:Parameter Name="Groups" Type="String" /> <asp:Parameter Name="InterPhoneHome" Type="Int32" /> <asp:Parameter Name="InterMobileHome" Type="Int32" /> <asp:Parameter Name="InterFaxHome" Type="Int32" /> <asp:Parameter Name="InterPhoneWork" Type="Int32" /> <asp:Parameter Name="InterMobileWork" Type="Int32" /> <asp:Parameter Name="InterFaxWork" Type="Int32" /> <asp:Parameter Name="rdoPhoneHome" Type="Int32" /> <asp:Parameter Name="rdoMobileHome" Type="Int32" /> <asp:Parameter Name="rdoEmailHome" Type="Int32" /> <asp:Parameter Name="rdoPhoneWork" Type="Int32" /> <asp:Parameter Name="rdoMobileWork" Type="Int32" /> <asp:Parameter Name="rdoEmailWork" Type="Int32" /> <asp:Parameter Name="locationHome" Type="Int32" /> <asp:Parameter Name="locationWork" Type="Int32" /> <asp:Parameter Name="Original_idcontact_info" Type="Int32" /> </UpdateParameters> <InsertParameters> <asp:Parameter Name="Title" Type="String" /> <asp:Parameter Name="First_Name" Type="String" /> <asp:Parameter Name="Midle_Name" Type="String" /> <asp:Parameter Name="Last_Name" Type="String" /> <asp:Parameter Name="Address1_Home" Type="String" /> <asp:Parameter Name="Address2_Home" Type="String" /> <asp:Parameter Name="City_Home" Type="String" /> <asp:Parameter Name="State_Home" Type="String" /> <asp:Parameter Name="Prov_Home" Type="String" /> <asp:Parameter Name="ZipCode_Home" Type="String" /> <asp:Parameter Name="Country_Home" Type="String" /> <asp:Parameter Name="Phone_home" Type="String" /> <asp:Parameter Name="Phone_Home_Ext" Type="String" /> <asp:Parameter Name="Cell_home" Type="String" /> <asp:Parameter Name="Fax_home" Type="String" /> <asp:Parameter Name="Email_Home" Type="String" /> <asp:Parameter Name="material_status" Type="String" /> <asp:Parameter Name="DateOfBrith" Type="String" /> <asp:Parameter Name="company" Type="String" /> <asp:Parameter Name="Work_Field" Type="String" /> <asp:Parameter Name="Occupation" Type="String" /> <asp:Parameter Name="sub_Occupation" Type="String" /> <asp:Parameter Name="Other" Type="String" /> <asp:Parameter Name="Address1_work" Type="String" /> <asp:Parameter Name="Address2_work" Type="String" /> <asp:Parameter Name="City_Work" Type="String" /> <asp:Parameter Name="State_Work" Type="String" /> <asp:Parameter Name="Prov_Work" Type="String" /> <asp:Parameter Name="ZipCode_Work" Type="String" /> <asp:Parameter Name="Country_Work" Type="String" /> <asp:Parameter Name="Phone_Work" Type="String" /> <asp:Parameter Name="Phone_Work_Ext" Type="String" /> <asp:Parameter Name="Cell_Work" Type="String" /> <asp:Parameter Name="Fax_Work" Type="String" /> <asp:Parameter Name="Email_work" Type="String" /> <asp:Parameter Name="WebSite" Type="String" /> <asp:Parameter Name="Note" Type="String" /> <asp:Parameter Name="Groups" Type="String" /> <asp:Parameter Name="InterPhoneHome" Type="Int32" /> <asp:Parameter Name="InterMobileHome" Type="Int32" /> <asp:Parameter Name="InterFaxHome" Type="Int32" /> <asp:Parameter Name="InterPhoneWork" Type="Int32" /> <asp:Parameter Name="InterMobileWork" Type="Int32" /> <asp:Parameter Name="InterFaxWork" Type="Int32" /> <asp:Parameter Name="rdoPhoneHome" Type="Int32" /> <asp:Parameter Name="rdoMobileHome" Type="Int32" /> <asp:Parameter Name="rdoEmailHome" Type="Int32" /> <asp:Parameter Name="rdoPhoneWork" Type="Int32" /> <asp:Parameter Name="rdoMobileWork" Type="Int32" /> <asp:Parameter Name="rdoEmailWork" Type="Int32" /> <asp:Parameter Name="locationHome" Type="Int32" /> <asp:Parameter Name="locationWork" Type="Int32" /> </InsertParameters> </asp:ObjectDataSource> <asp:TextBox ID="txtSearch" runat="server" style="position:absolute; top: 560px; left: 170px;" ></asp:TextBox> <asp:Button ID="btnSearch" runat="server" Text="Search" style="position:absolute; top: 555px; left: 375px;" CausesValidation="False" onclick="btnSearch_Click"/> <asp:Label ID="Label7" runat="server" Style="position: absolute; top: 630px; left: 85px;" Text="First Name"></asp:Label> <asp:TextBox ID="txtFirstName" runat="server" Style="top: 630px; left: 185px; position: absolute; height: 22px; width: 128px"></asp:TextBox> <asp:Button ID="submit" runat="server" Text="submit" /> </div> </asp:Content>

    Read the article

  • How to Create Custom Personalized Maps in Google Maps [Video]

    - by Asian Angel
    Though the custom maps feature has been out for a bit, you may have forgotten about it or it may all be new for you. Either way this wonderful video shows you how to create your own custom maps and enjoy an awesome feature of this popular Google service. ‘My Maps’ is mentioned in the video above, but is now referred to as ‘My Places’ in Google Maps (as seen below). There is also a nice interactive tutorial available. How to Use an Xbox 360 Controller On Your Windows PC Download the Official How-To Geek Trivia App for Windows 8 How to Banish Duplicate Photos with VisiPic

    Read the article

  • Anatomy of a .NET Assembly - Custom attribute encoding

    - by Simon Cooper
    In my previous post, I covered how field, method, and other types of signatures are encoded in a .NET assembly. Custom attribute signatures differ quite a bit from these, which consequently affects attribute specifications in C#. Custom attribute specifications In C#, you can apply a custom attribute to a type or type member, specifying a constructor as well as the values of fields or properties on the attribute type: public class ExampleAttribute : Attribute { public ExampleAttribute(int ctorArg1, string ctorArg2) { ... } public Type ExampleType { get; set; } } [Example(5, "6", ExampleType = typeof(string))] public class C { ... } How does this specification actually get encoded and stored in an assembly? Specification blob values Custom attribute specification signatures use the same building blocks as other types of signatures; the ELEMENT_TYPE structure. However, they significantly differ from other types of signatures, in that the actual parameter values need to be stored along with type information. There are two types of specification arguments in a signature blob; fixed args and named args. Fixed args are the arguments to the attribute type constructor, named arguments are specified after the constructor arguments to provide a value to a field or property on the constructed attribute type (PropertyName = propValue) Values in an attribute blob are limited to one of the basic types (one of the number types, character, or boolean), a reference to a type, an enum (which, in .NET, has to use one of the integer types as a base representation), or arrays of any of those. Enums and the basic types are easy to store in a blob - you simply store the binary representation. Strings are stored starting with a compressed integer indicating the length of the string, followed by the UTF8 characters. Array values start with an integer indicating the number of elements in the array, then the item values concatentated together. Rather than using a coded token, Type values are stored using a string representing the type name and fully qualified assembly name (for example, MyNs.MyType, MyAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToken=0123456789abcdef). If the type is in the current assembly or mscorlib then just the type name can be used. This is probably done to prevent direct references between assemblies solely because of attribute specification arguments; assemblies can be loaded in the reflection-only context and attribute arguments still processed, without loading the entire assembly. Fixed and named arguments Each entry in the CustomAttribute metadata table contains a reference to the object the attribute is applied to, the attribute constructor, and the specification blob. The number and type of arguments to the constructor (the fixed args) can be worked out by the method signature referenced by the attribute constructor, and so the fixed args can simply be concatenated together in the blob without any extra type information. Named args are different. These specify the value to assign to a field or property once the attribute type has been constructed. In the CLR, fields and properties can be overloaded just on their type; different fields and properties can have the same name. Therefore, to uniquely identify a field or property you need: Whether it's a field or property (indicated using byte values 0x53 and 0x54, respectively) The field or property type The field or property name After the fixed arg values is a 2-byte number specifying the number of named args in the blob. Each named argument has the above information concatenated together, mostly using the basic ELEMENT_TYPE values, in the same way as a method or field signature. A Type argument is represented using the byte 0x50, and an enum argument is represented using the byte 0x55 followed by a string specifying the name and assembly of the enum type. The named argument property information is followed by the argument value, using the same encoding as fixed args. Boxed objects This would be all very well, were it not for object and object[]. Arguments and properties of type object allow a value of any allowed argument type to be specified. As a result, more information needs to be specified in the blob to interpret the argument bytes as the correct type. So, the argument value is simple prepended with the type of the value by specifying the ELEMENT_TYPE or name of the enum the value represents. For named arguments, a field or property of type object is represented using the byte 0x51, with the actual type specified in the argument value. Some examples... All property signatures start with the 2-byte value 0x0001. Similar to my previous post in the series, names in capitals correspond to a particular byte value in the ELEMENT_TYPE structure. For strings, I'll simply give the string value, rather than the length and UTF8 encoding in the actual blob. I'll be using the following enum and attribute types to demonstrate specification encodings: class AttrAttribute : Attribute { public AttrAttribute() {} public AttrAttribute(Type[] tArray) {} public AttrAttribute(object o) {} public AttrAttribute(MyEnum e) {} public AttrAttribute(ushort x, int y) {} public AttrAttribute(string str, Type type1, Type type2) {} public int Prop1 { get; set; } public object Prop2 { get; set; } public object[] ObjectArray; } enum MyEnum : int { Val1 = 1, Val2 = 2 } Now, some examples: Here, the the specification binds to the (ushort, int) attribute constructor, with fixed args only. The specification blob starts off with a prolog, followed by the two constructor arguments, then the number of named arguments (zero): [Attr(42, 84)] 0x0001 0x002a 0x00000054 0x0000 An example of string and type encoding: [Attr("MyString", typeof(Array), typeof(System.Windows.Forms.Form))] 0x0001 "MyString" "System.Array" "System.Windows.Forms.Form, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" 0x0000 As you can see, the full assembly specification of a type is only needed if the type isn't in the current assembly or mscorlib. Note, however, that the C# compiler currently chooses to fully-qualify mscorlib types anyway. An object argument (this binds to the object attribute constructor), and two named arguments (a null string is represented by 0xff and the empty string by 0x00) [Attr((ushort)40, Prop1 = 12, Prop2 = "")] 0x0001 U2 0x0028 0x0002 0x54 I4 "Prop1" 0x0000000c 0x54 0x51 "Prop2" STRING 0x00 Right, more complicated now. A type array as a fixed argument: [Attr(new[] { typeof(string), typeof(object) })] 0x0001 0x00000002 // the number of elements "System.String" "System.Object" 0x0000 An enum value, which is simply represented using the underlying value. The CLR works out that it's an enum using information in the attribute constructor signature: [Attr(MyEnum.Val1)] 0x0001 0x00000001 0x0000 And finally, a null array, and an object array as a named argument: [Attr((Type[])null, ObjectArray = new object[] { (byte)2, typeof(decimal), null, MyEnum.Val2 })] 0x0001 0xffffffff 0x0001 0x53 SZARRAY 0x51 "ObjectArray" 0x00000004 U1 0x02 0x50 "System.Decimal" STRING 0xff 0x55 "MyEnum" 0x00000002 As you'll notice, a null object is encoded as a null string value, and a null array is represented using a length of -1 (0xffffffff). How does this affect C#? So, we can now explain why the limits on attribute arguments are so strict in C#. Attribute specification blobs are limited to basic numbers, enums, types, and arrays. As you can see, this is because the raw CLR encoding can only accommodate those types. Special byte patterns have to be used to indicate object, string, Type, or enum values in named arguments; you can't specify an arbitary object type, as there isn't a generalised way of encoding the resulting value in the specification blob. In particular, decimal values can't be encoded, as it isn't a 'built-in' CLR type that has a native representation (you'll notice that decimal constants in C# programs are compiled as several integer arguments to DecimalConstantAttribute). Jagged arrays also aren't natively supported, although you can get around it by using an array as a value to an object argument: [Attr(new object[] { new object[] { new Type[] { typeof(string) } }, 42 })] Finally... Phew! That was a bit longer than I thought it would be. Custom attribute encodings are complicated! Hopefully this series has been an informative look at what exactly goes on inside a .NET assembly. In the next blog posts, I'll be carrying on with the 'Inside Red Gate' series.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >