Search Results

Search found 2283 results on 92 pages for 'resume improvement'.

Page 3/92 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Does attending the upcoming Devdays 2011 have some value for a resume?

    - by systempuntoout
    This fall I'm 99% going to London to attend the awesome Devdays 2011; I have many reasons to go there and some of them are: Professional stuff Great people Awesome topics Unicorns Passion London :) Obviously all the cool technologies that will be discussed are light years far from my daily work but useful for my side projects and maybe for some future employment. Now, to get to the point; a coworker said to me that he won't come with me because Devday London is expensive, and something expensive should reward you with a certificate, a certificate that could have some value to the eyes on an employer. Is he right? Do you think that attenting to this kind of event have some value on a resume? Should it be highlighted? Does it have any value for a future employer?

    Read the article

  • I'm working on my resume for a job fair this week; any tips? [closed]

    - by buu700
    This will change as I update the document, but here is my resume. The job fair I'm going to is really huge (very good chance that it will determine where I intern this summer), so I would definitely appreciate any possible assistance in polishing this up. Any advice possible will be appreciated, ranging from spacing or absurdly minor formatting issues, to rearranging bullet points, to browser incompatibilities, to major changes in anything I've organised or written. At the moment, my only specific question is whether easter eggs are acceptable (specifically, if representatives who understand the reference will generally frown upon my inclusion of "Hacked The Gibson", given the context). Also, if anyone wants to evaluate it (e.g. font size, final arrangement, etc.), here is a PDF snapshot of the document at the time this question was submitted (the final version will have a different file name and appropriate metadata, for the record). Thanks!

    Read the article

  • What does an interviewer notice most on my resume?

    - by Need4Sleep
    When applying for a position such as a software developer for a company, what does an interviewer notice most on my resume concerning the work i have done? Is he/she concerned with the amount of work i do with others(Open source projects), The specific accomplishments I've made in my field(programs, apps) or the amount of time i spend helping others(forums, mentoring)? For those of you who have applied and work/worked in a position similar to a software developer,In your personal experience, what do you think helped you the most in landing the job? P.s. if 'software developer' is to broad a term, i would specifically enjoy working with teams to create large applications such as dropbox / google / skype etc...

    Read the article

  • HTG Explains: The Best and Worst Ways to Send a Resume

    - by Eric Z Goodnight
    With so many people looking for jobs, the slightest edge in your resume presentation has potential to make or break your chances. But not all filetypes or methods are created equal—read on to see the potential pitfalls your resume faces. In this article, we’ll explore what can go wrong in a resume submission, what can be done to counteract it, and also go into why a prospective employer might ignore your resume based on your method of sending a resume. Finally, we’ll cover the best filetypes and methods that can help get you that new job you’ve been looking for. What Sets Your Resume Apart? Latest Features How-To Geek ETC Internet Explorer 9 RC Now Available: Here’s the Most Interesting New Stuff Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware How to Change the Default Application for Android Tasks Stop Believing TV’s Lies: The Real Truth About "Enhancing" Images The How-To Geek Valentine’s Day Gift Guide Inspire Geek Love with These Hilarious Geek Valentines The Citroen GT – An Awesome Video Game Car Brought to Life [Video] Four Awesome TRON Legacy Themes for Chrome and Iron Anger is Illogical – Old School Style Instructional Video [Star Trek Mashup] Get the Old Microsoft Paint UI Back in Windows 7 Relax and Sleep Is a Soothing Sleep Timer Google Rolls Out Two-Factor Authentication

    Read the article

  • Android Resume Activity

    - by George
    In my app, I start an activity and then on button click, display an http url (using Intent - VIEW_ACTION) So when in the middle of the activity, if the user clicks the button called "Google", it opens up google.com in the browser. When I hit the back button, it comes back to my original activity screen. How can I get my activity to resume from where it left of? Thanks George

    Read the article

  • How to resume CUPS printer from command line

    - by stach81
    Hello I have printer in CUPS that due driver problems (hp 1010) form time to time goes into pause. I would like to write a shell script that will be once per hour resuming printer in cups. But I have no idea after googling for couple of minutes how to resume printer from shell command line. Regards Stan

    Read the article

  • Blank screen after Switch User or Resume

    - by matt wilkie
    About half the time when I switch users or resume from standby or resume the screen goes blank (black). If I work the cursor keys I can hear the system bell when it gets to the end of the user list. I can also successfully login, going from memory, but screen stays black. Sometimes closing and re-opening the lid will light up the screen again. Pressing the special Function key to enable/disable external monitor connection has no effect [Fn]-[F5],[Fn]-[F6]. If none of the previous work I need to put the computer into hibernation or full power off to restore screen function. If I watch closely when switching users I think I can see the screen initially start to light up and then quickly fade to black. The computer is an Acer Aspire 3500, model ZL6, running Ubuntu 10.10 installed 2 days ago. No proprietary drivers are in use. I'll provide a list of hardware details as soon as I can figure out how to generate that (didn't there used to be an entry for hardware details under the System menu?). Possibly related questions: No resume after Hibernate or Standby When I resume from suspension - the screen is blank Switch user fails to complete successfully For what it's worth, blank after resume also used to happen occasionally when the laptop was running XP-Home, but nowhere near as often, perhaps 6 or 8 times a year. UPDATE: I found System Administration System Testing and ran the Monitor test. It went very very dark, but the window elements could be discerned, and the whole screen flashed (from very very dark to black). On the third repeat of that same test the screen went to full blaupck and stayed there. Moving the mouse, via touchpad, or touch keys did not wake it up again. I had to close the lid and put the computer into hibernate, and press the power button to restore it. UPDATE2: output of lshw: http://pastebin.com/q7n8676r, lspci: http://pastebin.com/6ujzVK4r UPDATE3: sometimes I can restore the screen by flipping to console 1 with ctrl-alt-F1 and then back to graphical with ctrl-alt-F7.

    Read the article

  • Should I expect to know a lot about every language I put on my resume as a college student?

    - by Newbie_code
    If I am asked to program an algorithm, say binary search, in languages other than Java during an interview, I will have a hard time trying to remember the syntax. Is it okay to tell my interviewer that I can only code this in Java, because I have worked with other languages before but have not used them for a while? If not, what suggestions do you have (i.e. what languages and parts of those languages among these should I pick up the syntax of before my interview)?

    Read the article

  • How much does college (e.g. a compsci major) factor into a programmer's resume? [closed]

    - by Brandon
    I was having an argument with a friend who claims that given roughly equal skill, someone with a college degree from a name school is going to start at a significantly better job (e.g. a higher-end company) for his first job; and because of this, he's also going to be significantly ahead for his second job. Here are my two questions: given equal skill, how much does college factor into a programmer's overall career? if someone has the technical skills to work competently as as programmer, is it worth it for him to go to college first? if the degree is significant, is it significant whether the degree is from an average college or a higher-tier college (e.g. Stanford, MIT)?

    Read the article

  • How to handle people who lie on their resume

    - by Juliet
    I'm conducting technical interviews to fill a few .NET positions. Many of the people I interview really do know .NET pretty well, but I find at least 90% of embellish their skillset anywhere between "a little" and "quite drastically". Sometimes they fabricate skills relevant to the position they're applying for, sometimes they not. Most of the people I interview, even the most egregious liars, are not scam artists. They just want to stand out among the crowd, so they drop a few buzzwords on their resume like "JBoss", "LINQ", "web services", "Django" or whatever just to pad their skillset and stay competitive. (You might wonder if a person lies about those skills, whether they are just bluffing their way through a technical interview. My interviews involve a lot of hands-on coding and problem-solving -- people who attempt to bluff will bomb the hands-on coding portion in the first 3 minutes.) These are two open-ended questions, but it would really help me out when I make my recommendations to the hiring managers: 1) Regarding interviewing etiquette, should I attempt to determine whether a person really possesses all of the skills they claim to have? Can I do this without making the candidate feel uncomfortable? 2) Regarding the final decision, should I recommend candidates who are genuinely qualified for the positions they're applying for, even if they've fabricated portions of their skillset?

    Read the article

  • What was the most productive improvement suggestion you ever made for your team

    - by questzen
    I suggested the testing and functional teams to use Freemind map for jotting the functional flows and test steps. There was some paranoia but our module took it up and the QA teams were surprised to see near zero review comments. There was misconception among the team that there are doing more work. I assured them that by the time others would complete their work along with comment fixes, we would be going out for team lunchs and we did. The real returns came when the developers started refering to the created document in their discussions. So share your contribution(s).

    Read the article

  • Amazon Careers website - are resumes processed in plain text format only?

    - by sapphiremirage
    The submission site has the following options: "Please upload your resume (Word Document, max size: 512 KB) OR Please copy and paste the text version of your file here", with a text box below the latter option. I went ahead and uploaded my shiny LaTeX resume (as a PDF), despite the fact that they seem to want a Word Document, and there didn't seem to be any issues. However, when I went back to edit my profile, there was no evidence that my PDF had been uploaded, other than a text version of my resume, awfully formatted and clearly stripped from the PDF, sitting in the text box below "Please copy and paste the text version of your file here". Exasperated, I did a quick and dirty copy of the text from my resume into a Word doc and uploaded that. Same result: no evidence of a file uploaded, just a stripped text version in the textbox. What I'm wondering now is, are they only going to look at the text version of my resume? If that's the case then I'm obviously going to edit it so that it looks halfway decent and doesn't contain such atrocities from the conversion as "Other Skills: LTEX". I can pretty little text files without too much effort, so this isn't that big of deal. However, my LaTeX resume is going to look better than anything I can do in plain text, so if the site is actually keeping a copy of that, then I certainly don't want to override it. Has anyone here either gone through the Amazon hiring process or interviewed candidates and know how this works? (i.e. When on site with Amazon, did the interviewers have diversely formatted resumes, or did they all look suspiciously similar)

    Read the article

  • SOA, Empowerment and Continuous Improvement

    - by Tanu Sood
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Rick Beers is Senior Director of Product Management for Oracle Fusion Middleware. Prior to joining Oracle, Rick held a variety of executive operational positions at Corning, Inc. and Bausch & Lomb. With a professional background that includes senior management positions in manufacturing, supply chain and information technology, Rick brings a unique set of experiences to cover the impact that technology can have on business models, processes and organizations. Rick will be hosting the IT Leader Editorial on a regular basis. I met my twin at Open World. We share backgrounds, experiences and even names. I hosted an invitation-only AppAdvantage Leadership Forum with an overcapacity 85 participants: 55 customers, 15 from the Oracle AppAdvantage team and 15 Partners. It was a lively, open and positive discussion of pace layered architectures and Oracle’s AppAdvantage approach to a unified view of Applications and Middleware. Rick Hassman from Pella was one of the customer panelists and during the pre event prep, Rick and I shared backgrounds and found that we had both been plant managers and led ERP deployments prior to leading IT itself. During the panel conversation I explored this with him, discussing the unique perspectives that this provides to CIO’s. He then hit on a point that I wasn’t able to fully appreciate until a week later. First though, some background. The week after the Forum, one of the participants emailed me with the following thoughts: “I am 150% behind this concept……but we are struggling with the concept of web services and the potential use of the Oracle Service Bus technology let alone moving into using the full SOA/BPM/BAM software to extend our JD Edwards application to both integrate and support business processes”. After thinking a bit I responded this way: While I certainly appreciate the degree of change and effort involved, perhaps I could offer the following: One of the underlying principles behind Oracle AppAdvantage is that more often than not, the choice between changing a business process and invasively customizing ERP represents a Hobson's Choice: neither is acceptable. In this case the third option, moving the process out of ERP, is the only acceptable one. Providing this choice typically requires end to end, real time interoperability across applications and/or services. This real time interoperability, to be sustainable over time requires a service oriented architecture. There's just no way around this. SOA adaptation is admittedly tough at the beginning. New skills, new technology and new headaches. But, like any radically new technology, it has a learning curve that drives cost down rather dramatically over time. Tough choices to be sure, but not entirely different than we face with every major technology cycle. Good points of course, but I felt that something was missing. The points were convincing, perhaps even a bit insightful, but they didn’t get at the heart of what Oracle AppAdvantage is focused upon: how the optimization of technology, applications, processes and relationships can change the very way that organizations operate. And then I thought back to the panel discussion with Rick Hassman at Oracle OpenWorld. Rick stressed that Continuous Improvement is a fundamental business strategy at Pella. I remember Continuous Improvement well as I suspect does everyone who was in American manufacturing during the 80’s. Pioneered by W. Edwards Deming in Japan (and still known alternatively as Kaizen), Continuous Improvement sets in place the business culture that we must not become complacent with success and resistant to the ongoing need for change. Many believe that this single handedly drove the renaissance in American manufacturing through the last two decades, which had become complacent during the 70’s and early 80’s. But what exactly does this have to do with SOA? It was Rick’s next point. He drew the connection that moving those business processes that need to continually change over time out of ERP and into edge applications and services enables continuous improvement by empowering people to continually strive for better ways of doing things rather than be being bound by workflows that cannot change. A compelling connection: that SOA, and the overall Oracle AppAdvantage framework of which it is an integral part, can empower people towards continuous improvement in business processes and as a result drive business leadership and business excellence. What better a case for technology innovation?

    Read the article

  • Android VideoView resume and seekTo

    - by Chris
    I am playing a Video using a VideoView in my app. On the click of a button, it records the current position of the video, and the app opens up the browser with some url. On pressing the back button, the app comes back to video app and resumes the video from where it left off. I looked at the Android Activity lifecycle and saw that onStart() method gets called once the video activity comes to the foreground. So I am creating my layout in onStart() and playing the video by seeking to the current position. My problem is that when the video resumes, it buffers from the start and then seeks to. Since it already buffered the first time, is there a way to eliminate buffering again while doing a seekTo? Thanks Chris

    Read the article

  • Android - Video Restart or Resume

    - by Chris
    Hi everyone, I am writing a simple android application with a class that extends activity, that plays a video from a url on the web. There is a button on top that on click takes the user to a web page. What I want to do is when the user is browsing the web page, if he hits the back button, I want him to come back to the main activity and restart the video. Is there a way to do this? Also, is there a way the video can be resumed from where it left off? Thank you. Chris

    Read the article

  • How to evaluate SEO/prominence improvement [on hold]

    - by Rober
    I will work on a website SEO and before starting with it I would like to "take a snapshot" of the present status so that I will be able to compare it with the new situation in a few months and evaluate my work and the real improvement. I don't mean whether the website is well implemented or not, but how well it is seen by Google and others. What prominence it has. I am taking some variables from Google Analytics (average day visits...), from Google Webmaster Tools (Search traffic and average position...) and some other indicators, like automatic SEO audit figures (website estimated worth, real pagerank...). What would you look at before starting SEO improvement?

    Read the article

  • Resume Button error

    - by user3178359
    i have two class. if i press button pause it can show button resume, retry,menu and the game time is paused. but when i press the resume the game time still paused. help me plase how to continue the game time ?? code for button pause : using UnityEngine; using System.Collections; public class pause : MonoBehaviour { public GUITexture showMenu; public GUITexture btnResume; public bool gamePaused = false; void OnMouseDown() { gamePaused = true; Time.timeScale = 0; showMenu.pixelInset = new Rect(220, 200, showMenu.pixelInset.width, showMenu.pixelInset.height); btnResume.pixelInset = new Rect(300, 300, btnResume.pixelInset.width, btnResume.pixelInset.height); code for button resume : using UnityEngine; using System.Collections; public class btResume : pause { //public GUITexture shoe; void onMouseDown() { base.gamePaused = false; Time.timeScale = 1; btnResume.pixelInset = new Rect(300, -300, btnResume.pixelInset.width, btnResume.pixelInset.height); showMenu.pixelInset = new Rect(220, -200, showMenu.pixelInset.width, showMenu.pixelInset.height); } }

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Ubuntu 14.04 and Dell E6440 - sound and mouse working after suspend/resume

    - by slawek.mikula
    I've installed fresh Ubuntu 14.04 on Dell Lattitude E6440 and i've encountered two strange issues when doing full system start/restart: - mouse scroll when full restart is working very fast. One turn of the wheel cause very large change of value (window scroll, sound change etc.) But when i suspend and resume laptop it starts working correctly (one turn of the wheel and small change of value - the same as in previous versions of Ubuntu) - sound from speakers - the same issue. When full restart the sound does not come from internal laptop speakers. It works though through headphones. After suspend/resume internal speakers starts to work. What can be a cause of these issues ?

    Read the article

  • Fujitsu B6220 laptop, sometimes my desktop freezes upon resume from standby

    - by user89756
    I installed Ubuntu 11.10 on my Fujitsu Lifebook B6220 laptop just before 12.04 was released. I can not remember if I had this issue with Ubuntu 11.10 as I updated the install to 12.04 about a week after 12.04 came out. My problem is that sometimes upon resume from standby my desktop is frozen. The keyboard, touch pad, and touchscreen work, but there is no response from the desktop. I can ctrl-alt-f2 and log in and then from there I just reboot the computer. This happens about 50% of the time when I resume from standby but I have not noticed a distinct pattern. I have thought about reinstalling 12.04, since I upgraded 11.10 to 12.04 instead of a fresh install. But I have customized my laptop a lot and I would prefer to avoid reinstalling it, I'm not even sure if that would fix it. Anyone have a idea what might be the problem? If I should submit this as a bug, could someone point me in the right direction please? Thanks, Matt

    Read the article

  • Best place to request Ubuntu for a minor improvement (In Unity dash search)

    - by mac
    Which is the best place to request Ubuntu for a minor improvement? My request feature is this : In Ubuntu dash when I search for "Upd" it gives me update manager and some other files. Now when I click enter by default the first entry will be selected. Can we make this a slightly better experience by highlighting the first item in search results which will be selected by default if we press enter - Just like in Gnome shell Search for upd in unity dash Search for upd in gnome-shell If you notice, update manager is highlighted by default in gnome shell and appears more intuitive. Can we implement the same in Unity ? Sorry for posting this in askubuntu. I just wanted to know which is the best place to discuss this. Thanks

    Read the article

  • Is PO Box on resume to get a call okay?

    - by sanksjaya
    Hello folks! Personally I've applied to quiet a handful of IT admin jobs inside my state and to the ones that are way far away. The sad part is I never miss to get an interview with the jobs in my state, but get a call once in a blue moon from jobs out of my state. Note: All the jobs are of similar nature. Recently one of my friends told me that "Applicants with local addresses are the ones that are even looked upon". How true is this? Does filtering take place at address level before qualifications? Is using a PO box on resume acceptable [one for each state like CA, TX, VA]? Any other suggestions to get calls from out of state? Thank you :) [wiki]

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >