Search Results

Search found 62 results on 3 pages for 'kahan summation'.

Page 3/3 | < Previous Page | 1 2 3 

  • This is more a matlab/math brain teaser than a question

    - by gd047
    Here is the setup. No assumptions for the values I am using. n=2; % dimension of vectors x and (square) matrix P r=2; % number of x vectors and P matrices x1 = [3;5] x2 = [9;6] x = cat(2,x1,x2) P1 = [6,11;15,-1] P2 = [2,21;-2,3] P(:,1)=P1(:) P(:,2)=P2(:) modePr = [-.4;16] TransPr=[5.9,0.1;20.2,-4.8] pred_modePr = TransPr'*modePr MixPr = TransPr.*(modePr*(pred_modePr.^(-1))') x0 = x*MixPr Then it was time to apply the following formula to get myP , where µij is MixPr. I used this code to get it: myP=zeros(n*n,r); Ptables(:,:,1)=P1; Ptables(:,:,2)=P2; for j=1:r for i = 1:r; temp = MixPr(i,j)*(Ptables(:,:,i) + ... (x(:,i)-x0(:,j))*(x(:,i)-x0(:,j))'); myP(:,j)= myP(:,j) + temp(:); end end Some brilliant guy proposed this formula as another way to produce myP for j=1:r xk1=x(:,j); PP=xk1*xk1'; PP0(:,j)=PP(:); xk1=x0(:,j); PP=xk1*xk1'; PP1(:,j)=PP(:); end myP = (P+PP0)*MixPr-PP1 I tried to formulate the equality between the two methods and seems to be this one. To make things easier, I ignored from both methods the summation of matrix P. where the first part denotes the formula that I used, while the second comes from his code snippet. Do you think this is an obvious equality? If yes, ignore all the above and just try to explain why. I could only start from the LHS, and after some algebra I think I proved it equals to the RHS. However I can't see how did he (or she) think of it in the first place.

    Read the article

  • Retrieving saved checkboxes' name and values from database

    - by sermed
    I have a form with checkboxes, each one has a value. When the registered user select any checkbox the value is incremented (the summation) and then then registred user save his selection of checkbox if he satisfied with the result of summation into database all this work fine ...i want to enable the registred user to view his selection history by retriving and displaying the checkboxes he selected in a page with thier values ... How I can do that? I'm just able to save the selected checkboxes as choice 1, choice 2, for example .. I want to view the selected checkboxes that is saved in database as the appear in the page when the user first select them: for example if the registred user selects these 3 options LEAD DEEP KEEL (1825) FULLY BATTENED MAINSAIL (558) TEAK SIDE DECKS (2889) They will be saved as for example (choice1, choice2, choice3). But if he want to view selected checkboxes the appear exactly as first he selects them: LEAD DEEP KEEL (1825) FULLY BATTENED MAINSAIL (558) TEAK SIDE DECKS (2889) This is my user table: $query="CREATE TABLE User( user_id varchar(20), password varchar(40), user_type varchar(20), firstname varchar(30), lastname varchar(30), street varchar(50), city varchar(50), county varchar(50), post_code varchar(10), country varchar(50), gender varchar(6), dob varchar(15), tel_no varchar(50), vals varchar(50), email varchar(50))"; and the code to inser the options selected to database <?php include("databaseconnection.php"); $str = ''; foreach($_POST as $key => $val) if (strpos($key,'choice') !== false) $str .= $key.','; $query = "INSERT INTO User (vals) VALUES('$str')"; $result=mysql_query($query,$conn); if ($result) { (mysql_error(); } else { echo " done"; } ?> And this is my form: function checkTotal() { document.listForm.total.value = ''; var sum = 0; for (i=0;i <form name="listForm" method="post" action="insert_options.php" > <TABLE cellPadding=3 width=600 border=0> <TBODY> <TR> <TH align=left width="87%" bgColor=#b0b3b4><SPAN class=whiteText>Item</SPAN></TH> <TH align=right width="13%" bgColor=#b0b3b4><SPAN class=whiteText>Select</SPAN></TH></TR> <TR> <TD bgcolor="#9da8af"colSpan=2><SPAN class=normalText><B>General</B></SPAN></TD></TR> <TR> <TD bgcolor="#c4c8ca"><SPAN class=normalText >TEAK SIDE DECKS (2889)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="2889" type="checkbox" onchange="checkTotal()" /></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>LEAD DEEP KEEL (1825)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="1825" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>FULLY BATTENED MAINSAIL (558)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="558" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>HIGH TECH SAILS FOR CONVENTIONAL RIG (1979)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="1979" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>IN MAST REEFING WITH HIGH TECH SAILS (2539)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="2539" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>SPlNNAKER GEAR (POLE LINES DECK FITTINGS) (820)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="820" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>SPINNAKER POLE VERTICAL STOWAGE SYSTEM (214)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="214" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>GAS ROD KICKER (208)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="208" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>SIDE RAIL OPENINGS (BOTH SIDES) (392)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="392" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>SPRING CLEATS MIDSHIPS -ALUMIMIUM (148)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="148" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>ELECTRIC ANCHOR WINDLASS (1189)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="1189" type="checkbox" onchange="checkTotal()"> </TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>ANCHOR CHAIN GALVANISED (50m) (202)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="202" type="checkbox" onchange="checkTotal()"> </TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>ANCHOR CHAIN GALVANISED (50m) (1141)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="1141" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgcolor="#9da8af"colSpan=2><SPAN class=normalText><B>NAVIGATION & ELECTRONICS</B></SPAN></TD></TR> <TR> <TD bgcolor="#c4c8ca"><SPAN class=normalText >WIND VANE (STAINLESS STEEL)(41)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="41" type="checkbox" onchange="checkTotal()" /></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>RAYMARINE ST6O LOG & DEPTH (SEPARATE UNITS)(226)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="226" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgcolor="#9da8af"colSpan=2><SPAN class=normalText><B>ENGINES & ELECTRICS</B></SPAN></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>SHORE SUPPLY (220V) WITH 3 OUTLETS (EXCLUDJNG SHORE CABLE) (327)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="327" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>3rd BATTERY(14OA/H)(196)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="196" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>24 AMP BATTERY CHARGER (475)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="475" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>2 BLADED FOLDING PROPELLER (UPGRADE)(299)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="299" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgcolor="#9da8af"colSpan=2><SPAN class=normalText><B>BELOW DECKS/DOMESTIC</B></SPAN></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>WARM WATER (FROM ENGINE & 220V)(749)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="749" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>SHOWER IN AFT HEADS WITH PUMPOUT(446)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="446" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>DECK SUCTION DISPOSAL FOR HOLDINGTANK(166)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="166" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>REFRIGERATED COOLBOX (12V)(666)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="666" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>LFS SAFETY PACKAGE (COCKPIT HARNESS POINTS STAINLESS STEEL JACKSTAYS)(208)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="208" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>UPHOLSTERY UPGRADE IN SALOON (SUEDETYPE)(701)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="701" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgcolor="#9da8af"colSpan=2><SPAN class=normalText><B>NAVIGATION ELECTRONICS & ELECTRICS</B></SPAN></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>VHF RADIO AERIAL CABLED TO NAVIGATION AREA(178)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="178" type="checkbox" onchange="checkTotal()"></TD></TR> </table>

    Read the article

  • Two radically different queries against 4 mil records execute in the same time - one uses brute force.

    - by IanC
    I'm using SQL Server 2008. I have a table with over 3 million records, which is related to another table with a million records. I have spent a few days experimenting with different ways of querying these tables. I have it down to two radically different queries, both of which take 6s to execute on my laptop. The first query uses a brute force method of evaluating possibly likely matches, and removes incorrect matches via aggregate summation calculations. The second gets all possibly likely matches, then removes incorrect matches via an EXCEPT query that uses two dedicated indexes to find the low and high mismatches. Logically, one would expect the brute force to be slow and the indexes one to be fast. Not so. And I have experimented heavily with indexes until I got the best speed. Further, the brute force query doesn't require as many indexes, which means that technically it would yield better overall system performance. Below are the two execution plans. If you can't see them, please let me know and I'll re-post then in landscape orientation / mail them to you. Brute-force query: Index-based exception query: My question is, based on the execution plans, which one look more efficient? I realize that thing may change as my data grows.

    Read the article

  • suggestions on syntax to express mathematical formula concisely

    - by aaa
    hello. I am developing functional domain specific embedded language within C++ to translate formulas into working code as concisely and accurately as possible. I post prototype in the comment, it is about 2 hundred lines long. Right now my language looks something like this (well, actually is going to look like): // implies two nested loops j=0:N, i=0,j (range(i) < j < N)[T(i,j) = (T(i,j) - T(j,i))/e(i+j)]; // implies summation over above expression sum(range(i) < j < N))[(T(i,j) - T(j,i))/e(i+j)]; I am looking for possible syntax improvements/extensions or just different ideas about expressing mathematical formulas as clearly and precisely as possible (in any language, not just C++). Can you give me some syntax examples relating to my question which can be accomplished in your language of choice which consider useful. In particular, if you have some ideas about how to translate the above code segments, I would be happy to hear them. Thank you just to clarify and give actual formula, my short-term goal is to express the following expression concisely where values in <> are already computed as 4-dimensional array

    Read the article

  • "for" loop from program 7.6 from Kochan's "Programming in Objective-C"

    - by Mr_Vlasov
    "The sigma notation is shorthand for a summation. Its use here means to add the values of 1/2^i, where i varies from 1 to n. That is, add 1/2 + 1/4 + 1/8 .... If you make the value of n large enough, the sum of this series should approach 1. Let’s experiment with different values for n to see how close we get." #import "Fraction.h" int main (int argc, char *argv[]) { NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init]; Fraction *aFraction = [[Fraction alloc] init]; Fraction *sum = [[Fraction alloc] init], *sum2; int i, n, pow2; [sum setTo: 0 over: 1]; // set 1st fraction to 0 NSLog (@"Enter your value for n:"); scanf ("%i", &n); pow2 = 2; for (i = 1; i <= n; ++i) { [aFraction setTo: 1 over: pow2]; sum2 = [sum add: aFraction]; [sum release]; // release previous sum sum = sum2; pow2 *= 2; } NSLog (@"After %i iterations, the sum is %g", n, [sum convertToNum]); [aFraction release]; [sum release]; [pool drain]; return 0; } Question: Why do we have to create additional variable sum2 that we are using in the "for" loop? Why do we need "release previous sum" here and then again give it a value that we just released? : sum2 = [sum add: aFraction]; [sum release]; // release previous sum sum = sum2; Is it just for the sake of avoiding memory leakage? (method "add" initializes a variable that is stored in sum2)

    Read the article

  • SQL SERVER – Signal Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28

    - by pinaldave
    In this post, let’s delve a bit more in depth regarding wait stats. The very first question: when do the wait stats occur? Here is the simple answer. When SQL Server is executing any task, and if for any reason it has to wait for resources to execute the task, this wait is recorded by SQL Server with the reason for the delay. Later on we can analyze these wait stats to understand the reason the task was delayed and maybe we can eliminate the wait for SQL Server. It is not always possible to remove the wait type 100%, but there are few suggestions that can help. Before we continue learning about wait types and wait stats, we need to understand three important milestones of the query life-cycle. Running - a query which is being executed on a CPU is called a running query. This query is responsible for CPU time. Runnable – a query which is ready to execute and waiting for its turn to run is called a runnable query. This query is responsible for Signal Wait time. (In other words, the query is ready to run but CPU is servicing another query). Suspended – a query which is waiting due to any reason (to know the reason, we are learning wait stats) to be converted to runnable is suspended query. This query is responsible for wait time. (In other words, this is the time we are trying to reduce). In simple words, query execution time is a summation of the query Executing CPU Time (Running) + Query Wait Time (Suspended) + Query Signal Wait Time (Runnable). Again, it may be possible a query goes to all these stats multiple times. Let us try to understand the whole thing with a simple analogy of a taxi and a passenger. Two friends, Tom and Danny, go to the mall together. When they leave the mall, they decide to take a taxi. Tom and Danny both stand in the line waiting for their turn to get into the taxi. This is the Signal Wait Time as they are ready to get into the taxi but the taxis are currently serving other customer and they have to wait for their turn. In other word they are in a runnable state. Now when it is their turn to get into the taxi, the taxi driver informs them he does not take credit cards and only cash is accepted. Neither Tom nor Danny have enough cash, they both cannot get into the vehicle. Tom waits outside in the queue and Danny goes to ATM to fetch the cash. During this time the taxi cannot wait, they have to let other passengers get into the taxi. As Tom and Danny both are outside in the queue, this is the Query Wait Time and they are in the suspended state. They cannot do anything till they get the cash. Once Danny gets the cash, they are both standing in the line again, creating one more Signal Wait Time. This time when their turn comes they can pay the taxi driver in cash and reach their destination. The time taken for the taxi to get from the mall to the destination is running time (CPU time) and the taxi is running. I hope this analogy is bit clear with the wait stats. You can check the Signalwait stats using following query of Glenn Berry. -- Signal Waits for instance SELECT CAST(100.0 * SUM(signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%signal (cpu) waits], CAST(100.0 * SUM(wait_time_ms - signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%resource waits] FROM sys.dm_os_wait_stats OPTION (RECOMPILE); Higher the Signal wait stats are not good for the system. Very high value indicates CPU pressure. In my experience, when systems are running smooth and without any glitch the Signal wait stat is lower than 20%. Again, this number can be debated (and it is from my experience and is not documented anywhere). In other words, lower is better and higher is not good for the system. In future articles we will discuss in detail the various wait types and wait stats and their resolution. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL SERVER – Single Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28

    - by pinaldave
    In this post, let’s delve a bit more in depth regarding wait stats. The very first question: when do the wait stats occur? Here is the simple answer. When SQL Server is executing any task, and if for any reason it has to wait for resources to execute the task, this wait is recorded by SQL Server with the reason for the delay. Later on we can analyze these wait stats to understand the reason the task was delayed and maybe we can eliminate the wait for SQL Server. It is not always possible to remove the wait type 100%, but there are few suggestions that can help. Before we continue learning about wait types and wait stats, we need to understand three important milestones of the query life-cycle. Running - a query which is being executed on a CPU is called a running query. This query is responsible for CPU time. Runnable – a query which is ready to execute and waiting for its turn to run is called a runnable query. This query is responsible for Single Wait time. (In other words, the query is ready to run but CPU is servicing another query). Suspended – a query which is waiting due to any reason (to know the reason, we are learning wait stats) to be converted to runnable is suspended query. This query is responsible for wait time. (In other words, this is the time we are trying to reduce). In simple words, query execution time is a summation of the query Executing CPU Time (Running) + Query Wait Time (Suspended) + Query Single Wait Time (Runnable). Again, it may be possible a query goes to all these stats multiple times. Let us try to understand the whole thing with a simple analogy of a taxi and a passenger. Two friends, Tom and Danny, go to the mall together. When they leave the mall, they decide to take a taxi. Tom and Danny both stand in the line waiting for their turn to get into the taxi. This is the Signal Wait Time as they are ready to get into the taxi but the taxis are currently serving other customer and they have to wait for their turn. In other word they are in a runnable state. Now when it is their turn to get into the taxi, the taxi driver informs them he does not take credit cards and only cash is accepted. Neither Tom nor Danny have enough cash, they both cannot get into the vehicle. Tom waits outside in the queue and Danny goes to ATM to fetch the cash. During this time the taxi cannot wait, they have to let other passengers get into the taxi. As Tom and Danny both are outside in the queue, this is the Query Wait Time and they are in the suspended state. They cannot do anything till they get the cash. Once Danny gets the cash, they are both standing in the line again, creating one more Single Wait Time. This time when their turn comes they can pay the taxi driver in cash and reach their destination. The time taken for the taxi to get from the mall to the destination is running time (CPU time) and the taxi is running. I hope this analogy is bit clear with the wait stats. You can check the single wait stats using following query of Glenn Berry. -- Signal Waits for instance SELECT CAST(100.0 * SUM(signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%signal (cpu) waits], CAST(100.0 * SUM(wait_time_ms - signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%resource waits] FROM sys.dm_os_wait_stats OPTION (RECOMPILE); Higher the single wait stats are not good for the system. Very high value indicates CPU pressure. In my experience, when systems are running smooth and without any glitch the single wait stat is lower than 20%. Again, this number can be debated (and it is from my experience and is not documented anywhere). In other words, lower is better and higher is not good for the system. In future articles we will discuss in detail the various wait types and wait stats and their resolution. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • timeIntervalSinceDate Accuracy

    - by mmccomb
    I've been working on a game with an engine that updates 20 times per seconds. I've got to point now where I want to start getting some performance figures and tweak the rendering and logic updates. In order to do so I started to add some timing code to my game loop, implemented as follows... NSDate* startTime = [NSDate date]; // Game update logic here.... // Also timing of smaller internal events NSDate* endTime = [NSDate date]; [endTime timeIntervalSinceDate:startTime]; I noticed however that when I timed blocks within the outer timing logic that the time they took to execute did not sum up to match the overall time taken. So I wrote a small unit test to demonstrate the problem in which I time the overall time taken to complete the test and then 10 smaller events, here it is... - (void)testThatSumOfTimingsMatchesOverallTiming { NSDate* startOfOverallTime = [NSDate date]; // Variable to hold summation of smaller timing events in the upcoming loop... float sumOfIndividualTimes = 0.0; NSTimeInterval times[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; for (int i = 0; i < 10; i++) { NSDate* startOfIndividualTime = [NSDate date]; // Kill some time... sleep(1); NSDate* endOfIndividualTime = [NSDate date]; times[i] = [endOfIndividualTime timeIntervalSinceDate:startOfIndividualTime]; sumOfIndividualTimes += times[i]; } NSDate* endOfOverallTime = [NSDate date]; NSTimeInterval overallTimeTaken = [endOfOverallTime timeIntervalSinceDate:startOfOverallTime]; NSLog(@"Sum of individual times: %fms", sumOfIndividualTimes); NSLog(@"Overall time: %fms", overallTimeTaken); STAssertFalse(TRUE, @""); } And here's the output... Sum of individual times: 10.001377ms Overall time: 10.016834ms Which illustrates my problem quite clearly. The overall time was 0.000012ms but the smaller events took only 0.000001ms. So what happened to the other 0.000011ms? Is there anything that looks particularly wrong with my code? Or is there an alternative timing mechanism I should use?

    Read the article

  • Supporting Piping (A Useful Hello World)

    - by blastthisinferno
    I am trying to write a collection of simple C++ programs that follow the basic Unix philosophy by: Make each program do one thing well. Expect the output of every program to become the input to another, as yet unknown, program. I'm having an issue trying to get the output of one to be the input of the other, and getting the output of one be the input of a separate instance of itself. Very briefly, I have a program add which takes arguments and spits out the summation. I want to be able to pipe the output to another add instance. ./add 1 2 | ./add 3 4 That should yield 6 but currently yields 10. I've encountered two problems: The cin waits for user input from the console. I don't want this, and haven't been able to find a simple example showing a the use of standard input stream without querying the user in the console. If someone knows of an example please let me know. I can't figure out how to use standard input while supporting piping. Currently, it appears it does not work. If I issue the command ./add 1 2 | ./add 3 4 it results in 7. The relevant code is below: add.cpp snippet // ... COMMAND LINE PROCESSING ... std::vector<double> numbers = multi.getValue(); // using TCLAP for command line parsing if (numbers.size() > 0) { double sum = numbers[0]; double arg; for (int i=1; i < numbers.size(); i++) { arg = numbers[i]; sum += arg; } std::cout << sum << std::endl; } else { double input; // right now this is test code while I try and get standard input streaming working as expected while (std::cin) { std::cin >> input; std::cout << input << std::endl; } } // ... MORE IRRELEVANT CODE ... So, I guess my question(s) is does anyone see what is incorrect with this code in order to support piping standard input? Are there some well known (or hidden) resources that explain clearly how to implement an example application supporting the basic Unix philosophy? @Chris Lutz I've changed the code to what's below. The problem where cin still waits for user input on the console, and doesn't just take from the standard input passed from the pipe. Am I missing something trivial for handling this? I haven't tried Greg Hewgill's answer yet, but don't see how that would help since the issue is still with cin. // ... COMMAND LINE PROCESSING ... std::vector<double> numbers = multi.getValue(); // using TCLAP for command line parsing double sum = numbers[0]; double arg; for (int i=1; i < numbers.size(); i++) { arg = numbers[i]; sum += arg; } // right now this is test code while I try and get standard input streaming working as expected while (std::cin) { std::cin >> arg; std::cout << arg << std::endl; } std::cout << sum << std::endl; // ... MORE IRRELEVANT CODE ...

    Read the article

  • Pluralsight Meet the Author Podcast on Structuring JavaScript Code

    - by dwahlin
    I had the opportunity to talk with Fritz Onion from Pluralsight about one of my recent courses titled Structuring JavaScript Code for one of their Meet the Author podcasts. We talked about why JavaScript patterns are important for building more re-useable and maintainable apps, pros and cons of different patterns, and how to go about picking a pattern as a project is started. The course provides a solid walk-through of converting what I call “Function Spaghetti Code” into more modular code that’s easier to maintain, more re-useable, and less susceptible to naming conflicts. Patterns covered in the course include the Prototype Pattern, Revealing Module Pattern, and Revealing Prototype Pattern along with several other tips and techniques that can be used. Meet the Author:  Dan Wahlin on Structuring JavaScript Code   The transcript from the podcast is shown below: [Fritz]  Hello, this is Fritz Onion with another Pluralsight author interview. Today we’re talking with Dan Wahlin about his new course, Structuring JavaScript Code. Hi, Dan, it’s good to have you with us today. [Dan]  Thanks for having me, Fritz. [Fritz]  So, Dan, your new course, which came out in December of 2011 called Structuring JavaScript Code, goes into several patterns of usage in JavaScript as well as ways of organizing your code and what struck me about it was all the different techniques you described for encapsulating your code. I was wondering if you could give us just a little insight into what your motivation was for creating this course and sort of why you decided to write it and record it. [Dan]  Sure. So, I got started with JavaScript back in the mid 90s. In fact, back in the days when browsers that most people haven’t heard of were out and we had JavaScript but it wasn’t great. I was on a project in the late 90s that was heavy, heavy JavaScript and we pretty much did what I call in the course function spaghetti code where you just have function after function, there’s no rhyme or reason to how those functions are structured, they just kind of flow and it’s a little bit hard to do maintenance on it, you really don’t get a lot of reuse as far as from an object perspective. And so coming from an object-oriented background in JAVA and C#, I wanted to put something together that highlighted kind of the new way if you will of writing JavaScript because most people start out just writing functions and there’s nothing with that, it works, but it’s definitely not a real reusable solution. So the course is really all about how to move from just kind of function after function after function to the world of more encapsulated code and more reusable and hopefully better maintenance in the process. [Fritz]  So I am sure a lot of people have had similar experiences with their JavaScript code and will be looking forward to seeing what types of patterns you’ve put forth. Now, a couple I noticed in your course one is you start off with the prototype pattern. Do you want to describe sort of what problem that solves and how you go about using it within JavaScript? [Dan]  Sure. So, the patterns that are covered such as the prototype pattern and the revealing module pattern just as two examples, you know, show these kind of three things that I harp on throughout the course of encapsulation, better maintenance, reuse, those types of things. The prototype pattern specifically though has a couple kind of pros over some of the other patterns and that is the ability to extend your code without touching source code and what I mean by that is let’s say you’re writing a library that you know either other teammates or other people just out there on the Internet in general are going to be using. With the prototype pattern, you can actually write your code in such a way that we’re leveraging the JavaScript property and by doing that now you can extend my code that I wrote without touching my source code script or you can even override my code and perform some new functionality. Again, without touching my code.  And so you get kind of the benefit of the almost like inheritance or overriding in object oriented languages with this prototype pattern and it makes it kind of attractive that way definitely from a maintenance standpoint because, you know, you don’t want to modify a script I wrote because I might roll out version 2 and now you’d have to track where you change things and it gets a little tricky. So with this you just override those pieces or extend them and get that functionality and that’s kind of some of the benefits that that pattern offers out of the box. [Fritz]  And then the revealing module pattern, how does that differ from the prototype pattern and what problem does that solve differently? [Dan]  Yeah, so the prototype pattern and there’s another one that’s kind of really closely lined with revealing module pattern called the revealing prototype pattern and it also uses the prototype key word but it’s very similar to the one you just asked about the revealing module pattern. [Fritz]  Okay. [Dan]  This is a really popular one out there. In fact, we did a project for Microsoft that was very, very heavy JavaScript. It was an HMTL5 jQuery type app and we use this pattern for most of the structure if you will for the JavaScript code and what it does in a nutshell is allows you to get that encapsulation so you have really a single function wrapper that wraps all your other child functions but it gives you the ability to do public versus private members and this is kind of a sort of debate out there on the web. Some people feel that all JavaScript code should just be directly accessible and others kind of like to be able to hide their, truly their private stuff and a lot of people do that. You just put an underscore in front of your field or your variable name or your function name and that kind of is the defacto way to say hey, this is private. With the revealing module pattern you can do the equivalent of what objective oriented languages do and actually have private members that you literally can’t get to as an external consumer of the JavaScript code and then you can expose only those members that you want to be public. Now, you don’t get the benefit though of the prototype feature, which is I can’t easily extend the revealing module pattern type code if you don’t like something I’m doing, chances are you’re probably going to have to tweak my code to fix that because we’re not leveraging prototyping but in situations where you’re writing apps that are very specific to a given target app, you know, it’s not a library, it’s not going to be used in other apps all over the place, it’s a pattern I actually like a lot, it’s very simple to get going and then if you do like that public/private feature, it’s available to you. [Fritz]  Yeah, that’s interesting. So it’s almost, you can either go private by convention just by using a standard naming convention or you can actually enforce it by using the prototype pattern. [Dan]  Yeah, that’s exactly right. [Fritz]  So one of the things that I know I run across in JavaScript and I’m curious to get your take on is we do have all these different techniques of encapsulation and each one is really quite different when you’re using closures versus simply, you know, referencing member variables and adding them to your objects that the syntax changes with each pattern and the usage changes. So what would you recommend for people starting out in a brand new JavaScript project? Should they all sort of decide beforehand on what patterns they’re going to stick to or do you change it based on what part of the library you’re working on? I know that’s one of the points of confusion in this space. [Dan]  Yeah, it’s a great question. In fact, I just had a company ask me about that. So which one do I pick and, of course, there’s not one answer fits all. [Fritz]  Right. [Dan]  So it really depends what you just said is absolutely in my opinion correct, which is I think as a, especially if you’re on a team or even if you’re just an individual a team of one, you should go through and pick out which pattern for this particular project you think is best. Now if it were me, here’s kind of the way I think of it. If I were writing a let’s say base library that several web apps are going to use or even one, but I know that there’s going to be some pieces that I’m not really sure on right now as I’m writing I and I know people might want to hook in that and have some better extension points, then I would look at either the prototype pattern or the revealing prototype. Now, really just a real quick summation between the two the revealing prototype also gives you that public/private stuff like the revealing module pattern does whereas the prototype pattern does not but both of the prototype patterns do give you the benefit of that extension or that hook capability. So, if I were writing a library that I need people to override things or I’m not even sure what I need them to override, I want them to have that option, I’d probably pick a prototype, one of the prototype patterns. If I’m writing some code that is very unique to the app and it’s kind of a one off for this app which is what I think a lot of people are kind of in that mode as writing custom apps for customers, then my personal preference is the revealing module pattern you could always go with the module pattern as well which is very close but I think the revealing module patterns a little bit cleaner and we go through that in the course and explain kind of the syntax there and the differences. [Fritz]  Great, that makes a lot of sense. [Fritz]  I appreciate you taking the time, Dan, and I hope everyone takes a chance to look at your course and sort of make these decisions for themselves in their next JavaScript project. Dan’s course is, Structuring JavaScript Code and it’s available now in the Pluralsight Library. So, thank you very much, Dan. [Dan]  Thanks for having me again.

    Read the article

  • CodePlex Daily Summary for Saturday, February 12, 2011

    CodePlex Daily Summary for Saturday, February 12, 2011Popular ReleasesEnhSim: EnhSim 2.4.0: 2.4.0This release supports WoW patch 4.06 at level 85 To use this release, you must have the Microsoft Visual C++ 2010 Redistributable Package installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=A7B7A05E-6DE6-4D3A-A423-37BF0912DB84 To use the GUI you must have the .NET 4.0 Framework installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9cfb2d51-5ff4-4491-b0e5-b386f32c0992 Changes since 2.3.0 - Upd...Sterling Isolated Storage Database with LINQ for Silverlight and Windows Phone 7: Sterling OODB v1.0: Note: use this changeset to download the source example that has been extended to show database generation, backup, and restore in the desktop example. Welcome to the Sterling 1.0 RTM. This version is not backwards-compatible with previous versions of Sterling. Sterling is also available via NuGet. This product has been used and tested in many applications and contains a full suite of unit tests. You can refer to the User's Guide for complete documentation, and use the unit tests as guide...PDF Rider: PDF Rider 0.5.1: Changes from the previous version * Use dynamic layout to better fit text in other languages * Includes French and Spanish localizations Prerequisites * Microsoft Windows Operating Systems (XP - Vista - 7) * Microsoft .NET Framework 3.5 runtime * A PDF rendering software (i.e. Adobe Reader) that can be opened inside Internet Explorer. Installation instructionsChoose one of the following methods: 1. Download and run the "pdfRider0.5.1-setup.exe" (reccomended) 2. Down...Snoop, the WPF Spy Utility: Snoop 2.6.1: This release is a bug fixing release. Most importantly, issues have been seen around WPF 4.0 applications not always showing up in the app chooser. Hopefully, they are fixed now. I thought this issue warranted a minor release since more and more people are going WPF 4.0 and I don't want anyone to have any problems. Dan Hanan also contributes again with several usability features. Thanks Dan! Happy Snooping! p.s. By request, I am also attaching a .zip file ... so that people can install it ...RIBA - Rich Internet Business Application for Silverlight: Preview of MVVM Framework Source + Tutorials: This is a first public release of the MVVM Framework which is part of the final RIBA application. The complete RIBA example LOB application has yet to be published. Further Documentation on the MVVM part can be found on the Blog, http://www.SilverlightBlog.Net and in the downloadable source ( mvvm/doc/ ). Please post all issues and suggestions in the issue tracker.SharePoint Learning Kit: 1.5: SharePoint Learning Kit 1.5 has the following new functionality: *Support for SharePoint 2010 *E-Learning Actions can be localised *Two New Document Library Edit Options *Automatically add the Assignment List Web Part to the Web Part Gallery *Various Bug Fixes for the Drop Box There are 2 downloads for this release SLK-1.5-2010.zip for SharePoint 2010 SLK-1.5-2007.zip for SharePoint 2007 (WSS3 & MOSS 2007)GMare: GMare Alpha 02: Alpha version 2. With fixes detailed in the issue tracker.Facebook C# SDK: 5.0.3 (BETA): This is fourth BETA release of the version 5 branch of the Facebook C# SDK. Remember this is a BETA build. Some things may change or not work exactly as planned. We are absolutely looking for feedback on this release to help us improve the final 5.X.X release. For more information about this release see the following blog posts: Facebook C# SDK - Writing your first Facebook Application Facebook C# SDK v5 Beta Internals Facebook C# SDK V5.0.0 (BETA) Released We have spend time trying ...NodeXL: Network Overview, Discovery and Exploration for Excel: NodeXL Excel Template, version 1.0.1.161: The NodeXL Excel template displays a network graph using edge and vertex lists stored in an Excel 2007 or Excel 2010 workbook. What's NewThis release adds a new Twitter List network importer, makes some minor feature improvements, and fixes a few bugs. See the Complete NodeXL Release History for details. Installation StepsFollow these steps to install and use the template: Download the Zip file. Unzip it into any folder. Use WinZip or a similar program, or just right-click the Zip file...Finestra Virtual Desktops: 1.1: This release adds a few more performance and graphical enhancements to 1.0. Switching desktops is now about as fast as you can blink. Desktop switching optimizations New welcome wizard for Vista/7 Fixed a few minor bugs Added a few more options to the options dialog (including ability to disable the taskbar switching)WCF Data Services Toolkit: WCF Data Services Toolkit: The source code and binary releases of the WCF Data Services Toolkit. For simplicity, the source code download doesn't include any of the MSTest files. If you want those, you can pull the code down via MercurialyoutubeFisher: youtubeFisher 3.0 [beta]: What's new: Video capturing improved Supports YouTube's new layout (january 2011) Internal refactoringNearforums - ASP.NET MVC forum engine: Nearforums v5.0: Version 5.0 of the ASP.NET MVC Forum Engine, containing the following improvements: .NET 4.0 as target framework using ASP.NET MVC 3. All views migrated to Razor for cleaner markup. Alternate template (Layout file) for mobile devices 4 Bug Fixes since Version 4.1 Visit the project Roadmap for more details. Webdeploy package sha1 checksum: 28785b7248052465ea0738a7775e8e8744d84c27fuv: 1.0 release, codename Chopper Joe: features: search/replace :o to open file :s to save file :q to quitASP.NET MVC Project Awesome, jQuery Ajax helpers (controls): 1.7: A rich set of helpers (controls) that you can use to build highly responsive and interactive Ajax-enabled Web applications. These helpers include Autocomplete, AjaxDropdown, Lookup, Confirm Dialog, Popup Form, Popup and Pager html generation optimized new features for the lookup (add additional search data ) live demo went aeroAutoLoL: AutoLoL v1.5.5: AutoChat now allows up to 6 items. Items with nr. 7-0 will be removed! News page url's are now opened in the default browser Added a context menu to the system tray icon (thanks to Alex Banagos) AutoChat now allows configuring the Chat Keys and the Modifier Key The recent files list now supports compact and full mode Fix: Swapped mouse buttons are now properly detected Fix: Sometimes the Play button was pressed while still greyed out Champion: Karma Note: You can also run the u...mojoPortal: 2.3.6.2: see release notes on mojoportal.com http://www.mojoportal.com/mojoportal-2362-released.aspx Note that we have separate deployment packages for .NET 3.5 and .NET 4.0 The deployment package downloads on this page are pre-compiled and ready for production deployment, they contain no C# source code. To download the source code see the Source Code Tab I recommend getting the latest source code using TortoiseHG, you can get the source code corresponding to this release here.Rawr: Rawr 4.0.19 Beta: Rawr is now web-based. The link to use Rawr4 is: http://elitistjerks.com/rawr.phpThis is the Cataclysm Beta Release. More details can be found at the following link http://rawr.codeplex.com/Thread/View.aspx?ThreadId=237262 As of the 4.0.16 release, you can now also begin using the new Downloadable WPF version of Rawr!This is a pre-alpha release of the WPF version, there are likely to be a lot of issues. If you have a problem, please follow the Posting Guidelines and put it into the Issue Trac...IronRuby: 1.1.2: IronRuby 1.1.2 is a servicing release that keeps on improving compatibility with Ruby 1.9.2 and includes IronRuby integration to Visual Studio 2010. We decided to drop 1.8.6 compatibility mode in all post-1.0 releases. We recommend using IronRuby 1.0 if you need 1.8.6 compatibility. In this release we fixed several major issues: - problems that blocked Gem installation in certain cases - regex syntax: the parser was replaced with a new one that is much more compatible with Ruby 1.9.2 - cras...MVVM Light Toolkit: MVVM Light Toolkit V3 SP1 (4): There was a small issue with the previous release that caused errors when installing the templates in VS10 Express. This release corrects the error. Only use this if you encountered issues when installing the previous release. No changes in the binaries.New Projects.net Statistics and Probability: z scores, ectAdvanced Lookup: Yet another custom lookup field. Advanced Lookup uses SharePoint 2010 dialog framework and supports Ajax autocomplete. Pop up dialog page could be any custom web part page containing AdvancedLookupDialogWebPart web part which should be connected to any other web parts on the pageBanico ERP: A Silverlight ERP (Enterprise Resource Planning) application.Behavior in Visual Studio 2010 WPF and Silverlight Designer- Support Tool: This tool supports to add the Behavior, Trigger / Action to the Visual Studio 2010 WPF and Silverlight designer.Branch Navigator: This component can be used for navigating to the nearest branch or station. It can be applicable for company’s websites which already have several distributed branches. It is a completely separated module which can be easily removed from or added to the already existing websites.Consejo Guild Site MVC: This is a project for a website for our WoW guild.Cronus: An application that helps keep track of your time. Setup multiple tasks as part of different projects. Includes some basic reporting (summation) functionality.Custom SharePoint List Item Attachments versions: Recently, I am working on a custom requirement to have maintaining own file versions for SPListItem Attachments with one of my engagements. This forced me to have this code published for community to share IP. DashBoardApp: AppDigibiz Advanced Media Picker: The Digibiz Advanced Media Picker (DAMP) can be used to replace the normal media picker in Umbraco because it has a lot of extra features.DnsShell: DnsShell is a Microsoft DNS administration / management module written for PowerShell 2.0. DnsShell is developed in C#.Dragger - Sokoban clone written in C#: Dragger is a sokoban clone written in WinForms C# in 2008 by CrackSoft. Now its source is availableFingering: ??????Full Thrust Logic: This project is aimed at encapsulating the “Full Thrust” (http://www.groundzerogames.net/) starship miniatures rules. This C# business logic library will enable game developers to create games based on these rules at an accelerated pace.jQuery Camera Driver: A jQuery and URL based camera driverLoggingMagic: MSBuild task for adding some logging to your application. Inject calls to Log.Trace at the beginning of each method. Integrates with nlog, log4net or your custom static logger class within your assemblyNBug: NBug is a .NET library created to automate the bug reporting process. It automatically creates and sends: * Bug reports, * Crash reports with minidump, * Error/exception reports with stack trace + ext. info. It can also be set up as a user feedback system (i.e. feature requests).NJHSpotifyEngine: NJHspotifyEngine is a c# wrapper around the Spotify Search API.PragmaSQL: T-SQL script editor with syntax highlighting and lots of other features. Princeton SharePoint User Group CodeShare: Web Parts, script, master pages, and styles used in the creation of the Princeton SharePoint User Group site, located at http://www.princetonsug.com.Reg Explore - Registry editor written in C#: RegExplore is a registry editor written by CrackSoft and released in 2008 It is now made open sourceRegEx TestBed - A regular expression testing tool written in WinForms C#: RegEx TestBed is a regular expression testing tool written in WinForms C# released in 2007 It is now made open source.Soluzione di Single Signon per BPOS: La soluzione di Comedata è in grado di interagire con Active Directory per intercettare le modifiche alla password degli utenti nel dominio locale inserendo la stessa informazione nel sistema remoto Microsoft BpoS (Microsoft Business Productivity Online Standard Suite).syobon: based on opensyobon: http://sf.net/projects/opensyobonTietaaCal: TietaaCal is an opensource agenda/scheduler for Silverlight/MoonlightWCFReactiveX: WCFReactiveX is a .NET framework that provides an unified functional process to communicating with WCF clients built around IObserverable<T> and IObserver<T>

    Read the article

  • questions regarding the use of A* with the 15-square puzzle

    - by Cheeso
    I'm trying to build an A* solver for a 15-square puzzle. The goal is to re-arrange the tiles so that they appear in their natural positions. You can only slide one tile at a time. Each possible state of the puzzle is a node in the search graph. For the h(x) function, I am using an aggregate sum, across all tiles, of the tile's dislocation from the goal state. In the above image, the 5 is at location 0,0, and it belongs at location 1,0, therefore it contributes 1 to the h(x) function. The next tile is the 11, located at 0,1, and belongs at 2,2, therefore it contributes 3 to h(x). And so on. EDIT: I now understand this is what they call "Manhattan distance", or "taxicab distance". I have been using a step count for g(x). In my implementation, for any node in the state graph, g is just +1 from the prior node's g. To find successive nodes, I just examine where I can possibly move the "hole" in the puzzle. There are 3 neighbors for the puzzle state (aka node) that is displayed: the hole can move north, west, or east. My A* search sometimes converges to a solution in 20s, sometimes 180s, and sometimes doesn't converge at all (waited 10 mins or more). I think h is reasonable. I'm wondering if I've modeled g properly. In other words, is it possible that my A* function is reaching a node in the graph via a path that is not the shortest path? Maybe have I not waited long enough? Maybe 10 minutes is not long enough? For a fully random arrangement, (assuming no parity problems), What is the average number of permutations an A* solution will examine? (please show the math) I'm going to look for logic errors in my code, but in the meantime, Any tips? (ps: it's done in Javascript). Also, no, this isn't CompSci homework. It's just a personal exploration thing. I'm just trying to learn Javascript. EDIT: I've found that the run-time is highly depend upon the heuristic. I saw the 10x factor applied to the heuristic from the article someone mentioned, and it made me wonder - why 10x? Why linear? Because this is done in javascript, I could modify the code to dynamically update an html table with the node currently being considered. This allowd me to peek at the algorithm as it was progressing. With a regular taxicab distance heuristic, I watched as it failed to converge. There were 5's and 12's in the top row, and they kept hanging around. I'd see 1,2,3,4 creep into the top row, but then they'd drop out, and other numbers would move up there. What I was hoping to see was 1,2,3,4 sort of creeping up to the top, and then staying there. I thought to myself - this is not the way I solve this personally. Doing this manually, I solve the top row, then the 2ne row, then the 3rd and 4th rows sort of concurrently. So I tweaked the h(x) function to more heavily weight the higher rows and the "lefter" columns. The result was that the A* converged much more quickly. It now runs in 3 minutes instead of "indefinitely". With the "peek" I talked about, I can see the smaller numbers creep up to the higher rows and stay there. Not only does this seem like the right thing, it runs much faster. I'm in the process of trying a bunch of variations. It seems pretty clear that A* runtime is very sensitive to the heuristic. Currently the best heuristic I've found uses the summation of dislocation * ((4-i) + (4-j)) where i and j are the row and column, and dislocation is the taxicab distance. One interesting part of the result I got: with a particular heuristic I find a path very quickly, but it is obviously not the shortest path. I think this is because I am weighting the heuristic. In one case I got a path of 178 steps in 10s. My own manual effort produce a solution in 87 moves. (much more than 10s). More investigation warranted. So the result is I am seeing it converge must faster, and the path is definitely not the shortest. I have to think about this more. Code: var stop = false; function Astar(start, goal, callback) { // start and goal are nodes in the graph, represented by // an array of 16 ints. The goal is: [1,2,3,...14,15,0] // Zero represents the hole. // callback is a method to call when finished. This runs a long time, // therefore we need to use setTimeout() to break it up, to avoid // the browser warning like "Stop running this script?" // g is the actual distance traveled from initial node to current node. // h is the heuristic estimate of distance from current to goal. stop = false; start.g = start.dontgo = 0; // calcHeuristic inserts an .h member into the array calcHeuristicDistance(start); // start the stack with one element var closed = []; // set of nodes already evaluated. var open = [ start ]; // set of nodes to evaluate (start with initial node) var iteration = function() { if (open.length==0) { // no more nodes. Fail. callback(null); return; } var current = open.shift(); // get highest priority node // update the browser with a table representation of the // node being evaluated $("#solution").html(stateToString(current)); // check solution returns true if current == goal if (checkSolution(current,goal)) { // reconstructPath just records the position of the hole // through each node var path= reconstructPath(start,current); callback(path); return; } closed.push(current); // get the set of neighbors. This is 3 or fewer nodes. // (nextStates is optimized to NOT turn directly back on itself) var neighbors = nextStates(current, goal); for (var i=0; i<neighbors.length; i++) { var n = neighbors[i]; // skip this one if we've already visited it if (closed.containsNode(n)) continue; // .g, .h, and .previous get assigned implicitly when // calculating neighbors. n.g is nothing more than // current.g+1 ; // add to the open list if (!open.containsNode(n)) { // slot into the list, in priority order (minimum f first) open.priorityPush(n); n.previous = current; } } if (stop) { callback(null); return; } setTimeout(iteration, 1); }; // kick off the first iteration iteration(); return null; }

    Read the article

< Previous Page | 1 2 3