Search Results

Search found 55 results on 3 pages for 'filegroup'.

Page 3/3 | < Previous Page | 1 2 3 

  • SQL SERVER – IO_COMPLETION – Wait Type – Day 10 of 28

    - by pinaldave
    For any good system three things are vital: CPU, Memory and IO (disk). Among these three, IO is the most crucial factor of SQL Server. Looking at real-world cases, I do not see IT people upgrading CPU and Memory frequently. However, the disk is often upgraded for either improving the space, speed or throughput. Today we will look at an IO-related wait types. From Book On-Line: Occurs while waiting for I/O operations to complete. This wait type generally represents non-data page I/Os. Data page I/O completion waits appear as PAGEIOLATCH_* waits. IO_COMPLETION Explanation: Any tasks are waiting for I/O to finish. This is a good indication that IO needs to be looked over here. Reducing IO_COMPLETION wait: When it is an issue concerning the IO, one should look at the following things related to IO subsystem: Proper placing of the files is very important. We should check the file system for proper placement of files – LDF and MDF on a separate drive, TempDB on another separate drive, hot spot tables on separate filegroup (and on separate disk),etc. Check the File Statistics and see if there is higher IO Read and IO Write Stall SQL SERVER – Get File Statistics Using fn_virtualfilestats. Check event log and error log for any errors or warnings related to IO. If you are using SAN (Storage Area Network), check the throughput of the SAN system as well as the configuration of the HBA Queue Depth. In one of my recent projects, the SAN was performing really badly so the SAN administrator did not accept it. After some investigations, he agreed to change the HBA Queue Depth on development (test environment) set up and as soon as we changed the HBA Queue Depth to quite a higher value, there was a sudden big improvement in the performance. It is very possible that there are no proper indexes in the system and there are lots of table scans and heap scans. Creating proper index can reduce the IO bandwidth considerably. If SQL Server can use appropriate cover index instead of clustered index, it can effectively reduce lots of CPU, Memory and IO (considering cover index has lesser columns than cluster table and all other; it depends upon the situation). You can refer to the two articles that I wrote; they are about how to optimize indexes: Create Missing Indexes Drop Unused Indexes Checking Memory Related Perfmon Counters SQLServer: Memory Manager\Memory Grants Pending (Consistent higher value than 0-2) SQLServer: Memory Manager\Memory Grants Outstanding (Consistent higher value, Benchmark) SQLServer: Buffer Manager\Buffer Hit Cache Ratio (Higher is better, greater than 90% for usually smooth running system) SQLServer: Buffer Manager\Page Life Expectancy (Consistent lower value than 300 seconds) Memory: Available Mbytes (Information only) Memory: Page Faults/sec (Benchmark only) Memory: Pages/sec (Benchmark only) Checking Disk Related Perfmon Counters Average Disk sec/Read (Consistent higher value than 4-8 millisecond is not good) Average Disk sec/Write (Consistent higher value than 4-8 millisecond is not good) Average Disk Read/Write Queue Length (Consistent higher value than benchmark is not good) Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussions of Wait Stats in this blog are generic and vary from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Types, SQL White Papers, T SQL, Technology

    Read the article

  • Full text index requires dropping and recreating - why?

    - by Amjid Qureshi
    Hi all, So I've got a web app running on .net 3.5 connected to a SQL 2005 box. We do scheduled releases every 2 weeks. About 14 tables out of 250 are full text indexed. After not every release, but a few too many, the indexes crap out. They seem to have data in there, but when we try to search them from the front end or SQL enterprise we get timeouts/hangs. We have a script that disables the indexes, drops them, deletes the catalog and then re creates the indexes. This fixes the problem 99 times out of 100. and the one other time, we run the script again and it all works We have tried just rebuilding the fulltext index but that doesn't fix the issue. My question is why do we have to do this ? what can we do to sort the index out? Here is a bit of the script, IF EXISTS (SELECT * FROM sys.fulltext_indexes fti WHERE fti.object_id = OBJECT_ID(N'[dbo].[Address]')) ALTER FULLTEXT INDEX ON [dbo].[Address] DISABLE GO IF EXISTS (SELECT * FROM sys.fulltext_indexes fti WHERE fti.object_id = OBJECT_ID(N'[dbo].[Address]')) DROP FULLTEXT INDEX ON [dbo].[Address] GO IF EXISTS (SELECT * FROM sysfulltextcatalogs ftc WHERE ftc.name = N'DbName.FullTextCatalog') DROP FULLTEXT CATALOG [DbName.FullTextCatalog] GO -- may need this line if we get an error BACKUP LOG SMS2 WITH TRUNCATE_ONLY CREATE FULLTEXT CATALOG [DbName.FullTextCatalog] ON FILEGROUP [FullTextCatalogs] IN PATH N'F:\Data' AS DEFAULT AUTHORIZATION [dbo] CREATE FULLTEXT INDEX ON [Address](CommonPlace LANGUAGE 'ENGLISH') KEY INDEX PK_Address ON [DbName.FullTextCatalog] WITH CHANGE_TRACKING AUTO go

    Read the article

  • Is their a definitive list for the differences between the current version of SQL Azure and SQL Serv

    - by Aim Kai
    I am a relative newbie when it comes to SQL Azure!! I was wondering if there was a definitive list somewhere regarding what is and is not supported by SQL Azure in regards to SQL Server 2008? I have had a look through google but I've noticed some of the blog posts are missing things which I have found through my own testing: For example, quite a lot is summarised in this blog entry http://www.keepitsimpleandfast.com/2009/12/main-differences-between-sql-azure-and.html Common Language Runtime (CLR) Database file placement Database mirroring Distributed queries Distributed transactions Filegroup management Global temporary tables Spatial data and indexes SQL Server configuration options SQL Server Service Broker System tables Trace Flags which is a repeat of the MSDN page http://msdn.microsoft.com/en-us/library/ff394115.aspx I've noticed from my own testing that the following seem to have issues when migrating from SQL Server 2008 to the Azure: XML Types (the msdn does mention large custom types - I guess it may include this?? even if the data schema is really small?) Multi-part views I've been using SQL Azure Migration Wizard v3.1.8 to migrate local databases into the cloud. I was wondering if anyone could point to a list or give me any information till when these features are likely to be included in SQL Azure.

    Read the article

  • SQL SERVER – PAGEIOLATCH_DT, PAGEIOLATCH_EX, PAGEIOLATCH_KP, PAGEIOLATCH_SH, PAGEIOLATCH_UP – Wait Type – Day 9 of 28

    - by pinaldave
    It is very easy to say that you replace your hardware as that is not up to the mark. In reality, it is very difficult to implement. It is really hard to convince an infrastructure team to change any hardware because they are not performing at their best. I had a nightmare related to this issue in a deal with an infrastructure team as I suggested that they replace their faulty hardware. This is because they were initially not accepting the fact that it is the fault of their hardware. But it is really easy to say “Trust me, I am correct”, while it is equally important that you put some logical reasoning along with this statement. PAGEIOLATCH_XX is such a kind of those wait stats that we would directly like to blame on the underlying subsystem. Of course, most of the time, it is correct – the underlying subsystem is usually the problem. From Book On-Line: PAGEIOLATCH_DT Occurs when a task is waiting on a latch for a buffer that is in an I/O request. The latch request is in Destroy mode. Long waits may indicate problems with the disk subsystem. PAGEIOLATCH_EX Occurs when a task is waiting on a latch for a buffer that is in an I/O request. The latch request is in Exclusive mode. Long waits may indicate problems with the disk subsystem. PAGEIOLATCH_KP Occurs when a task is waiting on a latch for a buffer that is in an I/O request. The latch request is in Keep mode. Long waits may indicate problems with the disk subsystem. PAGEIOLATCH_SH Occurs when a task is waiting on a latch for a buffer that is in an I/O request. The latch request is in Shared mode. Long waits may indicate problems with the disk subsystem. PAGEIOLATCH_UP Occurs when a task is waiting on a latch for a buffer that is in an I/O request. The latch request is in Update mode. Long waits may indicate problems with the disk subsystem. PAGEIOLATCH_XX Explanation: Simply put, this particular wait type occurs when any of the tasks is waiting for data from the disk to move to the buffer cache. ReducingPAGEIOLATCH_XX wait: Just like any other wait type, this is again a very challenging and interesting subject to resolve. Here are a few things you can experiment on: Improve your IO subsystem speed (read the first paragraph of this article, if you have not read it, I repeat that it is easy to say a step like this than to actually implement or do it). This type of wait stats can also happen due to memory pressure or any other memory issues. Putting aside the issue of a faulty IO subsystem, this wait type warrants proper analysis of the memory counters. If due to any reasons, the memory is not optimal and unable to receive the IO data. This situation can create this kind of wait type. Proper placing of files is very important. We should check file system for the proper placement of files – LDF and MDF on separate drive, TempDB on separate drive, hot spot tables on separate filegroup (and on separate disk), etc. Check the File Statistics and see if there is higher IO Read and IO Write Stall SQL SERVER – Get File Statistics Using fn_virtualfilestats. It is very possible that there are no proper indexes on the system and there are lots of table scans and heap scans. Creating proper index can reduce the IO bandwidth considerably. If SQL Server can use appropriate cover index instead of clustered index, it can significantly reduce lots of CPU, Memory and IO (considering cover index has much lesser columns than cluster table and all other it depends conditions). You can refer to the two articles’ links below previously written by me that talk about how to optimize indexes. Create Missing Indexes Drop Unused Indexes Updating statistics can help the Query Optimizer to render optimal plan, which can only be either directly or indirectly. I have seen that updating statistics with full scan (again, if your database is huge and you cannot do this – never mind!) can provide optimal information to SQL Server optimizer leading to efficient plan. Checking Memory Related Perfmon Counters SQLServer: Memory Manager\Memory Grants Pending (Consistent higher value than 0-2) SQLServer: Memory Manager\Memory Grants Outstanding (Consistent higher value, Benchmark) SQLServer: Buffer Manager\Buffer Hit Cache Ratio (Higher is better, greater than 90% for usually smooth running system) SQLServer: Buffer Manager\Page Life Expectancy (Consistent lower value than 300 seconds) Memory: Available Mbytes (Information only) Memory: Page Faults/sec (Benchmark only) Memory: Pages/sec (Benchmark only) Checking Disk Related Perfmon Counters Average Disk sec/Read (Consistent higher value than 4-8 millisecond is not good) Average Disk sec/Write (Consistent higher value than 4-8 millisecond is not good) Average Disk Read/Write Queue Length (Consistent higher value than benchmark is not good) Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All of the discussions of Wait Stats in this blog is generic and varies from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Trace flags - TF 1117

    - by Damian
    I had a session about trace flags this year on the SQL Day 2014 conference that was held in Wroclaw at the end of April. The session topic is important to most of DBA's and the reason I did it was that I sometimes forget about various trace flags :). So I decided to prepare a presentation but I think it is a good idea to write posts about trace flags, too. Let's start then - today I will describe the TF 1117. I assume that we all know how to setup a TF using starting parameters or registry or in the session or on the query level. I will always write if a trace flag is local or global to make sure we know how to use it. Why do we need this trace flag? Let’s create a test database first. This is quite ordinary database as it has two data files (4 MB each) and a log file that has 1MB. The data files are able to expand by 1 MB and the log file grows by 10%: USE [master] GO CREATE DATABASE [TF1117]  ON  PRIMARY ( NAME = N'TF1117',      FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\TF1117.mdf' ,      SIZE = 4096KB ,      MAXSIZE = UNLIMITED,      FILEGROWTH = 1024KB ), ( NAME = N'TF1117_1',      FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\TF1117_1.ndf' ,      SIZE = 4096KB ,      MAXSIZE = UNLIMITED,      FILEGROWTH = 1024KB )  LOG ON ( NAME = N'TF1117_log',      FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\TF1117_log.ldf' ,      SIZE = 1024KB ,      MAXSIZE = 2048GB ,      FILEGROWTH = 10% ) GO Without the TF 1117 turned on the data files don’t grow all up at once. When a first file is full the SQL Server expands it but the other file is not expanded until is full. Why is that so important? The SQL Server proportional fill algorithm will direct new extent allocations to the file with the most available space so new extents will be written to the file that was just expanded. When the TF 1117 is enabled it will cause all files to auto grow by their specified increment. That means all files will have the same percent of free space so we still have the benefit of evenly distributed IO. The TF 1117 is global flag so it affects all databases on the instance. Of course if a filegroup contains only one file the TF does not have any effect on it. Now let’s do a simple test. First let’s create a table in which every row will fit to a single page: The table definition is pretty simple as it has two integer columns and one character column of fixed size 8000 bytes: create table TF1117Tab (      col1 int,      col2 int,      col3 char (8000) ) go Now I load some data to the table to make sure that one of the data file must grow: declare @i int select @i = 1 while (@i < 800) begin       insert into TF1117Tab  values (@i, @i+1000, 'hello')        select @i= @i + 1 end I can check the actual file size in the sys.database_files DMV: SELECT name, (size*8)/1024 'Size in MB' FROM sys.database_files  GO   As you can see only the first data file was  expanded and the other has still the initial size:   name                  Size in MB --------------------- ----------- TF1117                5 TF1117_log            1 TF1117_1              4 There is also other methods of looking at the events of file autogrows. One possibility is to create an Extended Events session and the other is to look into the default trace file:     DECLARE @path NVARCHAR(260); SELECT    @path = REVERSE(SUBSTRING(REVERSE([path]),          CHARINDEX('\', REVERSE([path])), 260)) + N'log.trc' FROM    sys.traces WHERE   is_default = 1; SELECT    DatabaseName,                 [FileName],                 SPID,                 Duration,                 StartTime,                 EndTime,                 FileType =                         CASE EventClass                                     WHEN 92 THEN 'Data'                                    WHEN 93 THEN 'Log'             END FROM sys.fn_trace_gettable(@path, DEFAULT) WHERE   EventClass IN (92,93) AND StartTime >'2014-07-12' AND DatabaseName = N'TF1117' ORDER BY   StartTime DESC;   After running the query I can see the file was expanded and how long did the process take which might be useful from the performance perspective.    Now it’s time to turn on the flag 1117. DBCC TRACEON(1117)   I dropped the database and recreated it once again. Then I ran the queries and observed the results. After loading the records I see that both files were evenly expanded: name                  Size in MB --------------------- ----------- TF1117                5 TF1117_log            1 TF1117_1              5 I found also information in the default trace. The query returned three rows. The last one is connected to my first experiment when the TF was turned off.  The two rows shows that first file was expanded by 1MB and right after that operation the second file was expanded, too. This is what is this TF all about J  

    Read the article

< Previous Page | 1 2 3