Search Results

Search found 53 results on 3 pages for 'p2v'.

Page 3/3 | < Previous Page | 1 2 3 

  • Introducing Oracle VM Server for SPARC

    - by Honglin Su
    As you are watching Oracle's Virtualization Strategy Webcast and exploring the great virtualization offerings of Oracle VM product line, I'd like to introduce Oracle VM Server for SPARC --  highly efficient, enterprise-class virtualization solution for Sun SPARC Enterprise Systems with Chip Multithreading (CMT) technology. Oracle VM Server for SPARC, previously called Sun Logical Domains, leverages the built-in SPARC hypervisor to subdivide supported platforms' resources (CPUs, memory, network, and storage) by creating partitions called logical (or virtual) domains. Each logical domain can run an independent operating system. Oracle VM Server for SPARC provides the flexibility to deploy multiple Oracle Solaris operating systems simultaneously on a single platform. Oracle VM Server also allows you to create up to 128 virtual servers on one system to take advantage of the massive thread scale offered by the CMT architecture. Oracle VM Server for SPARC integrates both the industry-leading CMT capability of the UltraSPARC T1, T2 and T2 Plus processors and the Oracle Solaris operating system. This combination helps to increase flexibility, isolate workload processing, and improve the potential for maximum server utilization. Oracle VM Server for SPARC delivers the following: Leading Price/Performance - The low-overhead architecture provides scalable performance under increasing workloads without additional license cost. This enables you to meet the most aggressive price/performance requirement Advanced RAS - Each logical domain is an entirely independent virtual machine with its own OS. It supports virtual disk mutipathing and failover as well as faster network failover with link-based IP multipathing (IPMP) support. Moreover, it's fully integrated with Solaris FMA (Fault Management Architecture), which enables predictive self healing. CPU Dynamic Resource Management (DRM) - Enable your resource management policy and domain workload to trigger the automatic addition and removal of CPUs. This ability helps you to better align with your IT and business priorities. Enhanced Domain Migrations - Perform domain migrations interactively and non-interactively to bring more flexibility to the management of your virtualized environment. Improve active domain migration performance by compressing memory transfers and taking advantage of cryptographic acceleration hardware. These methods provide faster migration for load balancing, power saving, and planned maintenance. Dynamic Crypto Control - Dynamically add and remove cryptographic units (aka MAU) to and from active domains. Also, migrate active domains that have cryptographic units. Physical-to-virtual (P2V) Conversion - Quickly convert an existing SPARC server running the Oracle Solaris 8, 9 or 10 OS into a virtualized Oracle Solaris 10 image. Use this image to facilitate OS migration into the virtualized environment. Virtual I/O Dynamic Reconfiguration (DR) - Add and remove virtual I/O services and devices without needing to reboot the system. CPU Power Management - Implement power saving by disabling each core on a Sun UltraSPARC T2 or T2 Plus processor that has all of its CPU threads idle. Advanced Network Configuration - Configure the following network features to obtain more flexible network configurations, higher performance, and scalability: Jumbo frames, VLANs, virtual switches for link aggregations, and network interface unit (NIU) hybrid I/O. Official Certification Based On Real-World Testing - Use Oracle VM Server for SPARC with the most sophisticated enterprise workloads under real-world conditions, including Oracle Real Application Clusters (RAC). Affordable, Full-Stack Enterprise Class Support - Obtain worldwide support from Oracle for the entire virtualization environment and workloads together. The support covers hardware, firmware, OS, virtualization, and the software stack. SPARC Server Virtualization Oracle offers a full portfolio of virtualization solutions to address your needs. SPARC is the leading platform to have the hard partitioning capability that provides the physical isolation needed to run independent operating systems. Many customers have already used Oracle Solaris Containers for application isolation. Oracle VM Server for SPARC provides another important feature with OS isolation. This gives you the flexibility to deploy multiple operating systems simultaneously on a single Sun SPARC T-Series server with finer granularity for computing resources.  For SPARC CMT processors, the natural level of granularity is an execution thread, not a time-sliced microsecond of execution resources. Each CPU thread can be treated as an independent virtual processor. The scheduler is naturally built into the CPU for lower overhead and higher performance. Your organizations can couple Oracle Solaris Containers and Oracle VM Server for SPARC with the breakthrough space and energy savings afforded by Sun SPARC Enterprise systems with CMT technology to deliver a more agile, responsive, and low-cost environment. Management with Oracle Enterprise Manager Ops Center The Oracle Enterprise Manager Ops Center Virtualization Management Pack provides full lifecycle management of virtual guests, including Oracle VM Server for SPARC and Oracle Solaris Containers. It helps you streamline operations and reduce downtime. Together, the Virtualization Management Pack and the Ops Center Provisioning and Patch Automation Pack provide an end-to-end management solution for physical and virtual systems through a single web-based console. This solution automates the lifecycle management of physical and virtual systems and is the most effective systems management solution for Oracle's Sun infrastructure. Ease of Deployment with Configuration Assistant The Oracle VM Server for SPARC Configuration Assistant can help you easily create logical domains. After gathering the configuration data, the Configuration Assistant determines the best way to create a deployment to suit your requirements. The Configuration Assistant is available as both a graphical user interface (GUI) and terminal-based tool. Oracle Solaris Cluster HA Support The Oracle Solaris Cluster HA for Oracle VM Server for SPARC data service provides a mechanism for orderly startup and shutdown, fault monitoring and automatic failover of the Oracle VM Server guest domain service. In addition, applications that run on a logical domain, as well as its resources and dependencies can be controlled and managed independently. These are managed as if they were running in a classical Solaris Cluster hardware node. Supported Systems Oracle VM Server for SPARC is supported on all Sun SPARC Enterprise Systems with CMT technology. UltraSPARC T2 Plus Systems ·   Sun SPARC Enterprise T5140 Server ·   Sun SPARC Enterprise T5240 Server ·   Sun SPARC Enterprise T5440 Server ·   Sun Netra T5440 Server ·   Sun Blade T6340 Server Module ·   Sun Netra T6340 Server Module UltraSPARC T2 Systems ·   Sun SPARC Enterprise T5120 Server ·   Sun SPARC Enterprise T5220 Server ·   Sun Netra T5220 Server ·   Sun Blade T6320 Server Module ·   Sun Netra CP3260 ATCA Blade Server Note that UltraSPARC T1 systems are supported on earlier versions of the software.Sun SPARC Enterprise Systems with CMT technology come with the right to use (RTU) of Oracle VM Server, and the software is pre-installed. If you have the systems under warranty or with support, you can download the software and system firmware as well as their updates. Oracle Premier Support for Systems provides fully-integrated support for your server hardware, firmware, OS, and virtualization software. Visit oracle.com/support for information about Oracle's support offerings for Sun systems. For more information about Oracle's virtualization offerings, visit oracle.com/virtualization.

    Read the article

  • Improving Manageability of Virtual Environments

    - by Jeff Victor
    Boot Environments for Solaris 10 Branded Zones Until recently, Solaris 10 Branded Zones on Solaris 11 suffered one notable regression: Live Upgrade did not work. The individual packaging and patching tools work correctly, but the ability to upgrade Solaris while the production workload continued running did not exist. A recent Solaris 11 SRU (Solaris 11.1 SRU 6.4) restored most of that functionality, although with a slightly different concept, different commands, and without all of the feature details. This new method gives you the ability to create and manage multiple boot environments (BEs) for a Solaris 10 Branded Zone, and modify the active or any inactive BE, and to do so while the production workload continues to run. Background In case you are new to Solaris: Solaris includes a set of features that enables you to create a bootable Solaris image, called a Boot Environment (BE). This newly created image can be modified while the original BE is still running your workload(s). There are many benefits, including improved uptime and the ability to reboot into (or downgrade to) an older BE if a newer one has a problem. In Solaris 10 this set of features was named Live Upgrade. Solaris 11 applies the same basic concepts to the new packaging system (IPS) but there isn't a specific name for the feature set. The features are simply part of IPS. Solaris 11 Boot Environments are not discussed in this blog entry. Although a Solaris 10 system can have multiple BEs, until recently a Solaris 10 Branded Zone (BZ) in a Solaris 11 system did not have this ability. This limitation was addressed recently, and that enhancement is the subject of this blog entry. This new implementation uses two concepts. The first is the use of a ZFS clone for each BE. This makes it very easy to create a BE, or many BEs. This is a distinct advantage over the Live Upgrade feature set in Solaris 10, which had a practical limitation of two BEs on a system, when using UFS. The second new concept is a very simple mechanism to indicate the BE that should be booted: a ZFS property. The new ZFS property is named com.oracle.zones.solaris10:activebe (isn't that creative? ). It's important to note that the property is inherited from the original BE's file system to any BEs you create. In other words, all BEs in one zone have the same value for that property. When the (Solaris 11) global zone boots the Solaris 10 BZ, it boots the BE that has the name that is stored in the activebe property. Here is a quick summary of the actions you can use to manage these BEs: To create a BE: Create a ZFS clone of the zone's root dataset To activate a BE: Set the ZFS property of the root dataset to indicate the BE To add a package or patch to an inactive BE: Mount the inactive BE Add packages or patches to it Unmount the inactive BE To list the available BEs: Use the "zfs list" command. To destroy a BE: Use the "zfs destroy" command. Preparation Before you can use the new features, you will need a Solaris 10 BZ on a Solaris 11 system. You can use these three steps - on a real Solaris 11.1 server or in a VirtualBox guest running Solaris 11.1 - to create a Solaris 10 BZ. The Solaris 11.1 environment must be at SRU 6.4 or newer. Create a flash archive on the Solaris 10 system s10# flarcreate -n s10-system /net/zones/archives/s10-system.flar Configure the Solaris 10 BZ on the Solaris 11 system s11# zonecfg -z s10z Use 'create' to begin configuring a new zone. zonecfg:s10z create -t SYSsolaris10 zonecfg:s10z set zonepath=/zones/s10z zonecfg:s10z exit s11# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - s10z configured /zones/s10z solaris10 excl Install the zone from the flash archive s11# zoneadm -z s10z install -a /net/zones/archives/s10-system.flar -p You can find more information about the migration of Solaris 10 environments to Solaris 10 Branded Zones in the documentation. The rest of this blog entry demonstrates the commands you can use to accomplish the aforementioned actions related to BEs. New features in action Note that the demonstration of the commands occurs in the Solaris 10 BZ, as indicated by the shell prompt "s10z# ". Many of these commands can be performed in the global zone instead, if you prefer. If you perform them in the global zone, you must change the ZFS file system names. Create The only complicated action is the creation of a BE. In the Solaris 10 BZ, create a new "boot environment" - a ZFS clone. You can assign any name to the final portion of the clone's name, as long as it meets the requirements for a ZFS file system name. s10z# zfs snapshot rpool/ROOT/zbe-0@snap s10z# zfs clone -o mountpoint=/ -o canmount=noauto rpool/ROOT/zbe-0@snap rpool/ROOT/newBE cannot mount 'rpool/ROOT/newBE' on '/': directory is not empty filesystem successfully created, but not mounted You can safely ignore that message: we already know that / is not empty! We have merely told ZFS that the default mountpoint for the clone is the root directory. List the available BEs and active BE Because each BE is represented by a clone of the rpool/ROOT dataset, listing the BEs is as simple as listing the clones. s10z# zfs list -r rpool/ROOT NAME USED AVAIL REFER MOUNTPOINT rpool/ROOT 3.55G 42.9G 31K legacy rpool/ROOT/zbe-0 1K 42.9G 3.55G / rpool/ROOT/newBE 3.55G 42.9G 3.55G / The output shows that two BEs exist. Their names are "zbe-0" and "newBE". You can tell Solaris that one particular BE should be used when the zone next boots by using a ZFS property. Its name is com.oracle.zones.solaris10:activebe. The value of that property is the name of the clone that contains the BE that should be booted. s10z# zfs get com.oracle.zones.solaris10:activebe rpool/ROOT NAME PROPERTY VALUE SOURCE rpool/ROOT com.oracle.zones.solaris10:activebe zbe-0 local Change the active BE When you want to change the BE that will be booted next time, you can just change the activebe property on the rpool/ROOT dataset. s10z# zfs get com.oracle.zones.solaris10:activebe rpool/ROOT NAME PROPERTY VALUE SOURCE rpool/ROOT com.oracle.zones.solaris10:activebe zbe-0 local s10z# zfs set com.oracle.zones.solaris10:activebe=newBE rpool/ROOT s10z# zfs get com.oracle.zones.solaris10:activebe rpool/ROOT NAME PROPERTY VALUE SOURCE rpool/ROOT com.oracle.zones.solaris10:activebe newBE local s10z# shutdown -y -g0 -i6 After the zone has rebooted: s10z# zfs get com.oracle.zones.solaris10:activebe rpool/ROOT rpool/ROOT com.oracle.zones.solaris10:activebe newBE local s10z# zfs mount rpool/ROOT/newBE / rpool/export /export rpool/export/home /export/home rpool /rpool Mount the original BE to see that it's still there. s10z# zfs mount -o mountpoint=/mnt rpool/ROOT/zbe-0 s10z# ls /mnt Desktop export platform Documents export.backup.20130607T214951Z proc S10Flar home rpool TT_DB kernel sbin bin lib system boot lost+found tmp cdrom mnt usr dev net var etc opt Patch an inactive BE At this point, you can modify the original BE. If you would prefer to modify the new BE, you can restore the original value to the activebe property and reboot, and then mount the new BE to /mnt (or another empty directory) and modify it. Let's mount the original BE so we can modify it. (The first command is only needed if you haven't already mounted that BE.) s10z# zfs mount -o mountpoint=/mnt rpool/ROOT/zbe-0 s10z# patchadd -R /mnt -M /var/sadm/spool 104945-02 Note that the typical usage will be: Create a BE Mount the new (inactive) BE Use the package and patch tools to update the new BE Unmount the new BE Reboot Delete an inactive BE ZFS clones are children of their parent file systems. In order to destroy the parent, you must first "promote" the child. This reverses the parent-child relationship. (For more information on this, see the documentation.) The original rpool/ROOT file system is the parent of the clones that you create as BEs. In order to destroy an earlier BE that is that parent of other BEs, you must first promote one of the child BEs to be the ZFS parent. Only then can you destroy the original BE. Fortunately, this is easier to do than to explain: s10z# zfs promote rpool/ROOT/newBE s10z# zfs destroy rpool/ROOT/zbe-0 s10z# zfs list -r rpool/ROOT NAME USED AVAIL REFER MOUNTPOINT rpool/ROOT 3.56G 269G 31K legacy rpool/ROOT/newBE 3.56G 269G 3.55G / Documentation This feature is so new, it is not yet described in the Solaris 11 documentation. However, MOS note 1558773.1 offers some details. Conclusion With this new feature, you can add and patch packages to boot environments of a Solaris 10 Branded Zone. This ability improves the manageability of these zones, and makes their use more practical. It also means that you can use the existing P2V tools with earlier Solaris 10 updates, and modify the environments after they become Solaris 10 Branded Zones.

    Read the article

  • Oracle Certification and virtualization Solutions.

    - by scoter
    As stated in official MOS ( My Oracle Support ) document 249212.1 support for Oracle products on non-Oracle VM platforms follow exactly the same stance as support for VMware and, so, the only x86 virtualization software solution certified for any Oracle product is "Oracle VM". Based on the fact that: Oracle VM is totally free ( you have the option to buy Oracle-Support ) Certified is pretty different from supported ( OracleVM is certified, others could be supported ) With Oracle VM you may not require to reproduce your issue(s) on physical server Oracle VM is the only x86 software solution that allows hard-partitioning *** *** see details to these Oracle public links: http://www.oracle.com/technetwork/server-storage/vm/ovm-hardpart-168217.pdf http://www.oracle.com/us/corporate/pricing/partitioning-070609.pdf people started asking to migrate from third party virtualization software (ex. RH KVM, VMWare) to Oracle VM. Migrating RH KVM guest to Oracle VM. OracleVM has a built-in P2V utility ( Official Documentation ) but in some cases we can't use it, due to : network inaccessibility between hypervisors ( KVM and OVM ) network slowness between hypervisors (KVM and OVM) size of the guest virtual-disks Here you'll find a step-by-step guide to "manually" migrate a guest machine from KVM to OVM. 1. Verify source guest characteristics. Using KVM web console you can verify characteristics of the guest you need to migrate, such as: CPU Cores details Defined Memory ( RAM ) Name of your guest Guest operating system Disks details ( number and size ) Network details ( number of NICs and network configuration ) 2. Export your guest in OVF / OVA format.  The export from Redhat KVM ( kernel virtual machine ) will create a structured export of your guest: [root@ovmserver1 mnt]# lltotal 12drwxrwx--- 5 36 36 4096 Oct 19 2012 b8296fca-13c4-4841-a50f-773b5139fcee b8296fca-13c4-4841-a50f-773b5139fcee is the ID of the guest exported from RH-KVM [root@ovmserver1 mnt]# cd b8296fca-13c4-4841-a50f-773b5139fcee/[root@ovmserver1 b8296fca-13c4-4841-a50f-773b5139fcee]# ls -ltrtotal 12drwxr-x--- 4 36 36 4096 Oct 19  2012 masterdrwxrwx--- 2 36 36 4096 Oct 29  2012 dom_mddrwxrwx--- 4 36 36 4096 Oct 31  2012 images images contains your virtual-disks exported [root@ovmserver1 b8296fca-13c4-4841-a50f-773b5139fcee]# cd images/[root@ovmserver1 images]# ls -ltratotal 16drwxrwx--- 5 36 36 4096 Oct 19  2012 ..drwxrwx--- 2 36 36 4096 Oct 31  2012 d4ef928d-6dc6-4743-b20d-568b424728a5drwxrwx--- 2 36 36 4096 Oct 31  2012 4b241ea0-43aa-4f3b-ab7d-2fc633b491a1drwxrwx--- 4 36 36 4096 Oct 31  2012 .[root@ovmserver1 images]# cd d4ef928d-6dc6-4743-b20d-568b424728a5/[root@ovmserver1 d4ef928d-6dc6-4743-b20d-568b424728a5]# ls -ltotal 5169092-rwxr----- 1 36 36 187904819200 Oct 31  2012 4c03b1cf-67cc-4af0-ad1e-529fd665dac1-rw-rw---- 1 36 36          341 Oct 31  2012 4c03b1cf-67cc-4af0-ad1e-529fd665dac1.meta[root@ovmserver1 d4ef928d-6dc6-4743-b20d-568b424728a5]# file 4c03b1cf-67cc-4af0-ad1e-529fd665dac14c03b1cf-67cc-4af0-ad1e-529fd665dac1: LVM2 (Linux Logical Volume Manager) , UUID: sZL1Ttpy0vNqykaPahEo3hK3lGhwspv 4c03b1cf-67cc-4af0-ad1e-529fd665dac1 is the first exported disk ( physical volume ) [root@ovmserver1 d4ef928d-6dc6-4743-b20d-568b424728a5]# cd ../4b241ea0-43aa-4f3b-ab7d-2fc633b491a1/[root@ovmserver1 4b241ea0-43aa-4f3b-ab7d-2fc633b491a1]# ls -ltotal 5568076-rwxr----- 1 36 36 107374182400 Oct 31  2012 9020f2e1-7b8a-4641-8f80-749768cc237a-rw-rw---- 1 36 36          341 Oct 31  2012 9020f2e1-7b8a-4641-8f80-749768cc237a.meta[root@ovmserver1 4b241ea0-43aa-4f3b-ab7d-2fc633b491a1]# file 9020f2e1-7b8a-4641-8f80-749768cc237a9020f2e1-7b8a-4641-8f80-749768cc237a: x86 boot sector; partition 1: ID=0x83, active, starthead 1, startsector 63, 401562 sectors; partition 2: ID=0x82, starthead 0, startsector 401625, 65529135 sectors; startsector 63, 401562 sectors; partition 2: ID=0x82, starthead 0, startsector 401625, 65529135 sectors; partition 3: ID=0x83, starthead 254, startsector 65930760, 8385930 sectors; partition 4: ID=0x5, starthead 254, startsector 74316690, 135395820 sectors, code offset 0x48 9020f2e1-7b8a-4641-8f80-749768cc237a is the second exported disk, with partition 1 bootable 3. Prepare the new guest on Oracle VM. By Ovm-Manager we can prepare the guest where we will move the exported virtual-disks; under the Tab "Servers and VMs": click on  and create your guest with parameters collected before (point 1): - add NICs on different networks: - add virtual-disks; in this case we add two disks of 1.0 GB each one; we will extend the virtual disk copying the source KVM virtual-disk ( see next steps ) - verify virtual-disks created ( under Repositories tab ) 4. Verify OVM virtual-disks names. [root@ovmserver1 VirtualMachines]# grep -r hyptest_rdbms * 0004fb0000060000a906b423f44da98e/vm.cfg:OVM_simple_name = 'hyptest_rdbms' [root@ovmserver1 VirtualMachines]# cd 0004fb0000060000a906b423f44da98e [root@ovmserver1 0004fb0000060000a906b423f44da98e]# more vm.cfgvif = ['mac=00:21:f6:0f:3f:85,bridge=0004fb001089128', 'mac=00:21:f6:0f:3f:8e,bridge=0004fb00101971d'] OVM_simple_name = 'hyptest_rdbms' vnclisten = '127.0.0.1' disk = ['file:/OVS/Repositories/0004fb00000300004f17b7368139eb41/ VirtualDisks/0004fb000012000097c1bfea9834b17d.img,xvda,w', 'file:/OVS/Repositories/0004fb00000300004f17b7368139eb41/VirtualDisks/ 0004fb0000120000cde6a11c3cb1d0be.img,xvdb,w'] vncunused = '1' uuid = '0004fb00-0006-0000-a906-b423f44da98e' on_reboot = 'restart' cpu_weight = 27500 memory = 32768 cpu_cap = 0 maxvcpus = 8 OVM_high_availability = True maxmem = 32768 vnc = '1' OVM_description = '' on_poweroff = 'destroy' on_crash = 'restart' name = '0004fb0000060000a906b423f44da98e' guest_os_type = 'linux' builder = 'hvm' vcpus = 8 keymap = 'en-us' OVM_os_type = 'Oracle Linux 5' OVM_cpu_compat_group = '' OVM_domain_type = 'xen_hvm' disk2 ovm ==> /OVS/Repositories/0004fb00000300004f17b7368139eb41/VirtualDisks/ 0004fb0000120000cde6a11c3cb1d0be.img disk1 ovm ==> /OVS/Repositories/0004fb00000300004f17b7368139eb41/VirtualDisks/ 0004fb000012000097c1bfea9834b17d.img Summarizing disk1 --source ==> /mnt/b8296fca-13c4-4841-a50f-773b5139fcee/images/4b241ea0-43aa-4f3b-ab7d-2fc633b491a1/9020f2e1-7b8a-4641-8f80-749768cc237a disk1 --dest ==> /OVS/Repositories/0004fb00000300004f17b7368139eb41/VirtualDisks/ 0004fb000012000097c1bfea9834b17d.img disk2 --source ==> /mnt/b8296fca-13c4-4841-a50f-773b5139fcee/images/d4ef928d-6dc6-4743-b20d-568b424728a5/4c03b1cf-67cc-4af0-ad1e-529fd665dac1 disk2 --dest ==> /OVS/Repositories/0004fb00000300004f17b7368139eb41/VirtualDisks/ 0004fb0000120000cde6a11c3cb1d0be.img 5. Copy KVM exported virtual-disks to OVM virtual-disks. Keeping your Oracle VM guest stopped you can copy KVM exported virtual-disks to OVM virtual-disks; what I did is only to locally mount the filesystem containing the exported virtual-disk ( by an usb device ) on my OVS; the copy automatically resize OVM virtual-disks ( previously created with a size of 1GB ) . nohup cp /mnt/b8296fca-13c4-4841-a50f-773b5139fcee/images/4b241ea0-43aa-4f3b-ab7d-2fc633b491a1/9020f2e1-7b8a-4641-8f80-749768cc237a /OVS/Repositories/0004fb00000300004f17b7368139eb41/VirtualDisks/0004fb000012000097c1bfea9834b17d.img & nohup cp /mnt/b8296fca-13c4-4841-a50f-773b5139fcee/images/d4ef928d-6dc6-4743-b20d-568b424728a5/4c03b1cf-67cc-4af0-ad1e-529fd665dac1 /OVS/Repositories/0004fb00000300004f17b7368139eb41/VirtualDisks/0004fb0000120000cde6a11c3cb1d0be.img & 7. When copy completed refresh repository to aknowledge the new-disks size. 7. After "refresh repository" is completed, start guest machine by Oracle VM manager. After the first start of your guest: - verify that you can see all disks and partitions - verify that your guest is network reachable ( MAC Address of your NICs changed ) Eventually you can also evaluate to convert your guest to PVM ( Paravirtualized virtual Machine ) following official Oracle documentation. Ciao Simon COTER ps: next-time I'd like to post an article reporting how to manually migrate Virtual-Iron guests to OracleVM.  Comments and corrections are welcome. 

    Read the article

< Previous Page | 1 2 3