Search Results

Search found 58 results on 3 pages for 'devconnections'.

Page 3/3 | < Previous Page | 1 2 3 

  • Silverlight Cream for April 16, 2010 -- #838

    - by Dave Campbell
    In this Issue: Alan Beasley(-2-, -3-, -4-, -5-), Brian, Rishi, Pete Brown, Yavor Georgiev, and David Anson. Shoutouts: As usual, Tim Heuer has all the scoop on all the hot-off-the-presses releases: Silverlight 4 released. Availability of tools announcement. He covers all the main parts of interest. Tim Heuer also discusses Backward Compatibility with Silverlight 4 applications And before you ask, Tim Heuer announced the Silverlight Client for Facebook updated for Silverlight 4 release If you're having trouble with the install, Peter Bromberg has a post up to help bail you out: Get Silverlight 4 Installed: Tips and Tricks Christian Schormann has a link to probably the fastest intro to SketchFlow I've seen: Video: SketchFlow in 90 seconds, with Jon Harris Chris Rouw has a Summary of Silverlight at DevConnections on his site. I had the opportunity to spend some time with Chris and we had some good discussions. Rene Schulte describes how to get started with the new final Silverlight 4 RTW build and announces that he updated his samples and open source projects. He also shares what he wishes for the next Silverlight version: Silverlight 4 Up and Running From SilverlightCream.com: Building Better Buttons in Expression Blend and Silverlight I generally end up missing articles embedded at CodeProject, so Alan Beasley emailed me a link to these, they were new to me. In this first one, he's got a very nice tutorial up on making some awesome buttons in Expression Blend Arcade Button in Expression Blend and Silverlight Alan Beasley's second Expression Blend Button tutorial is the classic 'arcade button' ... this is great stuff.. check it out. Picture Frame Control in Expression Blend and Silverlight I wasn't going to do the full list Alan Beasley had sent me in one post, but they're all so good! This third takes an excursion away from buttons to do a Picture Frame control. Styled to the max, and another great Blend tutorial! The last building buttons article (Part1), in Expression Blend and Silverlight Alan Beasley finishes what may be a definitive work on buttons in Blend... even if you don't want to follow the tutorials (and why wouldn't you??) ... he's got 10 buttons you can download! ListBox Styling (Part1-ScrollBars) in Expression Blend & Silverlight In Alan Beasley's 5th post at Code Project, He has a great long tutorial on Styling Listbox Scrollbars in Expression Blend ... the ScrollBars are Part 1 of a series. Some Notes on DRM in Silverlight 4 Brian at Silverlight SDK has a post up on DRM ... WMDRM and PlayReady. If you're planning on utilizing this, Brian's post looks like a good starting point. nRoute: Now, More Wholesome Rishi has a detailed post up explaining the latest nRoute release now supporting Silverlight 4, WP7, and WPF. What a piece of work! Scanning an Image from Silverlight 4 using WIA Automation Pete Brown demonstrates using VS2010 and SL4 to lash up to his scanner. Lots of code and external links... all good stuff, Pete! Dealing with those pesky WCF CommunicationException “NotFound” errors in Silverlight Yavor Georgiev has a quick post up discussing WCF CommunicationException errors in Silverlight with a couple external links to explain the solution. New Silverlight 4 Toolkit released with today's Silverlight 4 RTW! David Anson blogged about the new Toolkit release that is live right now along with the Silverlight 4 Release, and has some release notes up on the Toolkit. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Override ToString() in your Classes

    - by psheriff
    One of the reasons I love teaching is because of the questions that I get from attendees. I was giving a presentation at DevConnections and was showing a collection of Product objects. When I hovered over the variable that contained the collection, it looked like Figure 2. As you can see in the collection, I have actual product names of my videos from www.pdsa.com/videos being displayed. To get your data to appear in the data tips you must override the ToString() method in your class. To illustrate this, take the following simple Product class shown below: public class Product{  public string ProductName { get; set; }  public int ProductId { get; set; }} This class does not have an override of the ToString() method so if you create a collection of Product objects you will end up with data tips that look like Figure 1. Below is the code I used to create a collection of Product objects. I have shortened the code in this blog, but you can get the full source code for this sample by following the instructions at the bottom of this blog entry. List<Product> coll = new List<Product>();Product prod; prod = new Product()  { ProductName = "From Zero to HTML 5 in 60 Minutes",     ProductId = 1 };coll.Add(prod);prod = new Product()   { ProductName = "Architecting Applications …",     ProductId = 2 };coll.Add(prod);prod = new Product()  { ProductName = "Introduction to Windows Phone Development",    ProductId = 3 };coll.Add(prod);prod = new Product()   { ProductName = "Architecting a Business  …",     ProductId = 4 };coll.Add(prod);......   Figure 1: Class without overriding ToString() Now, go back to the Product class and add an override of the ToString() method as shown in the code listed below: public class Product{  public string ProductName { get; set; }  public int ProductId { get; set; }   public override string ToString()  {    return ProductName;  }} In this simple sample, I am just returning the ProductName property. However, you can create a whole string of information if you wish to display more data in your data tips. Just concatenate any properties you want from your class and return that string. When you now run the application and hover over the collection object you will now see something that looks like Figure 2. Figure 2: Overriding ToString() in your Class Another place the ToString() override comes in handy is if you forget to use a DisplayMemberPath in your ListBox or ComboBox. The ToString() method is called automatically when a class is bound to a list control. Summary You should always override the ToString() method in your classes as this will help you when debugging your application. Seeing relevant data immediately in the data tip without having to drill down one more layer and maybe scroll through a complete list of properties should help speed up your development process. NOTE: You can download the sample code for this article by visiting my website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then select “Override ToString” from the drop down list.  

    Read the article

  • Custom Configuration Section Handlers

    Most .NET developers who need to store something in configuration tend to use appSettings for this purpose, in my experience.  More recently, the framework itself has helped things by adding the <connectionStrings /> section so at least these are in their own section and not adding to the appSettings clutter that pollutes most apps.  I recommend avoiding appSettings for several reasons.  In addition to those listed there, I would add that strong typing and validation are additional reasons to go the custom configuration section route. For my ASP.NET Tips and Tricks talk, I use the following example, which is a simple DemoSettings class that includes two fields.  The first is an integer representing how many attendees there are present for the talk, and the second is the title of the talk.  The setup in web.config is as follows: <configSections> <section name="DemoSettings" type="ASPNETTipsAndTricks.Code.DemoSettings" /> </configSections>   <DemoSettings sessionAttendees="100" title="ASP.NET Tips and Tricks DevConnections Spring 2010" /> Referencing the values in code is strongly typed and straightforward.  Here I have a page that exposes two properties which internally get their values from the configuration section handler: public partial class CustomConfig1 : System.Web.UI.Page { public string SessionTitle { get { return DemoSettings.Settings.Title; } } public int SessionAttendees { get { return DemoSettings.Settings.SessionAttendees; } } } Note that the settings are only read from the config file once after that they are cached so there is no need to be concerned about excessive file access. Now weve seen how to set it up on the config file and how to refer to the settings in code.  All that remains is to see the file itself: public class DemoSettings : ConfigurationSection { private static DemoSettings settings = ConfigurationManager.GetSection("DemoSettings") as DemoSettings; public static DemoSettings Settings{ get { return settings;} }   [ConfigurationProperty("sessionAttendees" , DefaultValue = 200 , IsRequired = false)] [IntegerValidator(MinValue = 1 , MaxValue = 10000)] public int SessionAttendees { get { return (int)this["sessionAttendees"]; } set { this["sessionAttendees"] = value; } }   [ConfigurationProperty("title" , IsRequired = true)] [StringValidator(InvalidCharacters = "~!@#$%^&*()[]{}/;\"|\\")] public string Title { get { return (string)this["title"]; } set { this["title"] = value; }   } } The class is pretty straightforward, but there are some important components to note.  First, it must inherit from System.Configuration.ConfigurationSection.  Next, as a convention I like to have a static settings member that is responsible for pulling out the section when the class is first referenced, and further to expose this collection via a static readonly property, Settings.  Note that the types of both of these are the type of my class, DemoSettings. The properties of the class, SessionAttendees and Title, should map to the attributes of the config element in the XML file.  The [ConfigurationProperty] attribute allows you to map the attribute name to the property name (thus using both XML standard naming conventions and C# naming conventions).  In addition, you can specify a default value to use if nothing is specified in the config file, and whether or not the setting must be provided (IsRequired).  If it is required, then it doesnt make sense to include a default value. Beyond defaults and required, you can specify more advanced validation rules for the configuration values using additional C# attributes, such as [IntegerValidator] and [StringValidator].  Using these, you can declaratively specify that your configuration values be in a given range, or omit certain forbidden characters, for instance.  Of course you can write your own custom validation attributes, and there are others specified in System.Configuration. Individual sections can also be loaded from separate files, using syntax like this: <DemoSettings configSource="demosettings.config" /> Summary Using a custom configuration section handler is not hard.  If your application or component requires configuration, I recommend creating a custom configuration handler dedicated to your app or component.  Doing so will reduce the clutter in appSettings, will provide you with strong typing and validation, and will make it much easier for other developers or system administrators to locate and understand the various configuration values that are necessary for a given application. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Back to Basics: When does a .NET Assembly Dependency get loaded

    - by Rick Strahl
    When we work on typical day to day applications, it's easy to forget some of the core features of the .NET framework. For me personally it's been a long time since I've learned about some of the underlying CLR system level services even though I rely on them on a daily basis. I often think only about high level application constructs and/or high level framework functionality, but the low level stuff is often just taken for granted. Over the last week at DevConnections I had all sorts of low level discussions with other developers about the inner workings of this or that technology (especially in light of my Low Level ASP.NET Architecture talk and the Razor Hosting talk). One topic that came up a couple of times and ended up a point of confusion even amongst some seasoned developers (including some folks from Microsoft <snicker>) is when assemblies actually load into a .NET process. There are a number of different ways that assemblies are loaded in .NET. When you create a typical project assemblies usually come from: The Assembly reference list of the top level 'executable' project The Assembly references of referenced projects Dynamically loaded at runtime via AppDomain/Reflection loading In addition .NET automatically loads mscorlib (most of the System namespace) the boot process that hosts the .NET runtime in EXE apps, or some other kind of runtime hosting environment (runtime hosting in servers like IIS, SQL Server or COM Interop). In hosting environments the runtime host may also pre-load a bunch of assemblies on its own (for example the ASP.NET host requires all sorts of assemblies just to run itself, before ever routing into your user specific code). Assembly Loading The most obvious source of loaded assemblies is the top level application's assembly reference list. You can add assembly references to a top level application and those assembly references are then available to the application. In a nutshell, referenced assemblies are not immediately loaded - they are loaded on the fly as needed. So regardless of whether you have an assembly reference in a top level project, or a dependent assembly assemblies typically load on an as needed basis, unless explicitly loaded by user code. The same is true of dependent assemblies. To check this out I ran a simple test: I have a utility assembly Westwind.Utilities which is a general purpose library that can work in any type of project. Due to a couple of small requirements for encoding and a logging piece that allows logging Web content (dependency on HttpContext.Current) this utility library has a dependency on System.Web. Now System.Web is a pretty large assembly and generally you'd want to avoid adding it to a non-Web project if it can be helped. So I created a Console Application that loads my utility library: You can see that the top level Console app a reference to Westwind.Utilities and System.Data (beyond the core .NET libs). The Westwind.Utilities project on the other hand has quite a few dependencies including System.Web. I then add a main program that accesses only a simple utillity method in the Westwind.Utilities library that doesn't require any of the classes that access System.Web: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); } StringUtils.NewStringId() calls into Westwind.Utilities, but it doesn't rely on System.Web. Any guesses what the assembly list looks like when I stop the code on the ReadLine() command? I'll wait here while you think about it… … … So, when I stop on ReadLine() and then fire up Process Explorer and check the assembly list I get: We can see here that .NET has not actually loaded any of the dependencies of the Westwind.Utilities assembly. Also not loaded is the top level System.Data reference even though it's in the dependent assembly list of the top level project. Since this particular function I called only uses core System functionality (contained in mscorlib) there's in fact nothing else loaded beyond the main application and my Westwind.Utilities assembly that contains the method accessed. None of the dependencies of Westwind.Utilities loaded. If you were to open the assembly in a disassembler like Reflector or ILSpy, you would however see all the compiled in dependencies. The referenced assemblies are in the dependency list and they are loadable, but they are not immediately loaded by the application. In other words the C# compiler and .NET linker are smart enough to figure out the dependencies based on the code that actually is referenced from your application and any dependencies cascading down into the dependencies from your top level application into the referenced assemblies. In the example above the usage requirement is pretty obvious since I'm only calling a single static method and then exiting the app, but in more complex applications these dependency relationships become very complicated - however it's all taken care of by the compiler and linker figuring out what types and members are actually referenced and including only those assemblies that are in fact referenced in your code or required by any of your dependencies. The good news here is: That if you are referencing an assembly that has a dependency on something like System.Web in a few places that are not actually accessed by any of your code or any dependent assembly code that you are calling, that assembly is never loaded into memory! Some Hosting Environments pre-load Assemblies The load behavior can vary however. In Console and desktop applications we have full control over assembly loading so we see the core CLR behavior. However other environments like ASP.NET for example will preload referenced assemblies explicitly as part of the startup process - primarily to minimize load conflicts. Specifically ASP.NET pre-loads all assemblies referenced in the assembly list and the /bin folder. So in Web applications it definitely pays to minimize your top level assemblies if they are not used. Understanding when Assemblies Load To clarify and see it actually happen what I described in the first example , let's look at a couple of other scenarios. To see assemblies loading at runtime in real time lets create a utility function to print out loaded assemblies to the console: public static void PrintAssemblies() { var assemblies = AppDomain.CurrentDomain.GetAssemblies(); foreach (var assembly in assemblies) { Console.WriteLine(assembly.GetName()); } } Now let's look at the first scenario where I have class method that references internally uses System.Web. In the first scenario lets add a method to my main program like this: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); PrintAssemblies(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } UpdateFromWebRequest() internally accesses HttpContext.Current to read some information of the ASP.NET Request object so it clearly needs a reference System.Web to work. In this first example, the method that holds the calling code is never called, but exists as a static method that can potentially be called externally at some point. What do you think will happen here with the assembly loading? Will System.Web load in this example? No - it doesn't. Because the WebLogEntry() method is never called by the mainline application (or anywhere else) System.Web is not loaded. .NET dynamically loads assemblies as code that needs it is called. No code references the WebLogEntry() method and so System.Web is never loaded. Next, let's add the call to this method, which should trigger System.Web to be loaded because a dependency exists. Let's change the code to: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.WriteLine("--- Before:"); PrintAssemblies(); WebLogEntry(); Console.WriteLine("--- After:"); PrintAssemblies(); Console.ReadLine(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } Looking at the code now, when do you think System.Web will be loaded? Will the before list include it? Yup System.Web gets loaded, but only after it's actually referenced. In fact, just until before the call to UpdateFromRequest() System.Web is not loaded - it only loads when the method is actually called and requires the reference in the executing code. Moral of the Story So what have we learned - or maybe remembered again? Dependent Assembly References are not pre-loaded when an application starts (by default) Dependent Assemblies that are not referenced by executing code are never loaded Dependent Assemblies are just in time loaded when first referenced in code All of this is nothing new - .NET has always worked like this. But it's good to have a refresher now and then and go through the exercise of seeing it work in action. It's not one of those things we think about everyday, and as I found out last week, I couldn't remember exactly how it worked since it's been so long since I've learned about this. And apparently I'm not the only one as several other people I had discussions with in relation to loaded assemblies also didn't recall exactly what should happen or assumed incorrectly that just having a reference automatically loads the assembly. The moral of the story for me is: Trying at all costs to eliminate an assembly reference from a component is not quite as important as it's often made out to be. For example, the Westwind.Utilities module described above has a logging component, including a Web specific logging entry that supports pulling information from the active HTTP Context. Adding that feature requires a reference to System.Web. Should I worry about this in the scope of this library? Probably not, because if I don't use that one class of nearly a hundred, System.Web never gets pulled into the parent process. IOW, System.Web only loads when I use that specific feature and if I am, well I clearly have to be running in a Web environment anyway to use it realistically. The alternative would be considerably uglier: Pulling out the WebLogEntry class and sticking it into another assembly and breaking up the logging code. In this case - definitely not worth it. So, .NET definitely goes through some pretty nifty optimizations to ensure that it loads only what it needs and in most cases you can just rely on .NET to do the right thing. Sometimes though assembly loading can go wrong (especially when signed and versioned local assemblies are involved), but that's subject for a whole other post…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Part 2: Career development as a Software Developer without becoming a manager.

    - by albertpascual
    Seems like my previous post inspired by the work of Michael “Doc” Norton was a great success for the amount of emails I have received. Yet amazed how many people didn’t want to discuss their questions in the comments  sections. I would encourage people to be more public, still I would like to reply to all of you on this public media. I still welcome those emails. What I found out is that many people feels like me, they want to be developers and still be compensated for their experience without wanting to take a job as a manager. Their perfect day is a full day of coding and learning. Many believe their companies will never pay a manager’s salary to a developer no matter what. Most of you ask how to get the ball rolling. And is the later that I’m addressing here, the previous group, will never try. What companies understand developers value and where can I find them? This is a very difficult question to ask, I don’t have a list of those companies or departments, I have seen in my past signs in companies bending backwards to compensate, in more ways the monetary, a developer that is a good resource to them. Allowing the person to move out of the state and still let them work for the company from home is a sign that company goes by individual cases. Allowing them to go to conference that will not benefit the company is another big sign. Simple signs like flexible hours and letting some people work from home. To see those signs you need to be working in that company for awhile and look at the departments where the manager is taking care of their employees in individual cases. Look for the department where people get quiet extra perks, where some people in the department work from home or remotely. In my experience, but not always true, medium to big companies, are prompt to recognize good developers. Then again, some companies just don’t get it and is when you see many technical people managing developers. For all the people that email me stating that developers can also be very good managers, I do not disagree, I just think that a good developers loves writing code, when you remove that part the better salary isn’t enough to keep a developer happy. Burned out developers appreciate being promoted to managers. How do I know I work in a bad company? In my experience I have been a consultant and seen many companies, a few signs I have learned about companies that will not recognize good developers are: When the turn over is pretty high, when developers are moving out in a big rate, no rocket scientist needs to tap you in the shoulder. When the company is looking always to outsource their development resources. The product is not that interesting nor the company cares too much for their final result and support. Code sweat shops. You’ll know when you start working in one of those. Run for the hills! Where do I start? Disclaimer: I have only based this post on Michael “Doc” Norton, this is just my interpretation and ideas. First thing is to look at Michael “Doc” Norton presentation Take Control of Your Development Career http://docondev.blogspot.com/ That should be the first thing any developer should look and follow like it was a pattern. I would personally recommend to find some language or pattern you are interested with and learn it, learn something that will make you happy. Second, join a User Group and get involve in the community. There are hundreds of user groups, and I’m sure you’ll find one in your city or near you town. Code Camps are Developers Meet Ups are also good resources. Third, I would join a open source project you are interested or better yet, create a new open source project with the new technology that you have learn and get coding. Fourth, create a Twitter account and follow the people that talks about the technology you are interested on. If you follow this 4 steps above I think you’ll be on your way, after they are complete, when you release your Open Source project you can say that you accomplished the first steps. Now, do not expect anything to change in your career life, you are changing and should not expect anything in return, besides borrowing some time from sleeping and your family. Creating a good schedule may help you, I find wasted time in many places that I use. Flying for work is actually one of those that allows me to do my best work on a airplane, don’t need to borrow time from anywhere else. Making sure you always have a light, charged laptop is so important. Next steps following the Michael “Doc” Norton Pattern or my interpretation of. First, help run a user group or better yet, start a new user group. I’ll add, as well, go to one conference a year and free development events around your city; Code Camps, Geek Dinners, etc. There are many free events sponsored by different companies for developers to get to know their products, I highly recommend those as the way to get connected. Second, chose a mentor, this is a very hard thing to do I experienced, find an expert in the technology you are learning that has the time for you, it is difficult, I wish you best of luck. Third, learn another technology or pattern, open your horizons a little bit more. Why not, if you had fun previously, keep doing it. Fourth, get involved in forums to answer and ask questions, getting notice in public forums is rewarding for your ego after such a long journey. Final steps following the Michael “Doc” Norton Pattern Teach what you know, become humble on your knowledge, find as many opportunities to teach and to get involved with the community, bring all that to your day job. Mr. Norton talks about getting naked, expose yourself to others in your knowledge and what you do not know. You are never too important for small opportunities, yet don’t  be afraid to take anything big and learn from the experience. Anytime you have the opportunity to talk to somebody that has reach the point the community knows his or her name, means that you should learn from it. Take opportunities that won’t make you money, yet will make you happy. Sometimes you need to spend money and time. Register talks in Code Camps and Dev Meet Ups, those are free, also go to Conference, Development Summits and Geek Diners for example. One day, people will pay you to attend. When will all these pay off? I don’t know. I’m still in the path, there are a few things that during your journey you may get little acknowledgements that you are in the correct path. In my case I think those are the little signs that tells you about your journey. I got awarded the Microsoft Most Valuable Professional for ASP.NET in 2007, 2008, 2009 and 2010. I got selected to speak at the DevConnections in Las Vegas in 2010 and Orlando 2011. I do believe that I do have a long way to go, yet what I do makes me happy and I hope I can keep doing for years to come. Every year I can see an improvement on my code, and more frameworks and languages are under my belt, I learn to embrace them all as well as in my daily job, I have been able to work in a few projects beyond my department. I’m a learner and believer of the Michael “Doc” Norton pattern. Looking forward to learn more about it to be able to apply it better. In my short journey I now see my mistakes, I did a few things right, I have been listening the intelligent people and not being afraid to move along the technology changes. In my professional life, I have tried to avoid being placed in only one technology and product. I have always share my code and never confused anybody that wanted to take over any of my projects, I didn’t think anything I created as my own nor care too much when politics didn’t see my vision. I stayed flexible, ready and visible, yet humble. I keep my head just below the clouds, and avoided managers meetings. I credit my manager for my success, and I faulted publicly only myself for the failures. Hope this helps. Cheers, Al Follow me in Twitter  Read my previous post tweetmeme_url = 'http://weblogs.asp.net/albertpascual/archive/2010/12/09/part-2-career-development-as-a-software-developer-without-becoming-a-manager.aspx'; tweetmeme_source = 'alpascual';

    Read the article

  • How did I get here? My route to Android, iPhone, Windows Phone 7, and interest in Mobile Devices

    - by Wallym
    I get asked all the time how/why I got interested in mobile and jumped on this fairly early.  I tend to give half answers because it wasn't just one thing that took me to mobile, but a whole host of separate ivents culminating in a specific event where I wasdoing market research in May/June 2008.  Let me throw out the events and the facts about me: I tend to like new, different, cool stuff.  I jumped on .NET early on.  I jumped on Ajax early on.  I don't jump on every new technology that comes down the road, I'm probably the only person on the planet that doesn't "get" MVC, though I acknowledge that a lot of people do and it solves a number of problems in the default settings of ASP.NET WebForms. I remember buying an early Windows CE device. It was interesting, but dang, this stylus thing sucks. After I lost my third stylus, i just gave up.  I got my first mobile phone in early 1999.  Reception was crappy, but I could see the value in being mobile. In 1999, I worked on a manufacturing systems project.  One piece of the projects was a set of handheld devices on the shop floor.  While the UI was a crappy DOS based, yes I said DOS as in Disk Operating System Version 6.22, I could see that the wireless world was a direction I wanted to be in. In 2000, Microsoft released the first public alpha of .NET.  Very cool stuff indeed.  One piece of the puzzle was a set of mobile controls for ASP.NET.  I build numerous test apps as well as mobile version using these mobile controls.  Now, the mobile UIs of the time were based on WML, which was crap. I could real all the analysis of mobile and read all about growth rates.  Now, you have to realize that growth rates can be impressive when dealing with small numbers, but I knew it was a comer. In our first book, I got talked out of mobile because of the line from the publisher "Wally, mobile doesn't sell." Blackberry was the dominant device of the mid 2000s.  Its users were referred to as "Crackberry addicts."  Unfortunately, the mobile development experience for native apps was crap and the web experience was fairly rough as well, but if they could get the ecosystem started, other phones and better blackberryies would come out.  I finally jumped into using a blackberry. Sometime around 2006, I heard "Wally, mobile doesn't sell" again.  Now, anyone that knows me knows that someone saying something like this to me means I'll keep trying it. The phones of the mid 2000s were moving to be more graphical, but there were too many that had this idea that they had to use a stylus.  Stylus suck.  They get lost too easily. I worked on a project in 2007 and 2008 for a startup trying to answer the question of "What is there to do where I am at?"  For some reason, they wanted to be tied to PCs.  As it became obvious that they were having problems, their investor asked us to do some market research and to figure out what the marketplace did want.  One of the important things that I figured out was the we lived in a mobile world and if you had a mobile app, it need to be on a mobile device, not tied to a desktop/laptop/netbook device.  If there was any single event, this was it - I was doing some market research and sat and talked to people in a bar/restaurant in Atlanta called "The Grove" on Lavista.  The consensus of the people that I talked to was that they wanted their data where ever they were at, laptop, pc, mobile, whereever. In 2007, Apple released the iPhone.  Wow, what an impressive device, even with all the problems of a 1st generation device.  I bought an iPod Touch 1st generation to understand touch better, one of the best decisions I ever made. I decided in late 2008, to make a move into cloud, for a number of reasons.  I was working on an example app.  In April, 2009, one of my friends at Microsoft said "don't mention my name with this, but you need an iPhone front end for this app."  How do you get on the iPhone.  Well, there are a number of ways including: ObjectiveC.  Its hard to teach an old dog new tricks, and this dog knows .NET, not ObjectiveC. HTML, web, javascript optimized interface.  yeah, this is possible. PhoneGap.  Now, this is interesting, take an html interface and get it to run on the iPhone, Android, Blackberry, and other platforms.  I thought that this way made the most sense for me until......... MonoTouch.  In May/June 2009, Novell announced a way for .NET/c# developers to write apps for the iPhone.  This is the way that made the most sense to me. Titanium by Appcelerator.  This is similar in concept to PhoneGap.  I haven't played with this much but do want to learn more about it. In July, 2009, I emailed one of my contacts at Wrox to see if they would be interested in a short MonoTouch ebook in their Wrox Blox format.  I fully expected another  response along the lines of "Wally, mobile doesn't sell."  The response I got was "Wally, iPhone is H O T, get started immediately, can you have this to me before Labor Day."  Not quite the response I expected.  Thankfully, we didn't make the Labor Day, first draft date. I kept pushing back because I had a feeling that things were not going to be quite as polished and feature rich as necessary.  After all, Novell doesn't have the resouces of Microsoft's developer division. The ebook shipped on November 30, 2009. On about December, 15, 2009, my editor emailed and said "Your ebook is selling really well, lets do a full book and it by March 1 so get started."  Thankfully, guys like Craig Dunn and Chris Hardy were interested along with Martin and Ror joinged us later on. I bought my wife an iPhone 3Gs in early 2010 to go along with all my iPod Touch devices. I tried to pretend in 2010 that I wasn't that interested in mobile and still had interest in the desktop technologies.  I love the technologies and continue to use them today, but that isn't where my interest is right now.  I'm just about all mobile all the time with my energies.  Our book shipped in the beginning of July, 2010 right in the middle of the Apple FUD.I've been looking at Mobile Web as a way around the AppStores and Apple FUD problems of 2010. With all the Apple self FUD, we became interested in Android.I went up to Dino Esposito at DevConnections in Las Vegas at introduced myself. I've always tried to keep up with what Dino has been doing. I was shocked, he wanted to meet me.  We must have talked for 1.5 hours. It was way more time than I deserved. If you get a chance, go and introduce yourself to Dino. He's a great guy. Microsoft released Windows Phone 7 in the Fall of 2010.  I'm not doing development on that platform at this time.  I think they have a very interesting user interface.  The devices are being positively reviewed.  For my purposes, the devices are limited at this point in time.  We'll see what 2011 brings as far as updates to the operating system.  I need multitasking/background processing and html5 in the browser. Add that as well as acceptance in the marketplace and I'll be more interested in the device. Obviosuly, I'm now working on a MonoDroid book . I own Android and iPhone/iOS devices.  I am currently working on some startup ideas and am exploring as much in that area as I can. For 2011, I'm planning on speaking at Android Developer's Conference (AnDevCon) and Mobile Connections.  I'm really excited about this. I have a couple of magazine articles coming out in 2011 on Android and iPhone development with the Mono technologies.is Mono "The Answer"? What's "The Question?" I think it will work for me.  It might work for you, it might not.  it depends on your situation.  Its the current horse that I am riding. I might find a better horse tomorrow. So, that's how I got here.  I'm in love with mobile.  Mobile native apps on the device as well as mobile web.  I'm into all this cool stuff.  Where are you at?

    Read the article

  • Getting Started with TypeScript – Classes, Static Types and Interfaces

    - by dwahlin
    I had the opportunity to speak on different JavaScript topics at DevConnections in Las Vegas this fall and heard a lot of interesting comments about JavaScript as I talked with people. The most frequent comment I heard from people was, “I guess it’s time to start learning JavaScript”. Yep – if you don’t already know JavaScript then it’s time to learn it. As HTML5 becomes more and more popular the amount of JavaScript code written will definitely increase. After all, many of the HTML5 features available in browsers have little to do with “tags” and more to do with JavaScript (web workers, web sockets, canvas, local storage, etc.). As the amount of JavaScript code being used in applications increases, it’s more important than ever to structure the code in a way that’s maintainable and easy to debug. While JavaScript patterns can certainly be used (check out my previous posts on the subject or my course on Pluralsight.com), several alternatives have come onto the scene such as CoffeeScript, Dart and TypeScript. In this post I’ll describe some of the features TypeScript offers and the benefits that they can potentially offer enterprise-scale JavaScript applications. It’s important to note that while TypeScript has several great features, it’s definitely not for everyone or every project especially given how new it is. The goal of this post isn’t to convince you to use TypeScript instead of standard JavaScript….I’m a big fan of JavaScript. Instead, I’ll present several TypeScript features and let you make the decision as to whether TypeScript is a good fit for your applications. TypeScript Overview Here’s the official definition of TypeScript from the http://typescriptlang.org site: “TypeScript is a language for application-scale JavaScript development. TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. Any browser. Any host. Any OS. Open Source.” TypeScript was created by Anders Hejlsberg (the creator of the C# language) and his team at Microsoft. To sum it up, TypeScript is a new language that can be compiled to JavaScript much like alternatives such as CoffeeScript or Dart. It isn’t a stand-alone language that’s completely separate from JavaScript’s roots though. It’s a superset of JavaScript which means that standard JavaScript code can be placed in a TypeScript file (a file with a .ts extension) and used directly. That’s a very important point/feature of the language since it means you can use existing code and frameworks with TypeScript without having to do major code conversions to make it all work. Once a TypeScript file is saved it can be compiled to JavaScript using TypeScript’s tsc.exe compiler tool or by using a variety of editors/tools. TypeScript offers several key features. First, it provides built-in type support meaning that you define variables and function parameters as being “string”, “number”, “bool”, and more to avoid incorrect types being assigned to variables or passed to functions. Second, TypeScript provides a way to write modular code by directly supporting class and module definitions and it even provides support for custom interfaces that can be used to drive consistency. Finally, TypeScript integrates with several different tools such as Visual Studio, Sublime Text, Emacs, and Vi to provide syntax highlighting, code help, build support, and more depending on the editor. Find out more about editor support at http://www.typescriptlang.org/#Download. TypeScript can also be used with existing JavaScript frameworks such as Node.js, jQuery, and others and even catch type issues and provide enhanced code help. Special “declaration” files that have a d.ts extension are available for Node.js, jQuery, and other libraries out-of-the-box. Visit http://typescript.codeplex.com/SourceControl/changeset/view/fe3bc0bfce1f#samples%2fjquery%2fjquery.d.ts for an example of a jQuery TypeScript declaration file that can be used with tools such as Visual Studio 2012 to provide additional code help and ensure that a string isn’t passed to a parameter that expects a number. Although declaration files certainly aren’t required, TypeScript’s support for declaration files makes it easier to catch issues upfront while working with existing libraries such as jQuery. In the future I expect TypeScript declaration files will be released for different HTML5 APIs such as canvas, local storage, and others as well as some of the more popular JavaScript libraries and frameworks. Getting Started with TypeScript To get started learning TypeScript visit the TypeScript Playground available at http://www.typescriptlang.org. Using the playground editor you can experiment with TypeScript code, get code help as you type, and see the JavaScript that TypeScript generates once it’s compiled. Here’s an example of the TypeScript playground in action:   One of the first things that may stand out to you about the code shown above is that classes can be defined in TypeScript. This makes it easy to group related variables and functions into a container which helps tremendously with re-use and maintainability especially in enterprise-scale JavaScript applications. While you can certainly simulate classes using JavaScript patterns (note that ECMAScript 6 will support classes directly), TypeScript makes it quite easy especially if you come from an object-oriented programming background. An example of the Greeter class shown in the TypeScript Playground is shown next: class Greeter { greeting: string; constructor (message: string) { this.greeting = message; } greet() { return "Hello, " + this.greeting; } } Looking through the code you’ll notice that static types can be defined on variables and parameters such as greeting: string, that constructors can be defined, and that functions can be defined such as greet(). The ability to define static types is a key feature of TypeScript (and where its name comes from) that can help identify bugs upfront before even running the code. Many types are supported including primitive types like string, number, bool, undefined, and null as well as object literals and more complex types such as HTMLInputElement (for an <input> tag). Custom types can be defined as well. The JavaScript output by compiling the TypeScript Greeter class (using an editor like Visual Studio, Sublime Text, or the tsc.exe compiler) is shown next: var Greeter = (function () { function Greeter(message) { this.greeting = message; } Greeter.prototype.greet = function () { return "Hello, " + this.greeting; }; return Greeter; })(); Notice that the code is using JavaScript prototyping and closures to simulate a Greeter class in JavaScript. The body of the code is wrapped with a self-invoking function to take the variables and functions out of the global JavaScript scope. This is important feature that helps avoid naming collisions between variables and functions. In cases where you’d like to wrap a class in a naming container (similar to a namespace in C# or a package in Java) you can use TypeScript’s module keyword. The following code shows an example of wrapping an AcmeCorp module around the Greeter class. In order to create a new instance of Greeter the module name must now be used. This can help avoid naming collisions that may occur with the Greeter class.   module AcmeCorp { export class Greeter { greeting: string; constructor (message: string) { this.greeting = message; } greet() { return "Hello, " + this.greeting; } } } var greeter = new AcmeCorp.Greeter("world"); In addition to being able to define custom classes and modules in TypeScript, you can also take advantage of inheritance by using TypeScript’s extends keyword. The following code shows an example of using inheritance to define two report objects:   class Report { name: string; constructor (name: string) { this.name = name; } print() { alert("Report: " + this.name); } } class FinanceReport extends Report { constructor (name: string) { super(name); } print() { alert("Finance Report: " + this.name); } getLineItems() { alert("5 line items"); } } var report = new FinanceReport("Month's Sales"); report.print(); report.getLineItems();   In this example a base Report class is defined that has a variable (name), a constructor that accepts a name parameter of type string, and a function named print(). The FinanceReport class inherits from Report by using TypeScript’s extends keyword. As a result, it automatically has access to the print() function in the base class. In this example the FinanceReport overrides the base class’s print() method and adds its own. The FinanceReport class also forwards the name value it receives in the constructor to the base class using the super() call. TypeScript also supports the creation of custom interfaces when you need to provide consistency across a set of objects. The following code shows an example of an interface named Thing (from the TypeScript samples) and a class named Plane that implements the interface to drive consistency across the app. Notice that the Plane class includes intersect and normal as a result of implementing the interface.   interface Thing { intersect: (ray: Ray) => Intersection; normal: (pos: Vector) => Vector; surface: Surface; } class Plane implements Thing { normal: (pos: Vector) =>Vector; intersect: (ray: Ray) =>Intersection; constructor (norm: Vector, offset: number, public surface: Surface) { this.normal = function (pos: Vector) { return norm; } this.intersect = function (ray: Ray): Intersection { var denom = Vector.dot(norm, ray.dir); if (denom > 0) { return null; } else { var dist = (Vector.dot(norm, ray.start) + offset) / (-denom); return { thing: this, ray: ray, dist: dist }; } } } }   At first glance it doesn’t appear that the surface member is implemented in Plane but it’s actually included automatically due to the public surface: Surface parameter in the constructor. Adding public varName: Type to a constructor automatically adds a typed variable into the class without having to explicitly write the code as with normal and intersect. TypeScript has additional language features but defining static types and creating classes, modules, and interfaces are some of the key features it offers. So is TypeScript right for you and your applications? That’s a not a question that I or anyone else can answer for you. You’ll need to give it a spin to see what you think. In future posts I’ll discuss additional details about TypeScript and how it can be used with enterprise-scale JavaScript applications. In the meantime, I’m in the process of working with John Papa on a new Typescript course for Pluralsight that we hope to have out in December of 2012.

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

< Previous Page | 1 2 3