Search Results

Search found 26695 results on 1068 pages for 'domain driven design'.

Page 3/1068 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Cannot ping my domain-joined server - Can only ping domain controller - host unreachable

    - by Vazgen
    I have a HyperV Server hosting a Domain Controller VM (192.168.1.50) and another VM (192.168.1.51) joined to this domain. I have: domain controller as DNS server forward lookup zone for the domain with host record for 192.168.1.50 and 192.168.1.51 Windows client has primary DNS server set to 192.168.1.50 and secondary to my ISP I can ping 192.168.1.50 (domain controller) successfully but cannot ping 192.168.1.51 (domain-joined VM) When pinging from Windows client: ping 192.168.1.51 Reply from 192.168.1.129 : Destination host unreachable When pinging from Domain Controller: ping 192.168.1.51 Reply from 192.168.1.50 : Destination host unreachable I have 2 virtual network adapters one PRIVATE for intranet (set to static IP 192.168.1.51) and one PUBLIC for internet with a dynamic IP. I noticed the the PUBLIC one inherited the "mydomain.com" domain subtitle after joining the domain... I don't know what this meant but it seemed more intuitive to me to switch THIS ONE to have the static IP. After I configured that I still could not ping but now I get: ping 192.168.1.51 Request timed out What seems to be the issue, I'm relatively new to networking.

    Read the article

  • Add domain user as local admin in Windows 7 using VPN to connect to domain

    - by kev
    I am rebuilding my work computer from scratch and need to add my domain user as a local admin on my computer. I have successfully added my PC to the domain, but I cannot add my domain user account to the local admins. I have tried to do the following: Connect to the work domain using a Windows VPN Add my computer to the work domain Start right click on Computer Manage - go to Users and Groups right click on Administrators group and add my domain user The problem is that after adding my domain user to the Administrators group, I don't see my domain user under the Local Users group. When I try to log on as my domain user I get the following error message: There are currently no logon servers available to service the logon request Any ideas?

    Read the article

  • Anemic Domain Model, Business Logic and DataMapper (PHP)

    - by sunwukung
    I've implemented a rudimentary ORM layer based on DataMapper (I don't want to use a full blown ORM like Propel/Doctrine - for anything beyond simple fetch/save ops I prefer to access the data directly layer using a SQL abstraction layer). Following the DataMapper pattern, I've endeavoured to keep all persistence operations in the Mapper - including the location of related entities. My Entities have access to their Mapper, although I try not to call Mapper logic from the Entity interface (although this would be simple enough). The result is: // get a mapper and produce an entity $ProductMapper = $di->get('product_mapper'); $Product = $ProductMapper->find('[email protected]','email'); //.. mutaute some values.. save $ProductMapper->save($Product) // uses __get to trigger relation acquisition $Manufacturer = $Product->manufacturer; I've read some articles regarding the concept of an Anemic Domain model, i.e. a Model that does not contain any "business logic". When demonstrating the sort of business logic ideally suited to a Domain Model, however, acquiring related data items is a common example. Therefore I wanted to ask this question: Is persistence logic appropriate in Domain Model objects?

    Read the article

  • Where we should put validation for domain model

    - by adisembiring
    I still looking best practice for domain model validation. Is that good to put the validation in constructor of domain model ? my domain model validation example as follows: public class Order { private readonly List<OrderLine> _lineItems; public virtual Customer Customer { get; private set; } public virtual DateTime OrderDate { get; private set; } public virtual decimal OrderTotal { get; private set; } public Order (Customer customer) { if (customer == null) throw new ArgumentException("Customer name must be defined"); Customer = customer; OrderDate = DateTime.Now; _lineItems = new List<LineItem>(); } public void AddOderLine //.... public IEnumerable<OrderLine> AddOderLine { get {return _lineItems;} } } public class OrderLine { public virtual Order Order { get; set; } public virtual Product Product { get; set; } public virtual int Quantity { get; set; } public virtual decimal UnitPrice { get; set; } public OrderLine(Order order, int quantity, Product product) { if (order == null) throw new ArgumentException("Order name must be defined"); if (quantity <= 0) throw new ArgumentException("Quantity must be greater than zero"); if (product == null) throw new ArgumentException("Product name must be defined"); Order = order; Quantity = quantity; Product = product; } } Thanks for all of your suggestion.

    Read the article

  • Design review , class design

    - by user3651810
    I have class design for storing patient information could you please review the design and let me know anything wrong or not corrent I have designed three interfaces IPatient IPatientHistory IPrescription IPatient Id Firstname LastName DOB BloogGroup Mobile List<IPatientHistory> ----------------------- GetPatientById() GetPatientHistory() IPatientHistory HistoryId PatientId DateOfVisit cause List<IPrescription> ----------------------- GetPrescription() IPrescription PrescriptionId PatientHistoryId MedicineName totalQty MorningQty NoonQty NightQTy

    Read the article

  • Windows Server Connected to Domain Without Being Domain Controller

    - by saluce
    Can a Windows Server be connected to an Active Directory domain without being a domain controller? Here's the scenario: I want to use Windows Server 2012 to run several virtual machines for testing our web application in a variety of environments. We have a corporate domain, and I'd like to use the corporate login (or at least a common login) on each of the virtual machines without necessarily having to get IT to set up each virtual machine on the corporate domain. Also, I need the server itself to be able to authenticate domain logins (the app uses domain login information for users to login). However, I absolutely do NOT want it to be a DC on the corporate network. Thus, my questions: Can a Windows Server be connected to an Active Directory domain without being a DC? Can a Windows Server authenticate users on another domain without being a part of that domain? Can a Windows Server be a domain controller in a small network (comprised of just the server and itself) and use the corporate domain's Active Directory for authenticating user logins to the server, the web app, and the virtual machines?

    Read the article

  • Design for a plugin based application

    - by Varun Naik
    I am working on application, details of which I cannot discuss here. We have core framework and the rest is designed as plug in. In the core framework we have a domain object. This domain object is updated by the plugins. I have defined an interface in which I have function as DomainObject doProcessing(DomainObject object) My intention here is I pass the domain object, the plug in will update it and return it. This updated object is then passed again to different plugin to be updated. I am not sure if this is a good approach. I don't like passing the DomainObject to plugin. Is there a better way I can achieve this? Should I just request data from plugin and update the domain object myself?

    Read the article

  • how to improve design ability

    - by Cong Hui
    I recently went on a couple of interviews and all of them asked a one or two design questions, like how you would design a chess, monopoly, and so on. I didn't do good on those since I am a college student and lack of the experience of implementing big and complex systems. I figure the only way to improve my design capability is to read lots of others' code and try to implement myself. Therefore, for those companies that ask these questions, what are their real goals in this? I figure most of college grads start off working in a team guided by a senior leader in their first jobs. They might not have lots of design experience fresh out of colleges. Anyone could give pointers about how to practice those skills? Thank you very much

    Read the article

  • .Info Domain Name

    - by Vaibhav
    I want to take a domain on my name. But .Com is already taken. .Info doamin is still available, and its very cheap also. I am just wondering whether I can take a .info domain or these domain are only for products, companies etc. Would you advise me too take vaibhavjain.info as a domain for publishing personal information. and one more question, why .info domain names are cheap than other domain names.

    Read the article

  • Why can't I register a domain name that a registrar owns?

    - by barfoon
    Hey everyone, I am interested in purchasing a .ca domain name. It was taken, and when I did a WHOIS it showed me that GoDaddy (a registrar) has control of it, however when I go to GoDaddy to purchase it, I have no such option. I have always wondered - why do registrars do this? I've come across this situation before with other domains as well. Is there any way to actually purchase a domain like this for yourself? If anyone can shed some light on this issue, I'd greatly appreciate it. Cheers,

    Read the article

  • Unable to ping domain.local, but can ping server.domain.local

    - by Force Flow
    I have a single windows 2008 server running active directory, group policy, and DNS. DHCP is running from the firewall (this is because there are multiple branch locations, and each location has its own firewall supplying DHCP. But, for this problem, the server and workstation are at the same location). On an XP workstation, if I try to visit \\domain.local or ping domain.local, the workstation can't find it. A ping returns Ping request could not find host domain.local. If I try to visit \\server or \\server.domain.local or ping server or server.domain.local, I'm able to connect normally. If I ping or visit domain.local on the server, I'm able to connect normally. A-Records are in place in the DNS service for server, domain.local, and server.domain.local. A reverse lookup zone also is enabled and PTR records are in place. If I wait 20-30 minutes, I am eventually able to ping and visit domain.local--but, when attempting to ping, it takes 30 second to return an IP address. I am also unable to join a new workstation to the domain during this wait period. If I try, the error message returned is "network path not found". Is there something I'm missing?

    Read the article

  • Avoiding bloated Domain Objects

    - by djcredo
    We're trying to move data from our bloated Service layer into our Domain layer using a DDD approach. We currently have a lot of business logic in our services, which is spread out all over the place and doesn't benefit from inheritance. We have a central Domain class which is the focus of most of our work - a Trade. The Trade object will know how to price itself, how to estimate risk, validate itself, etc. We can then replace conditionals with polymorphism. Eg: SimpleTrade will price itself one way, but ComplexTrade will price itself another. However, we are worried that this will bloat the Trade class(s). It really should be in charge of its own processing but the class size is going to increase exponentially as more features are added. So we have choices: Put processing logic in Trade class. Processing logic is now polymorphic based on the type of the trade, but Trade class is now has multiple responsibilites (pricing, risk, etc) and is large Put processing logic into other class such as TradePricingService. No longer polymorphic with the Trade inheritance tree, but classes are smaller and easier to test. What would be the suggested approach?

    Read the article

  • Which design pattern to use when using ORM?

    - by RPK
    I am writing a small ASP.NET Web Forms application. In my solution explorer, I added various class library projects to define layers, viz: Model Repository Presentation WebUI Someone suggested me that this layered approach is not of much sense if I am using ORM tool like PetaPoco, which itself takes care of separation of data access layer. I want to use PetaPoco micro-ORM and want to know which design pattern is suitable with ORM tools. Do I still need several class library projects to separate the concerns?

    Read the article

  • How To Deal With Terrible Design Decisions

    - by splatto
    I'm a consultant at one company. There is another consultant who is a year older than me and has been here 3 months longer than I have, and a full time developer. The full-time developer is great. My concern is that I see the consultant making absolutely terrible design decisions. For example, M:M relationships are being stored in the database as a comma-delimited string rather than using a conjunction table to hold the relationships. For example, consider two tables, Car and Property: Car records: Camry Volvo Mercedes Property records: Spare Tire Satellite Radio Ipod Support Standard Rather than making a table CarProperties to represent this, he has made a "Property" attribute on the Car table whose data looks like "1,3,7,13,19,25," I hate how this decision and others are affecting the quality of my code. We have butted heads over this design three times in the past two months since I've been here. He asked me why my suggestion was better, and I responded that our database would be eliminating redundant data by converting to a higher normal form. I explained that this design flaw in particular is discussed and discouraged in entry level college programs, and he responded with a shot at me saying that these comma-separated-value database properties are taught when you do your masters (which neither of us have). Needless to say, he became very upset and demanded I apologize for criticizing his work, which I did in the interest of not wanting to be the consultant to create office drama. Our project manager is focused on delivering a product ASAP and is a very strong personality - Suggesting to him at this point that we spend some time to do this right will set him off. There is a strong likelihood that both of our contracts will be extended to work on a second project coming up. How will I be able to exert dominant influence over the design of the system and the data model to ensure that such terrible mistakes are not repeated in the next project? A glimpse at the dynamics: I can be a strong personality if I don't measure myself. The other consultant is not a strong personality, is a poor communicator, is quite stubborn and thinks he is better than everyone else. The project manager is an extremely strong personality who is focused on releasing tomorrow's product yesterday. The full-time developer is very laid back and easy going, a very effective communicator, but is someone who will accept bad design if it means not rocking the boat. Code reviews or anything else that takes "time" will be out of the question - there is no way our PM will be sold on such a thing by anybody.

    Read the article

  • How to avoid having very large objects with Domain Driven Design

    - by Pablojim
    We are following Domain Driven Design for the implementation of a large website. However by putting the behaviour on the domain objects we are ending up with some very large classes. For example on our WebsiteUser object, we have many many methods - e.g. dealing with passwords, order history, refunds, customer segmentation. All of these methods are directly related to the user. Many of these methods delegate internally to other child object but this still results in some very large classes. I'm keen to avoid exposing lots of child objects e.g. user.getOrderHistory().getLatestOrder(). What other strategies can be used to avoid this problems?

    Read the article

  • Separation of domain and ui layer in a composite

    - by hansmaad
    Hi all, i'm wondering if there is a pattern how to separate the domain logic of a class from the ui responsibilities of the objects in the domain layer. Example: // Domain classes interface MachinePart { CalculateX(in, out) // Where do we put these: // Draw(Screen) ?? // ShowProperties(View) ?? // ... } class Assembly : MachinePart { CalculateX(in, out) subParts } class Pipe : MachinePart { CalculateX(in, out) length, diamater... } There is an application that calculates the value X for machines assembled from many machine parts. The assembly is loaded from a file representation and is designed as a composite. Each concrete part class stores some data to implement the CalculateX(in,out) method to simulate behaviour of the whole assembly. The application runs well but without GUI. To increase the usability a GUi should be developed on top of the existing implementation (changes to the existing code are allowed). The GUI should show a schematic graphical representation of the assembly and provide part specific dialogs to edit several parameters. To achieve these goals the application needs new functionality for each machine part to draw a schematic representation on the screen, show a property dialog and other things not related to the domain of machine simulation. I can think of some different solutions to implement a Draw(Screen) functionality for each part but i am not happy with each of them. First i could add a Draw(Screen) method to the MachinePart interface but this would mix-up domain code with ui code and i had to add a lot of functionality to each machine part class what makes my domain model hard to read and hard to understand. Another "simple" solution is to make all parts visitable and implement ui code in visitors but Visitor does not belong to my favorite patterns. I could derive UI variants from each machine part class to add the UI implementation there but i had to check if each part class is suited for inheritance and had to be careful on changes to the base classes. My currently favorite design is to create a parallel composite hierarchy where each component stores data to define a machine part, has implementation for UI methods and a factory method which creates instances of the corresponding domain classes, so that i can "convert" a UI assembly to a domain assembly. But there are problems to go back from the created domain hierarchy to the UI hierarchy for showing calculation results in the drawing for example (imagine some parts store some values during the calculation i want to show in the schematic representation after the simluation). Maybe there are some proven patterns for such problems?

    Read the article

  • Best Practices - updated: which domain types should be used to run applications

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains). This is an updated and enlarged version of the post on this topic originally posted October 2012. One frequent question "what type of domain should I use to run applications?" There used to be a simple answer: "run applications in guest domains in almost all cases", but now there are more things to consider. Enhancements to Oracle VM Server for SPARC and introduction of systems like the current SPARC servers including the T4 and T5 systems, the Oracle SuperCluster T5-8 and Oracle SuperCluster M6-32 provide scale and performance much higher than the original servers that ran domains. Single-CPU performance, I/O capacity, memory sizes, are much larger now, and far more demanding applications are now being hosted in logical domains. The general advice continues to be "use guest domains in almost all cases", meaning, "use virtual I/O rather than physical I/O", unless there is a specific reason to use the other domain types. The sections below will discuss the criteria for choosing between domain types. Review: division of labor and types of domain Oracle VM Server for SPARC offloads management and I/O functionality from the hypervisor to domains (also called virtual machines), providing a modern alternative to older VM architectures that use a "thick", monolithic hypervisor. This permits a simpler hypervisor design, which enhances reliability, and security. It also reduces single points of failure by assigning responsibilities to multiple system components, further improving reliability and security. Oracle VM Server for SPARC defines the following types of domain, each with their own roles: Control domain - management control point for the server, runs the logical domain daemon and constraints engine, and is used to configure domains and manage resources. The control domain is the first domain to boot on a power-up, is always an I/O domain, and is usually a service domain as well. It doesn't have to be, but there's no reason to not leverage it for virtual I/O services. There is one control domain per T-series system, and one per Physical Domain (PDom) on an M5-32 or M6-32 system. M5 and M6 systems can be physically domained, with logical domains within the physical ones. I/O domain - a domain that has been assigned physical I/O devices. The devices may be one more more PCIe root complexes (in which case the domain is also called a root complex domain). The domain has native access to all the devices on the assigned PCIe buses. The devices can be any device type supported by Solaris on the hardware platform. a SR-IOV (Single-Root I/O Virtualization) function. SR-IOV lets a physical device (also called a physical function) or PF) be subdivided into multiple virtual functions (VFs) which can be individually assigned directly to domains. SR-IOV devices currently can be Ethernet or InfiniBand devices. direct I/O ownership of one or more PCI devices residing in a PCIe bus slot. The domain has direct access to the individual devices An I/O domain has native performance and functionality for the devices it owns, unmediated by any virtualization layer. It may also have virtual devices. Service domain - a domain that provides virtual network and disk devices to guest domains. The services are defined by commands that are run in the control domain. It usually is an I/O domain as well, in order for it to have devices to virtualize and serve out. Guest domain - a domain whose devices are all virtual rather than physical: virtual network and disk devices provided by one or more service domains. In common practice, this is where applications are run. Device considerations Consider the following when choosing between virtual devices and physical devices: Virtual devices provide the best flexibility - they can be dynamically added to and removed from a running domain, and you can have a large number of them up to a per-domain device limit. Virtual devices are compatible with live migration - domains that exclusively have virtual devices can be live migrated between servers supporting domains. On the other hand: Physical devices provide the best performance - in fact, native "bare metal" performance. Virtual devices approach physical device throughput and latency, especially with virtual network devices that can now saturate 10GbE links, but physical devices are still faster. Physical I/O devices do not add load to service domains - all the I/O goes directly from the I/O domain to the device, while virtual I/O goes through service domains, which must be provided sufficient CPU and memory capacity. Physical I/O devices can be other than network and disk - we virtualize network, disk, and serial console, but physical devices can be the wide range of attachable certified devices, including things like tape and CDROM/DVD devices. In some cases the lines are now blurred: virtual devices have better performance than previously: starting with Oracle VM Server for SPARC 3.1 there is near-native virtual network performance. There is more flexibility with physical devices than before: SR-IOV devices can now be dynamically reconfigured on domains. Tradeoffs one used to have to make are now relaxed: you can often have the flexibility of virtual I/O with performance that previously required physical I/O. You can have the performance and isolation of SR-IOV with the ability to dynamically reconfigure it, just like with virtual devices. Typical deployment A service domain is generally also an I/O domain: otherwise it wouldn't have access to physical device "backends" to offer to its clients. Similarly, an I/O domain is also typically a service domain in order to leverage the available PCI buses. Control domains must be I/O domains, because they boot up first on the server and require physical I/O. It's typical for the control domain to also be a service domain too so it doesn't "waste" the I/O resources it uses. A simple configuration consists of a control domain that is also the one I/O and service domain, and some number of guest domains using virtual I/O. In production, customers typically use multiple domains with I/O and service roles to eliminate single points of failure, as described in Availability Best Practices - Avoiding Single Points of Failure . Guest domains have virtual disk and virtual devices provisioned from more than one service domain, so failure of a service domain or I/O path or device does not result in an application outage. This also permits "rolling upgrades" in which service domains are upgraded one at a time while their guests continue to operate without disruption. (It should be noted that resiliency to I/O device failures can also be provided by the single control domain, using multi-path I/O) In this type of deployment, control, I/O, and service domains are used for virtualization infrastructure, while applications run in guest domains. Changing application deployment patterns The above model has been widely and successfully used, but more configuration options are available now. Servers got bigger than the original T2000 class machines with 2 I/O buses, so there is more I/O capacity that can be used for applications. Increased server capacity made it attractive to run more vertically-scaled applications, such as databases, with higher resource requirements than the "light" applications originally seen. This made it attractive to run applications in I/O domains so they could get bare-metal native I/O performance. This is leveraged by the Oracle SuperCluster engineered systems mentioned previously. In those engineered systems, I/O domains are used for high performance applications with native I/O performance for disk and network and optimized access to the Infiniband fabric. Another technical enhancement is Single Root I/O Virtualization (SR-IOV), which make it possible to give domains direct connections and native I/O performance for selected I/O devices. Not all I/O domains own PCI complexes, and there are increasingly more I/O domains that are not service domains. They use their I/O connectivity for performance for their own applications. However, there are some limitations and considerations: at this time, a domain using physical I/O cannot be live-migrated to another server. There is also a need to plan for security and introducing unneeded dependencies: if an I/O domain is also a service domain providing virtual I/O to guests, it has the ability to affect the correct operation of its client guest domains. This is even more relevant for the control domain. where the ldm command must be protected from unauthorized (or even mistaken) use that would affect other domains. As a general rule, running applications in the service domain or the control domain should be avoided. For reference, an excellent guide to secure deployment of domains by Stefan Hinker is at Secure Deployment of Oracle VM Server for SPARC. To recap: Guest domains with virtual I/O still provide the greatest operational flexibility, including features like live migration. They should be considered the default domain type to use unless there is a specific requirement that mandates an I/O domain. I/O domains can be used for applications with the highest performance requirements. Single Root I/O Virtualization (SR-IOV) makes this more attractive by giving direct I/O access to more domains, and by permitting dynamic reconfiguration of SR-IOV devices. Today's larger systems provide multiple PCIe buses - for example, 16 buses on the T5-8 - making it possible to configure multiple I/O domains each owning their own bus. Service domains should in general not be used for applications, because compromised security in the domain, or an outage, can affect domains that depend on it. This concern can be mitigated by providing guests' their virtual I/O from more than one service domain, so interruption of service in one service domain does not cause an application outage. The control domain should in general not be used to run applications, for the same reason. Oracle SuperCluster uses the control domain for applications, but it is an exception. It's not a general purpose environment; it's an engineered system with specifically configured applications and optimization for optimal performance. These are recommended "best practices" based on conversations with a number of Oracle architects. Keep in mind that "one size does not fit all", so you should evaluate these practices in the context of your own requirements. Summary Higher capacity servers that run Oracle VM Server for SPARC are attractive for applications with the most demanding resource requirements. New deployment models permit native I/O performance for demanding applications by running them in I/O domains with direct access to their devices. This is leveraged in SPARC SuperCluster, and can be leveraged in T-series servers to provision high-performance applications running in domains. Carefully planned, this can be used to provide peak performance for critical applications. That said, the improved virtual device performance in Oracle VM Server means that the default choice should still be guest domains with virtual I/O.

    Read the article

  • Apache outputs all urls of a second domain as a subfolder of the primary domain name

    - by s_rathbone
    Hi all, would anyone be able to possibly give me some guidance.. Basically, i have a 'shared hosting' account with a large internet hosting provider, and my account lets me have multiple seperate domains within this folder structure.(note: not aliased domains and not sub domains). so, my goal is to have 2 domains set up. i have already purchased the two domain names i need: The first domain is the 'primary' domain name for the root folder(eg. www.example1.com) and the second domain name is set for one of its sub folders(eg. www.example2.com is set to the folder www.example1.com/sites/music). The problem is that when apache returns a page of the second domain back to the browser, apache writes the hyperlinks as if it's a sub folder of the first domain ( eg. www.example2.com/index.html. comes out as http://www.example1.com/sites/music/index.html). Now, I have done some reading on this, looking though "Apache: the definitive guide"(o'reilly), and although it was useful, couldn't really find the answer. i'm guessing this issue is most likely an apache setup issue in http.conf, rather than an issue with the hosting company itself (which is why im posting it here) and I have also been to the official documentation for apache site, and i am guessing i might need to use something like the rewritebase directive in htaccess files.. but im really not sure, im more of a java programmer guy, and have been struggling with this for a couple of days. Any guidance would be REALLY appreciated. If it helps, my hosting company is godaddy, and my sites are hosted on linux. My problem was originally with wordpress which i reinstalled a number of times in various ways to correct the problem, but ive just done a test with a very simple static html, and it still has the same issue with relative urls like this: <html> <head></head><body><a href="images/dog.html">Pictures of Dogs</a></body> </html> However, it is fine if i hardcode the urls like this: <html> <head></head><body><a href="http://www.example2.com/images/dog.html">Pictures of Dogs</a></body> </html> Thanks heaps, Steve R NOW FIXED Ok, the problem has now been fixed, and i didn't need to modify any .conf or .htaccess files. The problem was, that when I went to install the second application into a second domain from the godaddy site, one of the setup questions is that it asks you which site you want it installed to. after that it asks for the desired folder path. However, the problem was that the second domain name was already pointing to the correct subfolder of the primary domain. So when I started installing wordpress again and came to the menu to select which site it was for, and it listed only the primary domain as an option, i assumed that this was like a label of "which hosting account?", or "which primary domain will your application will be installed under?" because I already knew that in the next step i was specifiying the folder. In order to correct this, you must make sure that your second domain is added to your domain list so that it will be listed as an option during the installation process. For further details please read tystips.com/archives/52/how2-save-money-host-multiple-wordpress-blogs-on-a-single-godaddy-hosting-account/

    Read the article

  • A design pattern for data binding an object (with subclasses) to asp.net user control

    - by Rohith Nair
    I have an abstract class called Address and I am deriving three classes ; HomeAddress, Work Address, NextOfKin address. My idea is to bind this to a usercontrol and based on the type of Address it should bind properly to the ASP.NET user control. My idea is the user control doesn't know which address it is going to present and based on the type it will parse accordingly. How can I design such a setup, based on the fact that, the user control can take any type of address and bind accordingly. I know of one method like :- Declare class objects for all the three types (Home,Work,NextOfKin). Declare an enum to hold these types and based on the type of this enum passed to user control, instantiate the appropriate object based on setter injection. As a part of my generic design, I just created a class structure like this :- I know I am missing a lot of pieces in design. Can anybody give me an idea of how to approach this in proper way.

    Read the article

  • How to design database having multiple interrelated entities

    - by Sharath Chandra
    I am designing a new system which is more of a help system for core applications in banks or healthcare sector. Given the nature of the system this is not a heavy transaction oriented system but more of read intensive. Now within this application I have multiple entities which are related to each other. For e.g. Assume the following entities in the system User Training Regulations Now each of these entities have M:N Relationship with each other. Assuming the usage of a standard RDBMS, the design may involve many relationship tables each containing the relationships one other entity ("User_Training", "User_Regulations", "Training_Regulations"). This design is limiting since I have more than 3 entities in the system and maintaining the relationship graph is difficult this way. The most frequently used operation is "given an entity get me all the related entities" . I need to design the database where this operation is relatively inexpensive. What are the different recommendations for modelling this kind of database.

    Read the article

  • Registering domain during christmas holydays

    - by arkascha
    One of the domain names I tried to register previously has been blocked by a domain grabber two days prior to my own attempt. That was about 1 year ago. The attempt to buy the domain from that person failed due to a totally exaggerated price. So I dropped the issue and watched the domain (offered at sedo.com). As expected there were no more offers, the domain was not sold. Now I learn from the whois database that the registration of that domain name ends on 25.12.2012 (christmas holyday). This raises two questions for me, I fail to find reliable answers on the internet. So maybe someone experienced here can drop a statement or a hint: is it reasonable that the domain name in question really will be free again when that date mentioned in the whois database up to when the domain is registered has passed? I certainly know that the registration can be prolonged, that is not what I mean. I expect (hope) that that domain grabber does not extend the registration, since it costs money and effort and he failed to sell the domain. Provided this is the case and the domain registration is not prolonged, is that date mentioned reliable? Or might it just be some 'default' date? I would like to try to register that domain name as soon as it is unregistered. Since that domain grabber registered that domain only two days before my own registration attempt I would like to prevent such annoying interference next time. So I ask myself: is it possible to register a domain name on a holyday? I mean not to send an email to my provider to do so on that day or before, but to actually have to process taking place as not to wait for 1-2 days after the unregistration? My own provider which I am very happy with does not offer such service on a holyday (which is perfectly understandable). They are 'still checking' if they can offer something automatic. I researched and did not find an answer to the question if that is possible at all. Is an autoomatic registration attempt on a holyday possible? Where can I do that? Is that reliable? Thanks for any reply!

    Read the article

  • Registering domain during Christmas holidays

    - by arkascha
    One of the domain names I tried to register previously has been blocked by a domain grabber two days prior to my own attempt. That was about 1 year ago. The attempt to buy the domain from that person failed due to a totally exaggerated price. So I dropped the issue and watched the domain (offered at sedo.com). As expected there were no more offers, the domain was not sold. Now I learn from the whois database that the registration of that domain name ends on 25 Dec 2012 (Christmas holiday). This raises two questions for me, I fail to find reliable answers on the internet. So maybe someone experienced here can drop a statement or a hint: Is it reasonable that the domain name in question really will be free again when that date mentioned in the whois database up to when the domain is registered has passed? I certainly know that the registration can be prolonged, that is not what I mean. I expect (hope) that that domain grabber does not extend the registration, since it costs money and effort and he failed to sell the domain. Provided this is the case and the domain registration is not prolonged, is that date mentioned reliable? Or might it just be some 'default' date? I would like to try to register that domain name as soon as it is unregistered. Since that domain grabber registered that domain only two days before my own registration attempt I would like to prevent such annoying interference next time. So I ask myself: is it possible to register a domain name on a holiday? I mean not to send an email to my provider to do so on that day or before, but to actually have to process taking place as not to wait for 1-2 days after the unregistration? My own provider which I am very happy with does not offer such service on a holiday (which is perfectly understandable). They are 'still checking' if they can offer something automatic. I researched and did not find an answer to the question if that is possible at all. Is an automatic registration attempt on a holiday possible? Where can I do that? Is that reliable?

    Read the article

  • Requesting feedback on my OO design

    - by Prog
    I'm working on an application that creates music by itself. I'm seeking feedback for my OO design so far. This question will focus on one part of the program. The application produces Tune objects, that are the final musical products. Tune is an abstract class with an abstract method play. It has two subclasses: SimpleTune and StructuredTune. SimpleTune owns a Melody and a Progression (chord sequence). It's play implementation plays these two objects simultaneously. StructuredTune owns two Tune instances. It's own play plays the two Tunes one after the other according to a pattern (currently only ABAB). Melody is an abstract class with an abstract play method. It has two subclasses: SimpleMelody and StructuredMelody. SimpleMelody is composed of an array of notes. Invoking play on it plays these notes one after the other. StructuredMelody is composed of an array of Melody objects. Invoking play on it plays these Melodyies one after the other. I think you're starting to see the pattern. Progression is also an abstract class with a play method and two subclasses: SimpleProgression and StructuredProgression, each composed differently and played differently. SimpleProgression owns an array of chords and plays them sequentially. StructuredProgression owns an array of Progressions and it's play implementation plays them sequentially. Every class has a corresponding Generator class. Tune, Melody and Progression are matched with corresponding abstract TuneGenerator, MelodyGenerator and ProgressionGenerator classes, each with an abstract generate method. For example MelodyGenerator defines an abstract Melody generate method. Each of the generators has two subclasses, Simple and Structured. So for example MelodyGenerator has a subclasses SimpleMelodyGenerator, with an implementation of generate that returns a SimpleMelody. (It's important to note that the generate methods encapsulate complex algorithms. They are more than mere factory method. For example SimpleProgressionGenerator.generate() implements an algorithm to compose a series of Chord objects, which are used to instantiate the returned SimpleProgression). Every Structured generator uses another generator internally. It is a Simple generator be default, but in special cases may be a Structured generator. Parts of this design are meant to allow the end-user through the GUI to choose what kind of music is to be created. For example the user can choose between a "simple tune" (SimpleTuneGenerator) and a "full tune" (StructuredTuneGenerator). Other parts of the system aren't subject to direct user-control. What do you think of this design from an OOD perspective? What potential problems do you see with this design? Please share with me your criticism, I'm here to learn. Apart from this, a more specific question: the "every class has a corresponding Generator class" part feels very wrong. However I'm not sure how I could design this differently and achieve the same flexibility. Any ideas?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >