Search Results

Search found 74 results on 3 pages for 'routedata'.

Page 3/3 | < Previous Page | 1 2 3 

  • MVC Portable Areas &ndash; Deploying Static Files

    - by Steve Michelotti
    This is the second post in a series related to build and deployment considerations as I’ve been exploring MVC Portable Areas: #1 – Using Web Application Project to build portable areas #2 – Conventions for deploying portable area static files #3 – Portable area static files as embedded resources As I’ve been digging more into portable areas, one of the things I’ve liked best is the deployment story which enables my *.aspx, *.ascx pages to be compiled into the assembly as embedded resources rather than having to maintain all those files separately. In traditional web forms, that was always the thing to prevented developers from utilizing *.ascx user controls across projects (see this post for using portable areas in web forms).  However, though the aspx pages are embedded, the supporting static files (e.g., images, css, javascript) are *not*. Most of the demos available online today tend to brush over this issue and focus solely on the aspx side of things. But to create truly robust portable areas, it’s important to have a good story for these supporting files as well.  I’ve been working with two different approaches so far (of course I’d really like to hear if other people are using alternatives). Scenario For the approaches below, the scenario really isn’t that important. It could be something as trivial as this partial view: 1: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %> 2: <img src="<%: Url.Content("~/images/arrow.gif") %>" /> Hello World! The point is that there needs to be careful consideration for *any* scenario that links to an external file such as an image, *.css, *.js, etc. In the example shown above, it uses the Url.Content() method to convert to a relative path. But this method won’t necessary work depending on how you deploy your portable area. One approach to address this issue is to build your portable area project with MSDeploy/WebDeploy so that it is packaged properly before incorporating into the host application. All of the *.cs files are removed and the project is ready for xcopy deployment – however, I do *not* need the “Views” folder since all of the mark up has been compiled into the assembly as embedded resources. Now in the host application we create a folder called “Modules” and deploy any portable areas as sub-folders under that: At this point we can add a simple assembly reference to the Widget1.dll sitting in the Modules\Widget1\bin folder. I can now render the portable image in my view like any other portable area. However, the problem with that is that the view results in this:   It couldn’t find arrow.gif because it looked for /images/arrow.gif and it was *actually* located at /images/Modules/Widget1/images/arrow.gif. One solution is to make the physical location of the portable configurable from the perspective of the host like this: 1: <appSettings> 2: <add key="Widget1" value="Modules\Widget1"/> 3: </appSettings> Using the <appSettings> section is a little cheesy but it could be better formalized into its own section. In fact, if were you willing to rely on conventions (e.g., “Modules\{areaName}”) then then config could be eliminated completely. With this config in place, we could create our own Html helper method called Url.AreaContent() that “wraps” the OOTB Url.Content() method while simply pre-pending the area location path: 1: public static string AreaContent(this UrlHelper urlHelper, string contentPath) 2: { 3: var areaName = (string)urlHelper.RequestContext.RouteData.DataTokens["area"]; 4: var areaPath = (string)ConfigurationManager.AppSettings[areaName]; 5:   6: return urlHelper.Content("~/" + areaPath + "/" + contentPath); With these two items in place, we just change our Url.Content() call to Url.AreaContent() like this: 1: <img src="<%: Url.AreaContent("/images/arrow.gif") %>" /> Hello World! and the arrow.gif now renders correctly:     Since we’re just using our own Url.AreaContent() rather than the built-in Url.Content(), this solution works for images, *.css, *.js, or any externally referenced files.  Additionally, any images referenced inside a css file will work provided it’s a relative reference and not an absolute reference. An alternative to this approach is to build the static file into the assembly as embedded resources themselves. I’ll explore this in another post (linked at the top).

    Read the article

  • MVC Portable Areas &ndash; Static Files as Embedded Resources

    - by Steve Michelotti
    This is the third post in a series related to build and deployment considerations as I’ve been exploring MVC Portable Areas: #1 – Using Web Application Project to build portable areas #2 – Conventions for deploying portable area static files #3 – Portable area static files as embedded resources In the last post, I walked through a convention for managing static files.  In this post I’ll discuss another approach to manage static files (e.g., images, css, js, etc.).  With this approach, you *also* compile the static files as embedded resources into the assembly similar to the *.aspx pages. Once again, you can set this to happen automatically by simply modifying your *.csproj file to include the desired extensions so you don’t have to remember every time you add a file: 1: <Target Name="BeforeBuild"> 2: <ItemGroup> 3: <EmbeddedResource Include="**\*.aspx;**\*.ascx;**\*.gif;**\*.css;**\*.js" /> 4: </ItemGroup> 5: </Target> We now need a reliable way to serve up these static files that are embedded in the assembly. There are a couple of ways to do this but one way is to simply create a Resource controller whose job is dedicated to doing this. 1: public class ResourceController : Controller 2: { 3: public ActionResult Index(string resourceName) 4: { 5: var contentType = GetContentType(resourceName); 6: var resourceStream = Assembly.GetExecutingAssembly().GetManifestResourceStream(resourceName); 7:   8: return this.File(resourceStream, contentType); 9: return View(); 10: } 11:   12: private static string GetContentType(string resourceName) 13: { 14: var extention = resourceName.Substring(resourceName.LastIndexOf('.')).ToLower(); 15: switch (extention) 16: { 17: case ".gif": 18: return "image/gif"; 19: case ".js": 20: return "text/javascript"; 21: case ".css": 22: return "text/css"; 23: default: 24: return "text/html"; 25: } 26: } 27: } In order to use this controller, we need to make sure we’ve registered the route in our portable area registration (shown in lines 5-6): 1: public class WidgetAreaRegistration : PortableAreaRegistration 2: { 3: public override void RegisterArea(System.Web.Mvc.AreaRegistrationContext context, IApplicationBus bus) 4: { 5: context.MapRoute("ResourceRoute", "widget1/resource/{resourceName}", 6: new { controller = "Resource", action = "Index" }); 7:   8: context.MapRoute("Widget1", "widget1/{controller}/{action}", new 9: { 10: controller = "Home", 11: action = "Index" 12: }); 13:   14: RegisterTheViewsInTheEmbeddedViewEngine(GetType()); 15: } 16:   17: public override string AreaName 18: { 19: get { return "Widget1"; } 20: } 21: } In my previous post, we relied on a custom Url helper method to find the actual physical path to the static file like this: 1: <img src="<%: Url.AreaContent("/images/arrow.gif") %>" /> Hello World! However, since we are now embedding the files inside the assembly, we no longer have to worry about the physical path. We can change this line of code to this: 1: <img src="<%: Url.Resource("Widget1.images.arrow.gif") %>" /> Hello World! Note that I had to fully quality the resource name (with namespace and physical location) since that is how .NET assemblies store embedded resources. I also created my own Url helper method called Resource which looks like this: 1: public static string Resource(this UrlHelper urlHelper, string resourceName) 2: { 3: var areaName = (string)urlHelper.RequestContext.RouteData.DataTokens["area"]; 4: return urlHelper.Action("Index", "Resource", new { resourceName = resourceName, area = areaName }); 5: } This method gives us the convenience of not having to know how to construct the URL – but just allowing us to refer to the resource name. The resulting html for the image tag is: 1: <img src="/widget1/resource/Widget1.images.arrow.gif" /> so we can always request any image from the browser directly. This is almost analogous to the WebResource.axd file but for MVC. What is interesting though is that we can encapsulate each one of these so that each area can have it’s own set of resources and they are easily distinguished because the area name is the first segment of the route. This makes me wonder if something like this ResourceController should be baked into portable areas itself. I’m definitely interested in anyone has any opinions on it or have taken alternative approaches.

    Read the article

  • Autofac Unit Testing using RegisterControllers()

    - by Kane
    I am having problems using Autofac 2.1.13 and writing my unit tests for my ASP.NET MV2 application. I can't seem to resolve controllers when using the RegisterControllers method. I have tried using the Resolve<() and ControllerBuilder.Current.GetControllerFactory().CreateController() methods but to no avail. I am sure that I've missed something simple here so can anyone assist? This was my first attempt at resolving the HomeController - but does not work. ContainerBuilder builder = new ContainerBuilder(); builder.RegisterControllers(typeof(HomeController).Assembly); IContainer container = builder.Build(); // Throws a Throws a A first chance exception of type 'Autofac.Core.Registration.ComponentNotRegisteredException' occurred in Autofac.dll var homeController = container.Resolve<HomeController>(); Similarly this does not work either. ContainerBuilder builder = new ContainerBuilder(); builder.RegisterControllers(typeof(HomeController).Assembly); IContainer container = builder.Build(); var containerProvider = new ContainerProvider(container); ControllerBuilder.Current.SetControllerFactory(new AutofacControllerFactory(containerProvider)); var request = new Mock<HttpRequestBase>(MockBehavior.Loose); request.Setup(r => r.Path).Returns("Path"); var httpContext = new Mock<HttpContextBase>(MockBehavior.Loose); httpContext.SetupGet(c => c.Request).Returns(request.Object); ControllerBuilder.Current.GetControllerFactory().CreateController(new RequestContext(httpContext.Object, new RouteData()), "home"); Any assistance would be greatly appreciated. I should note if I register my controllers without using the RegisterControllers() method my unit tests work. My question would seem to be limited to specifically using the RegisterControllers() method.

    Read the article

  • Legacy URL rewriting with query string parameters

    - by John Kaster
    I've looked at http://stackoverflow.com/questions/817325/asp-net-mvc-routing-legacy-urls-passing-querystring-ids-to-controller-actions and several other similar posts for legacy URL routing, but I can't get past the error "The RouteData must contain an item named 'controller' with a non-empty string value." Looking this up on line didn't give me any hints to solve my problem. I've implemented the Legacy routing class described in the link above, and this is what I've defined in the routing table: routes.Add( "Legacy", new LegacyRoute("fooref.aspx", "FooRef", new LegacyRouteHandler()) ); routes.MapRoute( "FooRef", "{controller}/{action}", new { controller = "Home", action = "Index", foo_id = UrlParameter.Optional, bar_id = UrlParameter.Optional } ); When I use Phil Haack's route debugger, it indicates that fooref.aspx has a match, but when I turn the route debugger off, I get the error above. If I reverse the statement order, I get "Resource not found" for /ctprefer.aspx, which makes sense -- so it appears to be finding that as a valid route when put in the other order. Where do I need to declare this missing controller reference? Have routing requirements changed for ASP.NET MVC 2 RTM?

    Read the article

  • Creating ViewResults outside of Controllers in ASP.NET MVC

    - by Craig Walker
    Several of my controller actions have a standard set of failure-handling behavior. In general, I want to: Load an object based on the Route Data (IDs and the like) If the Route Data does not point to a valid object (ex: through URL hacking) then inform the user of the problem and return an HTTP 404 Not Found Validate that the current user has the proper permissions on the object If the user doesn't have permission, inform the user of the problem and return an HTTP 403 Forbidden If the above is successful, then do something with that object that's action-specific (ie: render it in a view). These steps are so standardized that I want to have reusable code to implement the behavior. My current plan of attack was to have a helper method to do something like this: public static ActionResult HandleMyObject(this Controller controller, Func<MyObject,ActionResult> onSuccess) { var myObject = MyObject.LoadFrom(controller.RouteData). if ( myObject == null ) return NotFound(controller); if ( myObject.IsNotAllowed(controller.User)) return NotAllowed(controller); return onSuccess(myObject); } # NotAllowed() is pretty much the same as this public static NotFound(Controller controller){ controller.HttpContext.Response.StatusCode = 404 # NotFound.aspx is a shared view. ViewResult result = controller.View("NotFound"); return result; } The problem here is that Controller.View() is a protected method and so is not accessible from a helper. I've looked at creating a new ViewResult instance explicitly, but there's enough properties to set that I'm wary about doing so without knowing the pitfalls first. What's the best way to create a ViewResult from outside a particular Controller?

    Read the article

  • How to get all active parameters in ASP.NET MVC (2)

    - by SztupY
    Hi! I was wondering whether there is a way to create an ActionLink or similar, that changes only a few parameters of the actual query, and keeps all the other parameters intact. For example if I'm on an URL like http://example.com/Posts/Index?Page=5&OrderBy=Name&OrderDesc=True I want to change only the Page, or OrderBy parameter and keep all other parameters the same, even those I don't yet know of (like when I want to add a Search parameter or something similar too). The header of my current action looks like this: public ActionResult Index(int? Page, string OrderBy, bool? Desc) and I'm only interested in the values that this controller "eats". I want however that when I extend this action (for example with a string Search parameter) the links should work the same way as before. Here is what I did already: Create a new RouteValueDictionary and fill it with everything from RouteData.Values Problem: This only fills the parameters that are used in the Routing, so all other optional parameters (like Page) to the controller are lost Add everything from HttpContext.Request.QueryString to the previous dictionary This is what I am currently using Problem: It might have some junk stuff, that the Controller didn`t ask for, and it doesn't work if the page was loaded using POST. You also don't have any ModelBindings (but this isn't much of a problem, because we are re-sending everything anyway) Use HttpContext.Request.Params Problem: this has too much junk data which imho one shouldn't add to a RouteValueDictionary that is passed to an ActionLink So the questions: Is there an RVD that has all the data that was passed to the Controller and was used by it? Is this solution good, or are there any caveats I didn't think about (mainly in the context of changing a few query parameters while keeping the others intact)? Is there a way to filter out the "junk" data from the Params object?

    Read the article

  • Unittesting Url.Action (using Rhino Mocks?)

    - by Kristoffer Ahl
    I'm trying to write a test for an UrlHelper extensionmethod that is used like this: Url.Action<TestController>(x => x.TestAction()); However, I can't seem set it up correctly so that I can create a new UrlHelper and then assert that the returned url was the expected one. This is what I've got but I'm open to anything that does not involve mocking as well. ;O) [Test] public void Should_return_Test_slash_TestAction() { // Arrange RouteTable.Routes.Add("TestRoute", new Route("{controller}/{action}", new MvcRouteHandler())); var mocks = new MockRepository(); var context = mocks.FakeHttpContext(); // the extension from hanselman var helper = new UrlHelper(new RequestContext(context, new RouteData()), RouteTable.Routes); // Act var result = helper.Action<TestController>(x => x.TestAction()); // Assert Assert.That(result, Is.EqualTo("Test/TestAction")); } I tried changing it to urlHelper.Action("Test", "TestAction") but it will fail anyway so I know it is not my extensionmethod that is not working. NUnit returns: NUnit.Framework.AssertionException: Expected string length 15 but was 0. Strings differ at index 0. Expected: "Test/TestAction" But was: <string.Empty> I have verified that the route is registered and working and I am using Hanselmans extension for creating a fake HttpContext. Here's what my UrlHelper extentionmethod look like: public static string Action<TController>(this UrlHelper urlHelper, Expression<Func<TController, object>> actionExpression) where TController : Controller { var controllerName = typeof(TController).GetControllerName(); var actionName = actionExpression.GetActionName(); return urlHelper.Action(actionName, controllerName); } public static string GetControllerName(this Type controllerType) { return controllerType.Name.Replace("Controller", string.Empty); } public static string GetActionName(this LambdaExpression actionExpression) { return ((MethodCallExpression)actionExpression.Body).Method.Name; } Any ideas on what I am missing to get it working??? / Kristoffer

    Read the article

  • ASP.NET MVC 2.0 + Implementation of a IRouteHandler does not fire

    - by Peter
    Can anybody please help me with this as I have no idea why public IHttpHandler GetHttpHandler(RequestContext requestContext) is not executing. In my Global.asax.cs I have public class MvcApplication : System.Web.HttpApplication { public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = "" } // Parameter defaults ); routes.Add("ImageRoutes", new Route("Images/{filename}", new CustomRouteHandler())); } protected void Application_Start() { RegisterRoutes(RouteTable.Routes); } } //CustomRouteHandler implementation is below public class CustomRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { // IF I SET A BREAK POINT HERE IT DOES NOT HIT FOR SOME REASON. string filename = requestContext.RouteData.Values["filename"] as string; if (string.IsNullOrEmpty(filename)) { // return a 404 HttpHandler here } else { requestContext.HttpContext.Response.Clear(); requestContext.HttpContext.Response.ContentType = GetContentType(requestContext.HttpContext.Request.Url.ToString()); // find physical path to image here. string filepath = requestContext.HttpContext.Server.MapPath("~/logo.jpg"); requestContext.HttpContext.Response.WriteFile(filepath); requestContext.HttpContext.Response.End(); } return null; } } Can any body tell me what I'm missing here. Simply public IHttpHandler GetHttpHandler(RequestContext requestContext) does not fire. I havn't change anything in the web.config either. What I'm missing here? Please help.

    Read the article

  • Unity IoC and MVC modelbinding

    - by danielovich
    Is it ok to have a static field in my controller for my modelbinder to call ? Eg. public class AuctionItemsController : Controller { private IRepository<IAuctionItem> GenericAuctionItemRepository; private IAuctionItemRepository AuctionItemRepository; public AuctionItemsController(IRepository<IAuctionItem> genericAuctionItemRepository, IAuctionItemRepository auctionItemRepository) { GenericAuctionItemRepository = genericAuctionItemRepository; AuctionItemRepository = auctionItemRepository; StaticGenericAuctionItemRepository = genericAuctionItemRepository; } internal static IRepository<IAuctionItem> StaticGenericAuctionItemRepository; here is the modelbinder public class AuctionItemModelBinder : DefaultModelBinder { public override object BindModel(ControllerContext controllerContext, ModelBindingContext bindingContext) { if (AuctionItemsController.StaticGenericAuctionItemRepository != null) { AuctionLogger.LogException(new Exception("controller is null")); } NameValueCollection form = controllerContext.HttpContext.Request.Form; var item = AuctionItemsController.StaticGenericAuctionItemRepository.GetSingle(Convert.ToInt32(controllerContext.RouteData.Values["id"])); item.Description = form["title"]; item.Price = int.Parse(form["price"]); item.Title = form["title"]; item.CreatedDate = DateTime.Now; item.AuctionId = 1; //TODO: Stop hardcoding this item.UserId = 1; return item; }} i am using Unity as IoC and I find it weird to register my modelbinder in the IoC container. Any other good design considerations I shold do ?

    Read the article

  • Filp route value in asp.net mvc routes

    - by Herman
    Hi all, I am new to asp.net mvc, so please bear with me. We have the following route dictionary setup. routes.MapRoute( "Default", // Route name "{language}/{controller}/{action}/{id}", // URL with parameters new { language = "en", controller = "Home", action = "Index", id = "" } // Parameter defaults ); for any given page in our app, we to render a link to the a french version of the same page. For example, the page: http://www.example.com/en/home should have link on that page that points to http://www.example.com/fr/home Now I have the following UrlHelper extension method public static string FilpLanguage(this UrlHelper urlHelper) { var data = urlHelper.RequestContext.RouteData; if (System.Threading.Thread.CurrentThread.CurrentCulture == CultureInfo.GetCultureInfoByIetfLanguageTag("en-CA")) data.Values["language"] = "fr"; else data.Values["language"] = "en"; return urlHelper.RouteUrl(data.Values.Where(item => item.Value != null)); } However, calling FilpLanguage on www.example.com/en/home will return the following URL: www.example.com/en/home?current=[,] Am I missing something here? where did the current parameter come from? Thanks in advance.

    Read the article

  • ASP.NET MVC 2.0 + Implementation of a IRouteHandler goes not fire

    - by Peter
    Can anybody please help me with this as I have no idea why public IHttpHandler GetHttpHandler(RequestContext requestContext) is not executing. In my Global.asax.cs I have public class MvcApplication : System.Web.HttpApplication { public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = "" } // Parameter defaults ); routes.Add("ImageRoutes", new Route("Images/{filename}", new CustomRouteHandler())); } protected void Application_Start() { RegisterRoutes(RouteTable.Routes); } } //CustomRouteHandler implementation is below public class CustomRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { // IF I SET A BREAK POINT HERE IT DOES NOT HIT FOR SOME REASON. string filename = requestContext.RouteData.Values["filename"] as string; if (string.IsNullOrEmpty(filename)) { // return a 404 HttpHandler here } else { requestContext.HttpContext.Response.Clear(); requestContext.HttpContext.Response.ContentType = GetContentType(requestContext.HttpContext.Request.Url.ToString()); // find physical path to image here. string filepath = requestContext.HttpContext.Server.MapPath("~/logo.jpg"); requestContext.HttpContext.Response.WriteFile(filepath); requestContext.HttpContext.Response.End(); } return null; } } Can any body tell me what I'm missing here. Simply public IHttpHandler GetHttpHandler(RequestContext requestContext) does not fire. I havn't change anything in the web.config either. What I'm missing here? Please help.

    Read the article

  • Retaining parameters in ASP.NET MVC

    - by MapDot
    Many MVC frameworks (e.g. PHP's Zend Framework) have a way of providing basic state management through URLs. The basic principle is this: Any parameters that were not explicitly modified or un-set get copied into every URL For instance, consider a listing with pagination. You'll have the order, direction and page number passed as URL parameters. You may also have a couple of filters. Changing the value of a filter should not alter the sort order. ASP.net MVC seems to remember your controller and action by default: <%: Html.RouteLink("Next", "MyRoute", new {id = next.ItemId}) %> This will not re-set your action or controller. However, it does seem to forget all other parameters. The same is true of ActionLink. Parameters that get set earlier on in your URL seem to get retained as well. Is there a way to make it retain more than that? For instance, this does not seem to affect any of the links being generated: RouteValues.RouteData.Values["showDeleted"] = true;

    Read the article

  • .net mvc2 custom HtmlHelper extension unit testing

    - by alex
    My goal is to be able to unit test some custom HtmlHelper extensions - which use RenderPartial internally. http://ox.no/posts/mocking-htmlhelper-in-asp-net-mvc-2-and-3-using-moq I've tried using the method above to mock the HtmlHelper. However, I'm running into Null value exceptions. "Parameter name: view" Anyone have any idea?? Thanks. Below are the ideas of the code: [TestMethod] public void TestMethod1() { var helper = CreateHtmlHelper(new ViewDataDictionary()); helper.RenderPartial("Test"); // supposingly this line is within a method to be tested Assert.AreEqual("test", helper.ViewContext.Writer.ToString()); } public static HtmlHelper CreateHtmlHelper(ViewDataDictionary vd) { Mock<ViewContext> mockViewContext = new Mock<ViewContext>( new ControllerContext( new Mock<HttpContextBase>().Object, new RouteData(), new Mock<ControllerBase>().Object), new Mock<IView>().Object, vd, new TempDataDictionary(), new StringWriter()); var mockViewDataContainer = new Mock<IViewDataContainer>(); mockViewDataContainer.Setup(v => v.ViewData) .Returns(vd); return new HtmlHelper(mockViewContext.Object, mockViewDataContainer.Object); }

    Read the article

  • Need help mocking a ASP.NET Controller in RhinoMocks

    - by Pure.Krome
    Hi folks, I'm trying to mock up a fake ASP.NET Controller. I don't have any concrete controllers, so I was hoping to just mock a Controller and it will work. This is what I have, currently. _fakeRequestBase = MockRepository.GenerateMock<HttpRequestBase>(); _fakeRequestBase.Stub(x => x.HttpMethod).Return("GET"); _fakeContextBase = MockRepository.GenerateMock<HttpContextBase>(); _fakeContextBase.Stub(x => x.Request).Return(_fakeRequestBase); var controllerContext = new ControllerContext(_fakeContextBase, new RouteData(), MockRepository.GenerateMock<ControllerBase>()); _fakeController = MockRepository.GenerateMock<Controller>(); _fakeController.Stub(x => x.ControllerContext).Return(controllerContext); Everything works except the last line, which throws a runtime error and is asking me for some Rhino.Mocks source code or something (which I don't have). See how I'm trying to mock up an abstract Controller - is that allowed? Can someone help me?

    Read the article

  • Switching the layout in Orchard CMS

    - by Bertrand Le Roy
    The UI composition in Orchard is extremely flexible, thanks in no small part to the usage of dynamic Clay shapes. Every notable UI construct in Orchard is built as a shape that other parts of the system can then party on and modify any way they want. Case in point today: modifying the layout (which is a shape) on the fly to provide custom page structures for different parts of the site. This might actually end up being built-in Orchard 1.0 but for the moment it’s not in there. Plus, it’s quite interesting to see how it’s done. We are going to build a little extension that allows for specialized layouts in addition to the default layout.cshtml that Orchard understands out of the box. The extension will add the possibility to add the module name (or, in MVC terms, area name) to the template name, or module and controller names, or module, controller and action names. For example, the home page is served by the HomePage module, so with this extension you’ll be able to add an optional layout-homepage.cshtml file to your theme to specialize the look of the home page while leaving all other pages using the regular layout.cshtml. I decided to implement this sample as a theme with code. This way, the new overrides are only enabled as the theme is activated, which makes a lot of sense as this is going to be where you’ll be creating those additional layouts. The first thing I did was to create my own theme, derived from the default TheThemeMachine with this command: codegen theme CustomLayoutMachine /CreateProject:true /IncludeInSolution:true /BasedOn:TheThemeMachine .csharpcode, .csharpcode pre { font-size: 12px; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Once that was done, I worked around a known bug and moved the new project from the Modules solution folder into Themes (the code was already physically in the right place, this is just about Visual Studio editing). The CreateProject flag in the command-line created a project file for us in the theme’s folder. This is only necessary if you want to run code outside of views from that theme. The code that we want to add is the following LayoutFilter.cs: using System.Linq; using System.Web.Mvc; using System.Web.Routing; using Orchard; using Orchard.Mvc.Filters; namespace CustomLayoutMachine.Filters { public class LayoutFilter : FilterProvider, IResultFilter { private readonly IWorkContextAccessor _wca; public LayoutFilter(IWorkContextAccessor wca) { _wca = wca; } public void OnResultExecuting(ResultExecutingContext filterContext) { var workContext = _wca.GetContext(); var routeValues = filterContext.RouteData.Values; workContext.Layout.Metadata.Alternates.Add( BuildShapeName(routeValues, "area")); workContext.Layout.Metadata.Alternates.Add( BuildShapeName(routeValues, "area", "controller")); workContext.Layout.Metadata.Alternates.Add( BuildShapeName(routeValues, "area", "controller", "action")); } public void OnResultExecuted(ResultExecutedContext filterContext) { } private static string BuildShapeName( RouteValueDictionary values, params string[] names) { return "Layout__" + string.Join("__", names.Select(s => ((string)values[s] ?? "").Replace(".", "_"))); } } } This filter is intercepting ResultExecuting, which is going to provide a context object out of which we can extract the route data. We are also injecting an IWorkContextAccessor dependency that will give us access to the current Layout object, so that we can add alternate shape names to its metadata. We are adding three possible shape names to the default, with different combinations of area, controller and action names. For example, a request to a blog post is going to be routed to the “Orchard.Blogs” module’s “BlogPost” controller’s “Item” action. Our filters will then add the following shape names to the default “Layout”: Layout__Orchard_Blogs Layout__Orchard_Blogs__BlogPost Layout__Orchard_Blogs__BlogPost__Item Those template names get mapped into the following file names by the system (assuming the Razor view engine): Layout-Orchard_Blogs.cshtml Layout-Orchard_Blogs-BlogPost.cshtml Layout-Orchard_Blogs-BlogPost-Item.cshtml This works for any module/controller/action of course, but in the sample I created Layout-HomePage.cshtml (a specific layout for the home page), Layout-Orchard_Blogs.cshtml (a layout for all the blog views) and Layout-Orchard_Blogs-BlogPost-Item.cshtml (a layout that is specific to blog posts). Of course, this is just an example, and this kind of dynamic extension of shapes that you didn’t even create in the first place is highly encouraged in Orchard. You don’t have to do it from a filter, we only did it this way because that was a good place where we could get the context that we needed. And of course, you can base your alternate shape names on something completely different from route values if you want. For example, you might want to create your own part that modifies the layout for a specific content item, or you might want to do it based on the raw URL (like it’s done in widget rules) or who knows what crazy custom rule. The point of all this is to show that extending or modifying shapes is easy, and the layout just happens to be a shape. In other words, you can do whatever you want. Ain’t that nice? The custom theme can be found here: Orchard.Theme.CustomLayoutMachine.1.0.nupkg Many thanks to Louis, who showed me how to do this.

    Read the article

  • jquery and requirejs and knockout; reference requirejs object from within itself

    - by Thomas
    We use jquery and requirejs to create a 'viewmodel' like this: define('vm.inkoopfactuurAanleveren', ['jquery', 'underscore', 'ko', 'datacontext', 'router', 'messenger', 'config', 'store'], function ($, _, ko, datacontext, router, messenger, config, store) { var isBusy = false, isRefreshing = false, inkoopFactuur = { factuurNummer: ko.observable("AAA") }, activate = function (routeData, callback) { messenger.publish.viewModelActivated({ canleaveCallback: canLeave }); getNewInkoopFactuurAanleveren(callback); var restricteduploader = new qq.FineUploader({ element: $('#restricted-fine-uploader')[0], request: { endpoint: 'api/InkoopFactuurAanleveren', forceMultipart: true }, multiple: false, failedUploadTextDisplay: { mode: 'custom', maxChars: 250, responseProperty: 'error', enableTooltip: true }, text: { uploadButton: 'Click or Drop' }, showMessage: function (message) { $('#restricted-fine-uploader').append('<div class="alert alert-error">' + message + '</div>'); }, debug: true, callbacks: { onComplete: function (id, fileName, responseJSON) { var response = responseJSON; }, } }); }, invokeFunctionIfExists = function (callback) { if (_.isFunction(callback)) { callback(); } }, loaded = function (factuur) { inkoopFactuur = factuur; var ids = config.viewIds; ko.applyBindings(this, getView(ids.inkoopfactuurAanleveren)); /*<----- THIS = OUT OF SCOPE!*/ / }, bind = function () { }, saved = function (success) { var s = success; }, saveCmd = ko.asyncCommand({ execute: function (complete) { $.when(datacontext.saveNewInkoopFactuurAanleveren(inkoopFactuur)) .then(saved).always(complete); return; }, canExecute: function (isExecuting) { return true; } }), getView = function (viewName) { return $(viewName).get(0); }, getNewInkoopFactuurAanleveren = function (callback) { if (!isRefreshing) { isRefreshing = true; $.when(datacontext.getNewInkoopFactuurAanleveren(dataOptions(true))).then(loaded).always(invokeFunctionIfExists(callback)); isRefreshing = false; } }, dataOptions = function (force) { return { results: inkoopFactuur, // filter: sessionFilter, //sortFunction: sort.sessionSort, forceRefresh: force }; }, canLeave = function () { return true; }, forceRefreshCmd = ko.asyncCommand({ execute: function (complete) { //$.when(datacontext.sessions.getSessionsAndAttendance(dataOptions(true))) // .always(complete); complete; } }), init = function () { // activate(); // Bind jQuery delegated events //eventDelegates.sessionsListItem(gotoDetails); //eventDelegates.sessionsFavorite(saveFavorite); // Subscribe to specific changes of observables //addFilterSubscriptions(); }; init(); return { activate: activate, canLeave: canLeave, inkoopFactuur: inkoopFactuur, saveCmd: saveCmd, forceRefreshCmd: forceRefreshCmd, bind: bind, invokeFunctionIfExists: invokeFunctionIfExists }; }); On the line ko.applyBindings(this, getView(ids.inkoopfactuurAanleveren)); in the 'loaded' method the 'this' keyword doens't refer to the 'viewmodel' object. the 'self' keyword seems to refer to a combination on methods found over multiple 'viewmodels'. The saveCmd property is bound through knockout, but gives an error since it cannot be found. How can the ko.applyBindings get the right reference to the viewmodel? In other words, with what do we need to replace the 'this' keyword int he applyBindings. I would imagine you can 'ask' requirejs to give us the ealiers instantiated object with identifier 'vm.inkoopfactuurAanleveren' but I cannot figure out how.

    Read the article

  • ASP.NET MVC, Webform hybrid

    - by Greg Ogle
    We (me and my team) have a ASP.NET MVC application and we are integrating a page or two that are Web Forms. We are trying to reuse the Master Page from our MVC part of the app in the WebForms part. We have found a way of rendering an MVC partial view in web forms, which works great, until we try and do a postback, which is the reason for using a WebForm. The Error: Validation of viewstate MAC failed. If this application is hosted by a Web Farm or cluster, ensure that configuration specifies the same validationKey and validation algorithm. AutoGenerate cannot be used in a cluster. The Code to render the partial view from a WebForm (credited to "How to include a partial view inside a webform"): public static class WebFormMVCUtil { public static void RenderPartial(string partialName, object model) { //get a wrapper for the legacy WebForm context var httpCtx = new HttpContextWrapper(System.Web.HttpContext.Current); //create a mock route that points to the empty controller var rt = new RouteData(); rt.Values.Add("controller", "WebFormController"); //create a controller context for the route and http context var ctx = new ControllerContext( new RequestContext(httpCtx, rt), new WebFormController()); //find the partial view using the viewengine var view = ViewEngines.Engines.FindPartialView(ctx, partialName).View; //create a view context and assign the model var vctx = new ViewContext(ctx, view, new ViewDataDictionary { Model = model }, new TempDataDictionary()); //ERROR OCCURS ON THIS LINE view.Render(vctx, System.Web.HttpContext.Current.Response.Output); } } My only experience with this error is in context of a web farm, which is not the case. Also, I understand that the machine key is used for decrypting the ViewState. Any information on how to diagnose this issue would be appreciated. A Work-around: So far the work-around is to move the header content to a PartialView, then use an AJAX call to call a page with just the Partial View from the WebForms, and then using the PartialView directly on the MVC Views. Also, we are still able to share non-tech-specific parts of the Master Page, i.e. anything that is not MVC specific. Still yet, this is not an ideal solution, a server-side solution is still desired. Also, this solutino has issues when working with controls that have more sophisticated controls, using JavaScript, particularly dynamically generated script as used by 3rd party controls.

    Read the article

  • asp.net mvc How to test controllers correctly

    - by Simon G
    Hi, I'm having difficulty testing controllers. Original my controller for testing looked something like this: SomethingController CreateSomethingController() { var somethingData = FakeSomethingData.CreateFakeData(); var fakeRepository = FakeRepository.Create(); var controller = new SomethingController(fakeRepository); return controller; } This works fine for the majority of testing until I got the Request.IsAjaxRequest() part of code. So then I had to mock up the HttpContext and HttpRequestBase. So my code then changed to look like: public class FakeHttpContext : HttpContextBase { bool _isAjaxRequest; public FakeHttpContext( bool isAjaxRequest = false ) { _isAjaxRequest = isAjaxRequest; } public override HttpRequestBase Request { get { string ajaxRequestHeader = ""; if ( _isAjaxRequest ) ajaxRequestHeader = "XMLHttpRequest"; var request = new Mock<HttpRequestBase>(); request.SetupGet( x => x.Headers ).Returns( new WebHeaderCollection { {"X-Requested-With", ajaxRequestHeader} } ); request.SetupGet( x => x["X-Requested-With"] ).Returns( ajaxRequestHeader ); return request.Object; } } private IPrincipal _user; public override IPrincipal User { get { if ( _user == null ) { _user = new FakePrincipal(); } return _user; } set { _user = value; } } } SomethingController CreateSomethingController() { var somethingData = FakeSomethingData.CreateFakeData(); var fakeRepository = FakeRepository.Create(); var controller = new SomethingController(fakeRepository); ControllerContext controllerContext = new ControllerContext( new FakeHttpContext( isAjaxRequest ), new RouteData(), controller ); controller.ControllerContext = controllerContext; return controller; } Now its got to that stage in my controller where I call Url.Route and Url is null. So it looks like I need to start mocking up routes for my controller. I seem to be spending more time googling on how to fake/mock objects and then debugging to make sure my fakes are correct than actual writing the test code. Is there an easier way in to test a controller? I've looked at the TestControllerBuilder from MvcContrib which helps with some of the issues but doesn't seem to do everything. Is there anything else available that will do the job and will let me concentrate on writing the tests rather than writing mocks? Thanks

    Read the article

  • Routing Issue in ASP.NET MVC 3 RC 2

    - by imran_ku07
         Introduction:             Two weeks ago, ASP.NET MVC team shipped the ASP.NET MVC 3 RC 2 release. This release includes some new features and some performance optimization. This release also fixes most of the bugs but still some minor issues are present in this release. Some of these issues are already discussed by Scott Guthrie at Update on ASP.NET MVC 3 RC2 (and a workaround for a bug in it). In addition to these issues, I have found another issue in this release regarding routing. In this article, I will show you the issue regarding routing and a simple workaround for this issue.       Description:             The easiest way to understand an issue is to reproduce it in the application. So create a MVC 2 application and a MVC 3 RC 2 application. Then in both applications, just open global.asax file and update the default route as below,     routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id1}/{id2}", // URL with parameters new { controller = "Home", action = "Index", id1 = UrlParameter.Optional, id2 = UrlParameter.Optional } // Parameter defaults );              Then just open Index View and add the following lines,    <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server"> Home Page </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <% Html.RenderAction("About"); %> </asp:Content>             The above view will issue a child request to About action method. Now run both applications. ASP.NET MVC 2 application will run just fine. But ASP.NET MVC 3 RC 2 application will throw an exception as shown below,                  You may think that this is a routing issue but this is not the case here as both ASP.NET MVC 2 and ASP.NET MVC  3 RC 2 applications(created above) are built with .NET Framework 4.0 and both will use the same routing defined in System.Web. Something is wrong in ASP.NET MVC 3 RC 2. So after digging into ASP.NET MVC source code, I have found that the UrlParameter class in ASP.NET MVC 3 RC 2 overrides the ToString method which simply return an empty string.     public sealed class UrlParameter { public static readonly UrlParameter Optional = new UrlParameter(); private UrlParameter() { } public override string ToString() { return string.Empty; } }             In MVC 2 the ToString method was not overridden. So to quickly fix the above problem just replace UrlParameter.Optional default value with a different value other than null or empty(for example, a single white space) or replace UrlParameter.Optional default value with a new class object containing the same code as UrlParameter class have except the ToString method is not overridden (or with a overridden ToString method that return a string value other than null or empty). But by doing this you will loose the benefit of ASP.NET MVC 2 Optional URL Parameters. There may be many different ways to fix the above problem and not loose the benefit of optional parameters. Here I will create a new class MyUrlParameter with the same code as UrlParameter class have except the ToString method is not overridden. Then I will create a base controller class which contains a constructor to remove all MyUrlParameter route data parameters, same like ASP.NET MVC doing with UrlParameter route data parameters early in the request.     public class BaseController : Controller { public BaseController() { if (System.Web.HttpContext.Current.CurrentHandler is MvcHandler) { RouteValueDictionary rvd = ((MvcHandler)System.Web.HttpContext.Current.CurrentHandler).RequestContext.RouteData.Values; string[] matchingKeys = (from entry in rvd where entry.Value == MyUrlParameter.Optional select entry.Key).ToArray(); foreach (string key in matchingKeys) { rvd.Remove(key); } } } } public class HomeController : BaseController { public ActionResult Index(string id1) { ViewBag.Message = "Welcome to ASP.NET MVC!"; return View(); } public ActionResult About() { return Content("Child Request Contents"); } }     public sealed class MyUrlParameter { public static readonly MyUrlParameter Optional = new MyUrlParameter(); private MyUrlParameter() { } }     routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id1}/{id2}", // URL with parameters new { controller = "Home", action = "Index", id1 = MyUrlParameter.Optional, id2 = MyUrlParameter.Optional } // Parameter defaults );             MyUrlParameter class is a copy of UrlParameter class except that MyUrlParameter class not overrides the ToString method. Note that the default route is modified to use MyUrlParameter.Optional instead of UrlParameter.Optional. Also note that BaseController class constructor is removing MyUrlParameter parameters from the current request route data so that the model binder will not bind these parameters with action method parameters. Now just run the ASP.NET MVC 3 RC 2 application again, you will find that it runs just fine.             In case if you are curious to know that why ASP.NET MVC 3 RC 2 application throws an exception if UrlParameter class contains a ToString method which returns an empty string, then you need to know something about a feature of routing for url generation. During url generation, routing will call the ParsedRoute.Bind method internally. This method includes a logic to match the route and build the url. During building the url, ParsedRoute.Bind method will call the ToString method of the route values(in our case this will call the UrlParameter.ToString method) and then append the returned value into url. This method includes a logic after appending the returned value into url that if two continuous returned values are empty then don't match the current route otherwise an incorrect url will be generated. Here is the snippet from ParsedRoute.Bind method which will prove this statement.       if ((builder2.Length > 0) && (builder2[builder2.Length - 1] == '/')) { return null; } builder2.Append("/"); ........................................................... ........................................................... ........................................................... ........................................................... if (RoutePartsEqual(obj3, obj4)) { builder2.Append(UrlEncode(Convert.ToString(obj3, CultureInfo.InvariantCulture))); continue; }             In the above example, both id1 and id2 parameters default values are set to UrlParameter object and UrlParameter class include a ToString method that returns an empty string. That's why this route will not matched.            Summary:             In this article I showed you the issue regarding routing and also showed you how to workaround this problem. I explained this issue with an example by creating a ASP.NET MVC 2 and a ASP.NET MVC 3 RC 2 application. Finally I also explained the reason for this issue. Hopefully you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Easier ASP.NET MVC Routing

    - by Steve Wilkes
    I've recently refactored the way Routes are declared in an ASP.NET MVC application I'm working on, and I wanted to share part of the system I came up with; a really easy way to declare and keep track of ASP.NET MVC Routes, which then allows you to find the name of the Route which has been selected for the current request. Traditional MVC Route Declaration Traditionally, ASP.NET MVC Routes are added to the application's RouteCollection using overloads of the RouteCollection.MapRoute() method; for example, this is the standard way the default Route which matches /controller/action URLs is created: routes.MapRoute(     "Default",     "{controller}/{action}/{id}",     new { controller = "Home", action = "Index", id = UrlParameter.Optional }); The first argument declares that this Route is to be named 'Default', the second specifies the Route's URL pattern, and the third contains the URL pattern segments' default values. To then write a link to a URL which matches the default Route in a View, you can use the HtmlHelper.RouteLink() method, like this: @ this.Html.RouteLink("Default", new { controller = "Orders", action = "Index" }) ...that substitutes 'Orders' into the {controller} segment of the default Route's URL pattern, and 'Index' into the {action} segment. The {Id} segment was declared optional and isn't specified here. That's about the most basic thing you can do with MVC routing, and I already have reservations: I've duplicated the magic string "Default" between the Route declaration and the use of RouteLink(). This isn't likely to cause a problem for the default Route, but once you get to dozens of Routes the duplication is a pain. There's no easy way to get from the RouteLink() method call to the declaration of the Route itself, so getting the names of the Route's URL parameters correct requires some effort. The call to MapRoute() is quite verbose; with dozens of Routes this gets pretty ugly. If at some point during a request I want to find out the name of the Route has been matched.... and I can't. To get around these issues, I wanted to achieve the following: Make declaring a Route very easy, using as little code as possible. Introduce a direct link between where a Route is declared, where the Route is defined and where the Route's name is used, so I can use Visual Studio's Go To Definition to get from a call to RouteLink() to the declaration of the Route I'm using, making it easier to make sure I use the correct URL parameters. Create a way to access the currently-selected Route's name during the execution of a request. My first step was to come up with a quick and easy syntax for declaring Routes. 1 . An Easy Route Declaration Syntax I figured the easiest way of declaring a route was to put all the information in a single string with a special syntax. For example, the default MVC route would be declared like this: "{controller:Home}/{action:Index}/{Id}*" This contains the same information as the regular way of defining a Route, but is far more compact: The default values for each URL segment are specified in a colon-separated section after the segment name The {Id} segment is declared as optional simply by placing a * after it That's the default route - a pretty simple example - so how about this? routes.MapRoute(     "CustomerOrderList",     "Orders/{customerRef}/{pageNo}",     new { controller = "Orders", action = "List", pageNo = UrlParameter.Optional },     new { customerRef = "^[a-zA-Z0-9]+$", pageNo = "^[0-9]+$" }); This maps to the List action on the Orders controller URLs which: Start with the string Orders/ Then have a {customerRef} set of characters and numbers Then optionally a numeric {pageNo}. And again, it’s quite verbose. Here's my alternative: "Orders/{customerRef:^[a-zA-Z0-9]+$}/{pageNo:^[0-9]+$}*->Orders/List" Quite a bit more brief, and again, containing the same information as the regular way of declaring Routes: Regular expression constraints are declared after the colon separator, the same as default values The target controller and action are specified after the -> The {pageNo} is defined as optional by placing a * after it With an appropriate parser that gave me a nice, compact and clear way to declare routes. Next I wanted to have a single place where Routes were declared and accessed. 2. A Central Place to Declare and Access Routes I wanted all my Routes declared in one, dedicated place, which I would also use for Route names when calling RouteLink(). With this in mind I made a single class named Routes with a series of public, constant fields, each one relating to a particular Route. With this done, I figured a good place to actually declare each Route was in an attribute on the field defining the Route’s name; the attribute would parse the Route definition string and make the resulting Route object available as a property. I then made the Routes class examine its own fields during its static setup, and cache all the attribute-created Route objects in an internal Dictionary. Finally I made Routes use that cache to register the Routes when requested, and to access them later when required. So the Routes class declares its named Routes like this: public static class Routes{     [RouteDefinition("Orders/{customerName}->Orders/Index")]     public const string OrdersCustomerIndex = "OrdersCustomerIndex";     [RouteDefinition("Orders/{customerName}/{orderId:^([0-9]+)$}->Orders/Details")]     public const string OrdersDetails = "OrdersDetails";     [RouteDefinition("{controller:Home}*/{action:Index}*")]     public const string Default = "Default"; } ...which are then used like this: @ this.Html.RouteLink(Routes.Default, new { controller = "Orders", action = "Index" }) Now that using Go To Definition on the Routes.Default constant takes me to where the Route is actually defined, it's nice and easy to quickly check on the parameter names when using RouteLink(). Finally, I wanted to be able to access the name of the current Route during a request. 3. Recovering the Route Name The RouteDefinitionAttribute creates a NamedRoute class; a simple derivative of Route, but with a Name property. When the Routes class examines its fields and caches all the defined Routes, it has access to the name of the Route through the name of the field against which it is defined. It was therefore a pretty easy matter to have Routes give NamedRoute its name when it creates its cache of Routes. This means that the Route which is found in RequestContext.RouteData.Route is now a NamedRoute, and I can recover the Route's name during a request. For visibility, I made NamedRoute.ToString() return the Route name and URL pattern, like this: The screenshot is from an example project I’ve made on bitbucket; it contains all the named route classes and an MVC 3 application which demonstrates their use. I’ve found this way of defining and using Routes much tidier than the default MVC system, and you find it useful too

    Read the article

  • Adding RSS to tags in Orchard

    - by Bertrand Le Roy
    A year ago, I wrote a scary post about RSS in Orchard. RSS was one of the first features we implemented in our CMS, and it has stood the test of time rather well, but the post was explaining things at a level that was probably too abstract whereas my readers were expecting something a little more practical. Well, this post is going to correct this by showing how I built a module that adds RSS feeds for each tag on the site. Hopefully it will show that it's not very complicated in practice, and also that the infrastructure is pretty well thought out. In order to provide RSS, we need to do two things: generate the XML for the feed, and inject the address of that feed into the existing tag listing page, in order to make the feed discoverable. Let's start with the discoverability part. One might be tempted to replace the controller or the view that are responsible for the listing of the items under a tag. Fortunately, there is no need to do any of that, and we can be a lot less obtrusive. Instead, we can implement a filter: public class TagRssFilter : FilterProvider, IResultFilter .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } On this filter, we can implement the OnResultExecuting method and simply check whether the current request is targeting the list of items under a tag. If that is the case, we can just register our new feed: public void OnResultExecuting(ResultExecutingContext filterContext) { var routeValues = filterContext.RouteData.Values; if (routeValues["area"] as string == "Orchard.Tags" && routeValues["controller"] as string == "Home" && routeValues["action"] as string == "Search") { var tag = routeValues["tagName"] as string; if (! string.IsNullOrWhiteSpace(tag)) { var workContext = _wca.GetContext(); _feedManager.Register( workContext.CurrentSite + " – " + tag, "rss", new RouteValueDictionary { { "tag", tag } } ); } } } The registration of the new feed is just specifying the title of the feed, its format (RSS) and the parameters that it will need (the tag). _wca and _feedManager are just instances of IWorkContextAccessor and IFeedManager that Orchard injected for us. That is all that's needed to get the following tag to be added to the head of our page, without touching an existing controller or view: <link rel="alternate" type="application/rss+xml" title="VuLu - Science" href="/rss?tag=Science"/> Nifty. Of course, if we navigate to the URL of that feed, we'll get a 404. This is because no implementation of IFeedQueryProvider knows about the tag parameter yet. Let's build one that does: public class TagFeedQuery : IFeedQueryProvider, IFeedQuery IFeedQueryProvider has one method, Match, that we can implement to take over any feed request that has a tag parameter: public FeedQueryMatch Match(FeedContext context) { var tagName = context.ValueProvider.GetValue("tag"); if (tagName == null) return null; return new FeedQueryMatch { FeedQuery = this, Priority = -5 }; } This is just saying that if there is a tag parameter, we will handle it. All that remains to be done is the actual building of the feed now that we have accepted to handle it. This is done by implementing the Execute method of the IFeedQuery interface: public void Execute(FeedContext context) { var tagValue = context.ValueProvider.GetValue("tag"); if (tagValue == null) return; var tagName = (string)tagValue.ConvertTo(typeof (string)); var tag = _tagService.GetTagByName(tagName); if (tag == null) return; var site = _services.WorkContext.CurrentSite; var link = new XElement("link"); context.Response.Element.SetElementValue("title", site.SiteName + " - " + tagName); context.Response.Element.Add(link); context.Response.Element.SetElementValue("description", site.SiteName + " - " + tagName); context.Response.Contextualize(requestContext => link.Add(GetTagUrl(tagName, requestContext))); var items = _tagService.GetTaggedContentItems(tag.Id, 0, 20); foreach (var item in items) { context.Builder.AddItem(context, item.ContentItem); } } This code is resolving the tag content item from its name and then gets content items tagged with it, using the tag services provided by the Orchard.Tags module. Then we add those items to the feed. And that is it. To summarize, we handled the request unobtrusively in order to inject the feed's link, then handled requests for feeds with a tag parameter and generated the list of items for that tag. It remains fairly simple and still it is able to handle arbitrary content types. That makes me quite happy about our little piece of over-engineered code from last year. The full code for this can be found in the Vandelay.TagCloud module: http://orchardproject.net/gallery/List/Modules/ Orchard.Module.Vandelay.TagCloud/1.2

    Read the article

  • ASP.NET MVC 2 / Localization / Dynamic Default Value?

    - by cyberblast
    Hello In an ASP.NET MVC 2 application, i'm having a route like this: routes.MapRoute( "Default", // Route name "{lang}/{controller}/{action}/{id}", // URL with parameters new // Parameter defaults { controller = "Home", action = "Index", lang = "de", id = UrlParameter.Optional }, new { lang = new AllowedValuesRouteConstraint(new string[] { "de", "en", "fr", "it" }, StringComparison.InvariantCultureIgnoreCase) } Now, basically I would like to set the thread's culture according the language passed in. But there is one exception: If the user requests the page for the first time, like calling "http://www.mysite.com" I want to set the initial language if possible to the one "preferred by the browser". How can I distinguish in an early procesing stage (like global.asax), if the default parameter has been set because of the default value or mentioned explicit through the URL? (I would prefer a solution where the request URL is not getting parsed). Is there a way to dynamically provide a default-value for a paramter? Something like a hook? Or where can I override the default value (good application event?). This is the code i'm actually experimenting with: protected void Application_AcquireRequestState(object sender, EventArgs e) { string activeLanguage; string[] validLanguages; string defaultLanguage; string browsersPreferredLanguage; try { HttpContextBase contextBase = new HttpContextWrapper(Context); RouteData activeRoute = RouteTable.Routes.GetRouteData(new HttpContextWrapper(Context)); if (activeRoute == null) { return; } activeLanguage = activeRoute.GetRequiredString("lang"); Route route = (Route)activeRoute.Route; validLanguages = ((AllowedValuesRouteConstraint)route.Constraints["lang"]).AllowedValues; defaultLanguage = route.Defaults["lang"].ToString(); browsersPreferredLanguage = GetBrowsersPreferredLanguage(); //TODO: Better way than parsing the url bool defaultInitialized = contextBase.Request.Url.ToString().IndexOf(string.Format("/{0}/", defaultLanguage), StringComparison.InvariantCultureIgnoreCase) > -1; string languageToActivate = defaultLanguage; if (!defaultInitialized) { if (validLanguages.Contains(browsersPreferredLanguage, StringComparer.InvariantCultureIgnoreCase)) { languageToActivate = browsersPreferredLanguage; } } //TODO: Where and how to overwrtie the default value that it gets passed to the controller? contextBase.RewritePath(contextBase.Request.Path.Replace("/de/", "/en/")); SetLanguage(languageToActivate); } catch (Exception ex) { //TODO: Log Console.WriteLine(ex.Message); } } protected string GetBrowsersPreferredLanguage() { string acceptedLang = string.Empty; if (HttpContext.Current.Request.UserLanguages != null && HttpContext.Current.Request.UserLanguages.Length > 0) { acceptedLang = HttpContext.Current.Request.UserLanguages[0].Substring(0, 2); } return acceptedLang; } protected void SetLanguage(string languageToActivate) { CultureInfo cultureInfo = new CultureInfo(languageToActivate); if (!Thread.CurrentThread.CurrentUICulture.TwoLetterISOLanguageName.Equals(languageToActivate, StringComparison.InvariantCultureIgnoreCase)) { Thread.CurrentThread.CurrentUICulture = cultureInfo; } if (!Thread.CurrentThread.CurrentCulture.TwoLetterISOLanguageName.Equals(languageToActivate, StringComparison.InvariantCultureIgnoreCase)) { Thread.CurrentThread.CurrentCulture = CultureInfo.CreateSpecificCulture(cultureInfo.Name); } } The RouteConstraint to reproduce the sample: public class AllowedValuesRouteConstraint : IRouteConstraint { private string[] _allowedValues; private StringComparison _stringComparism; public string[] AllowedValues { get { return _allowedValues; } } public AllowedValuesRouteConstraint(string[] allowedValues, StringComparison stringComparism) { _allowedValues = allowedValues; _stringComparism = stringComparism; } public AllowedValuesRouteConstraint(string[] allowedValues) { _allowedValues = allowedValues; _stringComparism = StringComparison.InvariantCultureIgnoreCase; } public bool Match(HttpContextBase httpContext, Route route, string parameterName, RouteValueDictionary values, RouteDirection routeDirection) { if (_allowedValues != null) { return _allowedValues.Any(a => a.Equals(values[parameterName].ToString(), _stringComparism)); } else { return false; } } } Can someone help me out with that problem? Thanks, Martin

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • What's New in ASP.NET 4

    - by Navaneeth
    The .NET Framework version 4 includes enhancements for ASP.NET 4 in targeted areas. Visual Studio 2010 and Microsoft Visual Web Developer Express also include enhancements and new features for improved Web development. This document provides an overview of many of the new features that are included in the upcoming release. This topic contains the following sections: ASP.NET Core Services ASP.NET Web Forms ASP.NET MVC Dynamic Data ASP.NET Chart Control Visual Web Developer Enhancements Web Application Deployment with Visual Studio 2010 Enhancements to ASP.NET Multi-Targeting ASP.NET Core Services ASP.NET 4 introduces many features that improve core ASP.NET services such as output caching and session state storage. Extensible Output Caching Since the time that ASP.NET 1.0 was released, output caching has enabled developers to store the generated output of pages, controls, and HTTP responses in memory. On subsequent Web requests, ASP.NET can serve content more quickly by retrieving the generated output from memory instead of regenerating the output from scratch. However, this approach has a limitation — generated content always has to be stored in memory. On servers that experience heavy traffic, the memory requirements for output caching can compete with memory requirements for other parts of a Web application. ASP.NET 4 adds extensibility to output caching that enables you to configure one or more custom output-cache providers. Output-cache providers can use any storage mechanism to persist HTML content. These storage options can include local or remote disks, cloud storage, and distributed cache engines. Output-cache provider extensibility in ASP.NET 4 lets you design more aggressive and more intelligent output-caching strategies for Web sites. For example, you can create an output-cache provider that caches the "Top 10" pages of a site in memory, while caching pages that get lower traffic on disk. Alternatively, you can cache every vary-by combination for a rendered page, but use a distributed cache so that the memory consumption is offloaded from front-end Web servers. You create a custom output-cache provider as a class that derives from the OutputCacheProvider type. You can then configure the provider in the Web.config file by using the new providers subsection of the outputCache element For more information and for examples that show how to configure the output cache, see outputCache Element for caching (ASP.NET Settings Schema). For more information about the classes that support caching, see the documentation for the OutputCache and OutputCacheProvider classes. By default, in ASP.NET 4, all HTTP responses, rendered pages, and controls use the in-memory output cache. The defaultProvider attribute for ASP.NET is AspNetInternalProvider. You can change the default output-cache provider used for a Web application by specifying a different provider name for defaultProvider attribute. In addition, you can select different output-cache providers for individual control and for individual requests and programmatically specify which provider to use. For more information, see the HttpApplication.GetOutputCacheProviderName(HttpContext) method. The easiest way to choose a different output-cache provider for different Web user controls is to do so declaratively by using the new providerName attribute in a page or control directive, as shown in the following example: <%@ OutputCache Duration="60" VaryByParam="None" providerName="DiskCache" %> Preloading Web Applications Some Web applications must load large amounts of data or must perform expensive initialization processing before serving the first request. In earlier versions of ASP.NET, for these situations you had to devise custom approaches to "wake up" an ASP.NET application and then run initialization code during the Application_Load method in the Global.asax file. To address this scenario, a new application preload manager (autostart feature) is available when ASP.NET 4 runs on IIS 7.5 on Windows Server 2008 R2. The preload feature provides a controlled approach for starting up an application pool, initializing an ASP.NET application, and then accepting HTTP requests. It lets you perform expensive application initialization prior to processing the first HTTP request. For example, you can use the application preload manager to initialize an application and then signal a load-balancer that the application was initialized and ready to accept HTTP traffic. To use the application preload manager, an IIS administrator sets an application pool in IIS 7.5 to be automatically started by using the following configuration in the applicationHost.config file: <applicationPools> <add name="MyApplicationPool" startMode="AlwaysRunning" /> </applicationPools> Because a single application pool can contain multiple applications, you specify individual applications to be automatically started by using the following configuration in the applicationHost.config file: <sites> <site name="MySite" id="1"> <application path="/" serviceAutoStartEnabled="true" serviceAutoStartProvider="PrewarmMyCache" > <!-- Additional content --> </application> </site> </sites> <!-- Additional content --> <serviceAutoStartProviders> <add name="PrewarmMyCache" type="MyNamespace.CustomInitialization, MyLibrary" /> </serviceAutoStartProviders> When an IIS 7.5 server is cold-started or when an individual application pool is recycled, IIS 7.5 uses the information in the applicationHost.config file to determine which Web applications have to be automatically started. For each application that is marked for preload, IIS7.5 sends a request to ASP.NET 4 to start the application in a state during which the application temporarily does not accept HTTP requests. When it is in this state, ASP.NET instantiates the type defined by the serviceAutoStartProvider attribute (as shown in the previous example) and calls into its public entry point. You create a managed preload type that has the required entry point by implementing the IProcessHostPreloadClient interface, as shown in the following example: public class CustomInitialization : System.Web.Hosting.IProcessHostPreloadClient { public void Preload(string[] parameters) { // Perform initialization. } } After your initialization code runs in the Preload method and after the method returns, the ASP.NET application is ready to process requests. Permanently Redirecting a Page Content in Web applications is often moved over the lifetime of the application. This can lead to links to be out of date, such as the links that are returned by search engines. In ASP.NET, developers have traditionally handled requests to old URLs by using the Redirect method to forward a request to the new URL. However, the Redirect method issues an HTTP 302 (Found) response (which is used for a temporary redirect). This results in an extra HTTP round trip. ASP.NET 4 adds a RedirectPermanent helper method that makes it easy to issue HTTP 301 (Moved Permanently) responses, as in the following example: RedirectPermanent("/newpath/foroldcontent.aspx"); Search engines and other user agents that recognize permanent redirects will store the new URL that is associated with the content, which eliminates the unnecessary round trip made by the browser for temporary redirects. Session State Compression By default, ASP.NET provides two options for storing session state across a Web farm. The first option is a session state provider that invokes an out-of-process session state server. The second option is a session state provider that stores data in a Microsoft SQL Server database. Because both options store state information outside a Web application's worker process, session state has to be serialized before it is sent to remote storage. If a large amount of data is saved in session state, the size of the serialized data can become very large. ASP.NET 4 introduces a new compression option for both kinds of out-of-process session state providers. By using this option, applications that have spare CPU cycles on Web servers can achieve substantial reductions in the size of serialized session state data. You can set this option using the new compressionEnabled attribute of the sessionState element in the configuration file. When the compressionEnabled configuration option is set to true, ASP.NET compresses (and decompresses) serialized session state by using the .NET Framework GZipStreamclass. The following example shows how to set this attribute. <sessionState mode="SqlServer" sqlConnectionString="data source=dbserver;Initial Catalog=aspnetstate" allowCustomSqlDatabase="true" compressionEnabled="true" /> ASP.NET Web Forms Web Forms has been a core feature in ASP.NET since the release of ASP.NET 1.0. Many enhancements have been in this area for ASP.NET 4, such as the following: The ability to set meta tags. More control over view state. Support for recently introduced browsers and devices. Easier ways to work with browser capabilities. Support for using ASP.NET routing with Web Forms. More control over generated IDs. The ability to persist selected rows in data controls. More control over rendered HTML in the FormView and ListView controls. Filtering support for data source controls. Enhanced support for Web standards and accessibility Setting Meta Tags with the Page.MetaKeywords and Page.MetaDescription Properties Two properties have been added to the Page class: MetaKeywords and MetaDescription. These two properties represent corresponding meta tags in the HTML rendered for a page, as shown in the following example: <head id="Head1" runat="server"> <title>Untitled Page</title> <meta name="keywords" content="keyword1, keyword2' /> <meta name="description" content="Description of my page" /> </head> These two properties work like the Title property does, and they can be set in the @ Page directive. For more information, see Page.MetaKeywords and Page.MetaDescription. Enabling View State for Individual Controls A new property has been added to the Control class: ViewStateMode. You can use this property to disable view state for all controls on a page except those for which you explicitly enable view state. View state data is included in a page's HTML and increases the amount of time it takes to send a page to the client and post it back. Storing more view state than is necessary can cause significant decrease in performance. In earlier versions of ASP.NET, you could reduce the impact of view state on a page's performance by disabling view state for specific controls. But sometimes it is easier to enable view state for a few controls that need it instead of disabling it for many that do not need it. For more information, see Control.ViewStateMode. Support for Recently Introduced Browsers and Devices ASP.NET includes a feature that is named browser capabilities that lets you determine the capabilities of the browser that a user is using. Browser capabilities are represented by the HttpBrowserCapabilities object which is stored in the HttpRequest.Browser property. Information about a particular browser's capabilities is defined by a browser definition file. In ASP.NET 4, these browser definition files have been updated to contain information about recently introduced browsers and devices such as Google Chrome, Research in Motion BlackBerry smart phones, and Apple iPhone. Existing browser definition files have also been updated. For more information, see How to: Upgrade an ASP.NET Web Application to ASP.NET 4 and ASP.NET Web Server Controls and Browser Capabilities. The browser definition files that are included with ASP.NET 4 are shown in the following list: •blackberry.browser •chrome.browser •Default.browser •firefox.browser •gateway.browser •generic.browser •ie.browser •iemobile.browser •iphone.browser •opera.browser •safari.browser A New Way to Define Browser Capabilities ASP.NET 4 includes a new feature referred to as browser capabilities providers. As the name suggests, this lets you build a provider that in turn lets you write custom code to determine browser capabilities. In ASP.NET version 3.5 Service Pack 1, you define browser capabilities in an XML file. This file resides in a machine-level folder or an application-level folder. Most developers do not need to customize these files, but for those who do, the provider approach can be easier than dealing with complex XML syntax. The provider approach makes it possible to simplify the process by implementing a common browser definition syntax, or a database that contains up-to-date browser definitions, or even a Web service for such a database. For more information about the new browser capabilities provider, see the What's New for ASP.NET 4 White Paper. Routing in ASP.NET 4 ASP.NET 4 adds built-in support for routing with Web Forms. Routing is a feature that was introduced with ASP.NET 3.5 SP1 and lets you configure an application to use URLs that are meaningful to users and to search engines because they do not have to specify physical file names. This can make your site more user-friendly and your site content more discoverable by search engines. For example, the URL for a page that displays product categories in your application might look like the following example: http://website/products.aspx?categoryid=12 By using routing, you can use the following URL to render the same information: http://website/products/software The second URL lets the user know what to expect and can result in significantly improved rankings in search engine results. the new features include the following: The PageRouteHandler class is a simple HTTP handler that you use when you define routes. You no longer have to write a custom route handler. The HttpRequest.RequestContext and Page.RouteData properties make it easier to access information that is passed in URL parameters. The RouteUrl expression provides a simple way to create a routed URL in markup. The RouteValue expression provides a simple way to extract URL parameter values in markup. The RouteParameter class makes it easier to pass URL parameter values to a query for a data source control (similar to FormParameter). You no longer have to change the Web.config file to enable routing. For more information about routing, see the following topics: ASP.NET Routing Walkthrough: Using ASP.NET Routing in a Web Forms Application How to: Define Routes for Web Forms Applications How to: Construct URLs from Routes How to: Access URL Parameters in a Routed Page Setting Client IDs The new ClientIDMode property makes it easier to write client script that references HTML elements rendered for server controls. Increasing use of Microsoft Ajax makes the need to do this more common. For example, you may have a data control that renders a long list of products with prices and you want to use client script to make a Web service call and update individual prices in the list as they change without refreshing the entire page. Typically you get a reference to an HTML element in client script by using the document.GetElementById method. You pass to this method the value of the id attribute of the HTML element you want to reference. In the case of elements that are rendered for ASP.NET server controls earlier versions of ASP.NET could make this difficult or impossible. You were not always able to predict what id values ASP.NET would generate, or ASP.NET could generate very long id values. The problem was especially difficult for data controls that would generate multiple rows for a single instance of the control in your markup. ASP.NET 4 adds two new algorithms for generating id attributes. These algorithms can generate id attributes that are easier to work with in client script because they are more predictable and that are easier to work with because they are simpler. For more information about how to use the new algorithms, see the following topics: ASP.NET Web Server Control Identification Walkthrough: Making Data-Bound Controls Easier to Access from JavaScript Walkthrough: Making Controls Located in Web User Controls Easier to Access from JavaScript How to: Access Controls from JavaScript by ID Persisting Row Selection in Data Controls The GridView and ListView controls enable users to select a row. In previous versions of ASP.NET, row selection was based on the row index on the page. For example, if you select the third item on page 1 and then move to page 2, the third item on page 2 is selected. In most cases, is more desirable not to select any rows on page 2. ASP.NET 4 supports Persisted Selection, a new feature that was initially supported only in Dynamic Data projects in the .NET Framework 3.5 SP1. When this feature is enabled, the selected item is based on the row data key. This means that if you select the third row on page 1 and move to page 2, nothing is selected on page 2. When you move back to page 1, the third row is still selected. This is a much more natural behavior than the behavior in earlier versions of ASP.NET. Persisted selection is now supported for the GridView and ListView controls in all projects. You can enable this feature in the GridView control, for example, by setting the EnablePersistedSelection property, as shown in the following example: <asp:GridView id="GridView2" runat="server" PersistedSelection="true"> </asp:GridView> FormView Control Enhancements The FormView control is enhanced to make it easier to style the content of the control with CSS. In previous versions of ASP.NET, the FormView control rendered it contents using an item template. This made styling more difficult in the markup because unexpected table row and table cell tags were rendered by the control. The FormView control supports RenderOuterTable, a property in ASP.NET 4. When this property is set to false, as show in the following example, the table tags are not rendered. This makes it easier to apply CSS style to the contents of the control. <asp:FormView ID="FormView1" runat="server" RenderTable="false"> For more information, see FormView Web Server Control Overview. ListView Control Enhancements The ListView control, which was introduced in ASP.NET 3.5, has all the functionality of the GridView control while giving you complete control over the output. This control has been made easier to use in ASP.NET 4. The earlier version of the control required that you specify a layout template that contained a server control with a known ID. The following markup shows a typical example of how to use the ListView control in ASP.NET 3.5. <asp:ListView ID="ListView1" runat="server"> <LayoutTemplate> <asp:PlaceHolder ID="ItemPlaceHolder" runat="server"></asp:PlaceHolder> </LayoutTemplate> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> In ASP.NET 4, the ListView control does not require a layout template. The markup shown in the previous example can be replaced with the following markup: <asp:ListView ID="ListView1" runat="server"> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> For more information, see ListView Web Server Control Overview. Filtering Data with the QueryExtender Control A very common task for developers who create data-driven Web pages is to filter data. This traditionally has been performed by building Where clauses in data source controls. This approach can be complicated, and in some cases the Where syntax does not let you take advantage of the full functionality of the underlying database. To make filtering easier, a new QueryExtender control has been added in ASP.NET 4. This control can be added to EntityDataSource or LinqDataSource controls in order to filter the data returned by these controls. Because the QueryExtender control relies on LINQ, but you do not to need to know how to write LINQ queries to use the query extender. The QueryExtender control supports a variety of filter options. The following lists QueryExtender filter options. Term Definition SearchExpression Searches a field or fields for string values and compares them to a specified string value. RangeExpression Searches a field or fields for values in a range specified by a pair of values. PropertyExpression Compares a specified value to a property value in a field. If the expression evaluates to true, the data that is being examined is returned. OrderByExpression Sorts data by a specified column and sort direction. CustomExpression Calls a function that defines custom filter in the page. For more information, see QueryExtenderQueryExtender Web Server Control Overview. Enhanced Support for Web Standards and Accessibility Earlier versions of ASP.NET controls sometimes render markup that does not conform to HTML, XHTML, or accessibility standards. ASP.NET 4 eliminates most of these exceptions. For details about how the HTML that is rendered by each control meets accessibility standards, see ASP.NET Controls and Accessibility. CSS for Controls that Can be Disabled In ASP.NET 3.5, when a control is disabled (see WebControl.Enabled), a disabled attribute is added to the rendered HTML element. For example, the following markup creates a Label control that is disabled: <asp:Label id="Label1" runat="server"   Text="Test" Enabled="false" /> In ASP.NET 3.5, the previous control settings generate the following HTML: <span id="Label1" disabled="disabled">Test</span> In HTML 4.01, the disabled attribute is not considered valid on span elements. It is valid only on input elements because it specifies that they cannot be accessed. On display-only elements such as span elements, browsers typically support rendering for a disabled appearance, but a Web page that relies on this non-standard behavior is not robust according to accessibility standards. For display-only elements, you should use CSS to indicate a disabled visual appearance. Therefore, by default ASP.NET 4 generates the following HTML for the control settings shown previously: <span id="Label1" class="aspNetDisabled">Test</span> You can change the value of the class attribute that is rendered by default when a control is disabled by setting the DisabledCssClass property. CSS for Validation Controls In ASP.NET 3.5, validation controls render a default color of red as an inline style. For example, the following markup creates a RequiredFieldValidator control: <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"   ErrorMessage="Required Field" ControlToValidate="RadioButtonList1" /> ASP.NET 3.5 renders the following HTML for the validator control: <span id="RequiredFieldValidator1"   style="color:Red;visibility:hidden;">RequiredFieldValidator</span> By default, ASP.NET 4 does not render an inline style to set the color to red. An inline style is used only to hide or show the validator, as shown in the following example: <span id="RequiredFieldValidator1"   style"visibility:hidden;">RequiredFieldValidator</span> Therefore, ASP.NET 4 does not automatically show error messages in red. For information about how to use CSS to specify a visual style for a validation control, see Validating User Input in ASP.NET Web Pages. CSS for the Hidden Fields Div Element ASP.NET uses hidden fields to store state information such as view state and control state. These hidden fields are contained by a div element. In ASP.NET 3.5, this div element does not have a class attribute or an id attribute. Therefore, CSS rules that affect all div elements could unintentionally cause this div to be visible. To avoid this problem, ASP.NET 4 renders the div element for hidden fields with a CSS class that you can use to differentiate the hidden fields div from others. The new classvalue is shown in the following example: <div class="aspNetHidden"> CSS for the Table, Image, and ImageButton Controls By default, in ASP.NET 3.5, some controls set the border attribute of rendered HTML to zero (0). The following example shows HTML that is generated by the Table control in ASP.NET 3.5: <table id="Table2" border="0"> The Image control and the ImageButton control also do this. Because this is not necessary and provides visual formatting information that should be provided by using CSS, the attribute is not generated in ASP.NET 4. CSS for the UpdatePanel and UpdateProgress Controls In ASP.NET 3.5, the UpdatePanel and UpdateProgress controls do not support expando attributes. This makes it impossible to set a CSS class on the HTMLelements that they render. In ASP.NET 4 these controls have been changed to accept expando attributes, as shown in the following example: <asp:UpdatePanel runat="server" class="myStyle"> </asp:UpdatePanel> The following HTML is rendered for this markup: <div id="ctl00_MainContent_UpdatePanel1" class="expandoclass"> </div> Eliminating Unnecessary Outer Tables In ASP.NET 3.5, the HTML that is rendered for the following controls is wrapped in a table element whose purpose is to apply inline styles to the entire control: FormView Login PasswordRecovery ChangePassword If you use templates to customize the appearance of these controls, you can specify CSS styles in the markup that you provide in the templates. In that case, no extra outer table is required. In ASP.NET 4, you can prevent the table from being rendered by setting the new RenderOuterTable property to false. Layout Templates for Wizard Controls In ASP.NET 3.5, the Wizard and CreateUserWizard controls generate an HTML table element that is used for visual formatting. In ASP.NET 4 you can use a LayoutTemplate element to specify the layout. If you do this, the HTML table element is not generated. In the template, you create placeholder controls to indicate where items should be dynamically inserted into the control. (This is similar to how the template model for the ListView control works.) For more information, see the Wizard.LayoutTemplate property. New HTML Formatting Options for the CheckBoxList and RadioButtonList Controls ASP.NET 3.5 uses HTML table elements to format the output for the CheckBoxList and RadioButtonList controls. To provide an alternative that does not use tables for visual formatting, ASP.NET 4 adds two new options to the RepeatLayout enumeration: UnorderedList. This option causes the HTML output to be formatted by using ul and li elements instead of a table. OrderedList. This option causes the HTML output to be formatted by using ol and li elements instead of a table. For examples of HTML that is rendered for the new options, see the RepeatLayout enumeration. Header and Footer Elements for the Table Control In ASP.NET 3.5, the Table control can be configured to render thead and tfoot elements by setting the TableSection property of the TableHeaderRow class and the TableFooterRow class. In ASP.NET 4 these properties are set to the appropriate values by default. CSS and ARIA Support for the Menu Control In ASP.NET 3.5, the Menu control uses HTML table elements for visual formatting, and in some configurations it is not keyboard-accessible. ASP.NET 4 addresses these problems and improves accessibility in the following ways: The generated HTML is structured as an unordered list (ul and li elements). CSS is used for visual formatting. The menu behaves in accordance with ARIA standards for keyboard access. You can use arrow keys to navigate menu items. (For information about ARIA, see Accessibility in Visual Studio and ASP.NET.) ARIA role and property attributes are added to the generated HTML. (Attributes are added by using JavaScript instead of included in the HTML, to avoid generating HTML that would cause markup validation errors.) Styles for the Menu control are rendered in a style block at the top of the page, instead of inline with the rendered HTML elements. If you want to use a separate CSS file so that you can modify the menu styles, you can set the Menu control's new IncludeStyleBlock property to false, in which case the style block is not generated. Valid XHTML for the HtmlForm Control In ASP.NET 3.5, the HtmlForm control (which is created implicitly by the <form runat="server"> tag) renders an HTML form element that has both name and id attributes. The name attribute is deprecated in XHTML 1.1. Therefore, this control does not render the name attribute in ASP.NET 4. Maintaining Backward Compatibility in Control Rendering An existing ASP.NET Web site might have code in it that assumes that controls are rendering HTML the way they do in ASP.NET 3.5. To avoid causing backward compatibility problems when you upgrade the site to ASP.NET 4, you can have ASP.NET continue to generate HTML the way it does in ASP.NET 3.5 after you upgrade the site. To do so, you can set the controlRenderingCompatibilityVersion attribute of the pages element to "3.5" in the Web.config file of an ASP.NET 4 Web site, as shown in the following example: <system.web>   <pages controlRenderingCompatibilityVersion="3.5"/> </system.web> If this setting is omitted, the default value is the same as the version of ASP.NET that the Web site targets. (For information about multi-targeting in ASP.NET, see .NET Framework Multi-Targeting for ASP.NET Web Projects.) ASP.NET MVC ASP.NET MVC helps Web developers build compelling standards-based Web sites that are easy to maintain because it decreases the dependency among application layers by using the Model-View-Controller (MVC) pattern. MVC provides complete control over the page markup. It also improves testability by inherently supporting Test Driven Development (TDD). Web sites created using ASP.NET MVC have a modular architecture. This allows members of a team to work independently on the various modules and can be used to improve collaboration. For example, developers can work on the model and controller layers (data and logic), while the designer work on the view (presentation). For tutorials, walkthroughs, conceptual content, code samples, and a complete API reference, see ASP.NET MVC 2. Dynamic Data Dynamic Data was introduced in the .NET Framework 3.5 SP1 release in mid-2008. This feature provides many enhancements for creating data-driven applications, such as the following: A RAD experience for quickly building a data-driven Web site. Automatic validation that is based on constraints defined in the data model. The ability to easily change the markup that is generated for fields in the GridView and DetailsView controls by using field templates that are part of your Dynamic Data project. For ASP.NET 4, Dynamic Data has been enhanced to give developers even more power for quickly building data-driven Web sites. For more information, see ASP.NET Dynamic Data Content Map. Enabling Dynamic Data for Individual Data-Bound Controls in Existing Web Applications You can use Dynamic Data features in existing ASP.NET Web applications that do not use scaffolding by enabling Dynamic Data for individual data-bound controls. Dynamic Data provides the presentation and data layer support for rendering these controls. When you enable Dynamic Data for data-bound controls, you get the following benefits: Setting default values for data fields. Dynamic Data enables you to provide default values at run time for fields in a data control. Interacting with the database without creating and registering a data model. Automatically validating the data that is entered by the user without writing any code. For more information, see Walkthrough: Enabling Dynamic Data in ASP.NET Data-Bound Controls. New Field Templates for URLs and E-mail Addresses ASP.NET 4 introduces two new built-in field templates, EmailAddress.ascx and Url.ascx. These templates are used for fields that are marked as EmailAddress or Url using the DataTypeAttribute attribute. For EmailAddress objects, the field is displayed as a hyperlink that is created by using the mailto: protocol. When users click the link, it opens the user's e-mail client and creates a skeleton message. Objects typed as Url are displayed as ordinary hyperlinks. The following example shows how to mark fields. [DataType(DataType.EmailAddress)] public object HomeEmail { get; set; } [DataType(DataType.Url)] public object Website { get; set; } Creating Links with the DynamicHyperLink Control Dynamic Data uses the new routing feature that was added in the .NET Framework 3.5 SP1 to control the URLs that users see when they access the Web site. The new DynamicHyperLink control makes it easy to build links to pages in a Dynamic Data site. For information, see How to: Create Table Action Links in Dynamic Data Support for Inheritance in the Data Model Both the ADO.NET Entity Framework and LINQ to SQL support inheritance in their data models. An example of this might be a database that has an InsurancePolicy table. It might also contain CarPolicy and HousePolicy tables that have the same fields as InsurancePolicy and then add more fields. Dynamic Data has been modified to understand inherited objects in the data model and to support scaffolding for the inherited tables. For more information, see Walkthrough: Mapping Table-per-Hierarchy Inheritance in Dynamic Data. Support for Many-to-Many Relationships (Entity Framework Only) The Entity Framework has rich support for many-to-many relationships between tables, which is implemented by exposing the relationship as a collection on an Entity object. New field templates (ManyToMany.ascx and ManyToMany_Edit.ascx) have been added to provide support for displaying and editing data that is involved in many-to-many relationships. For more information, see Working with Many-to-Many Data Relationships in Dynamic Data. New Attributes to Control Display and Support Enumerations The DisplayAttribute has been added to give you additional control over how fields are displayed. The DisplayNameAttribute attribute in earlier versions of Dynamic Data enabled you to change the name that is used as a caption for a field. The new DisplayAttribute class lets you specify more options for displaying a field, such as the order in which a field is displayed and whether a field will be used as a filter. The attribute also provides independent control of the name that is used for the labels in a GridView control, the name that is used in a DetailsView control, the help text for the field, and the watermark used for the field (if the field accepts text input). The EnumDataTypeAttribute class has been added to let you map fields to enumerations. When you apply this attribute to a field, you specify an enumeration type. Dynamic Data uses the new Enumeration.ascx field template to create UI for displaying and editing enumeration values. The template maps the values from the database to the names in the enumeration. Enhanced Support for Filters Dynamic Data 1.0 had built-in filters for Boolean columns and foreign-key columns. The filters did not let you specify the order in which they were displayed. The new DisplayAttribute attribute addresses this by giving you control over whether a column appears as a filter and in what order it will be displayed. An additional enhancement is that filtering support has been rewritten to use the new QueryExtender feature of Web Forms. This lets you create filters without requiring knowledge of the data source control that the filters will be used with. Along with these extensions, filters have also been turned into template controls, which lets you add new ones. Finally, the DisplayAttribute class mentioned earlier allows the default filter to be overridden, in the same way that UIHint allows the default field template for a column to be overridden. For more information, see Walkthrough: Filtering Rows in Tables That Have a Parent-Child Relationship and QueryableFilterRepeater. ASP.NET Chart Control The ASP.NET chart server control enables you to create ASP.NET pages applications that have simple, intuitive charts for complex statistical or financial analysis. The chart control supports the following features: Data series, chart areas, axes, legends, labels, titles, and more. Data binding. Data manipulation, such as copying, splitting, merging, alignment, grouping, sorting, searching, and filtering. Statistical formulas and financial formulas. Advanced chart appearance, such as 3-D, anti-aliasing, lighting, and perspective. Events and customizations. Interactivity and Microsoft Ajax. Support for the Ajax Content Delivery Network (CDN), which provides an optimized way for you to add Microsoft Ajax Library and jQuery scripts to your Web applications. For more information, see Chart Web Server Control Overview. Visual Web Developer Enhancements The following sections provide information about enhancements and new features in Visual Studio 2010 and Visual Web Developer Express. The Web page designer in Visual Studio 2010 has been enhanced for better CSS compatibility, includes additional support for HTML and ASP.NET markup snippets, and features a redesigned version of IntelliSense for JScript. Improved CSS Compatibility The Visual Web Developer designer in Visual Studio 2010 has been updated to improve CSS 2.1 standards compliance. The designer better preserves HTML source code and is more robust than in previous versions of Visual Studio. HTML and JScript Snippets In the HTML editor, IntelliSense auto-completes tag names. The IntelliSense Snippets feature auto-completes whole tags and more. In Visual Studio 2010, IntelliSense snippets are supported for JScript, alongside C# and Visual Basic, which were supported in earlier versions of Visual Studio. Visual Studio 2010 includes over 200 snippets that help you auto-complete common ASP.NET and HTML tags, including required attributes (such as runat="server") and common attributes specific to a tag (such as ID, DataSourceID, ControlToValidate, and Text). You can download additional snippets, or you can write your own snippets that encapsulate the blocks of markup that you or your team use for common tasks. For more information on HTML snippets, see Walkthrough: Using HTML Snippets. JScript IntelliSense Enhancements In Visual 2010, JScript IntelliSense has been redesigned to provide an even richer editing experience. IntelliSense now recognizes objects that have been dynamically generated by methods such as registerNamespace and by similar techniques used by other JavaScript frameworks. Performance has been improved to analyze large libraries of script and to display IntelliSense with little or no processing delay. Compatibility has been significantly increased to support almost all third-party libraries and to support diverse coding styles. Documentation comments are now parsed as you type and are immediately leveraged by IntelliSense. Web Application Deployment with Visual Studio 2010 For Web application projects, Visual Studio now provides tools that work with the IIS Web Deployment Tool (Web Deploy) to automate many processes that had to be done manually in earlier versions of ASP.NET. For example, the following tasks can now be automated: Creating an IIS application on the destination computer and configuring IIS settings. Copying files to the destination computer. Changing Web.config settings that must be different in the destination environment. Propagating changes to data or data structures in SQL Server databases that are used by the Web application. For more information about Web application deployment, see ASP.NET Deployment Content Map. Enhancements to ASP.NET Multi-Targeting ASP.NET 4 adds new features to the multi-targeting feature to make it easier to work with projects that target earlier versions of the .NET Framework. Multi-targeting was introduced in ASP.NET 3.5 to enable you to use the latest version of Visual Studio without having to upgrade existing Web sites or Web services to the latest version of the .NET Framework. In Visual Studio 2008, when you work with a project targeted for an earlier version of the .NET Framework, most features of the development environment adapt to the targeted version. However, IntelliSense displays language features that are available in the current version, and property windows display properties available in the current version. In Visual Studio 2010, only language features and properties available in the targeted version of the .NET Framework are shown. For more information about multi-targeting, see the following topics: .NET Framework Multi-Targeting for ASP.NET Web Projects ASP.NET Side-by-Side Execution Overview How to: Host Web Applications That Use Different Versions of the .NET Framework on the Same Server How to: Deploy Web Site Projects Targeted for Earlier Versions of the .NET Framework

    Read the article

< Previous Page | 1 2 3