Search Results

Search found 196 results on 8 pages for 'findall'.

Page 3/8 | < Previous Page | 1 2 3 4 5 6 7 8  | Next Page >

  • Extracting value in Beautifulsoup

    - by Seth
    I have the following code: f = open(path, 'r') html = f.read() # no parameters => reads to eof and returns string soup = BeautifulSoup(html) schoolname = soup.findAll(attrs={'id':'ctl00_ContentPlaceHolder1_SchoolProfileUserControl_SchoolHeaderLabel'}) print schoolname which gives: [<span id="ctl00_ContentPlaceHolder1_SchoolProfileUserControl_SchoolHeaderLabel">A B Paterson College, Arundel, QLD</span>] when I try and access the value (i.e. 'A B Paterson College, Arundel, QLD) by using schoolname['value'] I get the following error: print schoolname['value'] TypeError: list indices must be integers, not str What am I doing wrong to get that value?

    Read the article

  • Beautiful Soup Unicode encode error

    - by iamrohitbanga
    I am trying the following code with a particular HTML file from BeautifulSoup import BeautifulSoup import re import codecs import sys f = open('test1.html') html = f.read() soup = BeautifulSoup(html) body = soup.body.contents para = soup.findAll('p') print str(para).encode('utf-8') I get the following error: UnicodeEncodeError: 'ascii' codec can't encode character u'\u2019' in position 9: ordinal not in range(128) How do I debug this?

    Read the article

  • python regular expression for domain names

    - by user230911
    I am trying use the following regression to extract domain name from a text, but it just produce nothing, what's wrong with it? I don't know if this is suitable to ask this "fix code" question, maybe I should read more. I just want to save some time. Thanks pat_url = re.compile(r''' (?:https?://)* (?:[\w]+[\-\w]+[.])* (?P<domain>[\w\-]*[\w.](com|net)([.](cn|jp|us))*[/]*) ''') print re.findall(pat_url,"http://www.google.com/abcde") I want the output to be google.com

    Read the article

  • How to get Class type

    - by Tomáš
    Hi gurus How to determine Class type of Object in collection? class Human{...} class Man extends Human{...} class Women extends Human{...} def humans = Human.findAll() humans.each(){ human -> // ??? , it is not work if ( human instanceof Man ) { println "Man" } if ( human instanceof Woman ) { println "Woman" } } Thanks a lot, Tom

    Read the article

  • Trouble with encoding and urllib

    - by Ockonal
    Hello, I'm loading web-page using urllib. Ther eis russian symbols, but page encoding is 'utf-8' 1 pageData = unicode(requestHandler.read()).decode('utf-8') UnicodeDecodeError: 'ascii' codec can't decode byte 0xd0 in position 262: ordinal not in range(128) 2 pageData = requestHandler.read() soupHandler = BeautifulSoup(pageData) print soupHandler.findAll(...) UnicodeEncodeError: 'ascii' codec can't encode characters in position 340-345: ordinal not in range(128)

    Read the article

  • Rhino.Commons and it won't compile

    - by nandarya
    I get this very strange error message when trying to use Rhino.Commons with my asp.net mvc application. Error 3 'Rhino.Commons.Repository<Web.Models.Poll>.FindAll()' is not supported by the language C:\frank\dev\SampleApplication\Web\Models\Repositories\IPollRepository.cs 15 20 Web Someone got any experience with this error?

    Read the article

  • Find last match with python regular expression

    - by SDD
    I wanto to match the last occurence of a simple pattern in a string, e.g. list = re.findall(r"\w+ AAAA \w+", "foo bar AAAA foo2 AAAA bar2) print "last match: ", list[len(list)-1] however, if the string is very long, a huge list of matches is generated. Is there a more direct way to match the second occurence of "AAAA" or should I use this workaround?

    Read the article

  • Use of GORM methods in Integration test

    - by canotto90
    I'm trying to use gorm find method on my domain class, inside of an Spock Integration Spec. My code: class myDomainClassSpec extends IntegrationSpec{ ... def 'my test'() { when: ... then: MyDomainClass.find { id == 1 } } ... } This fails, throwing: groovy.lang.MissingPropertyException: No such property: id for class: grails.gorm.DetachedCriteria If instead I code: MyDomainClass.findAll().find { id == 1 } it works. Any ideas??

    Read the article

  • What would be a correct implemantation of JSF Converter if I need to get an Integer to run a query?

    - by Ignacio
    HI here's my code: List.xhmtl <h:selectOneMenu value="#{produtosController.items}"> <f:selectItems value="#{produtosController.itemsAvailableSelectOne}"/> </h:selectOneMenu> <h:commandButton action="#{produtosController.createByCodigos}" value="Buscar" /> My Controller Class with innner Converter implemantation @ManagedBean (name="produtosController") @SessionScoped public class ProdutosController { private Produtos current; private DataModel items = null; @EJB private controladores.ProdutosFacade ejbFacade; private PaginationHelper pagination; private int selectedItemIndex; public ProdutosController() { } public Produtos getSelected() { if (current == null) { current = new Produtos(); selectedItemIndex = -1; } return current; } private ProdutosFacade getFacade() { return ejbFacade; } public PaginationHelper getPagination() { if (pagination == null) { pagination = new PaginationHelper(10) { @Override public int getItemsCount() { return getFacade().count(); } @Override public DataModel createPageDataModel() { return new ListDataModel(getFacade().findRange(new int[]{getPageFirstItem(), getPageFirstItem()+getPageSize()})); } }; } return pagination; } public String prepareList() { recreateModel(); return "List"; } public String prepareView() { current = (Produtos)getItems().getRowData(); selectedItemIndex = pagination.getPageFirstItem() + getItems().getRowIndex(); return "View"; } public String prepareCreate() { current = new Produtos(); selectedItemIndex = -1; return "Create"; } public String create() { try { getFacade().create(current); JsfUtil.addSuccessMessage(ResourceBundle.getBundle("/Bundle").getString("ProdutosCreated")); return prepareCreate(); } catch (Exception e) { JsfUtil.addErrorMessage(e, ResourceBundle.getBundle("/Bundle").getString("PersistenceErrorOccured")); return null; } } public String createByMarcas() { items = new ListDataModel(ejbFacade.findByMarcas(current.getIdMarca())); updateCurrentItem(); return "List"; } public String createByModelos() { items = new ListDataModel(ejbFacade.findByModelos(current.getIdModelo())); updateCurrentItem(); return "List"; } public String createByCodigos(){ items = new ListDataModel(ejbFacade.findByCodigo(current.getCodigo())); updateCurrentItem(); return "List"; } public String prepareEdit() { current = (Produtos)getItems().getRowData(); selectedItemIndex = pagination.getPageFirstItem() + getItems().getRowIndex(); return "Edit"; } public String update() { try { getFacade().edit(current); JsfUtil.addSuccessMessage(ResourceBundle.getBundle("/Bundle").getString("ProdutosUpdated")); return "View"; } catch (Exception e) { JsfUtil.addErrorMessage(e, ResourceBundle.getBundle("/Bundle").getString("PersistenceErrorOccured")); return null; } } public String destroy() { current = (Produtos)getItems().getRowData(); selectedItemIndex = pagination.getPageFirstItem() + getItems().getRowIndex(); performDestroy(); recreateModel(); return "List"; } public String destroyAndView() { performDestroy(); recreateModel(); updateCurrentItem(); if (selectedItemIndex >= 0) { return "View"; } else { // all items were removed - go back to list recreateModel(); return "List"; } } private void performDestroy() { try { getFacade().remove(current); JsfUtil.addSuccessMessage(ResourceBundle.getBundle("/Bundle").getString("ProdutosDeleted")); } catch (Exception e) { JsfUtil.addErrorMessage(e, ResourceBundle.getBundle("/Bundle").getString("PersistenceErrorOccured")); } } private void updateCurrentItem() { int count = getFacade().count(); if (selectedItemIndex >= count) { // selected index cannot be bigger than number of items: selectedItemIndex = count-1; // go to previous page if last page disappeared: if (pagination.getPageFirstItem() >= count) { pagination.previousPage(); } } if (selectedItemIndex >= 0) { current = getFacade().findRange(new int[]{selectedItemIndex, selectedItemIndex+1}).get(0); } } public DataModel getItems() { if (items == null) { items = getPagination().createPageDataModel(); } return items; } private void recreateModel() { items = null; } public String next() { getPagination().nextPage(); recreateModel(); return "List"; } public String previous() { getPagination().previousPage(); recreateModel(); return "List"; } public SelectItem[] getItemsAvailableSelectMany() { return JsfUtil.getSelectItems(ejbFacade.findAll(), false); } public SelectItem[] getItemsAvailableSelectOne() { return JsfUtil.getSelectItems(ejbFacade.findAll(), true); } @FacesConverter(forClass=Produtos.class) public static class ProdutosControllerConverter implements Converter{ public Object getAsObject(FacesContext facesContext, UIComponent component, String value) { if (value == null || value.length() == 0) { return null; } ProdutosController controller = (ProdutosController)facesContext.getApplication().getELResolver(). getValue(facesContext.getELContext(), null, "produtosController"); return controller.ejbFacade.find(getKey(value)); } java.lang.Integer getKey(String value) { java.lang.Integer key; key = Integer.decode(value); return key; } String getStringKey(java.lang.Integer value) { StringBuffer sb = new StringBuffer(); sb.append(value); return sb.toString(); } public String getAsString(FacesContext facesContext, UIComponent component, Object object) { if (object == null) { return null; } if (object instanceof Produtos) { Produtos o = (Produtos) object; return getStringKey(o.getCodigo()); } else { throw new IllegalArgumentException("object " + object + " is of type " + object.getClass().getName() + "; expected type: "+ProdutosController.class.getName()); } } } } and my EJB @Entity @ViewScoped @Table(name = "produtos") @NamedQueries({ @NamedQuery(name = "Produtos.findAll", query = "SELECT p FROM Produtos p"), @NamedQuery(name = "Produtos.findById", query = "SELECT p FROM Produtos p WHERE p.id = :id"), @NamedQuery(name = "Produtos.findByCodigo", query = "SELECT p FROM Produtos p WHERE p.codigo = :codigo"), @NamedQuery(name = "Produtos.findByDescripcion", query = "SELECT p FROM Produtos p WHERE p.descripcion = :descripcion"), @NamedQuery(name = "Produtos.findByImagen", query = "SELECT p FROM Produtos p WHERE p.imagen = :imagen"), @NamedQuery(name = "Produtos.findByMarcas", query="SELECT m FROM Produtos m WHERE m.idMarca.id = :idMarca"), @NamedQuery(name = "Produtos.findByModelos", query="SELECT m FROM Produtos m WHERE m.idModelo.id = :idModelo")}) public class Produtos implements Serializable { private static final long serialVersionUID = 1L; @Id @GeneratedValue(strategy = GenerationType.IDENTITY) @Basic(optional = false) @Column(name = "id") private Integer id; @Column(name = "codigo") private Integer codigo; @Column(name = "descripcion") private String descripcion; @Column(name = "imagen") private String imagen; @JoinColumn(name = "id_modelo", referencedColumnName = "id") @ManyToOne(optional = false) private Modelos idModelo; @JoinColumn(name = "id_marca", referencedColumnName = "id") @ManyToOne(optional = false) private Marcas idMarca; public Produtos() { } public Produtos(Integer id) { this.id = id; } public Integer getId() { return id; } public void setId(Integer id) { this.id = id; } public Integer getCodigo() { return codigo; } public void setCodigo(Integer codigo) { this.codigo = codigo; } public String getDescripcion() { return descripcion; } public void setDescripcion(String descripcion) { this.descripcion = descripcion; } public String getImagen() { return imagen; } public void setImagen(String imagen) { this.imagen = imagen; } public Modelos getIdModelo() { return idModelo; } public void setIdModelo(Modelos idModelo) { this.idModelo = idModelo; } public Marcas getIdMarca() { return idMarca; } public void setIdMarca(Marcas idMarca) { this.idMarca = idMarca; } @Override public int hashCode() { int hash = 0; hash += (id != null ? id.hashCode() : 0); return hash; } @Override public boolean equals(Object object) { // TODO: Warning - this method won't work in the case the id fields are not set if (!(object instanceof Produtos)) { return false; } Produtos other = (Produtos) object; if ((this.id == null && other.id != null) || (this.id != null && !this.id.equals(other.id))) { return false; } return true; } @Override public String toString() { return "" + codigo + ""; } }

    Read the article

  • Optimizing python link matching regular expression

    - by Matt
    I have a regular expression, links = re.compile('<a(.+?)href=(?:"|\')?((?:https?://|/)[^\'"]+)(?:"|\')?(.*?)>(.+?)</a>',re.I).findall(data) to find links in some html, it is taking a long time on certain html, any optimization advice? One that it chokes on is http://freeyourmindonline.net/Blog/

    Read the article

  • How to set offset in GORM when using createCriteria?

    - by firnnauriel
    I'm just wondering if it's possible for 'createCriteria' to specify the paginateParams (i.e. offset) similar to dynamic finder (findAll, etc.) Note that this code is not working since 'offset' is not documented in http://www.grails.org/doc/1.2.1/ref/Domain%20Classes/createCriteria.html def c = SnbrItemActDistance.createCriteria() def results = c.list { eq('iid', newsId) ge('distance', cap) maxResults(count) offset(offset) order('distance', 'desc') }

    Read the article

  • Selecting by ID in Castle ActiveRecord

    - by ripper234
    How can I write a criteria to return all Orders that belong to a specific User? public class User { [PrimaryKey] public virtual int Id { get; set; } } public class Order { [PrimaryKey] public virtual int Id { get; set; } [BelongsTo("UserId")] public virtual User User { get; set; } } return ActiveRecordMediator<Order>.FindAll( // What criteria should I write here ? );

    Read the article

  • Python script to remove all comments from XML file

    - by Jennifer Greentree
    I am trying to build a python script that will take in an XML document and remove all of the comment blocks from it. I tried something along the lines of: tree = ElementTree() tree.parse(file) commentElements = tree.findall('//comment()') for element in commentElements: element.parentNode.remove(element) Doing this yields a weird error from python: "KeyError: '()' I know there are ways to easily edit the file using other methods ( like sed ), but I have to do it in a python script.

    Read the article

  • Is It Possible To Cast A Range

    - by Brad Rhoads
    I'd like to do something like this: def results = Item.findAll("from Item c, Tag b, ItemTag a where c = a.item and b = a.tag and (b.tag like :q or c.uri like :q) " + ob,[q:q]) def items = (Item) results[0..1][0] but I get Cannot cast object '[Ljava.lang.Object;@1e224a5' with class '[Ljava.lang.Object;' to class 'org.maflt.ibidem.Item' I can get what I need with this, but it doesn't seem like it's the best solution: def items = [] as Set def cnt = results.size() for (i=0;i<cnt-1;i++) { items << results[i][0] } items = items as List

    Read the article

  • Get the common prefix substring through Regex

    - by Dreampuf
    like this text = " \t hello there\n \t how are you?\n \t HHHH" hello there how are you? HHHH Could I get the common prefix substring through regex? I try to In [36]: re.findall(r"(?m)(?:(^[ \t]+).+[\n\r]+\1)", " \t hello there\n \t how are you?\n \t HHHH") Out[36]: [' \t '] But apparently that common prefix substring is ' \t ' I want use for dedent function like python textwrap module.

    Read the article

  • Retrieve all records in a table with nHibernate

    - by brainimus
    I need to retrieve all the records in a table with nHibernate. If I had the key for all the records in the table I could loop and use nHibernate's Get method (this seems inefficient though) but I don't have the keys. I could also use FindAll but this requires criteria or a stored procedure. How can I get all the records from the table?

    Read the article

  • DirectorySearch.PageSize = 2 doesn't work

    - by Bero
    using (DirectorySearcher srch = new DirectorySearcher(String.Format("(memberOf= {0})",p_Target.DistinguishedName))) { srch.PageSize = 2; SearchResultCollection results = results = srch.FindAll(); int count = results.Count; } count = 3 (THREE) and not 2. Why is that? I don't want to have all results in just one page. I know that PageSize = 2 is silly small but I set that value in this case just for testing purpose (in reality it will be more).

    Read the article

  • How to use python and beautfulsoup to print timestamp/last updated time (from HTML:) for each row ?

    - by cesalo
    How to use python and beautfulsoup to print timestamp/last updated time (from HTML:) for each row ? thanks a lot ! A) 1) can i add the print a)date/time and b)last updated time after row ? a) date/time - display the time when execute the python code b) last updated time from HTML: HTML structure: td x 1 including two tables each table have few "tr" and within "tr" have few "td" data inside HTML: <td> <table width="100%" border="4" cellspacing="0" bordercolor="white" align="center"> <tbody> <tr> <td colspan="2" class="verd_black11">Last Updated: 18/08/2014 10:19</td> </tr> <tr> <td colspan="3" class="verd_black11">All data delayed at least 15 minutes</td> </tr> </tbody> </table> <table width="100%" border="4" cellspacing="0" bordercolor="white" align="center"> <tbody id="tbody"> <tr id="tr0" class="tableHdrB1" align="center"> <td align="centre">C Aug-14 - 15000</td> <td align="right"> - </td> <td align="right">5</td> <td align="right">9,904</td> </tr> </tbody> </table> </td> Code: import urllib2 from bs4 import BeautifulSoup contenturl = "HTML:" soup = BeautifulSoup(urllib2.urlopen(contenturl).read()) table = soup.find('tbody', attrs={'id': 'tbody'}) rows = table.findAll('tr') for tr in rows: cols = tr.findAll('td') for td in cols: t = td.find(text=True) if t: text = t + ';' print text, print Output from above code C Aug-14 - 15000 ; - ; 5 ; 9,904 Expected output: C Aug-14 - 15000 ; - ; 5 ; 9,904 ; 18/08/2014 ; 13:48:00 ; 18/08/2014 ; 10:19 (execute python code) (last updated time)

    Read the article

  • Custom Lookup Provider For NetBeans Platform CRUD Tutorial

    - by Geertjan
    For a long time I've been planning to rewrite the second part of the NetBeans Platform CRUD Application Tutorial to integrate the loosely coupled capabilities introduced in a seperate series of articles based on articles by Antonio Vieiro (a great series, by the way). Nothing like getting into the Lookup stuff right from the get go (rather than as an afterthought)! The question, of course, is how to integrate the loosely coupled capabilities in a logical way within that tutorial. Today I worked through the tutorial from scratch, up until the point where the prototype is completed, i.e., there's a JTextArea displaying data pulled from a database. That brought me to the place where I needed to be. In fact, as soon as the prototype is completed, i.e., the database connection has been shown to work, the whole story about Lookup.Provider and InstanceContent should be introduced, so that all the subsequent sections, i.e., everything within "Integrating CRUD Functionality" will be done by adding new capabilities to the Lookup.Provider. However, before I perform open heart surgery on that tutorial, I'd like to run the scenario by all those reading this blog who understand what I'm trying to do! (I.e., probably anyone who has read this far into this blog entry.) So, this is what I propose should happen and in this order: Point out the fact that right now the database access code is found directly within our TopComponent. Not good. Because you're mixing view code with data code and, ideally, the developers creating the user interface wouldn't need to know anything about the data access layer. Better to separate out the data access code into a separate class, within the CustomerLibrary module, i.e., far away from the module providing the user interface, with this content: public class CustomerDataAccess { public List<Customer> getAllCustomers() { return Persistence.createEntityManagerFactory("CustomerLibraryPU"). createEntityManager().createNamedQuery("Customer.findAll").getResultList(); } } Point out the fact that there is a concept of "Lookup" (which readers of the tutorial should know about since they should have followed the NetBeans Platform Quick Start), which is a registry into which objects can be published and to which other objects can be listening. In the same way as a TopComponent provides a Lookup, as demonstrated in the NetBeans Platform Quick Start, your own object can also provide a Lookup. So, therefore, let's provide a Lookup for Customer objects.  import org.openide.util.Lookup; import org.openide.util.lookup.AbstractLookup; import org.openide.util.lookup.InstanceContent; public class CustomerLookupProvider implements Lookup.Provider { private Lookup lookup; private InstanceContent instanceContent; public CustomerLookupProvider() { // Create an InstanceContent to hold capabilities... instanceContent = new InstanceContent(); // Create an AbstractLookup to expose the InstanceContent... lookup = new AbstractLookup(instanceContent); // Add a "Read" capability to the Lookup of the provider: //...to come... // Add a "Update" capability to the Lookup of the provider: //...to come... // Add a "Create" capability to the Lookup of the provider: //...to come... // Add a "Delete" capability to the Lookup of the provider: //...to come... } @Override public Lookup getLookup() { return lookup; } } Point out the fact that, in the same way as we can publish an object into the Lookup of a TopComponent, we can now also publish an object into the Lookup of our CustomerLookupProvider. Instead of publishing a String, as in the NetBeans Platform Quick Start, we'll publish an instance of our own type. And here is the type: public interface ReadCapability { public void read() throws Exception; } And here is an implementation of our type added to our Lookup: public class CustomerLookupProvider implements Lookup.Provider { private Set<Customer> customerSet; private Lookup lookup; private InstanceContent instanceContent; public CustomerLookupProvider() { customerSet = new HashSet<Customer>(); // Create an InstanceContent to hold capabilities... instanceContent = new InstanceContent(); // Create an AbstractLookup to expose the InstanceContent... lookup = new AbstractLookup(instanceContent); // Add a "Read" capability to the Lookup of the provider: instanceContent.add(new ReadCapability() { @Override public void read() throws Exception { ProgressHandle handle = ProgressHandleFactory.createHandle("Loading..."); handle.start(); customerSet.addAll(new CustomerDataAccess().getAllCustomers()); handle.finish(); } }); // Add a "Update" capability to the Lookup of the provider: //...to come... // Add a "Create" capability to the Lookup of the provider: //...to come... // Add a "Delete" capability to the Lookup of the provider: //...to come... } @Override public Lookup getLookup() { return lookup; } public Set<Customer> getCustomers() { return customerSet; } } Point out that we can now create a new instance of our Lookup (in some other module, so long as it has a dependency on the module providing the CustomerLookupProvider and the ReadCapability), retrieve the ReadCapability, and then do something with the customers that are returned, here in the rewritten constructor of the TopComponent, without needing to know anything about how the database access is actually achieved since that is hidden in the implementation of our type, above: public CustomerViewerTopComponent() { initComponents(); setName(Bundle.CTL_CustomerViewerTopComponent()); setToolTipText(Bundle.HINT_CustomerViewerTopComponent()); // EntityManager entityManager = Persistence.createEntityManagerFactory("CustomerLibraryPU").createEntityManager(); // Query query = entityManager.createNamedQuery("Customer.findAll"); // List<Customer> resultList = query.getResultList(); // for (Customer c : resultList) { // jTextArea1.append(c.getName() + " (" + c.getCity() + ")" + "\n"); // } CustomerLookupProvider lookup = new CustomerLookupProvider(); ReadCapability rc = lookup.getLookup().lookup(ReadCapability.class); try { rc.read(); for (Customer c : lookup.getCustomers()) { jTextArea1.append(c.getName() + " (" + c.getCity() + ")" + "\n"); } } catch (Exception ex) { Exceptions.printStackTrace(ex); } } Does the above make as much sense to others as it does to me, including the naming of the classes? Feedback would be appreciated! Then I'll integrate into the tutorial and do the same for the other sections, i.e., "Create", "Update", and "Delete". (By the way, of course, the tutorial ends up showing that, rather than using a JTextArea to display data, you can use Nodes and explorer views to do so.)

    Read the article

  • C#/.NET Little Wonders: The Predicate, Comparison, and Converter Generic Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the last three weeks, we examined the Action family of delegates (and delegates in general), the Func family of delegates, and the EventHandler family of delegates and how they can be used to support generic, reusable algorithms and classes. This week I will be completing my series on the generic delegates in the .NET Framework with a discussion of three more, somewhat less used, generic delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>. These are older generic delegates that were introduced in .NET 2.0, mostly for use in the Array and List<T> classes.  Though older, it’s good to have an understanding of them and their intended purpose.  In addition, you can feel free to use them yourself, though obviously you can also use the equivalents from the Func family of delegates instead. Predicate<T> – delegate for determining matches The Predicate<T> delegate was a very early delegate developed in the .NET 2.0 Framework to determine if an item was a match for some condition in a List<T> or T[].  The methods that tend to use the Predicate<T> include: Find(), FindAll(), FindLast() Uses the Predicate<T> delegate to finds items, in a list/array of type T, that matches the given predicate. FindIndex(), FindLastIndex() Uses the Predicate<T> delegate to find the index of an item, of in a list/array of type T, that matches the given predicate. The signature of the Predicate<T> delegate (ignoring variance for the moment) is: 1: public delegate bool Predicate<T>(T obj); So, this is a delegate type that supports any method taking an item of type T and returning bool.  In addition, there is a semantic understanding that this predicate is supposed to be examining the item supplied to see if it matches a given criteria. 1: // finds first even number (2) 2: var firstEven = Array.Find(numbers, n => (n % 2) == 0); 3:  4: // finds all odd numbers (1, 3, 5, 7, 9) 5: var allEvens = Array.FindAll(numbers, n => (n % 2) == 1); 6:  7: // find index of first multiple of 5 (4) 8: var firstFiveMultiplePos = Array.FindIndex(numbers, n => (n % 5) == 0); This delegate has typically been succeeded in LINQ by the more general Func family, so that Predicate<T> and Func<T, bool> are logically identical.  Strictly speaking, though, they are different types, so a delegate reference of type Predicate<T> cannot be directly assigned to a delegate reference of type Func<T, bool>, though the same method can be assigned to both. 1: // SUCCESS: the same lambda can be assigned to either 2: Predicate<DateTime> isSameDayPred = dt => dt.Date == DateTime.Today; 3: Func<DateTime, bool> isSameDayFunc = dt => dt.Date == DateTime.Today; 4:  5: // ERROR: once they are assigned to a delegate type, they are strongly 6: // typed and cannot be directly assigned to other delegate types. 7: isSameDayPred = isSameDayFunc; When you assign a method to a delegate, all that is required is that the signature matches.  This is why the same method can be assigned to either delegate type since their signatures are the same.  However, once the method has been assigned to a delegate type, it is now a strongly-typed reference to that delegate type, and it cannot be assigned to a different delegate type (beyond the bounds of variance depending on Framework version, of course). Comparison<T> – delegate for determining order Just as the Predicate<T> generic delegate was birthed to give Array and List<T> the ability to perform type-safe matching, the Comparison<T> was birthed to give them the ability to perform type-safe ordering. The Comparison<T> is used in Array and List<T> for: Sort() A form of the Sort() method that takes a comparison delegate; this is an alternate way to custom sort a list/array from having to define custom IComparer<T> classes. The signature for the Comparison<T> delegate looks like (without variance): 1: public delegate int Comparison<T>(T lhs, T rhs); The goal of this delegate is to compare the left-hand-side to the right-hand-side and return a negative number if the lhs < rhs, zero if they are equal, and a positive number if the lhs > rhs.  Generally speaking, null is considered to be the smallest value of any reference type, so null should always be less than non-null, and two null values should be considered equal. In most sort/ordering methods, you must specify an IComparer<T> if you want to do custom sorting/ordering.  The Array and List<T> types, however, also allow for an alternative Comparison<T> delegate to be used instead, essentially, this lets you perform the custom sort without having to have the custom IComparer<T> class defined. It should be noted, however, that the LINQ OrderBy(), and ThenBy() family of methods do not support the Comparison<T> delegate (though one could easily add their own extension methods to create one, or create an IComparer() factory class that generates one from a Comparison<T>). So, given this delegate, we could use it to perform easy sorts on an Array or List<T> based on custom fields.  Say for example we have a data class called Employee with some basic employee information: 1: public sealed class Employee 2: { 3: public string Name { get; set; } 4: public int Id { get; set; } 5: public double Salary { get; set; } 6: } And say we had a List<Employee> that contained data, such as: 1: var employees = new List<Employee> 2: { 3: new Employee { Name = "John Smith", Id = 2, Salary = 37000.0 }, 4: new Employee { Name = "Jane Doe", Id = 1, Salary = 57000.0 }, 5: new Employee { Name = "John Doe", Id = 5, Salary = 60000.0 }, 6: new Employee { Name = "Jane Smith", Id = 3, Salary = 59000.0 } 7: }; Now, using the Comparison<T> delegate form of Sort() on the List<Employee>, we can sort our list many ways: 1: // sort based on employee ID 2: employees.Sort((lhs, rhs) => Comparer<int>.Default.Compare(lhs.Id, rhs.Id)); 3:  4: // sort based on employee name 5: employees.Sort((lhs, rhs) => string.Compare(lhs.Name, rhs.Name)); 6:  7: // sort based on salary, descending (note switched lhs/rhs order for descending) 8: employees.Sort((lhs, rhs) => Comparer<double>.Default.Compare(rhs.Salary, lhs.Salary)); So again, you could use this older delegate, which has a lot of logical meaning to it’s name, or use a generic delegate such as Func<T, T, int> to implement the same sort of behavior.  All this said, one of the reasons, in my opinion, that Comparison<T> isn’t used too often is that it tends to need complex lambdas, and the LINQ ability to order based on projections is much easier to use, though the Array and List<T> sorts tend to be more efficient if you want to perform in-place ordering. Converter<TInput, TOutput> – delegate to convert elements The Converter<TInput, TOutput> delegate is used by the Array and List<T> delegate to specify how to convert elements from an array/list of one type (TInput) to another type (TOutput).  It is used in an array/list for: ConvertAll() Converts all elements from a List<TInput> / TInput[] to a new List<TOutput> / TOutput[]. The delegate signature for Converter<TInput, TOutput> is very straightforward (ignoring variance): 1: public delegate TOutput Converter<TInput, TOutput>(TInput input); So, this delegate’s job is to taken an input item (of type TInput) and convert it to a return result (of type TOutput).  Again, this is logically equivalent to a newer Func delegate with a signature of Func<TInput, TOutput>.  In fact, the latter is how the LINQ conversion methods are defined. So, we could use the ConvertAll() syntax to convert a List<T> or T[] to different types, such as: 1: // get a list of just employee IDs 2: var empIds = employees.ConvertAll(emp => emp.Id); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.ConvertAll(emp => (int)emp.Salary); Note that the expressions above are logically equivalent to using LINQ’s Select() method, which gives you a lot more power: 1: // get a list of just employee IDs 2: var empIds = employees.Select(emp => emp.Id).ToList(); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.Select(emp => (int)emp.Salary).ToList(); The only difference with using LINQ is that many of the methods (including Select()) are deferred execution, which means that often times they will not perform the conversion for an item until it is requested.  This has both pros and cons in that you gain the benefit of not performing work until it is actually needed, but on the flip side if you want the results now, there is overhead in the behind-the-scenes work that support deferred execution (it’s supported by the yield return / yield break keywords in C# which define iterators that maintain current state information). In general, the new LINQ syntax is preferred, but the older Array and List<T> ConvertAll() methods are still around, as is the Converter<TInput, TOutput> delegate. Sidebar: Variance support update in .NET 4.0 Just like our descriptions of Func and Action, these three early generic delegates also support more variance in assignment as of .NET 4.0.  Their new signatures are: 1: // comparison is contravariant on type being compared 2: public delegate int Comparison<in T>(T lhs, T rhs); 3:  4: // converter is contravariant on input and covariant on output 5: public delegate TOutput Contravariant<in TInput, out TOutput>(TInput input); 6:  7: // predicate is contravariant on input 8: public delegate bool Predicate<in T>(T obj); Thus these delegates can now be assigned to delegates allowing for contravariance (going to a more derived type) or covariance (going to a less derived type) based on whether the parameters are input or output, respectively. Summary Today, we wrapped up our generic delegates discussion by looking at three lesser-used delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>.  All three of these tend to be replaced by their more generic Func equivalents in LINQ, but that doesn’t mean you shouldn’t understand what they do or can’t use them for your own code, as they do contain semantic meanings in their names that sometimes get lost in the more generic Func name.   Tweet Technorati Tags: C#,CSharp,.NET,Little Wonders,delegates,generics,Predicate,Converter,Comparison

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8  | Next Page >