Search Results

Search found 100 results on 4 pages for 'ggplot2'.

Page 3/4 | < Previous Page | 1 2 3 4  | Next Page >

  • Changing text size on a ggplot bump plot

    - by Tom Liptrot
    Hi, I'm fairly new to ggplot. I have made a bumpplot using code posted below. I got the code from someones blog - i've lost the link.... I want to be able to increase the size of the lables (here letters which care very small on the left and right of the plot) without affecting the width of the lines (this will only really make sense after you have run the code) I have tried changing the size paramater but that always alter the line width as well. Any suggestion appreciated. Tom require(ggplot2) df<-matrix(rnorm(520), 5, 10) #makes a random example colnames(df) <- letters[1:10] Price.Rank<-t(apply(df, 1, rank)) dfm<-melt(Price.Rank) names(dfm)<-c( "Date","Brand", "value") p <- ggplot(dfm, aes(factor(Date), value, group = Brand, colour = Brand, label = Brand)) p1 <- p + geom_line(aes(size=2.2, alpha=0.7)) + geom_text(data = subset(dfm, Date == 1), aes(x = Date , size =2.2, hjust = 1, vjust=0)) + geom_text(data = subset(dfm, Date == 5), aes(x = Date , size =2.2, hjust = 0, vjust=0))+ theme_bw() + opts(legend.position = "none", panel.border = theme_blank()) p1 + theme_bw() + opts(legend.position = "none", panel.border = theme_blank())

    Read the article

  • R: Creating Custom Shapes with ggplot

    - by Brandon Bertelsen
    Full Disclosure: This was also posted to the ggplot2 mailing list. (I'll update if I receive a response) I'm a bit lost on this one, I've tried messing around with geom_polygon but successive attempts seem worse than the previous. The image that I'm trying to recreate is this, the colours are unimportant, but the positions are: In addition to creating this, I also need to be able to label each element with text. At this point, I'm not expecting a solution (although that would be ideal) but pointers or similar examples would be immensely helpful. One option that I played with was hacking scale_shape and using 1,1 as coords. But was stuck with being able to add labels. The reason I'm doing this with ggplot, is because I'm generating scorecards on a company by company basis. This is only one plot in a 4 x 10 grid of other plots (using pushViewport) Note: The top tier of the pyramid could also be a rectangle of similar size.

    Read the article

  • Generate multiple graphics from within an R function

    - by William Doane
    I'd like to spawn several graphics windows from within a function in R using ggplot graphics... testf <- function(a, b) { devAskNewPage(TRUE) qplot(a, b); # grid.newpage(recording = TRUE) dev.new() qplot(a, a+a); # grid.newpage(recording = TRUE) dev.new() qplot(b, b+b); } library(ggplot2) x <- rnorm(50) y <- rnorm(50) testf(x, y) However, neither dev.new() nor grid.newpage() seems to flush the preceding plot. I know that, in R, functions normally only produce the last thing they evaluate, but I'd like to understand the process better and to learn of any possible workarounds. Thoughts?

    Read the article

  • R ggplot barplot; Fill based on two separate variables

    - by user1476968
    A picture says more than a thousand words. As you can see, my fill is based on the variable variable. Within each bar there is however multiple data entities (black borders) since the discrete variable complexity make them unique. What I am trying to find is something that makes each section of the bar more distinguishable than the current look. Preferable would be if it was something like shading. Here's an example (not the same dataset, since the original was imported): dat <- read.table(text = "Complexity Method Sens Spec MMC 1 L Alpha 50 20 10 2 M Alpha 40 30 80 3 H Alpha 10 10 5 4 L Beta 70 50 60 5 M Beta 49 10 80 6 H Beta 90 17 48 7 L Gamma 19 5 93 8 M Gamma 18 39 4 9 H Gamma 10 84 74", sep = "", header=T) library(ggplot2) library(reshape) short.m <- melt(dat) ggplot(short.m, aes(x=Method, y= value/100 , fill=variable)) + geom_bar(stat="identity",position="dodge", colour="black") + coord_flip()

    Read the article

  • geom_tile heatmap with different high fill colours based on factor

    - by Michael
    I'm interested in building a heatmap with geom_tile in ggplot2 that uses a different gradient high color based on a factor. The plot below creates the plot where the individual tiles are colored blue or red based on the xy_type, but there is no gradient. ggplot() + geom_tile(data=mydata, aes(x=factor(myx), y=myy, fill=factor(xy_type))) + scale_fill_manual(values=c("blue", "red")) The plot below does not use the xy_type factor to choose the color, but I get a single group gradient based on the xy_avg_value. ggplot() + geom_tile(data=mydata, aes(x=factor(myx), y=myy, fill=xy_avg_value)) Is there a technique to blend these two plots? I can use a facet_grid(xy_type ~ .) to create separate plots of this data, with the gradient. As this is ultimately going to be a map (x~y coordinates), I'd like to find a way to display the different gradient together in a single geom_tile map.

    Read the article

  • R: ca plotting text attributes

    - by chasec
    Does anyone know of a way to control the font size/color/weight of the row and column names when plotting a correspondence plot with the ca package? The following code will produce a very nice looking chart, though if there were more attributes (very heavy, super heavy, something more than super heavy) or more classes of workers (peons, underlings, etc) then the graph will get a little cluttered and hard to tell what was what. It would be nice if you could list all the attributes in a separate color than the categories of workers. library(ca) data("smoke") plot(ca(smoke) , map = "symmetric" , what =c("active","active") , mass = c(T,T) , contrib = "absolute" , col = c("red","blue") , pch = c(15,17,15,17) , labels = c(2,2) , arrows = c(T,F) ) Alternatively, does anyone know if there is a way to reproduce something along these lines with ggplot2? I didn't find anything on the website that seemed comparable, but I don't know much about the package. Thanks, -Chase

    Read the article

  • How do I plot more than one series using qplot?

    - by celenius
    I'm trying to understand how to have more than one series on a plot, using the following data. Year <- c('1950', '1960', '1970', '1980') Bus <- c(10,20,30,40) Bus.sd <- c(1.1, 2.2, 3.3, 4.4) Car <- c(20, 20, 40, 40) Car.sd <- c(1.1, 2.2, 3.3, 4.4) sample_data = data.frame(Year, Bus, Bus.sd, Car, Car.sd) qplot(Year, Bus, data=sample_data, geom="pointrange", ymin = Bus - Bus.sd/2, ymax = Bus + Bus.sd/2) For example, using the above data, how do I show both sample_data$Bus and sample_data$Car on the same plot in different colors? What I tried doing was: p <- qplot(...) then p <- p + qplot(...) where I replicated the previous line, but this gave me an error. I don't fully understand how AES works. I have studied the ggplot2 examples, but have difficulty understanding the relevant examples here.

    Read the article

  • for (i in xxx) ggplot problem

    - by Andreas
    This is strange - I think? library(ggplot2) tf <- which(sapply(diamonds, is.factor)) diamonds.tf <- diamonds[,tf] So far so good. But next comes the trouble: pl.f <- ggplot(diamonds.tf, aes(x=diamonds.tf[,i]))+ geom_bar()+ xlab(names(diamonds.tf[i])) for (i in 1:ncol(diamonds.tf)) { ggsave(paste("plot.f",i,".png",sep=""), plot=pl.f, height=3.5, width=5.5) } This saves the plots in my working directory - but with the wrong x-label. I think this is strange since calling ggplot directly produces the right plot: i <- 2 ggplot(diamonds, aes(x=diamonds[,i]))+geom_bar()+xlab(names(diamonds)[i]) I don't really know how to describe this as a fitting title - suggestions as to a more descriptive question-title is most welcome. Thanks in advance

    Read the article

  • How can I collapse a dataframe by some variables, taking mean across others

    - by Alex Holcombe
    I need to summarize a data frame by some variables, ignoring the others. This is sometimes referred to as collapsing. E.g. if I have a dataframe like this: Widget Type Energy egg 1 20 egg 2 30 jap 3 50 jap 1 60 Then collapsing by Widget, with Energy the dependent variable, Energy~Widget, would yield Widget Energy egg 25 jap 55 In Excel the closest functionality might be "Pivot tables" and I've worked out how to do it in python (http://alexholcombe.wordpress.com/2009/01/26/summarizing-data-by-combinations-of-variables-with-python/), and here's an example with R using doBy library to do something very related (http://www.mail-archive.com/[email protected]/msg02643.html), but is there an easy way to do the above? And even better is there anything built into the ggplot2 library to create plots that collapse across some variables?

    Read the article

  • Margin adjustments when using ggplot's geom_tile()

    - by chris_dubois
    From the documentation for ggplot2's geom_tile() function, we have the following simple plot: > # Generate data > pp <- function (n,r=4) { + x <- seq(-r*pi, r*pi, len=n) + df <- expand.grid(x=x, y=x) + df$r <- sqrt(df$x^2 + df$y^2) + df$z <- cos(df$r^2)*exp(-df$r/6) + df + } > p <- ggplot(pp(20), aes(x=x,y=y)) > > p + geom_tile() How do I remove the margins that border the tile?

    Read the article

  • geom_rect and NULL

    - by csgillespie
    I've been looking at the geom_rect example in section 5.10 of the ggplot2 book and don't understand the purpose of the NULL's in the aes function. For example, using the mpg data: g = ggplot(data=mpg, aes(x=displ, y=hwy)) + geom_point() #Produces a plot with a transparent filled region g + geom_rect(aes(NULL, NULL), alpha=0.1,xmin=5, xmax=7, ymin=10, ymax=45, fill="blue") #Solid filled region (v0.9) or nothing in v0.8 g + geom_rect(alpha=0.1,xmin=5, xmax=7, ymin=10, ymax=45, fill="blue") My understanding is that the NULL's are resetting the x & y mapping, but I don't see why this should affect the transparency.

    Read the article

  • two line label with expression

    - by metasequoia
    I'd like to write an axis label over two lines with an expression() statement. However, plotmath and expression won't allow this (e.g. subscript appear on the far right). I found this discussion circa 2005 of a similar issue but the work around that they offer doesn't translate to my application in ggplot2. A recent question addressed a a different permutation of multi-line expression statements, but again the work around provided doesn't apply here. Example: p <- ggplot(mtcars,aes(x=wt,y=mpg))+ geom_point()+ xlab(expression(paste("A long string of text goes here just for the purpose \n of illustrating my point Weight "[reported]))) try(ggsave(plot=p,filename=<some file>,height=4,width=6)) yields an image where subscript "reported" is kicked out to the right when I'd like it to sit next to the previous word.

    Read the article

  • Assign grid.arrange to object

    - by Tyler Rinker
    I want to arrange plots with grid.arrange to make more complex coplots and then use grid.arrange to combine these complex coplots. I am using the following solution (http://stackoverflow.com/a/13295880/1000343) in this task to arrange mutliple plots and ensure they have equal widths. Here is a demo of the code: library(ggplot2); library(gridExtra) gA <- ggplotGrob(A) gB <- ggplotGrob(B) maxWidth = grid::unit.pmax(gA$widths[2:5], gB$widths[2:5]) gA$widths[2:5] <- as.list(maxWidth) gB$widths[2:5] <- as.list(maxWidth) x <- grid.arrange(gA, gB, ncol=1) y <- grid.arrange(gA, gB, ncol=1) grid.arrange(x, y, ncol=2) To be clear in my case x and y are slightly different plots with different values. I know grid.arrange isn't returning the plot as other grid based functions.

    Read the article

  • How to customize notches in ggplot boxplot

    - by cjy8709
    I had a question on how to change/customize the upper and lower limit of a notch on a boxplot created by ggplot2. I looked through the function stat_boxplot and found that ggplot calculates the notch limits with the equation median +/- 1.58 * iqr / sqrt(n). However instead of that equation I wanted to change it with my own set of upper and lower notch limits. My data has 4 factors and for each factor I calculated the median and did a bootstrap to get a 95% confidence interval of that median. Thus in the end I would like to change every boxplot to have its own unique notch upper and lower limit. I'm not sure if this is even possible in ggplot and was wondering if people have an idea on how to do this? Thanks again!

    Read the article

  • Return call from ggplot object

    - by aL3xa
    I've been using ggplot2 for a while now, and I can't find a way to get formula from ggplot object. Though I can get basic info with summary(<ggplot_object>), in order to get complete formula, usually I was combing up and down through .Rhistory file. And this becomes frustrating when you experiment with new graphs, especially when code gets a bit lengthy... so searching through history file isn't quite convenient way of doing this... Is there a more efficient way of doing this? Just an illustration: p <- qplot(data = mtcars, x = factor(cyl), geom = "bar", fill = factor(cyl)) + scale_fill_manual(name = "Cylinders", value = c("firebrick3", "gold2", "chartreuse3")) + stat_bin(aes(label = ..count..), vjust = -0.2, geom = "text", position = "identity") + xlab("# of cylinders") + ylab("Frequency") + opts(title = "Barplot: # of cylinders") I can get some basic info with summary: > summary(p) data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32x11] mapping: fill = factor(cyl), x = factor(cyl) scales: fill faceting: facet_grid(. ~ ., FALSE) ----------------------------------- geom_bar: stat_bin: position_stack: (width = NULL, height = NULL) mapping: label = ..count.. geom_text: vjust = -0.2 stat_bin: width = 0.9, drop = TRUE, right = TRUE position_identity: (width = NULL, height = NULL) But I want to get code I typed in to get the graph. I reckon that I'm missing something essential here... it's seems impossible that there's no way to get call from ggplot object!

    Read the article

  • ggplot: showing % instead of counts in charts of categorical variables

    - by wishihadabettername
    I'm plotting a categorical variable and instead of showing the counts for each category value, I'm looking for a way to get ggplot to display the percentage of values in that category. Of course, it is possible to create another variable with the calculated percentage and plot that one, but I have to do it several dozens of times and I hope to achieve that in one command. I was experimenting with something like qplot (mydataf) + stat_bin(aes(n=nrow(mydataf), y=..count../n)) + scale_y_continuous(formatter="percent") but I must be using it incorrectly, as I got errors. To easily reproduce the setup, here's a simplified example: mydata <- c ("aa", "bb", null, "bb", "cc", "aa", "aa", "aa", "ee", null, "cc"); mydataf <- factor(mydata); qplot (mydataf); #this shows the count, I'm looking to see % displayed. In the real case I'll probably use ggplot instead of qplot, but the right way to use stat_bin still eludes me. Thank you. UPDATE: I've also tried these four approaches: ggplot(mydataf, aes(y = (..count..)/sum(..count..))) + scale_y_continuous(formatter = 'percent'); ggplot(mydataf, aes(y = (..count..)/sum(..count..))) + scale_y_continuous(formatter = 'percent') + geom_bar(); ggplot(mydataf, aes(x = levels(mydataf), y = (..count..)/sum(..count..))) + scale_y_continuous(formatter = 'percent'); ggplot(mydataf, aes(x = levels(mydataf), y = (..count..)/sum(..count..))) + scale_y_continuous(formatter = 'percent') + geom_bar(); but all 4 give: Error: ggplot2 doesn't know how to deal with data of class factor The same error appears for the simple case of ggplot (data=mydataf, aes(levels(mydataf))) + geom_bar() so it's clearly something about how ggplot interacts with a single vector. I'm scratching my head, googling for that error gives a single result.

    Read the article

  • how to define fill colours in ggplot histogram?

    - by Andreas
    I have the following simple data data <- structure(list(status = c(9, 5, 9, 10, 11, 10, 8, 6, 6, 7, 10, 10, 7, 11, 11, 7, NA, 9, 11, 9, 10, 8, 9, 10, 7, 11, 9, 10, 9, 9, 8, 9, 11, 9, 11, 7, 8, 6, 11, 10, 9, 11, 11, 10, 11, 10, 9, 11, 7, 8, 8, 9, 4, 11, 11, 8, 7, 7, 11, 11, 11, 6, 7, 11, 6, 10, 10, 9, 10, 10, 8, 8, 10, 4, 8, 5, 8, 7), statusgruppe = c(0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, NA, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0)), .Names = c("status", "statusgruppe"), class = "data.frame", row.names = c(NA, -78L )) from that I'd like to make a histogram: ggplot(data, aes(status))+ geom_histogram(aes(y=..density..), binwidth=1, colour = "black", fill="white")+ theme_bw()+ scale_x_continuous("Staus", breaks=c(min(data$status,na.rm=T), median(data$status, na.rm=T), max(data$status, na.rm=T)),labels=c("Low", "Middle", "High"))+ scale_y_continuous("Percent", formatter="percent") Now - i'd like for the bins to take colou according to value - e.g. bins with value 9 gets dark grey - everything else should be light grey. I have tried with "fill=statusgruppe", scale_fill_grey(breaks=9) etc. - but I can't get it to work. Any ideas?

    Read the article

  • how to change strip.text labels in ggplot with facet and margin=TRUE

    - by Andreas
    I have looked here but still can't figure it out. How do I change the strip.text.x labels in a ggplot with faceting? Specifically I am using facet_grid with margins. The strip.text label for the margin is "(all)" - but since I am in a non-english speaking country I would rather write "Total" or something similar in my native tongue. opts(stip.text.x=c(levels(facetvariabel,"Total")) does not work. Any ideas? Example (not really the best dataset for this - but I guess it will work) ggplot(cars, aes(x=dist))+geom_bar()+facet_grid(.~speed, margin=T)

    Read the article

  • How to manually add a legend to a ggplot object

    - by Dan
    I have this data frame: structure(list(month_num = 1:24, founded_month = c(4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L), founded_year = c(2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2010L, 2010L, 2010L), count = c(270L, 222L, 256L, 250L, 277L, 268L, 246L, 214L, 167L, 408L, 201L, 225L, 203L, 220L, 230L, 225L, 177L, 207L, 166L, 135L, 116L, 122L, 69L, 42L), month_abb = c("Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", "Jan", "Feb", "Mar"), short_year = c("08", "08", "08", "08", "08", "08", "08", "08", "08", "09", "09", "09", "09", "09", "09", "09", "09", "09", "09", "09", "09", "10", "10", "10" ), proj = c(282, 246, 292, 298, 337, 340, 330, 310, 275, 528, 333, 369, 359, 388, 410, 417, 381, 423, 394, 375, 368, 386, 345, 330), label = c("Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", "Jan\n09", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", "Jan\n10", "Feb", "Mar")), .Names = c("month_num", "founded_month", "founded_year", "count", "month_abb", "short_year", "proj", "label"), row.names = c(NA, -24L), class = "data.frame") and i've got all of this done (I know the code's a bit ugly looking, pointers appreciated): p <- ggplot(m_summary2, aes(x = month_num, y = count)) p + geom_line(colour = rgb(0/255, 172/255, 0/255)) + geom_point(colour = rgb(0/255, 172/255, 0/255)) + geom_line(aes(x = m_summary2$month_num, y = m_summary2$proj), colour = rgb(18/255, 111/255, 150/255)) + geom_point(aes(x = m_summary2$month_num, y = m_summary2$proj), colour = rgb(18/255, 111/255, 150/255)) + scale_x_continuous("Month", breaks = m_summary2$month_num, labels = m_summary2$label) + scale_y_continuous("# Startups Founded") + opts(title = paste("# Startups Founded:", m_summary2$month_abb[1], m_summary2$short_year[1], "-", m_summary2$month_abb[nrow(m_summary2)], m_summary2$short_year[nrow(m_summary2)])) Now I would like to add a legend to clarify that the blue line is a projection and the green line is the current data. Thanks in advance!

    Read the article

  • Utilise Surv object in ggplot or lattice

    - by Misha
    Anyone know how to take advantage of ggplot or lattice in doing survival analysis? It would be nice to do trellis/facet like survival graphs. So in the end I played around and sort of found a solution for a kaplan meier plot. Apologize for the messy code in taking the list elements into a dataframe, but I couldnt figure out another way. Note: It only works with two levels of stratum. If anyone know how I can use x<-length(stratum) to do this please let me know (in stata I could append to a macro-unsure how this works in R)... ggkm<-function(time,event,stratum) { m2s<-Surv(time,as.numeric(event)) fit <- survfit(m2s ~ stratum) f$time<-fit$time f$surv<-fit$surv f$strata<-c(rep(names(fit$strata[1]),fit$strata[1]),rep(names(fit$strata[2]),fit$strata[2])) f$upper<-fit$upper f$lower<-fit$lower r<-ggplot (f,aes(x=time,y=surv,fill=strata,group=strata))+geom_line()+geom_ribbon(aes(ymin=lower,ymax=upper),alpha=0.3) return(r) }

    Read the article

  • subset in geom_point SOMETIMES returns full dataset, instead of none.

    - by Andreas
    I ask the following in the hope that someone might come up with a generic description about the problem.Basically I have no idea whats wrong with my code. When I run the code below, plot nr. 8 turns out wrong. Specifically the subset in geom_point does not work the way it should. (update: With plot nr. 8 the whole dataset is plottet, instead of only the subset). If somebody can tell me what the problem is, I'll update this post. SOdata <- structure(list(id = 10:55, one = c(7L, 8L, 7L, NA, 7L, 8L, 5L, 7L, 7L, 8L, NA, 10L, 8L, NA, NA, NA, NA, 6L, 5L, 6L, 8L, 4L, 7L, 6L, 9L, 7L, 5L, 6L, 7L, 6L, 5L, 8L, 8L, 7L, 7L, 6L, 6L, 8L, 6L, 8L, 8L, 7L, 7L, 5L, 5L, 8L), two = c(7L, NA, 8L, NA, 10L, 10L, 8L, 9L, 4L, 10L, NA, 10L, 9L, NA, NA, NA, NA, 7L, 8L, 9L, 10L, 9L, 8L, 8L, 8L, 8L, 8L, 9L, 10L, 8L, 8L, 8L, 10L, 9L, 10L, 8L, 9L, 10L, 8L, 8L, 7L, 10L, 8L, 9L, 7L, 9L), three = c(7L, 10L, 7L, NA, 10L, 10L, NA, 10L, NA, NA, NA, NA, 10L, NA, NA, 4L, NA, 7L, 7L, 4L, 10L, 10L, 7L, 4L, 7L, NA, 10L, 4L, 7L, 7L, 7L, 10L, 10L, 7L, 10L, 4L, 10L, 10L, 10L, 4L, 10L, 10L, 10L, 10L, 7L, 10L), four = c(7L, 10L, 4L, NA, 10L, 7L, NA, 7L, NA, NA, NA, NA, 10L, NA, NA, 4L, NA, 10L, 10L, 7L, 10L, 10L, 7L, 7L, 7L, NA, 10L, 7L, 4L, 10L, 4L, 7L, 10L, 2L, 10L, 4L, 12L, 4L, 7L, 10L, 10L, 12L, 12L, 4L, 7L, 10L), five = c(7L, NA, 6L, NA, 8L, 8L, 7L, NA, 9L, NA, NA, NA, 9L, NA, NA, NA, NA, 7L, 8L, NA, NA, 7L, 7L, 4L, NA, NA, NA, NA, 5L, 6L, 5L, 7L, 7L, 6L, 9L, NA, 10L, 7L, 8L, 5L, 7L, 10L, 7L, 4L, 5L, 10L), six = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("2010-05-25", "2010-05-27", "2010-06-07"), class = "factor"), seven = c(0.777777777777778, 0.833333333333333, 0.333333333333333, 0.888888888888889, 0.5, 0.888888888888889, 0.777777777777778, 0.722222222222222, 0.277777777777778, 0.611111111111111, 0.722222222222222, 1, 0.888888888888889, 0.722222222222222, 0.555555555555556, NA, 0, 0.666666666666667, 0.666666666666667, 0.833333333333333, 0.833333333333333, 0.833333333333333, 0.833333333333333, 0.722222222222222, 0.833333333333333, 0.888888888888889, 0.666666666666667, 1, 0.777777777777778, 0.722222222222222, 0.5, 0.833333333333333, 0.722222222222222, 0.388888888888889, 0.722222222222222, 1, 0.611111111111111, 0.777777777777778, 0.722222222222222, 0.944444444444444, 0.555555555555556, 0.666666666666667, 0.722222222222222, 0.444444444444444, 0.333333333333333, 0.777777777777778), eight = c(0.666666666666667, 0.333333333333333, 0.833333333333333, 0.666666666666667, 1, 1, 0.833333333333333, 0.166666666666667, 0.833333333333333, 0.833333333333333, 1, 1, 0.666666666666667, 0.666666666666667, 0.333333333333333, 0.5, 0, 0.666666666666667, 0.5, 1, 0.666666666666667, 0.5, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.333333333333333, 0.333333333333333, 1, 0.666666666666667, 0.833333333333333, 0.666666666666667, 0.666666666666667, 0.5, 0, 0.833333333333333, 1, 0.666666666666667, 0.5, 0.666666666666667, 0.666666666666667, 0.5, 1, 0.833333333333333, 0.666666666666667, 0.833333333333333, 0.666666666666667), nine = c(0.307692307692308, NA, 0.461538461538462, 0.538461538461538, 1, 0.769230769230769, 0.538461538461538, 0.692307692307692, 0, 0.153846153846154, 0.769230769230769, NA, 0.461538461538462, NA, NA, NA, NA, 0, 0.615384615384615, 0.615384615384615, 0.769230769230769, 0.384615384615385, 0.846153846153846, 0.923076923076923, 0.615384615384615, 0.692307692307692, 0.0769230769230769, 0.846153846153846, 0.384615384615385, 0.384615384615385, 0.461538461538462, 0.384615384615385, 0.461538461538462, NA, 0.923076923076923, 0.692307692307692, 0.615384615384615, 0.615384615384615, 0.769230769230769, 0.0769230769230769, 0.230769230769231, 0.692307692307692, 0.769230769230769, 0.230769230769231, 0.769230769230769, 0.615384615384615), ten = c(0.875, 0.625, 0.375, 0.75, 0.75, 0.75, 0.625, 0.875, 1, 0.125, 1, NA, 0.625, 0.75, 0.75, 0.375, NA, 0.625, 0.5, 0.75, 0.875, 0.625, 0.875, 0.75, 0.625, 0.875, 0.5, 0.75, 0, 0.5, 0.875, 1, 0.75, 0.125, 0.5, 0.5, 0.5, 0.625, 0.375, 0.625, 0.625, 0.75, 0.875, 0.375, 0, 0.875), elleven = c(1, 0.8, 0.7, 0.9, 0, 1, 0.9, 0.5, 0, 0.8, 0.8, NA, 0.8, NA, NA, 0.8, NA, 0.4, 0.8, 0.5, 1, 0.4, 0.5, 0.9, 0.8, 1, 0.8, 0.5, 0.3, 0.9, 0.2, 1, 0.8, 0.1, 1, 0.8, 0.5, 0.2, 0.7, 0.8, 1, 0.9, 0.6, 0.8, 0.2, 1), twelve = c(0.666666666666667, NA, 0.133333333333333, 1, 1, 0.8, 0.4, 0.733333333333333, NA, 0.933333333333333, NA, NA, 0.6, 0.533333333333333, NA, 0.533333333333333, NA, 0, 0.6, 0.533333333333333, 0.733333333333333, 0.6, 0.733333333333333, 0.666666666666667, 0.533333333333333, 0.733333333333333, 0.466666666666667, 0.733333333333333, 1, 0.733333333333333, 0.666666666666667, 0.533333333333333, NA, 0.533333333333333, 0.6, 0.866666666666667, 0.466666666666667, 0.533333333333333, 0.333333333333333, 0.6, 0.6, 0.866666666666667, 0.666666666666667, 0.6, 0.6, 0.533333333333333)), .Names = c("id", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "elleven", "twelve"), class = "data.frame", row.names = c(NA, -46L)) iqr <- function(x, ...) { qs <- quantile(as.numeric(x), c(0.25, 0.5, 0.75), na.rm = T) names(qs) <- c("ymin", "y", "ymax") qs } magic <- function(y, ...) { high <- median(SOdata[[y]], na.rm=T)+1.5*sd(SOdata[[y]],na.rm=T) low <- median(SOdata[[y]], na.rm=T)-1.5*sd(SOdata[[y]],na.rm=T) ggplot(SOdata, aes_string(x="six", y=y))+ stat_summary(fun.data="iqr", geom="crossbar", fill="grey", alpha=0.3)+ geom_point(data = SOdata[SOdata[[y]] > high,], position=position_jitter(w=0.1, h=0),col="green", alpha=0.5)+ geom_point(data = SOdata[SOdata[[y]] < low,], position=position_jitter(w=0.1, h=0),col="red", alpha=0.5)+ stat_summary(fun.y=median, geom="point",shape=18 ,size=4, col="orange") } for (i in names(SOdata)[-c(1,7)]) { p<- magic(i) ggsave(paste("magig_plot_",i,".png",sep=""), plot=p, height=3.5, width=5.5) }

    Read the article

  • Change the colour of ablines on ggplot

    - by Sarah
    Using this data I am fitting a plot: p <- ggplot(dat, aes(x=log(Explan), y=Response)) + geom_point(aes(group=Area, colour=Area))+ geom_abline(slope=-0.062712, intercept=0.165886)+ geom_abline(slope= -0.052300, intercept=-0.038691)+ scale_x_continuous("log(Mass) (g)")+ theme(axis.title.y=element_text(size=rel(1.2),vjust=0.2), axis.title.x=element_text(size=rel(1.2),vjust=0.2), axis.text.x=element_text(size=rel(1.3)), axis.text.y=element_text(size=rel(1.3)), text = element_text(size=13)) + scale_colour_brewer(palette="Set1") The two ablines represent the phylogenetically adjusted relationships for each Area trend. I am wondering, is it possible to get the ablines in the same colour palette as their appropriate area data? The first specified is for Area A, the second for Area B. I used: g <- ggplot_build(p) to find out that the first colour is #E41A1C and the second is #377EB8, however when I try to use aes within the +geom_abline command to specify these colours i.e. p <- ggplot(dat, aes(x=log(Explan), y=Response)) + geom_point(aes(group=Area, colour=Area))+ geom_abline(slope=-0.062712, intercept=0.165886,aes(colour='#E41A1C'))+ geom_abline(slope= -0.052300, intercept=-0.038691,aes(colour=#377EB8))+ scale_x_continuous("log(Mass) (g)")+ theme(axis.title.y=element_text(size=rel(1.2),vjust=0.2), axis.title.x=element_text(size=rel(1.2),vjust=0.2), axis.text.x=element_text(size=rel(1.3)), axis.text.y=element_text(size=rel(1.3)), text = element_text(size=13)) + scale_colour_brewer(palette="Set1") It changes the colour of the points and adds to the legend, which I don't want to do. Any advice would be much appreciated!

    Read the article

  • possible bug in geom_ribbon

    - by tomw
    i was hoping to plot two time series and shade the space between the series according to which series is larger at that time. here are the two series-- first in a data frame with an indicator for whichever series is larger at that time d1 <- read.csv("https://dl.dropbox.com/s/0txm3f70msd3nm6/ribbon%20data.csv?dl=1") And this is the melted series. d2 <- read.csv("https://dl.dropbox.com/s/6ohwmtkhpsutpig/melted%20ribbon%20data.csv?dl=1") which I plot... ggplot() + geom_line(data = d2, aes(x = time, y = value, group = variable, color = variable)) + geom_hline(yintercept = 0, linetype = 2) + geom_ribbon(data = d1[d1$big == "B",], aes(x = time, ymin = csa, ymax = csb), alpha = .25, fill = "#9999CC") + geom_ribbon(data = d1[d1$big == "A",], aes(x = time, ymin = csb, ymax = csa), alpha = .25, fill = "#CC6666") + scale_color_manual(values = c("#CC6666" , "#9999CC")) which results in... why is there a superfluous blue band in the middle of the plot?

    Read the article

  • Group variables in a boxplot in R

    - by tao.hong
    I am trying to generate a boxplot whose data come from two scenarios. In the plot, I would like to group boxes by their names (So there will be two boxes per variable). I know ggplot would be a good choice. But I got errors which I could not figure out. Can anyone give me some suggestions? sensitivity_out1 structure(c(0.0522902104339716, 0.0521369824334004, 0.0520240345973737, 0.0519818337359876, 0.051935071418996, 0.0519089404325544, 0.000392698277338341, 0.000326135474295325, 0.000280863338343747, 0.000259631566041935, 0.000246594043996332, 0.000237923540393391, 0.00046732650331544, 0.000474448907808135, 0.000478287273678457, 0.000480194683464109, 0.000480631753078668, 0.000481760272726273, 0.000947965771207979, 0.000944821699830455, 0.000939631071343889, 0.000937186900570605, 0.000936007346568281, 0.000934756220144141, 0.00132442589501872, 0.00132658367774979, 0.00133334696220742, 0.00133622384928092, 0.0013381577476241, 0.00134005741746304, 0.0991622968751298, 0.100791399440082, 0.101946808417405, 0.102524244727408, 0.102920085260477, 0.103232984259916, 0.0305219507186844, 0.0304635269233494, 0.0304161055015213, 0.0303742106794513, 0.0303381888169022, 0.0302996157711171, 1.94268588634518e-05, 2.23991225564447e-05, 2.5756135487907e-05, 2.79997917298194e-05, 3.00753967077715e-05, 3.16270817369878e-05, 0.544701146678523, 0.542887331601984, 0.541632986366816, 0.541005610554556, 0.540617004208336, 0.540315690692195, 0.000453386694666078, 0.000448473414508756, 0.00044692043197248, 0.000444826296854332, 0.000445747996014684, 0.000444764303682453, 0.000127569551159321, 0.000128422491392669, 0.00012933662856487, 0.000129941842982939, 0.000129578971489026, 0.000131113075233758, 0.00684610571790029, 0.00686349387897349, 0.00687468164010565, 0.00687880720347743, 0.00688275579317197, 0.00687822247621936), .Dim = c(6L, 12L)) out2 structure(c(0.0189965816735366, 0.0189995096225103, 0.0190099362589894, 0.0190033523148514, 0.01900896721937, 0.0190099427513381, 0.00192043989797585, 0.00207303208721059, 0.00225931163225165, 0.0024049969048389, 0.00252310364086785, 0.00262940166568126, 0.00195164921633517, 0.00190079923515755, 0.00186139563778548, 0.00184188171395076, 0.00183248544676564, 0.00182492970673969, 1.83038731485927e-05, 1.98252671720347e-05, 2.14794764479231e-05, 2.30713122969332e-05, 2.4484220713564e-05, 2.55958833705284e-05, 0.0428066864455102, 0.0431686808647809, 0.0434411033615353, 0.0435883377765726, 0.0436690169266633, 0.0437340464360965, 0.145288252474567, 0.141488776430307, 0.138204532539654, 0.136281799717717, 0.134864952272761, 0.133738386148036, 0.0711728636959696, 0.072031388688795, 0.0727536853228245, 0.0731581966147734, 0.0734424337399303, 0.0736637270702609, 0.000605277151497094, 0.000617268349064968, 0.000632975679951382, 0.000643904422677427, 0.000653775268094148, 0.000662225067910141, 0.26735354610469, 0.267515415990146, 0.26753155165617, 0.267553498616325, 0.267532284594615, 0.267510330320289, 0.000334158771646756, 0.000319032383145857, 0.000306074699839994, 0.000299153278494114, 0.000293956197852583, 0.000290171804454218, 0.000645975219899115, 0.000637548672578787, 0.000632375486965757, 0.000629579821884212, 0.000624956458229123, 0.000622456283217054, 0.0645188290106884, 0.0651539609630352, 0.0656417364889907, 0.0658996698322889, 0.0660715073023965, 0.0662034341510152), .Dim = c(6L, 12L)) Melt data: group variable value 1 1 PLDKRT 0 2 1 PLDKRT 0 3 1 PLDKRT 0 4 1 PLDKRT 0 5 1 PLDKRT 0 6 1 PLDKRT 0 Code: #Data_source 1 sensitivity_1=rbind(sensitivity_out1,sensitivity_out2) sensitivity_1=data.frame(sensitivity_1) colnames(sensitivity_1)=main_l #variable names sensitivity_1$group=1 #Data_source 2 sensitivity_2=rbind(sensitivity_out1[3:4,],sensitivity_out2[3:4,]) sensitivity_2=data.frame(sensitivity_2) colnames(sensitivity_2)=main_l sensitivity_2$group=2 sensitivity_pool=rbind(sensitivity_1,sensitivity_2) sensitivity_pool_m=melt(sensitivity_pool,id.vars="group") ggplot(data = sensitivity_pool_m, aes(x = variable, y = value)) + geom_boxplot(aes( fill= group), width = 0.8) Error: "Error in unit(tic_pos.c, "mm") : 'x' and 'units' must have length > 0" Update Figure out the error. I should use geom_boxplot(aes( fill= factor(group)), width = 0.8) rather than fill= group

    Read the article

  • Trying to keep filled bars in a faceted plot

    - by John Horton
    Not sure what I'm doing wrong here. I have this plot: ggplot(data.PE5, aes(ybands,fill=factor(decide))) + geom_bar(position="dodge") which produces: Then I want to facet by a factor, creating two stacked plots w/ dodged, colored bars ggplot(data.PE5, aes(ybands,fill=factor(decide))) + geom_bar(position="dodge") + facet_grid(~group_label) However, I lose the factor-based coloring, which I want to keep:

    Read the article

< Previous Page | 1 2 3 4  | Next Page >