Search Results

Search found 80 results on 4 pages for 'southpaw hare'.

Page 3/4 | < Previous Page | 1 2 3 4  | Next Page >

  • C#/.NET Little Wonders &ndash; Cross Calling Constructors

    - by James Michael Hare
    Just a small post today, it’s the final iteration before our release and things are crazy here!  This is another little tidbit that I love using, and it should be fairly common knowledge, yet I’ve noticed many times that less experienced developers tend to have redundant constructor code when they overload their constructors. The Problem – repetitive code is less maintainable Let’s say you were designing a messaging system, and so you want to create a class to represent the properties for a Receiver, so perhaps you design a ReceiverProperties class to represent this collection of properties. Perhaps, you decide to make ReceiverProperties immutable, and so you have several constructors that you can use for alternative construction: 1: // Constructs a set of receiver properties. 2: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable, bool isBuffered) 3: { 4: ReceiverType = receiverType; 5: Source = source; 6: IsDurable = isDurable; 7: IsBuffered = isBuffered; 8: } 9: 10: // Constructs a set of receiver properties with buffering on by default. 11: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable) 12: { 13: ReceiverType = receiverType; 14: Source = source; 15: IsDurable = isDurable; 16: IsBuffered = true; 17: } 18:  19: // Constructs a set of receiver properties with buffering on and durability off. 20: public ReceiverProperties(ReceiverType receiverType, string source) 21: { 22: ReceiverType = receiverType; 23: Source = source; 24: IsDurable = false; 25: IsBuffered = true; 26: } Note: keep in mind this is just a simple example for illustration, and in same cases default parameters can also help clean this up, but they have issues of their own. While strictly speaking, there is nothing wrong with this code, logically, it suffers from maintainability flaws.  Consider what happens if you add a new property to the class?  You have to remember to guarantee that it is set appropriately in every constructor call. This can cause subtle bugs and becomes even uglier when the constructors do more complex logic, error handling, or there are numerous potential overloads (especially if you can’t easily see them all on one screen’s height). The Solution – cross-calling constructors I’d wager nearly everyone knows how to call your base class’s constructor, but you can also cross-call to one of the constructors in the same class by using the this keyword in the same way you use base to call a base constructor. 1: // Constructs a set of receiver properties. 2: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable, bool isBuffered) 3: { 4: ReceiverType = receiverType; 5: Source = source; 6: IsDurable = isDurable; 7: IsBuffered = isBuffered; 8: } 9: 10: // Constructs a set of receiver properties with buffering on by default. 11: public ReceiverProperties(ReceiverType receiverType, string source, bool isDurable) 12: : this(receiverType, source, isDurable, true) 13: { 14: } 15:  16: // Constructs a set of receiver properties with buffering on and durability off. 17: public ReceiverProperties(ReceiverType receiverType, string source) 18: : this(receiverType, source, false, true) 19: { 20: } Notice, there is much less code.  In addition, the code you have has no repetitive logic.  You can define the main constructor that takes all arguments, and the remaining constructors with defaults simply cross-call the main constructor, passing in the defaults. Yes, in some cases default parameters can ease some of this for you, but default parameters only work for compile-time constants (null, string and number literals).  For example, if you were creating a TradingDataAdapter that relied on an implementation of ITradingDao which is the data access object to retreive records from the database, you might want two constructors: one that takes an ITradingDao reference, and a default constructor which constructs a specific ITradingDao for ease of use: 1: public TradingDataAdapter(ITradingDao dao) 2: { 3: _tradingDao = dao; 4:  5: // other constructor logic 6: } 7:  8: public TradingDataAdapter() 9: { 10: _tradingDao = new SqlTradingDao(); 11:  12: // same constructor logic as above 13: }   As you can see, this isn’t something we can solve with a default parameter, but we could with cross-calling constructors: 1: public TradingDataAdapter(ITradingDao dao) 2: { 3: _tradingDao = dao; 4:  5: // other constructor logic 6: } 7:  8: public TradingDataAdapter() 9: : this(new SqlTradingDao()) 10: { 11: }   So in cases like this where you have constructors with non compiler-time constant defaults, default parameters can’t help you and cross-calling constructors is one of your best options. Summary When you have just one constructor doing the job of initializing the class, you can consolidate all your logic and error-handling in one place, thus ensuring that your behavior will be consistent across the constructor calls. This makes the code more maintainable and even easier to read.  There will be some cases where cross-calling constructors may be sub-optimal or not possible (if, for example, the overloaded constructors take completely different types and are not just “defaulting” behaviors). You can also use default parameters, of course, but default parameter behavior in a class hierarchy can be problematic (default values are not inherited and in fact can differ) so sometimes multiple constructors are actually preferable. Regardless of why you may need to have multiple constructors, consider cross-calling where you can to reduce redundant logic and clean up the code.   Technorati Tags: C#,.NET,Little Wonders

    Read the article

  • C#/.NET Little Wonders: Skip() and Take()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. I’ve covered many valuable methods from System.Linq class library before, so you already know it’s packed with extension-method goodness.  Today I’d like to cover two small families I’ve neglected to mention before: Skip() and Take().  While these methods seem so simple, they are an easy way to create sub-sequences for IEnumerable<T>, much the way GetRange() creates sub-lists for List<T>. Skip() and SkipWhile() The Skip() family of methods is used to ignore items in a sequence until either a certain number are passed, or until a certain condition becomes false.  This makes the methods great for starting a sequence at a point possibly other than the first item of the original sequence.   The Skip() family of methods contains the following methods (shown below in extension method syntax): Skip(int count) Ignores the specified number of items and returns a sequence starting at the item after the last skipped item (if any).  SkipWhile(Func<T, bool> predicate) Ignores items as long as the predicate returns true and returns a sequence starting with the first item to invalidate the predicate (if any).  SkipWhile(Func<T, int, bool> predicate) Same as above, but passes not only the item itself to the predicate, but also the index of the item.  For example: 1: var list = new[] { 3.14, 2.72, 42.0, 9.9, 13.0, 101.0 }; 2:  3: // sequence contains { 2.72, 42.0, 9.9, 13.0, 101.0 } 4: var afterSecond = list.Skip(1); 5: Console.WriteLine(string.Join(", ", afterSecond)); 6:  7: // sequence contains { 42.0, 9.9, 13.0, 101.0 } 8: var afterFirstDoubleDigit = list.SkipWhile(v => v < 10.0); 9: Console.WriteLine(string.Join(", ", afterFirstDoubleDigit)); Note that the SkipWhile() stops skipping at the first item that returns false and returns from there to the rest of the sequence, even if further items in that sequence also would satisfy the predicate (otherwise, you’d probably be using Where() instead, of course). If you do use the form of SkipWhile() which also passes an index into the predicate, then you should keep in mind that this is the index of the item in the sequence you are calling SkipWhile() from, not the index in the original collection.  That is, consider the following: 1: var list = new[] { 1.0, 1.1, 1.2, 2.2, 2.3, 2.4 }; 2:  3: // Get all items < 10, then 4: var whatAmI = list 5: .Skip(2) 6: .SkipWhile((i, x) => i > x); For this example the result above is 2.4, and not 1.2, 2.2, 2.3, 2.4 as some might expect.  The key is knowing what the index is that’s passed to the predicate in SkipWhile().  In the code above, because Skip(2) skips 1.0 and 1.1, the sequence passed to SkipWhile() begins at 1.2 and thus it considers the “index” of 1.2 to be 0 and not 2.  This same logic applies when using any of the extension methods that have an overload that allows you to pass an index into the delegate, such as SkipWhile(), TakeWhile(), Select(), Where(), etc.  It should also be noted, that it’s fine to Skip() more items than exist in the sequence (an empty sequence is the result), or even to Skip(0) which results in the full sequence.  So why would it ever be useful to return Skip(0) deliberately?  One reason might be to return a List<T> as an immutable sequence.  Consider this class: 1: public class MyClass 2: { 3: private List<int> _myList = new List<int>(); 4:  5: // works on surface, but one can cast back to List<int> and mutate the original... 6: public IEnumerable<int> OneWay 7: { 8: get { return _myList; } 9: } 10:  11: // works, but still has Add() etc which throw at runtime if accidentally called 12: public ReadOnlyCollection<int> AnotherWay 13: { 14: get { return new ReadOnlyCollection<int>(_myList); } 15: } 16:  17: // immutable, can't be cast back to List<int>, doesn't have methods that throw at runtime 18: public IEnumerable<int> YetAnotherWay 19: { 20: get { return _myList.Skip(0); } 21: } 22: } This code snippet shows three (among many) ways to return an internal sequence in varying levels of immutability.  Obviously if you just try to return as IEnumerable<T> without doing anything more, there’s always the danger the caller could cast back to List<T> and mutate your internal structure.  You could also return a ReadOnlyCollection<T>, but this still has the mutating methods, they just throw at runtime when called instead of giving compiler errors.  Finally, you can return the internal list as a sequence using Skip(0) which skips no items and just runs an iterator through the list.  The result is an iterator, which cannot be cast back to List<T>.  Of course, there’s many ways to do this (including just cloning the list, etc.) but the point is it illustrates a potential use of using an explicit Skip(0). Take() and TakeWhile() The Take() and TakeWhile() methods can be though of as somewhat of the inverse of Skip() and SkipWhile().  That is, while Skip() ignores the first X items and returns the rest, Take() returns a sequence of the first X items and ignores the rest.  Since they are somewhat of an inverse of each other, it makes sense that their calling signatures are identical (beyond the method name obviously): Take(int count) Returns a sequence containing up to the specified number of items. Anything after the count is ignored. TakeWhile(Func<T, bool> predicate) Returns a sequence containing items as long as the predicate returns true.  Anything from the point the predicate returns false and beyond is ignored. TakeWhile(Func<T, int, bool> predicate) Same as above, but passes not only the item itself to the predicate, but also the index of the item. So, for example, we could do the following: 1: var list = new[] { 1.0, 1.1, 1.2, 2.2, 2.3, 2.4 }; 2:  3: // sequence contains 1.0 and 1.1 4: var firstTwo = list.Take(2); 5:  6: // sequence contains 1.0, 1.1, 1.2 7: var underTwo = list.TakeWhile(i => i < 2.0); The same considerations for SkipWhile() with index apply to TakeWhile() with index, of course.  Using Skip() and Take() for sub-sequences A few weeks back, I talked about The List<T> Range Methods and showed how they could be used to get a sub-list of a List<T>.  This works well if you’re dealing with List<T>, or don’t mind converting to List<T>.  But if you have a simple IEnumerable<T> sequence and want to get a sub-sequence, you can also use Skip() and Take() to much the same effect: 1: var list = new List<double> { 1.0, 1.1, 1.2, 2.2, 2.3, 2.4 }; 2:  3: // results in List<T> containing { 1.2, 2.2, 2.3 } 4: var subList = list.GetRange(2, 3); 5:  6: // results in sequence containing { 1.2, 2.2, 2.3 } 7: var subSequence = list.Skip(2).Take(3); I say “much the same effect” because there are some differences.  First of all GetRange() will throw if the starting index or the count are greater than the number of items in the list, but Skip() and Take() do not.  Also GetRange() is a method off of List<T>, thus it can use direct indexing to get to the items much more efficiently, whereas Skip() and Take() operate on sequences and may actually have to walk through the items they skip to create the resulting sequence.  So each has their pros and cons.  My general rule of thumb is if I’m already working with a List<T> I’ll use GetRange(), but for any plain IEnumerable<T> sequence I’ll tend to prefer Skip() and Take() instead. Summary The Skip() and Take() families of LINQ extension methods are handy for producing sub-sequences from any IEnumerable<T> sequence.  Skip() will ignore the specified number of items and return the rest of the sequence, whereas Take() will return the specified number of items and ignore the rest of the sequence.  Similarly, the SkipWhile() and TakeWhile() methods can be used to skip or take items, respectively, until a given predicate returns false.    Technorati Tags: C#, CSharp, .NET, LINQ, IEnumerable<T>, Skip, Take, SkipWhile, TakeWhile

    Read the article

  • C#/.NET Little Wonders: Static Char Methods

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Often times in our code we deal with the bigger classes and types in the BCL, and occasionally forgot that there are some nice methods on the primitive types as well.  Today we will discuss some of the handy static methods that exist on the char (the C# alias of System.Char) type. The Background I was examining a piece of code this week where I saw the following: 1: // need to get the 5th (offset 4) character in upper case 2: var type = symbol.Substring(4, 1).ToUpper(); 3:  4: // test to see if the type is P 5: if (type == "P") 6: { 7: // ... do something with P type... 8: } Is there really any error in this code?  No, but it still struck me wrong because it is allocating two very short-lived throw-away strings, just to store and manipulate a single char: The call to Substring() generates a new string of length 1 The call to ToUpper() generates a new upper-case version of the string from Step 1. In my mind this is similar to using ToUpper() to do a case-insensitive compare: it isn’t wrong, it’s just much heavier than it needs to be (for more info on case-insensitive compares, see #2 in 5 More Little Wonders). One of my favorite books is the C++ Coding Standards: 101 Rules, Guidelines, and Best Practices by Sutter and Alexandrescu.  True, it’s about C++ standards, but there’s also some great general programming advice in there, including two rules I love:         8. Don’t Optimize Prematurely         9. Don’t Pessimize Prematurely We all know what #8 means: don’t optimize when there is no immediate need, especially at the expense of readability and maintainability.  I firmly believe this and in the axiom: it’s easier to make correct code fast than to make fast code correct.  Optimizing code to the point that it becomes difficult to maintain often gains little and often gives you little bang for the buck. But what about #9?  Well, for that they state: “All other things being equal, notably code complexity and readability, certain efficient design patterns and coding idioms should just flow naturally from your fingertips and are no harder to write then the pessimized alternatives. This is not premature optimization; it is avoiding gratuitous pessimization.” Or, if I may paraphrase: “where it doesn’t increase the code complexity and readability, prefer the more efficient option”. The example code above was one of those times I feel where we are violating a tacit C# coding idiom: avoid creating unnecessary temporary strings.  The code creates temporary strings to hold one char, which is just unnecessary.  I think the original coder thought he had to do this because ToUpper() is an instance method on string but not on char.  What he didn’t know, however, is that ToUpper() does exist on char, it’s just a static method instead (though you could write an extension method to make it look instance-ish). This leads me (in a long-winded way) to my Little Wonders for the day… Static Methods of System.Char So let’s look at some of these handy, and often overlooked, static methods on the char type: IsDigit(), IsLetter(), IsLetterOrDigit(), IsPunctuation(), IsWhiteSpace() Methods to tell you whether a char (or position in a string) belongs to a category of characters. IsLower(), IsUpper() Methods that check if a char (or position in a string) is lower or upper case ToLower(), ToUpper() Methods that convert a single char to the lower or upper equivalent. For example, if you wanted to see if a string contained any lower case characters, you could do the following: 1: if (symbol.Any(c => char.IsLower(c))) 2: { 3: // ... 4: } Which, incidentally, we could use a method group to shorten the expression to: 1: if (symbol.Any(char.IsLower)) 2: { 3: // ... 4: } Or, if you wanted to verify that all of the characters in a string are digits: 1: if (symbol.All(char.IsDigit)) 2: { 3: // ... 4: } Also, for the IsXxx() methods, there are overloads that take either a char, or a string and an index, this means that these two calls are logically identical: 1: // check given a character 2: if (char.IsUpper(symbol[0])) { ... } 3:  4: // check given a string and index 5: if (char.IsUpper(symbol, 0)) { ... } Obviously, if you just have a char, then you’d just use the first form.  But if you have a string you can use either form equally well. As a side note, care should be taken when examining all the available static methods on the System.Char type, as some seem to be redundant but actually have very different purposes.  For example, there are IsDigit() and IsNumeric() methods, which sound the same on the surface, but give you different results. IsDigit() returns true if it is a base-10 digit character (‘0’, ‘1’, … ‘9’) where IsNumeric() returns true if it’s any numeric character including the characters for ½, ¼, etc. Summary To come full circle back to our opening example, I would have preferred the code be written like this: 1: // grab 5th char and take upper case version of it 2: var type = char.ToUpper(symbol[4]); 3:  4: if (type == 'P') 5: { 6: // ... do something with P type... 7: } Not only is it just as readable (if not more so), but it performs over 3x faster on my machine:    1,000,000 iterations of char method took: 30 ms, 0.000050 ms/item.    1,000,000 iterations of string method took: 101 ms, 0.000101 ms/item. It’s not only immediately faster because we don’t allocate temporary strings, but as an added bonus there less garbage to collect later as well.  To me this qualifies as a case where we are using a common C# performance idiom (don’t create unnecessary temporary strings) to make our code better. Technorati Tags: C#,CSharp,.NET,Little Wonders,char,string

    Read the article

  • C#/.NET Little Wonders: Constraining Generics with Where Clause

    - by James Michael Hare
    Back when I was primarily a C++ developer, I loved C++ templates.  The power of writing very reusable generic classes brought the art of programming to a brand new level.  Unfortunately, when .NET 1.0 came about, they didn’t have a template equivalent.  With .NET 2.0 however, we finally got generics, which once again let us spread our wings and program more generically in the world of .NET However, C# generics behave in some ways very differently from their C++ template cousins.  There is a handy clause, however, that helps you navigate these waters to make your generics more powerful. The Problem – C# Assumes Lowest Common Denominator In C++, you can create a template and do nearly anything syntactically possible on the template parameter, and C++ will not check if the method/fields/operations invoked are valid until you declare a realization of the type.  Let me illustrate with a C++ example: 1: // compiles fine, C++ makes no assumptions as to T 2: template <typename T> 3: class ReverseComparer 4: { 5: public: 6: int Compare(const T& lhs, const T& rhs) 7: { 8: return rhs.CompareTo(lhs); 9: } 10: }; Notice that we are invoking a method CompareTo() off of template type T.  Because we don’t know at this point what type T is, C++ makes no assumptions and there are no errors. C++ tends to take the path of not checking the template type usage until the method is actually invoked with a specific type, which differs from the behavior of C#: 1: // this will NOT compile! C# assumes lowest common denominator. 2: public class ReverseComparer<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } So why does C# give us a compiler error even when we don’t yet know what type T is?  This is because C# took a different path in how they made generics.  Unless you specify otherwise, for the purposes of the code inside the generic method, T is basically treated like an object (notice I didn’t say T is an object). That means that any operations, fields, methods, properties, etc that you attempt to use of type T must be available at the lowest common denominator type: object.  Now, while object has the broadest applicability, it also has the fewest specific.  So how do we allow our generic type placeholder to do things more than just what object can do? Solution: Constraint the Type With Where Clause So how do we get around this in C#?  The answer is to constrain the generic type placeholder with the where clause.  Basically, the where clause allows you to specify additional constraints on what the actual type used to fill the generic type placeholder must support. You might think that narrowing the scope of a generic means a weaker generic.  In reality, though it limits the number of types that can be used with the generic, it also gives the generic more power to deal with those types.  In effect these constraints says that if the type meets the given constraint, you can perform the activities that pertain to that constraint with the generic placeholders. Constraining Generic Type to Interface or Superclass One of the handiest where clause constraints is the ability to specify the type generic type must implement a certain interface or be inherited from a certain base class. For example, you can’t call CompareTo() in our first C# generic without constraints, but if we constrain T to IComparable<T>, we can: 1: public class ReverseComparer<T> 2: where T : IComparable<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } Now that we’ve constrained T to an implementation of IComparable<T>, this means that our variables of generic type T may now call any members specified in IComparable<T> as well.  This means that the call to CompareTo() is now legal. If you constrain your type, also, you will get compiler warnings if you attempt to use a type that doesn’t meet the constraint.  This is much better than the syntax error you would get within C++ template code itself when you used a type not supported by a C++ template. Constraining Generic Type to Only Reference Types Sometimes, you want to assign an instance of a generic type to null, but you can’t do this without constraints, because you have no guarantee that the type used to realize the generic is not a value type, where null is meaningless. Well, we can fix this by specifying the class constraint in the where clause.  By declaring that a generic type must be a class, we are saying that it is a reference type, and this allows us to assign null to instances of that type: 1: public static class ObjectExtensions 2: { 3: public static TOut Maybe<TIn, TOut>(this TIn value, Func<TIn, TOut> accessor) 4: where TOut : class 5: where TIn : class 6: { 7: return (value != null) ? accessor(value) : null; 8: } 9: } In the example above, we want to be able to access a property off of a reference, and if that reference is null, pass the null on down the line.  To do this, both the input type and the output type must be reference types (yes, nullable value types could also be considered applicable at a logical level, but there’s not a direct constraint for those). Constraining Generic Type to only Value Types Similarly to constraining a generic type to be a reference type, you can also constrain a generic type to be a value type.  To do this you use the struct constraint which specifies that the generic type must be a value type (primitive, struct, enum, etc). Consider the following method, that will convert anything that is IConvertible (int, double, string, etc) to the value type you specify, or null if the instance is null. 1: public static T? ConvertToNullable<T>(IConvertible value) 2: where T : struct 3: { 4: T? result = null; 5:  6: if (value != null) 7: { 8: result = (T)Convert.ChangeType(value, typeof(T)); 9: } 10:  11: return result; 12: } Because T was constrained to be a value type, we can use T? (System.Nullable<T>) where we could not do this if T was a reference type. Constraining Generic Type to Require Default Constructor You can also constrain a type to require existence of a default constructor.  Because by default C# doesn’t know what constructors a generic type placeholder does or does not have available, it can’t typically allow you to call one.  That said, if you give it the new() constraint, it will mean that the type used to realize the generic type must have a default (no argument) constructor. Let’s assume you have a generic adapter class that, given some mappings, will adapt an item from type TFrom to type TTo.  Because it must create a new instance of type TTo in the process, we need to specify that TTo has a default constructor: 1: // Given a set of Action<TFrom,TTo> mappings will map TFrom to TTo 2: public class Adapter<TFrom, TTo> : IEnumerable<Action<TFrom, TTo>> 3: where TTo : class, new() 4: { 5: // The list of translations from TFrom to TTo 6: public List<Action<TFrom, TTo>> Translations { get; private set; } 7:  8: // Construct with empty translation and reverse translation sets. 9: public Adapter() 10: { 11: // did this instead of auto-properties to allow simple use of initializers 12: Translations = new List<Action<TFrom, TTo>>(); 13: } 14:  15: // Add a translator to the collection, useful for initializer list 16: public void Add(Action<TFrom, TTo> translation) 17: { 18: Translations.Add(translation); 19: } 20:  21: // Add a translator that first checks a predicate to determine if the translation 22: // should be performed, then translates if the predicate returns true 23: public void Add(Predicate<TFrom> conditional, Action<TFrom, TTo> translation) 24: { 25: Translations.Add((from, to) => 26: { 27: if (conditional(from)) 28: { 29: translation(from, to); 30: } 31: }); 32: } 33:  34: // Translates an object forward from TFrom object to TTo object. 35: public TTo Adapt(TFrom sourceObject) 36: { 37: var resultObject = new TTo(); 38:  39: // Process each translation 40: Translations.ForEach(t => t(sourceObject, resultObject)); 41:  42: return resultObject; 43: } 44:  45: // Returns an enumerator that iterates through the collection. 46: public IEnumerator<Action<TFrom, TTo>> GetEnumerator() 47: { 48: return Translations.GetEnumerator(); 49: } 50:  51: // Returns an enumerator that iterates through a collection. 52: IEnumerator IEnumerable.GetEnumerator() 53: { 54: return GetEnumerator(); 55: } 56: } Notice, however, you can’t specify any other constructor, you can only specify that the type has a default (no argument) constructor. Summary The where clause is an excellent tool that gives your .NET generics even more power to perform tasks higher than just the base "object level" behavior.  There are a few things you cannot specify with constraints (currently) though: Cannot specify the generic type must be an enum. Cannot specify the generic type must have a certain property or method without specifying a base class or interface – that is, you can’t say that the generic must have a Start() method. Cannot specify that the generic type allows arithmetic operations. Cannot specify that the generic type requires a specific non-default constructor. In addition, you cannot overload a template definition with different, opposing constraints.  For example you can’t define a Adapter<T> where T : struct and Adapter<T> where T : class.  Hopefully, in the future we will get some of these things to make the where clause even more useful, but until then what we have is extremely valuable in making our generics more user friendly and more powerful!   Technorati Tags: C#,.NET,Little Wonders,BlackRabbitCoder,where,generics

    Read the article

  • C#/.NET Little Wonders: Comparer&lt;T&gt;.Default

    - by James Michael Hare
    I’ve been working with a wonderful team on a major release where I work, which has had the side-effect of occupying most of my spare time preparing, testing, and monitoring.  However, I do have this Little Wonder tidbit to offer today. Introduction The IComparable<T> interface is great for implementing a natural order for a data type.  It’s a very simple interface with a single method: 1: public interface IComparer<in T> 2: { 3: // Compare two instances of same type. 4: int Compare(T x, T y); 5: }  So what do we expect for the integer return value?  It’s a pseudo-relative measure of the ordering of x and y, which returns an integer value in much the same way C++ returns an integer result from the strcmp() c-style string comparison function: If x == y, returns 0. If x > y, returns > 0 (often +1, but not guaranteed) If x < y, returns < 0 (often –1, but not guaranteed) Notice that the comparison operator used to evaluate against zero should be the same comparison operator you’d use as the comparison operator between x and y.  That is, if you want to see if x > y you’d see if the result > 0. The Problem: Comparing With null Can Be Messy This gets tricky though when you have null arguments.  According to the MSDN, a null value should be considered equal to a null value, and a null value should be less than a non-null value.  So taking this into account we’d expect this instead: If x == y (or both null), return 0. If x > y (or y only is null), return > 0. If x < y (or x only is null), return < 0. But here’s the problem – if x is null, what happens when we attempt to call CompareTo() off of x? 1: // what happens if x is null? 2: x.CompareTo(y); It’s pretty obvious we’ll get a NullReferenceException here.  Now, we could guard against this before calling CompareTo(): 1: int result; 2:  3: // first check to see if lhs is null. 4: if (x == null) 5: { 6: // if lhs null, check rhs to decide on return value. 7: if (y == null) 8: { 9: result = 0; 10: } 11: else 12: { 13: result = -1; 14: } 15: } 16: else 17: { 18: // CompareTo() should handle a null y correctly and return > 0 if so. 19: result = x.CompareTo(y); 20: } Of course, we could shorten this with the ternary operator (?:), but even then it’s ugly repetitive code: 1: int result = (x == null) 2: ? ((y == null) ? 0 : -1) 3: : x.CompareTo(y); Fortunately, the null issues can be cleaned up by drafting in an external Comparer.  The Soltuion: Comparer<T>.Default You can always develop your own instance of IComparer<T> for the job of comparing two items of the same type.  The nice thing about a IComparer is its is independent of the things you are comparing, so this makes it great for comparing in an alternative order to the natural order of items, or when one or both of the items may be null. 1: public class NullableIntComparer : IComparer<int?> 2: { 3: public int Compare(int? x, int? y) 4: { 5: return (x == null) 6: ? ((y == null) ? 0 : -1) 7: : x.Value.CompareTo(y); 8: } 9: }  Now, if you want a custom sort -- especially on large-grained objects with different possible sort fields -- this is the best option you have.  But if you just want to take advantage of the natural ordering of the type, there is an easier way.  If the type you want to compare already implements IComparable<T> or if the type is System.Nullable<T> where T implements IComparable, there is a class in the System.Collections.Generic namespace called Comparer<T> which exposes a property called Default that will create a singleton that represents the default comparer for items of that type.  For example: 1: // compares integers 2: var intComparer = Comparer<int>.Default; 3:  4: // compares DateTime values 5: var dateTimeComparer = Comparer<DateTime>.Default; 6:  7: // compares nullable doubles using the null rules! 8: var nullableDoubleComparer = Comparer<double?>.Default;  This helps you avoid having to remember the messy null logic and makes it to compare objects where you don’t know if one or more of the values is null. This works especially well when creating say an IComparer<T> implementation for a large-grained class that may or may not contain a field.  For example, let’s say you want to create a sorting comparer for a stock open price, but if the market the stock is trading in hasn’t opened yet, the open price will be null.  We could handle this (assuming a reasonable Quote definition) like: 1: public class Quote 2: { 3: // the opening price of the symbol quoted 4: public double? Open { get; set; } 5:  6: // ticker symbol 7: public string Symbol { get; set; } 8:  9: // etc. 10: } 11:  12: public class OpenPriceQuoteComparer : IComparer<Quote> 13: { 14: // Compares two quotes by opening price 15: public int Compare(Quote x, Quote y) 16: { 17: return Comparer<double?>.Default.Compare(x.Open, y.Open); 18: } 19: } Summary Defining a custom comparer is often needed for non-natural ordering or defining alternative orderings, but when you just want to compare two items that are IComparable<T> and account for null behavior, you can use the Comparer<T>.Default comparer generator and you’ll never have to worry about correct null value sorting again.     Technorati Tags: C#,.NET,Little Wonders,BlackRabbitCoder,IComparable,Comparer

    Read the article

  • Saint Louis Days of .NET 2012

    - by James Michael Hare
    Hey all, just a quick note to let you know I'll be one of the speakers at the St. Louis Days of .NET this year.  I'll be giving a revamped version of my Little Wonders (going to add some new ones to keep it fresh) -- and hopefully other presentations as well, the session selection process is ongoing.St. Louis Days of .NET is a wonderful conference in the midwest and a bargain to boot (only $175 if you register before July 1st!  Hope to see you there.For more information, visit: http://www.stlouisdayofdotnet.com/2012

    Read the article

  • A Trio of Presentations: Little Wonders, StyleCop, and LINQ/Lambdas

    - by James Michael Hare
    This week is a busy week for me.  First of all I’m giving another presentation on a LINQ/Lambda primer for the rest of the developers in my company.  Of Lambdas and LINQ View more presentations from BlackRabbitCoder Then this Saturday the 25th of June I’ll be reprising my Little Wonders presentation for the Kansas City Developers Camp.  If you are in the area I highly recommend attending and seeing the other great presentations as well.  Their link is here. Little Wonders View more presentations from BlackRabbitCoder Finally, this Monday the 27th I’ll be speaking at the Saint Louis .NET Users group, giving my Automating Code Standards Using StyleCop and FxCop presentation.  If you are in the Saint Louis area stop by!  There’s two other simultaneous presentations as well if they’re more suited to your interests.  The link for the SLDNUG is here. Automating C# Coding Standards using StyleCop and FxCop View more presentations from BlackRabbitCoder Tweet Technorati Tags: C#,.NET,LINQ,Lambda,StyleCop,FxCop,Little Wonders

    Read the article

  • C# Toolbox: Debug-able, Self-Installable Windows Service Template Redux

    - by James Michael Hare
    I had written a pair of posts before about creating a debug-able and self-installing windows service template in C#.  This is a template I began creating to ease creating windows services and to take some of the mundane tasks out of the coding effort.  The original posts were here: C# Windows Services (1 of 2) - Debug-able Windows Services C# Windows Services (2 of 2) - Self-Installing Windows Services But at the time, though I gave the code samples I didn't have a downloadable for of the template on the blog.  After getting many requests for the actual source, I zipped it up and am posting it with this blog entry.  Click on the link below to download the archive.  The password on the archive is, imaginatively enough, password.  Hope you enjoy and please feel free to comment and suggest changes! Debug-able, Self-Installing Windows Service Template download Enjoy! Tweet Technorati Tags: C#,Windows Service,Toolbox

    Read the article

  • C#/.NET Little Wonders: Interlocked CompareExchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Two posts ago, I discussed the Interlocked Add(), Increment(), and Decrement() methods (here) for adding and subtracting values in a thread-safe, lightweight manner.  Then, last post I talked about the Interlocked Read() and Exchange() methods (here) for safely and efficiently reading and setting 32 or 64 bit values (or references).  This week, we’ll round out the discussion by talking about the Interlocked CompareExchange() method and how it can be put to use to exchange a value if the current value is what you expected it to be. Dirty reads can lead to bad results Many of the uses of Interlocked that we’ve explored so far have centered around either reading, setting, or adding values.  But what happens if you want to do something more complex such as setting a value based on the previous value in some manner? Perhaps you were creating an application that reads a current balance, applies a deposit, and then saves the new modified balance, where of course you’d want that to happen atomically.  If you read the balance, then go to save the new balance and between that time the previous balance has already changed, you’ll have an issue!  Think about it, if we read the current balance as $400, and we are applying a new deposit of $50.75, but meanwhile someone else deposits $200 and sets the total to $600, but then we write a total of $450.75 we’ve lost $200! Now, certainly for int and long values we can use Interlocked.Add() to handles these cases, and it works well for that.  But what if we want to work with doubles, for example?  Let’s say we wanted to add the numbers from 0 to 99,999 in parallel.  We could do this by spawning several parallel tasks to continuously add to a total: 1: double total = 0; 2:  3: Parallel.For(0, 10000, next => 4: { 5: total += next; 6: }); Were this run on one thread using a standard for loop, we’d expect an answer of 4,999,950,000 (the sum of all numbers from 0 to 99,999).  But when we run this in parallel as written above, we’ll likely get something far off.  The result of one of my runs, for example, was 1,281,880,740.  That is way off!  If this were banking software we’d be in big trouble with our clients.  So what happened?  The += operator is not atomic, it will read in the current value, add the result, then store it back into the total.  At any point in all of this another thread could read a “dirty” current total and accidentally “skip” our add.   So, to clean this up, we could use a lock to guarantee concurrency: 1: double total = 0.0; 2: object locker = new object(); 3:  4: Parallel.For(0, count, next => 5: { 6: lock (locker) 7: { 8: total += next; 9: } 10: }); Which will give us the correct result of 4,999,950,000.  One thing to note is that locking can be heavy, especially if the operation being locked over is trivial, or the life of the lock is a high percentage of the work being performed concurrently.  In the case above, the lock consumes pretty much all of the time of each parallel task – and the task being locked on is relatively trivial. Now, let me put in a disclaimer here before we go further: For most uses, lock is more than sufficient for your needs, and is often the simplest solution!    So, if lock is sufficient for most needs, why would we ever consider another solution?  The problem with locking is that it can suspend execution of your thread while it waits for the signal that the lock is free.  Moreover, if the operation being locked over is trivial, the lock can add a very high level of overhead.  This is why things like Interlocked.Increment() perform so well, instead of locking just to perform an increment, we perform the increment with an atomic, lockless method. As with all things performance related, it’s important to profile before jumping to the conclusion that you should optimize everything in your path.  If your profiling shows that locking is causing a high level of waiting in your application, then it’s time to consider lighter alternatives such as Interlocked. CompareExchange() – Exchange existing value if equal some value So let’s look at how we could use CompareExchange() to solve our problem above.  The general syntax of CompareExchange() is: T CompareExchange<T>(ref T location, T newValue, T expectedValue) If the value in location == expectedValue, then newValue is exchanged.  Either way, the value in location (before exchange) is returned. Actually, CompareExchange() is not one method, but a family of overloaded methods that can take int, long, float, double, pointers, or references.  It cannot take other value types (that is, can’t CompareExchange() two DateTime instances directly).  Also keep in mind that the version that takes any reference type (the generic overload) only checks for reference equality, it does not call any overridden Equals(). So how does this help us?  Well, we can grab the current total, and exchange the new value if total hasn’t changed.  This would look like this: 1: // grab the snapshot 2: double current = total; 3:  4: // if the total hasn’t changed since I grabbed the snapshot, then 5: // set it to the new total 6: Interlocked.CompareExchange(ref total, current + next, current); So what the code above says is: if the amount in total (1st arg) is the same as the amount in current (3rd arg), then set total to current + next (2nd arg).  This check and exchange pair is atomic (and thus thread-safe). This works if total is the same as our snapshot in current, but the problem, is what happens if they aren’t the same?  Well, we know that in either case we will get the previous value of total (before the exchange), back as a result.  Thus, we can test this against our snapshot to see if it was the value we expected: 1: // if the value returned is != current, then our snapshot must be out of date 2: // which means we didn't (and shouldn't) apply current + next 3: if (Interlocked.CompareExchange(ref total, current + next, current) != current) 4: { 5: // ooops, total was not equal to our snapshot in current, what should we do??? 6: } So what do we do if we fail?  That’s up to you and the problem you are trying to solve.  It’s possible you would decide to abort the whole transaction, or perhaps do a lightweight spin and try again.  Let’s try that: 1: double current = total; 2:  3: // make first attempt... 4: if (Interlocked.CompareExchange(ref total, current + i, current) != current) 5: { 6: // if we fail, go into a spin wait, spin, and try again until succeed 7: var spinner = new SpinWait(); 8:  9: do 10: { 11: spinner.SpinOnce(); 12: current = total; 13: } 14: while (Interlocked.CompareExchange(ref total, current + i, current) != current); 15: } 16:  This is not trivial code, but it illustrates a possible use of CompareExchange().  What we are doing is first checking to see if we succeed on the first try, and if so great!  If not, we create a SpinWait and then repeat the process of SpinOnce(), grab a fresh snapshot, and repeat until CompareExchnage() succeeds.  You may wonder why not a simple do-while here, and the reason it’s more efficient to only create the SpinWait until we absolutely know we need one, for optimal efficiency. Though not as simple (or maintainable) as a simple lock, this will perform better in many situations.  Comparing an unlocked (and wrong) version, a version using lock, and the Interlocked of the code, we get the following average times for multiple iterations of adding the sum of 100,000 numbers: 1: Unlocked money average time: 2.1 ms 2: Locked money average time: 5.1 ms 3: Interlocked money average time: 3 ms So the Interlocked.CompareExchange(), while heavier to code, came in lighter than the lock, offering a good compromise of safety and performance when we need to reduce contention. CompareExchange() - it’s not just for adding stuff… So that was one simple use of CompareExchange() in the context of adding double values -- which meant we couldn’t have used the simpler Interlocked.Add() -- but it has other uses as well. If you think about it, this really works anytime you want to create something new based on a current value without using a full lock.  For example, you could use it to create a simple lazy instantiation implementation.  In this case, we want to set the lazy instance only if the previous value was null: 1: public static class Lazy<T> where T : class, new() 2: { 3: private static T _instance; 4:  5: public static T Instance 6: { 7: get 8: { 9: // if current is null, we need to create new instance 10: if (_instance == null) 11: { 12: // attempt create, it will only set if previous was null 13: Interlocked.CompareExchange(ref _instance, new T(), (T)null); 14: } 15:  16: return _instance; 17: } 18: } 19: } So, if _instance == null, this will create a new T() and attempt to exchange it with _instance.  If _instance is not null, then it does nothing and we discard the new T() we created. This is a way to create lazy instances of a type where we are more concerned about locking overhead than creating an accidental duplicate which is not used.  In fact, the BCL implementation of Lazy<T> offers a similar thread-safety choice for Publication thread safety, where it will not guarantee only one instance was created, but it will guarantee that all readers get the same instance.  Another possible use would be in concurrent collections.  Let’s say, for example, that you are creating your own brand new super stack that uses a linked list paradigm and is “lock free”.  We could use Interlocked.CompareExchange() to be able to do a lockless Push() which could be more efficient in multi-threaded applications where several threads are pushing and popping on the stack concurrently. Yes, there are already concurrent collections in the BCL (in .NET 4.0 as part of the TPL), but it’s a fun exercise!  So let’s assume we have a node like this: 1: public sealed class Node<T> 2: { 3: // the data for this node 4: public T Data { get; set; } 5:  6: // the link to the next instance 7: internal Node<T> Next { get; set; } 8: } Then, perhaps, our stack’s Push() operation might look something like: 1: public sealed class SuperStack<T> 2: { 3: private volatile T _head; 4:  5: public void Push(T value) 6: { 7: var newNode = new Node<int> { Data = value, Next = _head }; 8:  9: if (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next) 10: { 11: var spinner = new SpinWait(); 12:  13: do 14: { 15: spinner.SpinOnce(); 16: newNode.Next = _head; 17: } 18: while (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next); 19: } 20: } 21:  22: // ... 23: } Notice a similar paradigm here as with adding our doubles before.  What we are doing is creating the new Node with the data to push, and with a Next value being the original node referenced by _head.  This will create our stack behavior (LIFO – Last In, First Out).  Now, we have to set _head to now refer to the newNode, but we must first make sure it hasn’t changed! So we check to see if _head has the same value we saved in our snapshot as newNode.Next, and if so, we set _head to newNode.  This is all done atomically, and the result is _head’s original value, as long as the original value was what we assumed it was with newNode.Next, then we are good and we set it without a lock!  If not, we SpinWait and try again. Once again, this is much lighter than locking in highly parallelized code with lots of contention.  If I compare the method above with a similar class using lock, I get the following results for pushing 100,000 items: 1: Locked SuperStack average time: 6 ms 2: Interlocked SuperStack average time: 4.5 ms So, once again, we can get more efficient than a lock, though there is the cost of added code complexity.  Fortunately for you, most of the concurrent collection you’d ever need are already created for you in the System.Collections.Concurrent (here) namespace – for more information, see my Little Wonders – The Concurent Collections Part 1 (here), Part 2 (here), and Part 3 (here). Summary We’ve seen before how the Interlocked class can be used to safely and efficiently add, increment, decrement, read, and exchange values in a multi-threaded environment.  In addition to these, Interlocked CompareExchange() can be used to perform more complex logic without the need of a lock when lock contention is a concern. The added efficiency, though, comes at the cost of more complex code.  As such, the standard lock is often sufficient for most thread-safety needs.  But if profiling indicates you spend a lot of time waiting for locks, or if you just need a lock for something simple such as an increment, decrement, read, exchange, etc., then consider using the Interlocked class’s methods to reduce wait. Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked,CompareExchange,threading,concurrency

    Read the article

  • Microsoft Visual C# MVP 2012

    - by James Michael Hare
    I was informed on July 1st, 2012 that I was awarded a Microsoft Visual C# MVP recognition for 2012.  This is my second year now, and I'm doubly thankful to have been nominated and selected, and thankful that you guys all find my posts informative and useful! Even though life has thrown me some curve balls in this past last year, I look forward to continuing my posts (especially the Little Wonders) as much as possible!Thanks again!

    Read the article

  • C#/.NET Little Wonders: Getting Caller Information

    - by James Michael Hare
    Originally posted on: http://geekswithblogs.net/BlackRabbitCoder/archive/2013/07/25/c.net-little-wonders-getting-caller-information.aspx Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. There are times when it is desirable to know who called the method or property you are currently executing.  Some applications of this could include logging libraries, or possibly even something more advanced that may server up different objects depending on who called the method. In the past, we mostly relied on the System.Diagnostics namespace and its classes such as StackTrace and StackFrame to see who our caller was, but now in C# 5, we can also get much of this data at compile-time. Determining the caller using the stack One of the ways of doing this is to examine the call stack.  The classes that allow you to examine the call stack have been around for a long time and can give you a very deep view of the calling chain all the way back to the beginning for the thread that has called you. You can get caller information by either instantiating the StackTrace class (which will give you the complete stack trace, much like you see when an exception is generated), or by using StackFrame which gets a single frame of the stack trace.  Both involve examining the call stack, which is a non-trivial task, so care should be done not to do this in a performance-intensive situation. For our simple example let's say we are going to recreate the wheel and construct our own logging framework.  Perhaps we wish to create a simple method Log which will log the string-ified form of an object and some information about the caller.  We could easily do this as follows: 1: static void Log(object message) 2: { 3: // frame 1, true for source info 4: StackFrame frame = new StackFrame(1, true); 5: var method = frame.GetMethod(); 6: var fileName = frame.GetFileName(); 7: var lineNumber = frame.GetFileLineNumber(); 8: 9: // we'll just use a simple Console write for now 10: Console.WriteLine("{0}({1}):{2} - {3}", 11: fileName, lineNumber, method.Name, message); 12: } So, what we are doing here is grabbing the 2nd stack frame (the 1st is our current method) using a 2nd argument of true to specify we want source information (if available) and then taking the information from the frame.  This works fine, and if we tested it out by calling from a file such as this: 1: // File c:\projects\test\CallerInfo\CallerInfo.cs 2:  3: public class CallerInfo 4: { 5: Log("Hello Logger!"); 6: } We'd see this: 1: c:\projects\test\CallerInfo\CallerInfo.cs(5):Main - Hello Logger! This works well, and in fact CallStack and StackFrame are still the best ways to examine deeper into the call stack.  But if you only want to get information on the caller of your method, there is another option… Determining the caller at compile-time In C# 5 (.NET 4.5) they added some attributes that can be supplied to optional parameters on a method to receive caller information.  These attributes can only be applied to methods with optional parameters with explicit defaults.  Then, as the compiler determines who is calling your method with these attributes, it will fill in the values at compile-time. These are the currently supported attributes available in the  System.Runtime.CompilerServices namespace": CallerFilePathAttribute – The path and name of the file that is calling your method. CallerLineNumberAttribute – The line number in the file where your method is being called. CallerMemberName – The member that is calling your method. So let’s take a look at how our Log method would look using these attributes instead: 1: static int Log(object message, 2: [CallerMemberName] string memberName = "", 3: [CallerFilePath] string fileName = "", 4: [CallerLineNumber] int lineNumber = 0) 5: { 6: // we'll just use a simple Console write for now 7: Console.WriteLine("{0}({1}):{2} - {3}", 8: fileName, lineNumber, memberName, message); 9: } Again, calling this from our sample Main would give us the same result: 1: c:\projects\test\CallerInfo\CallerInfo.cs(5):Main - Hello Logger! However, though this seems the same, there are a few key differences. First of all, there are only 3 supported attributes (at this time) that give you the file path, line number, and calling member.  Thus, it does not give you as rich of detail as a StackFrame (which can give you the calling type as well and deeper frames, for example).  Also, these are supported through optional parameters, which means we could call our new Log method like this: 1: // They're defaults, why not fill 'em in 2: Log("My message.", "Some member", "Some file", -13); In addition, since these attributes require optional parameters, they cannot be used in properties, only in methods. These caveats aside, they do let you get similar information inside of methods at a much greater speed!  How much greater?  Well lets crank through 1,000,000 iterations of each.  instead of logging to console, I’ll return the formatted string length of each.  Doing this, we get: 1: Time for 1,000,000 iterations with StackTrace: 5096 ms 2: Time for 1,000,000 iterations with Attributes: 196 ms So you see, using the attributes is much, much faster!  Nearly 25x faster in fact.  Summary There are a few ways to get caller information for a method.  The StackFrame allows you to get a comprehensive set of information spanning the whole call stack, but at a heavier cost.  On the other hand, the attributes allow you to quickly get at caller information baked in at compile-time, but to do so you need to create optional parameters in your methods to support it. Technorati Tags: Little Wonders,CSharp,C#,.NET,StackFrame,CallStack,CallerFilePathAttribute,CallerLineNumberAttribute,CallerMemberName

    Read the article

  • C#/.NET Little Wonders: Interlocked Read() and Exchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Last time we discussed the Interlocked class and its Add(), Increment(), and Decrement() methods which are all useful for updating a value atomically by adding (or subtracting).  However, this begs the question of how do we set and read those values atomically as well? Read() – Read a value atomically Let’s begin by examining the following code: 1: public class Incrementor 2: { 3: private long _value = 0; 4:  5: public long Value { get { return _value; } } 6:  7: public void Increment() 8: { 9: Interlocked.Increment(ref _value); 10: } 11: } 12:  It uses an interlocked increment, as we discuss in my previous post (here), so we know that the increment will be thread-safe.  But, to realize what’s potentially wrong we have to know a bit about how atomic reads are in 32 bit and 64 bit .NET environments. When you are dealing with an item smaller or equal to the system word size (such as an int on a 32 bit system or a long on a 64 bit system) then the read is generally atomic, because it can grab all of the bits needed at once.  However, when dealing with something larger than the system word size (reading a long on a 32 bit system for example), it cannot grab the whole value at once, which can lead to some problems since this read isn’t atomic. For example, this means that on a 32 bit system we may read one half of the long before another thread increments the value, and the other half of it after the increment.  To protect us from reading an invalid value in this manner, we can do an Interlocked.Read() to force the read to be atomic (of course, you’d want to make sure any writes or increments are atomic also): 1: public class Incrementor 2: { 3: private long _value = 0; 4:  5: public long Value 6: { 7: get { return Interlocked.Read(ref _value); } 8: } 9:  10: public void Increment() 11: { 12: Interlocked.Increment(ref _value); 13: } 14: } Now we are guaranteed that we will read the 64 bit value atomically on a 32 bit system, thus ensuring our thread safety (assuming all other reads, writes, increments, etc. are likewise protected).  Note that as stated before, and according to the MSDN (here), it isn’t strictly necessary to use Interlocked.Read() for reading 64 bit values on 64 bit systems, but for those still working in 32 bit environments, it comes in handy when dealing with long atomically. Exchange() – Exchanges two values atomically Exchange() lets us store a new value in the given location (the ref parameter) and return the old value as a result. So just as Read() allows us to read atomically, one use of Exchange() is to write values atomically.  For example, if we wanted to add a Reset() method to our Incrementor, we could do something like this: 1: public void Reset() 2: { 3: _value = 0; 4: } But the assignment wouldn’t be atomic on 32 bit systems, since the word size is 32 bits and the variable is a long (64 bits).  Thus our assignment could have only set half the value when a threaded read or increment happens, which would put us in a bad state. So instead, we could write Reset() like this: 1: public void Reset() 2: { 3: Interlocked.Exchange(ref _value, 0); 4: } And we’d be safe again on a 32 bit system. But this isn’t the only reason Exchange() is valuable.  The key comes in realizing that Exchange() doesn’t just set a new value, it returns the old as well in an atomic step.  Hence the name “exchange”: you are swapping the value to set with the stored value. So why would we want to do this?  Well, anytime you want to set a value and take action based on the previous value.  An example of this might be a scheme where you have several tasks, and during every so often, each of the tasks may nominate themselves to do some administrative chore.  Perhaps you don’t want to make this thread dedicated for whatever reason, but want to be robust enough to let any of the threads that isn’t currently occupied nominate itself for the job.  An easy and lightweight way to do this would be to have a long representing whether someone has acquired the “election” or not.  So a 0 would indicate no one has been elected and 1 would indicate someone has been elected. We could then base our nomination strategy as follows: every so often, a thread will attempt an Interlocked.Exchange() on the long and with a value of 1.  The first thread to do so will set it to a 1 and return back the old value of 0.  We can use this to show that they were the first to nominate and be chosen are thus “in charge”.  Anyone who nominates after that will attempt the same Exchange() but will get back a value of 1, which indicates that someone already had set it to a 1 before them, thus they are not elected. Then, the only other step we need take is to remember to release the election flag once the elected thread accomplishes its task, which we’d do by setting the value back to 0.  In this way, the next thread to nominate with Exchange() will get back the 0 letting them know they are the new elected nominee. Such code might look like this: 1: public class Nominator 2: { 3: private long _nomination = 0; 4: public bool Elect() 5: { 6: return Interlocked.Exchange(ref _nomination, 1) == 0; 7: } 8: public bool Release() 9: { 10: return Interlocked.Exchange(ref _nomination, 0) == 1; 11: } 12: } There’s many ways to do this, of course, but you get the idea.  Running 5 threads doing some “sleep” work might look like this: 1: var nominator = new Nominator(); 2: var random = new Random(); 3: Parallel.For(0, 5, i => 4: { 5:  6: for (int j = 0; j < _iterations; ++j) 7: { 8: if (nominator.Elect()) 9: { 10: // elected 11: Console.WriteLine("Elected nominee " + i); 12: Thread.Sleep(random.Next(100, 5000)); 13: nominator.Release(); 14: } 15: else 16: { 17: // not elected 18: Console.WriteLine("Did not elect nominee " + i); 19: } 20: // sleep before check again 21: Thread.Sleep(1000); 22: } 23: }); And would spit out results like: 1: Elected nominee 0 2: Did not elect nominee 2 3: Did not elect nominee 1 4: Did not elect nominee 4 5: Did not elect nominee 3 6: Did not elect nominee 3 7: Did not elect nominee 1 8: Did not elect nominee 2 9: Did not elect nominee 4 10: Elected nominee 3 11: Did not elect nominee 2 12: Did not elect nominee 1 13: Did not elect nominee 4 14: Elected nominee 0 15: Did not elect nominee 2 16: Did not elect nominee 4 17: ... Another nice thing about the Interlocked.Exchange() is it can be used to thread-safely set pretty much anything 64 bits or less in size including references, pointers (in unsafe mode), floats, doubles, etc.  Summary So, now we’ve seen two more things we can do with Interlocked: reading and exchanging a value atomically.  Read() and Exchange() are especially valuable for reading/writing 64 bit values atomically in a 32 bit system.  Exchange() has value even beyond simply atomic writes by using the Exchange() to your advantage, since it reads and set the value atomically, which allows you to do lightweight nomination systems. There’s still a few more goodies in the Interlocked class which we’ll explore next time! Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked

    Read the article

  • Next Post...

    - by James Michael Hare
    The next post on the concurrent collections will be next Monday.  I'm a little behind from my Topeka trip earlier this week, so sorry about the delay! Also, I was thinking about starting a C++ Little Wonders series as well.  Would anyone have an interest in that topic?  I primarily use C# in my development work, but there is still a lot of legacy C++ I work on as well and could share some tips & tricks.

    Read the article

  • A Change of Seasons...

    - by James Michael Hare
    As some of you already know, today is my last day at Scottrade. It has been a great place to work and I'll miss all the relationships I've formed over the last 5 years immensely! Starting Monday, I will be taking a new position at Amazon.com in Seattle. It should be an exciting new adventure and I look forward to sharing more about my experiences in the days to come! I do intend to continue blogging (after the move settles down) about C# as I'm able, and may mix in some Java as well as I rekindle (Amazon? Kindle? Get it? Okay, that was lame, I know...) my knowledge of the language for my new job responsibilities. I'll miss all the relationships I've developed with the .NET community in St. Louis and the surrounding area, and hope to come back sometime to participate in future Days of .NET conferences, if able! Stay tuned for more updates!

    Read the article

  • Trying to convert simple midlet application to Android application but running into problems.

    - by chobo2
    Hi I am trying to do some threading in Android so I took an old threading assignment I had done fora midlet and took out the midlet code and replaced it with android code(such as textview). package com.assignment1; import android.app.Activity; import android.os.Bundle; import android.widget.TextView; public class Threading extends Activity { private TextView tortose; private TextView hare; private Thread hareThread; private Thread torotoseThread; private int num = 0; private int num2 = 0; public Threading() { } /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); tortose = (TextView) findViewById(R.id.TextView01); hare = (TextView) findViewById(R.id.TextView02); Hare newHare = new Hare(); hareThread = new Thread(newHare); hareThread.start(); Torotose newTortose = new Torotose(); torotoseThread = new Thread(newTortose); torotoseThread.start(); //updateDisplay(); } private synchronized void check(int value1, int value2) { if((value1-value2) >= 10) { try { wait(); } catch(Exception ex) { System.out.println(ex); } } } private synchronized void getGoing(int value1, int value2) { if((value1-value2) == 0) { try { notify(); } catch(Exception ex) { System.out.println(ex); } } } private class Hare extends Thread { public void run() { while(true) { num++; hare.setText(Integer.toString(num)); check(num, num2); try { // are threads different in andriod apps? Thread.sleep(100); // hareThread.sleep(100); } catch(Exception ex) { System.out.println(ex); } } } } private class Torotose extends Thread { public void run() { while(true) { num2++; tortose.setText(Integer.toString(num2)); getGoing(num,num2); try { Thread.sleep(200); //torotoseThread.sleep(200); } catch(Exception ex) { System.out.println(ex); } } } } } First it wanted me to change my threads to like static threads.So is this just how Android does it? Next when I run this code it just crashes with some unexpected error. I am not sure what the error is but when I try to debug it and goes to like to create a new "hare" object it shows me this. // Compiled from ClassLoader.java (version 1.5 : 49.0, super bit) public abstract class java.lang.ClassLoader { // Method descriptor #8 ()V // Stack: 3, Locals: 1 protected ClassLoader(); 0 aload_0 [this] 1 invokespecial java.lang.Object() [1] 4 new java.lang.RuntimeException [2] 7 dup 8 ldc <String "Stub!"> [3] 10 invokespecial java.lang.RuntimeException(java.lang.String) [4] 13 athrow Line numbers: [pc: 0, line: 4] Local variable table: [pc: 0, pc: 14] local: this index: 0 type: java.lang.ClassLoader // Method descriptor #14 (Ljava/lang/ClassLoader;)V // Stack: 3, Locals: 2 protected ClassLoader(java.lang.ClassLoader parentLoader); 0 aload_0 [this] 1 invokespecial java.lang.Object() [1] 4 new java.lang.RuntimeException [2] 7 dup 8 ldc <String "Stub!"> [3] 10 invokespecial java.lang.RuntimeException(java.lang.String) [4] 13 athrow Line numbers: [pc: 0, line: 5] Local variable table: [pc: 0, pc: 14] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 14] local: parentLoader index: 1 type: java.lang.ClassLoader // Method descriptor #17 ()Ljava/lang/ClassLoader; // Stack: 3, Locals: 0 public static java.lang.ClassLoader getSystemClassLoader(); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 6] // Method descriptor #19 (Ljava/lang/String;)Ljava/net/URL; // Stack: 3, Locals: 1 public static java.net.URL getSystemResource(java.lang.String resName); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 7] Local variable table: [pc: 0, pc: 10] local: resName index: 0 type: java.lang.String // Method descriptor #23 (Ljava/lang/String;)Ljava/util/Enumeration; // Signature: (Ljava/lang/String;)Ljava/util/Enumeration<Ljava/net/URL;>; // Stack: 3, Locals: 1 public static java.util.Enumeration getSystemResources(java.lang.String resName) throws java.io.IOException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 8] Local variable table: [pc: 0, pc: 10] local: resName index: 0 type: java.lang.String // Method descriptor #29 (Ljava/lang/String;)Ljava/io/InputStream; // Stack: 3, Locals: 1 public static java.io.InputStream getSystemResourceAsStream(java.lang.String resName); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 9] Local variable table: [pc: 0, pc: 10] local: resName index: 0 type: java.lang.String // Method descriptor #31 ([BII)Ljava/lang/Class; // Signature: ([BII)Ljava/lang/Class<*>; // Stack: 3, Locals: 4 protected final java.lang.Class defineClass(byte[] classRep, int offset, int length) throws java.lang.ClassFormatError; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 10] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: classRep index: 1 type: byte[] [pc: 0, pc: 10] local: offset index: 2 type: int [pc: 0, pc: 10] local: length index: 3 type: int // Method descriptor #39 (Ljava/lang/String;[BII)Ljava/lang/Class; // Signature: (Ljava/lang/String;[BII)Ljava/lang/Class<*>; // Stack: 3, Locals: 5 protected final java.lang.Class defineClass(java.lang.String className, byte[] classRep, int offset, int length) throws java.lang.ClassFormatError; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 11] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String [pc: 0, pc: 10] local: classRep index: 2 type: byte[] [pc: 0, pc: 10] local: offset index: 3 type: int [pc: 0, pc: 10] local: length index: 4 type: int // Method descriptor #42 (Ljava/lang/String;[BIILjava/security/ProtectionDomain;)Ljava/lang/Class; // Signature: (Ljava/lang/String;[BIILjava/security/ProtectionDomain;)Ljava/lang/Class<*>; // Stack: 3, Locals: 6 protected final java.lang.Class defineClass(java.lang.String className, byte[] classRep, int offset, int length, java.security.ProtectionDomain protectionDomain) throws java.lang.ClassFormatError; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 12] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String [pc: 0, pc: 10] local: classRep index: 2 type: byte[] [pc: 0, pc: 10] local: offset index: 3 type: int [pc: 0, pc: 10] local: length index: 4 type: int [pc: 0, pc: 10] local: protectionDomain index: 5 type: java.security.ProtectionDomain // Method descriptor #46 (Ljava/lang/String;Ljava/nio/ByteBuffer;Ljava/security/ProtectionDomain;)Ljava/lang/Class; // Signature: (Ljava/lang/String;Ljava/nio/ByteBuffer;Ljava/security/ProtectionDomain;)Ljava/lang/Class<*>; // Stack: 3, Locals: 4 protected final java.lang.Class defineClass(java.lang.String name, java.nio.ByteBuffer b, java.security.ProtectionDomain protectionDomain) throws java.lang.ClassFormatError; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 13] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: name index: 1 type: java.lang.String [pc: 0, pc: 10] local: b index: 2 type: java.nio.ByteBuffer [pc: 0, pc: 10] local: protectionDomain index: 3 type: java.security.ProtectionDomain // Method descriptor #52 (Ljava/lang/String;)Ljava/lang/Class; // Signature: (Ljava/lang/String;)Ljava/lang/Class<*>; // Stack: 3, Locals: 2 protected java.lang.Class findClass(java.lang.String className) throws java.lang.ClassNotFoundException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 14] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String // Method descriptor #52 (Ljava/lang/String;)Ljava/lang/Class; // Signature: (Ljava/lang/String;)Ljava/lang/Class<*>; // Stack: 3, Locals: 2 protected final java.lang.Class findLoadedClass(java.lang.String className); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 15] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String // Method descriptor #52 (Ljava/lang/String;)Ljava/lang/Class; // Signature: (Ljava/lang/String;)Ljava/lang/Class<*>; // Stack: 3, Locals: 2 protected final java.lang.Class findSystemClass(java.lang.String className) throws java.lang.ClassNotFoundException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 16] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String // Method descriptor #17 ()Ljava/lang/ClassLoader; // Stack: 3, Locals: 1 public final java.lang.ClassLoader getParent(); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 17] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader // Method descriptor #19 (Ljava/lang/String;)Ljava/net/URL; // Stack: 3, Locals: 2 public java.net.URL getResource(java.lang.String resName); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 18] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: resName index: 1 type: java.lang.String // Method descriptor #23 (Ljava/lang/String;)Ljava/util/Enumeration; // Signature: (Ljava/lang/String;)Ljava/util/Enumeration<Ljava/net/URL;>; // Stack: 3, Locals: 2 public java.util.Enumeration getResources(java.lang.String resName) throws java.io.IOException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 19] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: resName index: 1 type: java.lang.String // Method descriptor #29 (Ljava/lang/String;)Ljava/io/InputStream; // Stack: 3, Locals: 2 public java.io.InputStream getResourceAsStream(java.lang.String resName); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 20] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: resName index: 1 type: java.lang.String // Method descriptor #52 (Ljava/lang/String;)Ljava/lang/Class; // Signature: (Ljava/lang/String;)Ljava/lang/Class<*>; // Stack: 3, Locals: 2 public java.lang.Class loadClass(java.lang.String className) throws java.lang.ClassNotFoundException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 21] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String // Method descriptor #62 (Ljava/lang/String;Z)Ljava/lang/Class; // Signature: (Ljava/lang/String;Z)Ljava/lang/Class<*>; // Stack: 3, Locals: 3 protected java.lang.Class loadClass(java.lang.String className, boolean resolve) throws java.lang.ClassNotFoundException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 22] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: className index: 1 type: java.lang.String [pc: 0, pc: 10] local: resolve index: 2 type: boolean // Method descriptor #67 (Ljava/lang/Class;)V // Signature: (Ljava/lang/Class<*>;)V // Stack: 3, Locals: 2 protected final void resolveClass(java.lang.Class clazz); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 23] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: clazz index: 1 type: java.lang.Class Local variable type table: [pc: 0, pc: 10] local: clazz index: 1 type: java.lang.Class<?> // Method descriptor #19 (Ljava/lang/String;)Ljava/net/URL; // Stack: 3, Locals: 2 protected java.net.URL findResource(java.lang.String resName); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 24] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: resName index: 1 type: java.lang.String // Method descriptor #23 (Ljava/lang/String;)Ljava/util/Enumeration; // Signature: (Ljava/lang/String;)Ljava/util/Enumeration<Ljava/net/URL;>; // Stack: 3, Locals: 2 protected java.util.Enumeration findResources(java.lang.String resName) throws java.io.IOException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 25] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: resName index: 1 type: java.lang.String // Method descriptor #76 (Ljava/lang/String;)Ljava/lang/String; // Stack: 3, Locals: 2 protected java.lang.String findLibrary(java.lang.String libName); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 26] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: libName index: 1 type: java.lang.String // Method descriptor #79 (Ljava/lang/String;)Ljava/lang/Package; // Stack: 3, Locals: 2 protected java.lang.Package getPackage(java.lang.String name); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 27] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: name index: 1 type: java.lang.String // Method descriptor #81 ()[Ljava/lang/Package; // Stack: 3, Locals: 1 protected java.lang.Package[] getPackages(); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 28] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader // Method descriptor #83 (Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/net/URL;)Ljava/lang/Package; // Stack: 3, Locals: 9 protected java.lang.Package definePackage(java.lang.String name, java.lang.String specTitle, java.lang.String specVersion, java.lang.String specVendor, java.lang.String implTitle, java.lang.String implVersion, java.lang.String implVendor, java.net.URL sealBase) throws java.lang.IllegalArgumentException; 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 29] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: name index: 1 type: java.lang.String [pc: 0, pc: 10] local: specTitle index: 2 type: java.lang.String [pc: 0, pc: 10] local: specVersion index: 3 type: java.lang.String [pc: 0, pc: 10] local: specVendor index: 4 type: java.lang.String [pc: 0, pc: 10] local: implTitle index: 5 type: java.lang.String [pc: 0, pc: 10] local: implVersion index: 6 type: java.lang.String [pc: 0, pc: 10] local: implVendor index: 7 type: java.lang.String [pc: 0, pc: 10] local: sealBase index: 8 type: java.net.URL // Method descriptor #94 (Ljava/lang/Class;[Ljava/lang/Object;)V // Signature: (Ljava/lang/Class<*>;[Ljava/lang/Object;)V // Stack: 3, Locals: 3 protected final void setSigners(java.lang.Class c, java.lang.Object[] signers); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 30] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: c index: 1 type: java.lang.Class [pc: 0, pc: 10] local: signers index: 2 type: java.lang.Object[] Local variable type table: [pc: 0, pc: 10] local: c index: 1 type: java.lang.Class<?> // Method descriptor #100 (Ljava/lang/String;Z)V // Stack: 3, Locals: 3 public void setClassAssertionStatus(java.lang.String cname, boolean enable); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 31] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: cname index: 1 type: java.lang.String [pc: 0, pc: 10] local: enable index: 2 type: boolean // Method descriptor #100 (Ljava/lang/String;Z)V // Stack: 3, Locals: 3 public void setPackageAssertionStatus(java.lang.String pname, boolean enable); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 32] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: pname index: 1 type: java.lang.String [pc: 0, pc: 10] local: enable index: 2 type: boolean // Method descriptor #106 (Z)V // Stack: 3, Locals: 2 public void setDefaultAssertionStatus(boolean enable); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 33] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader [pc: 0, pc: 10] local: enable index: 1 type: boolean // Method descriptor #8 ()V // Stack: 3, Locals: 1 public void clearAssertionStatus(); 0 new java.lang.RuntimeException [2] 3 dup 4 ldc <String "Stub!"> [3] 6 invokespecial java.lang.RuntimeException(java.lang.String) [4] 9 athrow Line numbers: [pc: 0, line: 34] Local variable table: [pc: 0, pc: 10] local: this index: 0 type: java.lang.ClassLoader } So I am not sure where I went wrong. Thanks

    Read the article

  • A* (A-star) implementation in AS3

    - by Bryan Hare
    Hey, I am putting together a project for a class that requires me to put AI in a top down Tactical Strategy game in Flash AS3. I decided that I would use a node based path finding approach because the game is based on a circular movement scheme. When a player moves a unit he essentially draws a series of line segments that connect that a player unit will follow along. I am trying to put together a similar operation for the AI units in our game by creating a list of nodes to traverse to a target node. Hence my use of Astar (the resulting path can be used to create this line). Here is my Algorithm function findShortestPath (startN:node, goalN:node) { var openSet:Array = new Array(); var closedSet:Array = new Array(); var pathFound:Boolean = false; startN.g_score = 0; startN.h_score = distFunction(startN,goalN); startN.f_score = startN.h_score; startN.fromNode = null; openSet.push (startN); var i:int = 0 for(i= 0; i< nodeArray.length; i++) { for(var j:int =0; j<nodeArray[0].length; j++) { if(!nodeArray[i][j].isPathable) { closedSet.push(nodeArray[i][j]); } } } while (openSet.length != 0) { var cNode:node = openSet.shift(); if (cNode == goalN) { resolvePath (cNode); return true; } closedSet.push (cNode); for (i= 0; i < cNode.dirArray.length; i++) { var neighborNode:node = cNode.nodeArray[cNode.dirArray[i]]; if (!(closedSet.indexOf(neighborNode) == -1)) { continue; } neighborNode.fromNode = cNode; var tenativeg_score:Number = cNode.gscore + distFunction(neighborNode.fromNode,neighborNode); if (openSet.indexOf(neighborNode) == -1) { neighborNode.g_score = neighborNode.fromNode.g_score + distFunction(neighborNode,cNode); if (cNode.dirArray[i] >= 4) { neighborNode.g_score -= 4; } neighborNode.h_score=distFunction(neighborNode,goalN); neighborNode.f_score=neighborNode.g_score+neighborNode.h_score; insertIntoPQ (neighborNode, openSet); //trace(" F Score of neighbor: " + neighborNode.f_score + " H score of Neighbor: " + neighborNode.h_score + " G_score or neighbor: " +neighborNode.g_score); } else if (tenativeg_score <= neighborNode.g_score) { neighborNode.fromNode=cNode; neighborNode.g_score=cNode.g_score+distFunction(neighborNode,cNode); if (cNode.dirArray[i]>=4) { neighborNode.g_score-=4; } neighborNode.f_score=neighborNode.g_score+neighborNode.h_score; openSet.splice (openSet.indexOf(neighborNode),1); //trace(" F Score of neighbor: " + neighborNode.f_score + " H score of Neighbor: " + neighborNode.h_score + " G_score or neighbor: " +neighborNode.g_score); insertIntoPQ (neighborNode, openSet); } } } trace ("fail"); return false; } Right now this function creates paths that are often not optimal or wholly inaccurate given the target and this generally happens when I have nodes that are not path able, and I am not quite sure what I am doing wrong right now. If someone could help me correct this I would appreciate it greatly. Some Notes My OpenSet is essentially a Priority Queue, so thats how I sort my nodes by cost. Here is that function function insertIntoPQ (iNode:node, pq:Array) { var inserted:Boolean=true; var iterater:int=0; while (inserted) { if (iterater==pq.length) { pq.push (iNode); inserted=false; } else if (pq[iterater].f_score >= iNode.f_score) { pq.splice (iterater,0,iNode); inserted=false; } ++iterater; } } Thanks!

    Read the article

  • Astar implementation in AS3

    - by Bryan Hare
    Hey, I am putting together a project for a class that requires me to put AI in a top down Tactical Strategy game in Flash AS3. I decided that I would use a node based path finding approach because the game is based on a circular movement scheme. When a player moves a unit he essentially draws a series of line segments that connect that a player unit will follow along. I am trying to put together a similar operation for the AI units in our game by creating a list of nodes to traverse to a target node. Hence my use of Astar (the resulting path can be used to create this line). Here is my Algorithm function findShortestPath (startN:node, goalN:node) { var openSet:Array = new Array(); var closedSet:Array = new Array(); var pathFound:Boolean = false; startN.g_score = 0; startN.h_score = distFunction(startN,goalN); startN.f_score = startN.h_score; startN.fromNode = null; openSet.push (startN); var i:int = 0 for(i= 0; i< nodeArray.length; i++) { for(var j:int =0; j<nodeArray[0].length; j++) { if(!nodeArray[i][j].isPathable) { closedSet.push(nodeArray[i][j]); } } } while (openSet.length != 0) { var cNode:node = openSet.shift(); if (cNode == goalN) { resolvePath (cNode); return true; } closedSet.push (cNode); for (i= 0; i < cNode.dirArray.length; i++) { var neighborNode:node = cNode.nodeArray[cNode.dirArray[i]]; if (!(closedSet.indexOf(neighborNode) == -1)) { continue; } neighborNode.fromNode = cNode; var tenativeg_score:Number = cNode.gscore + distFunction(neighborNode.fromNode,neighborNode); if (openSet.indexOf(neighborNode) == -1) { neighborNode.g_score = neighborNode.fromNode.g_score + distFunction(neighborNode,cNode); if (cNode.dirArray[i] >= 4) { neighborNode.g_score -= 4; } neighborNode.h_score=distFunction(neighborNode,goalN); neighborNode.f_score=neighborNode.g_score+neighborNode.h_score; insertIntoPQ (neighborNode, openSet); //trace(" F Score of neighbor: " + neighborNode.f_score + " H score of Neighbor: " + neighborNode.h_score + " G_score or neighbor: " +neighborNode.g_score); } else if (tenativeg_score <= neighborNode.g_score) { neighborNode.fromNode=cNode; neighborNode.g_score=cNode.g_score+distFunction(neighborNode,cNode); if (cNode.dirArray[i]>=4) { neighborNode.g_score-=4; } neighborNode.f_score=neighborNode.g_score+neighborNode.h_score; openSet.splice (openSet.indexOf(neighborNode),1); //trace(" F Score of neighbor: " + neighborNode.f_score + " H score of Neighbor: " + neighborNode.h_score + " G_score or neighbor: " +neighborNode.g_score); insertIntoPQ (neighborNode, openSet); } } } trace ("fail"); return false; } Right now this function creates paths that are often not optimal or wholly inaccurate given the target and this generally happens when I have nodes that are not path able, and I am not quite sure what I am doing wrong right now. If someone could help me correct this I would appreciate it greatly. Some Notes My OpenSet is essentially a Priority Queue, so thats how I sort my nodes by cost. Here is that function function insertIntoPQ (iNode:node, pq:Array) { var inserted:Boolean=true; var iterater:int=0; while (inserted) { if (iterater==pq.length) { pq.push (iNode); inserted=false; } else if (pq[iterater].f_score >= iNode.f_score) { pq.splice (iterater,0,iNode); inserted=false; } ++iterater; } } Thanks!

    Read the article

  • June 26th Links: ASP.NET, ASP.NET MVC, .NET and NuGet

    - by ScottGu
    Here is the latest in my link-listing series.  Also check out my Best of 2010 Summary for links to 100+ other posts I’ve done in the last year. [I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] ASP.NET Introducing new ASP.NET Universal Providers: Great post from Scott Hanselman on the new System.Web.Providers we are working on.  This release delivers new ASP.NET Membership, Role Management, Session, Profile providers that work with SQL Server, SQL CE and SQL Azure. CSS Sprites and the ASP.NET Sprite and Image Optimization Library: Great post from Scott Mitchell that talks about a free library for ASP.NET that you can use to optimize your CSS and images to reduce HTTP requests and speed up your site. Better HTML5 Support for the VS 2010 Editor: Another great post from Scott Hanselman on an update several people on my team did that enables richer HTML5 editing support within Visual Studio 2010. Install the Ajax Control Toolkit from NuGet: Nice post by Stephen Walther on how you can now use NuGet to install the Ajax Control Toolkit within your applications.  This makes it much easier to reference and use. May 2011 Release of the Ajax Control Toolkit: Another great post from Stephen Walther that talks about the May release of the Ajax Control Toolkit. It includes a bunch of nice enhancements and fixes. SassAndCoffee 0.9 Released: Paul Betts blogs about the latest release of his SassAndCoffee extension (available via NuGet). It enables you to easily use Sass and Coffeescript within your ASP.NET applications (both MVC and Webforms). ASP.NET MVC ASP.NET MVC Mini-Profiler: The folks at StackOverflow.com (a great site built with ASP.NET MVC) have released a nice (free) profiler they’ve built that enables you to easily profile your ASP.NET MVC 3 sites and tune them for performance.  Globalization, Internationalization and Localization in ASP.NET MVC 3: Great post from Scott Hanselman on how to enable internationalization, globalization and localization support within your ASP.NET MVC 3 and jQuery solutions. Precompile your MVC Razor Views: Great post from David Ebbo that discusses a new Razor Generator tool that enables you to pre-compile your razor view templates as assemblies – which enables a bunch of cool scenarios. Unit Testing Razor Views: Nice post from David Ebbo that shows how to use his new Razor Generator to enable unit testing of razor view templates with ASP.NET MVC. Bin Deploying ASP.NET MVC 3: Nice post by Phil Haack that covers a cool feature added to VS 2010 SP1 that makes it really easy to \bin deploy ASP.NET MVC and Razor within your application. This enables you to easily deploy the app to servers that don’t have ASP.NET MVC 3 installed. .NET Table Splitting with EF 4.1 Code First: Great post from Morteza Manavi that discusses how to split up a single database table across multiple EF entity classes.  This shows off some of the power behind EF 4.1 and is very useful when working with legacy database schemas. Choosing the Right Collection Class: Nice post from James Michael Hare that talks about the different collection class options available within .NET.  A nice overview for people who haven’t looked at all of the support now built into the framework. Little Wonders: Empty(), DefaultIfEmpty() and Count() helper methods: Another in James Michael Hare’s excellent series on .NET/C# “Little Wonders”.  This post covers some of the great helper methods now built-into .NET that make coding even easier. NuGet NuGet 1.4 Released: Learn all about the latest release of NuGet – which includes a bunch of cool new capabilities.  It takes only seconds to update to it – go for it! NuGet in Depth: Nice presentation from Scott Hanselman all about NuGet and some of the investments we are making to enable a better open source ecosystem within .NET. NuGet for the Enterprise – NuGet in a Continuous Integration Automated Build System: Great post from Scott Hanselman on how to integrate NuGet within enterprise build environments and enable it with CI solutions. Hope this helps, Scott

    Read the article

  • fedora tomcat log file path

    - by Kamil
    My log file is inside: kamil@localhost tomcat$ grep "logs/" ./* ./log4j.properties:log4j.appender.R.File=${catalina.home}/logs/tomcat.log my CATALINA_HOME is kamil@localhost tomcat$ sudo grep "CATALINA" ./* ... ./tomcat.conf:CATALINA_HOME="/usr/share/tomcat" that above suggests that my log file is hare, and there it's: kamil@localhost tomcat$ sudo ls /usr/share/tomcat/logs/ | grep .out catalina.out So why can't I start server: kamil@localhost tomcat$ sudo tomcat start /usr/sbin/tomcat: line 30: /logs/catalina.out: No such file or directory

    Read the article

  • GWB | 30 Posts in 60 Days Update

    - by Staff of Geeks
    One month after the contest started, we definitely have some leaders and one blogger who has reached the mark.  Keep up the good work guys, I have really enjoyed the content being produced by our bloggers. Current Winners: Enrique Lima (37 posts) - http://geekswithblogs.net/enriquelima Almost There: Stuart Brierley (28 posts) - http://geekswithblogs.net/StuartBrierley Dave Campbell (26 posts) - http://geekswithblogs.net/WynApseTechnicalMusings Eric Nelson (23 posts) - http://geekswithblogs.net/iupdateable Coming Along: Liam McLennan (17 posts) - http://geekswithblogs.net/liammclennan Christopher House (13 posts) - http://geekswithblogs.net/13DaysaWeek mbcrump (13 posts) - http://geekswithblogs.net/mbcrump Steve Michelotti (10 posts) - http://geekswithblogs.net/michelotti Michael Freidgeim (9 posts) - http://geekswithblogs.net/mnf MarkPearl (9 posts) - http://geekswithblogs.net/MarkPearl Brian Schroer (8 posts) - http://geekswithblogs.net/brians Chris Williams (8 posts) - http://geekswithblogs.net/cwilliams CatherineRussell (7 posts) - http://geekswithblogs.net/CatherineRussell Shawn Cicoria (7 posts) - http://geekswithblogs.net/cicorias Matt Christian (7 posts) - http://geekswithblogs.net/CodeBlog James Michael Hare (7 posts) - http://geekswithblogs.net/BlackRabbitCoder John Blumenauer (7 posts) - http://geekswithblogs.net/jblumenauer Scott Dorman (7 posts) - http://geekswithblogs.net/sdorman   Technorati Tags: Standings,Geekswithblogs,30 in 60

    Read the article

  • Bunny Inc. Season 2: Optimize Your Enterprise Content

    - by kellsey.ruppel
    In a business environment largely driven by informal exchanges, digital assets and peer-to-peer interactions, turning unstructured content into an enterprise-wide resource is the key to gain organizational agility and reduce IT costs. To get their work done, business users demand a unified, consolidated and secure repository to manage the entire life cycle of content and deliver it in the proper format.At Hare Inc., finding information turns to be a daunting and error-prone task. On the contrary, at Bunny Inc., Mr. CIO knows the secret to reach the right carrot! Have a look at the third episode of the Social Bunnies Season 2 to discover how to reduce resource bottlenecks, maximize content accessibility and mitigate risk.

    Read the article

  • Bunny Inc. Season 2: Spice Up Your Applications

    - by kellsey.ruppel
    The quality and effectiveness of online services is strongly dependent on core business processes and applications. Nonetheless, user friendly composite applications are still a challenge for enterprises, especially if they are also requested to embed social technologies to empower customization and facilitate collaboration. You can operate like Hare Inc. and disappoint your customers, delivering inefficient services and wasting outside-in innovation opportunities, or you can operate like Bunny Inc., leveraging participatory services to improve connections between people, information and applications. And maybe you are ahead enough to adopt a public enterprise cloud to drive business through organic conversations and jump-start productivity with more-purposeful social networking and contextual enterprise collaboration. Don't miss this second episode of Social Bunnies Season 2 to learn how to increase the value of existing enterprise systems while augmenting employee productivity, business flexibility and organizational awareness. Still looking for more information on composite applications. We've got a ton of great resources for you to learn more!

    Read the article

  • Bunny Inc. Season 2: Find Specialist Partner Resources for Success

    - by kellsey.ruppel
    You may need an additional hand to improve your IT infrastructure, or advice to evolve existing enterprise applications. Or perhaps you’re seeking revolutionary ideas to refresh online presence. Whatever the case, spotting the right partners’ ecosystem will be a central step to grow your business. Don't be a Hare Inc. company by wasting valuable time sourcing relevant expertise, competencies and proven successes on Oracle's product portfolio on your own. Follow Bunny Inc. in the fourth episode of the saga and discover what our worldwide partner community can do for you thanks to the new Oracle Partner Network Specialized program. 

    Read the article

  • Waterfall Model (SDLC) vs. Prototyping Model

    The characters in the fable of the Tortoise and the Hare can easily be used to demonstrate the similarities and differences between the Waterfall and Prototyping software development models. This children fable is about a race between a consistently slow moving but steadfast turtle and an extremely fast but unreliable rabbit. After closely comparing each character’s attributes in correlation with both software development models, a trend seems to appear in that the Waterfall closely resembles the Tortoise in that Waterfall Model is typically a slow moving process that is broken up in to multiple sequential steps that must be executed in a standard linear pattern. The Tortoise can be quoted several times in the story saying “Slow and steady wins the race.” This is the perfect mantra for the Waterfall Model in that this model is seen as a cumbersome and slow moving. Waterfall Model Phases Requirement Analysis & Definition This phase focuses on defining requirements for a project that is to be developed and determining if the project is even feasible. Requirements are collected by analyzing existing systems and functionality in correlation with the needs of the business and the desires of the end users. The desired output for this phase is a list of specific requirements from the business that are to be designed and implemented in the subsequent steps. In addition this phase is used to determine if any value will be gained by completing the project. System Design This phase focuses primarily on the actual architectural design of a system, and how it will interact within itself and with other existing applications. Projects at this level should be viewed at a high level so that actual implementation details are decided in the implementation phase. However major environmental decision like hardware and platform decision are typically decided in this phase. Furthermore the basic goal of this phase is to design an application at the system level in those classes, interfaces, and interactions are defined. Additionally decisions about scalability, distribution and reliability should also be considered for all decisions. The desired output for this phase is a functional  design document that states all of the architectural decisions that have been made in regards to the project as well as a diagrams like a sequence and class diagrams. Software Design This phase focuses primarily on the refining of the decisions found in the functional design document. Classes and interfaces are further broken down in to logical modules based on the interfaces and interactions previously indicated. The output of this phase is a formal design document. Implementation / Coding This phase focuses primarily on implementing the previously defined modules in to units of code. These units are developed independently are intergraded as the system is put together as part of a whole system. Software Integration & Verification This phase primarily focuses on testing each of the units of code developed as well as testing the system as a whole. There are basic types of testing at this phase and they include: Unit Test and Integration Test. Unit Test are built to test the functionality of a code unit to ensure that it preforms its desired task. Integration testing test the system as a whole because it focuses on results of combining specific units of code and validating it against expected results. The output of this phase is a test plan that includes test with expected results and actual results. System Verification This phase primarily focuses on testing the system as a whole in regards to the list of project requirements and desired operating environment. Operation & Maintenance his phase primarily focuses on handing off the competed project over to the customer so that they can verify that all of their requirements have been met based on their original requirements. This phase will also validate the correctness of their requirements and if any changed need to be made. In addition, any problems not resolved in the previous phase will be handled in this section. The Waterfall Model’s linear and sequential methodology does offer a project certain advantages and disadvantages. Advantages of the Waterfall Model Simplistic to implement and execute for projects and/or company wide Limited demand on resources Large emphasis on documentation Disadvantages of the Waterfall Model Completed phases cannot be revisited regardless if issues arise within a project Accurate requirement are never gather prior to the completion of the requirement phase due to the lack of clarification in regards to client’s desires. Small changes or errors that arise in applications may cause additional problems The client cannot change any requirements once the requirements phase has been completed leaving them no options for changes as they see their requirements changes as the customers desires change. Excess documentation Phases are cumbersome and slow moving Learn more about the Major Process in the Sofware Development Life Cycle and Waterfall Model. Conversely, the Hare shares similar traits with the prototyping software development model in that ideas are rapidly converted to basic working examples and subsequent changes are made to quickly align the project with customers desires as they are formulated and as software strays from the customers vision. The basic concept of prototyping is to eliminate the use of well-defined project requirements. Projects are allowed to grow as the customer needs and request grow. Projects are initially designed according to basic requirements and are refined as requirement become more refined. This process allows customer to feel their way around the application to ensure that they are developing exactly what they want in the application This model also works well for determining the feasibility of certain approaches in regards to an application. Prototypes allow for quickly developing examples of implementing specific functionality based on certain techniques. Advantages of Prototyping Active participation from users and customers Allows customers to change their mind in specifying requirements Customers get a better understanding of the system as it is developed Earlier bug/error detection Promotes communication with customers Prototype could be used as final production Reduced time needed to develop applications compared to the Waterfall method Disadvantages of Prototyping Promotes constantly redefining project requirements that cause major system rewrites Potential for increased complexity of a system as scope of the system expands Customer could believe the prototype as the working version. Implementation compromises could increase the complexity when applying updates and or application fixes When companies trying to decide between the Waterfall model and Prototype model they need to evaluate the benefits and disadvantages for both models. Typically smaller companies or projects that have major time constraints typically head for more of a Prototype model approach because it can reduce the time needed to complete the project because there is more of a focus on building a project and less on defining requirements and scope prior to the start of a project. On the other hand, Companies with well-defined requirements and time allowed to generate proper documentation should steer towards more of a waterfall model because they are in a position to obtain clarified requirements and have to design and optimal solution prior to the start of coding on a project.

    Read the article

  • C# listbox,params

    - by Oyeme
    As Andrew Hare suggested in his answer: Create a field to store all the ListBox instances and then change the constructor to accept an arbitrary number of them: by I tried the following class scaner { readonly IEnumerable<ListBox> listBoxes; public IEnumerable<ListBox> ListBoxes { get { return this.listBoxes; } } public scaner(params ListBox[] listBoxes) { this.listBoxes = listBoxes; } } This will allow you to do this: scaner Comp = new scaner(listBox1, listBox2); How can i access listbox1? In class scaner i'm trying to call this.listBoxes. (I need to call the listbox1 in scaner class.How can i do/call it? Thanks for answers.

    Read the article

< Previous Page | 1 2 3 4  | Next Page >