Search Results

Search found 1232 results on 50 pages for 'study'.

Page 3/50 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Microsoft SDE Interview vs Microsoft SDET Interview and Resources to Study

    - by vinayvasyani
    I have always heard that SDE interviews are much harder to crack than SDET. Is it really true? I have also heard that if candidate doesnt do well in SDE interview he is also sometimes offered SDET position. How much truth is there into these talks? I would highly appreciate if someone would put good resources and guidelines for how to prepare for Microsoft interviews..which books to read, which notes, online programming questions websites, etc. Give as much info as possible. Thanks in advance to everyone for your valuable help and contribution.

    Read the article

  • Study: Security Lags in Datacenter Virtualization Projects

    Datacenter virtualization projects can open up security issues, according to research from Gartner....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Any online network topology to study?

    - by Gok Demir
    I want to study network. But I don't have an access to a sample network (routers, DNS, IP4, IP6 windows linux mixed heterogenous system). Do you know any online network to study (Free as possible). Is it possible to simulate network topologies with a sing PC using virtual machine. If so could you guide me?

    Read the article

  • Which techniques to study?

    - by Djentleman
    Just to give you some background info, I'm studying a programming major at a tertiary level and am in my third year, so I'm not a newbie off the street. However, I am still quite new to game programming as a subset of programming. One of my personal projects for next semester is to design and create a 2D platformer game with emphasis on procedural generation and "neato" effects (think metroidvania). I've written up a list of some techniques to help me improve my personal skills (using XNA for the time being). The list is as follows: QuadTrees: Build a basic program in XNA that moves basic 2D sprites (circles and squares) around a set path and speed and changes their colour when they collide. Add functionality to add and delete objects of different sizes (select a direction and speed when adding and just drag and drop them in). Particles: Build a basic program in XNA in which you can select different colours and create particle effects of those colours on screen by clicking and dragging the mouse around (simple particles emerging from where the mouse is clicked). Add functionality where you can change the amount of particles to be drawn and the speed at which they travel and when they expire. Possibly implement gravity and wind after part 3 is complete. Physics: Build a basic program in XNA where you have a ball in a set 2D environment, a wind slider, and a gravity slider (can go to negative for reverse gravity). You can click to drag the ball around and release to throw it and, depending on what you do, the ball interacts with the environment. Implement other shapes afterwards. Random 2D terrain generation: Build a basic program in XNA that randomly generates terrain (including hills, caves, etc) created from 2D tiles. Add functionality that draws the tiles from a tileset and places different tiles depending on where they lie on the y-axis (dirt on top, then rock, then lava, etc). Randomised objects: Build a basic program in XNA that, when a button is clicked, displays a randomised item sprite based on parameters (type, colour, etc) with the images pulled from tilesets. Add the ability to save the item as an object, which stores it in a side-pane where it can be selected for viewing. Movement: Build a basic program in XNA where you can move an object around in an environment (tile-based) with a camera that pans with it. No gravity. Implement gravity and wind, allow the character to jump and fall with some basic platforms. So my question is this: Are there any other commonly used techniques that I should research, and can I get some suggestions as to the effectiveness of the techniques I've chosen to work on (e.g., don't do QuadTree stuff because [insert reason here], or, do [insert technique here] before you start working on particles because [insert reason here])? I hope this is clear enough and please let me know if I can further clarify anything!

    Read the article

  • Case Study: Polystar Improves Telecom Networks Performance with Embedded MySQL

    - by Bertrand Matthelié
    Polystar delivers and supports systems that increase the quality, revenue and customer satisfaction of telecommunication services. Headquarted in Sweden, Polystar helps operators worldwide including Telia, Tele2, Telekom Malysia and T-Mobile to monitor their network performance and improve service levels. Challenges Deliver complete turnkey solutions to customers integrating a database ensuring high performance at scale, while being very easy to use, manage and optimize. Enable the implementation of distributed architectures including one database per server while maintaining a low Total Cost of Ownership (TCO). Avoid growing database complexity as the volume of mobile data to monitor and analyze drastically increases. Solution Evaluation of several databases and selection of MySQL based on its high performance, manageability, and low TCO. The MySQL databases implemented within the Polystar solutions handle on average 3,000 to 5,000 transactions per second. Up to 50 million records are inserted every day in each database. Typical installations include between 50 and 100 MySQL databases, up to 300 for the largest ones. Data is then periodically aggregated, with the original records being overwritten, as the need for detailed information becomes unnecessary to operators after a few weeks. The exponential growth in mobile data traffic driven by the proliferation of smartphones and usage of social media requires ever more powerful solutions to monitor, analyze and turn network data into actionable business intelligence. With MySQL, Polystar can deliver powerful, yet easy to manage, solutions to its customers. MySQL-based Polystar solutions enable operators to monitor, manage and improve the service levels of their telecom networks in over a dozen countries from a single location. The new and innovative MySQL features constantly delivered by Oracle help ensure Polystar that it will be able to meet its customer’s needs as they evolve. “MySQL has been a great embedded database choice for us. It delivers the high performance we need while remaining very easy to use, manage and tune. Power and simplicity at its best.” Mats Söderlindh, COO at Polystar.

    Read the article

  • Business Strategy - Google Case Study

    Business strategy defined by SMBTN.com is a term used in business planning that implies a careful selection and application of resources to obtain a competitive advantage in anticipation of future events or trends. In more general terms business strategy is positioning a company so that it has the greatest competitive advantage over others in the markets and industries that they participate in. This process involves making corporate decisions regarding which markets to provide goods and services, pricing, acceptable quality levels, and how to interact with others in the marketplace. The primary objective of business strategy is to create and increase value for all of its shareholders and stakeholders through the creation of customer value. According to InformationWeek.com, Google has a distinctive technology advantage over its competitors like Microsoft, eBay, Amazon, Yahoo. Google utilizes custom high-performance systems which are cost efficient because they can scale to extreme workloads. This hardware allows for a huge cost advantage over its competitors. In addition, InformationWeek.com interviewed Stephen Arnold who stated that Google’s programmers are 50%-100% more productive compared to programmers working for their competitors.  He based this theory on Google’s competitors having to spend up to four times as much just to keep up. In addition to Google’s technological advantage, they also have developed a decentralized management schema where employees report directly to multiple managers and team project leaders. This allows for the responsibility of the technology department to be shared amongst multiple senior level engineers and removes the need for a singular department head to oversee the activities of the department.  This is a unique approach from the standard management style. Typically a department head like a CIO or CTO would oversee the department’s global initiatives and business functionality.  This would then be passed down and administered through middle management and implemented by programmers, business analyst, network administrators and Database administrators. It goes without saying that an IT professional’s responsibilities would be directed by Google’s technological advantage and management strategy.  Simply because they work within the department, and would have to design, develop, and support the high-performance systems and would have to report multiple managers and project leaders on a regular basis. Since Google was established and driven by new and immerging technology, all other departments would be directly impacted by the technology department.  In fact, they would have to cater to the technology department since it is a huge driving for in the success of Google. Reference: http://www.smbtn.com/smallbusinessdictionary/#b http://www.informationweek.com/news/software/linux/showArticle.jhtml?articleID=192300292&pgno=1&queryText=&isPrev=

    Read the article

  • Week in Geek: Study finds Men more Likely to Fall for Facebook Scams

    - by Asian Angel
    This week we learned how to “read Blue Screen codes, clean your computer, & get started with scripting”, upgrade or install Mac OS X Lion on a Hackintosh using UniBeast, use Amazon’s barcode scanner to easily buy anything from your phone, had fun with a great set of geeky do-it-yourself projects for pets, got introduced to How-To Geek’s new Google+ account, and more. Photo by mac_filko. Use Amazon’s Barcode Scanner to Easily Buy Anything from Your Phone How To Migrate Windows 7 to a Solid State Drive Follow How-To Geek on Google+

    Read the article

  • Object Oriented programming on 8-bit MCU Case Study

    - by Calvin Grier
    I see that there's a lot of questions related to OO Programming here. I'm actually trying to find a specific resource related to embedded OO approaches for an 8 bit MCU. Several years back (maybe 6) I was looking for material related to Object Oriented programming for resource constrained 8051 microprocessors. I found an article/website with a case history of a design group that used a very small RAM part, and implemented many Object based constructs during their C design and development. I believe it was an 8051. The project was a success, and managed to stay inside the very small ROM/RAM they had available. I'm attempting to find it again, but Google can't locate it. The article was well written, and recommended a "mixed" approach using C methods for inheritance and encapsulation - if I recall correctly. Can anyone help me locate this article?

    Read the article

  • Columnstore Case Study #1: MSIT SONAR Aggregations

    - by aspiringgeek
    Preamble This is the first in a series of posts documenting big wins encountered using columnstore indexes in SQL Server 2012 & 2014.  Many of these can be found in this deck along with details such as internals, best practices, caveats, etc.  The purpose of sharing the case studies in this context is to provide an easy-to-consume quick-reference alternative. Why Columnstore? If we’re looking for a subset of columns from one or a few rows, given the right indexes, SQL Server can do a superlative job of providing an answer. If we’re asking a question which by design needs to hit lots of rows—DW, reporting, aggregations, grouping, scans, etc., SQL Server has never had a good mechanism—until columnstore. Columnstore indexes were introduced in SQL Server 2012. However, they're still largely unknown. Some adoption blockers existed; yet columnstore was nonetheless a game changer for many apps.  In SQL Server 2014, potential blockers have been largely removed & they're going to profoundly change the way we interact with our data.  The purpose of this series is to share the performance benefits of columnstore & documenting columnstore is a compelling reason to upgrade to SQL Server 2014. App: MSIT SONAR Aggregations At MSIT, performance & configuration data is captured by SCOM. We archive much of the data in a partitioned data warehouse table in SQL Server 2012 for reporting via an application called SONAR.  By definition, this is a primary use case for columnstore—report queries requiring aggregation over large numbers of rows.  New data is refreshed each night by an automated table partitioning mechanism—a best practices scenario for columnstore. The Win Compared to performance using classic indexing which resulted in the expected query plan selection including partition elimination vs. SQL Server 2012 nonclustered columnstore, query performance increased significantly.  Logical reads were reduced by over a factor of 50; both CPU & duration improved by factors of 20 or more.  Other than creating the columnstore index, no special modifications or tweaks to the app or databases schema were necessary to achieve the performance improvements.  Existing nonclustered indexes were rendered superfluous & were deleted, thus mitigating maintenance challenges such as defragging as well as conserving disk capacity. Details The table provides the raw data & summarizes the performance deltas. Logical Reads (8K pages) CPU (ms) Durn (ms) Columnstore 160,323 20,360 9,786 Conventional Table & Indexes 9,053,423 549,608 193,903 ? x56 x27 x20 The charts provide additional perspective of this data.  "Conventional vs. Columnstore Metrics" document the raw data.  Note on this linear display the magnitude of the conventional index performance vs. columnstore.  The “Metrics (?)” chart expresses these values as a ratio. Summary For DW, reports, & other BI workloads, columnstore often provides significant performance enhancements relative to conventional indexing.  I have documented here, the first in a series of reports on columnstore implementations, results from an initial implementation at MSIT in which logical reads were reduced by over a factor of 50; both CPU & duration improved by factors of 20 or more.  Subsequent features in this series document performance enhancements that are even more significant. 

    Read the article

  • New study shows supply chain cost management increased from 6.0% to 6.9%

    - by John Murphy
    A global survey of supply chain managers indicates that aggressively managing costs and creating a flexible supply chain are major factors for businesses in successfully growing market share as the economy rebounds. Results also show supply chain managers are investing in systems and developing partnerships that enable greater visibility with their supply chain partners. http://www.mhia.org/news/industry/11429/flexible-supply-chains-drive-growth-in-revenue-and-profit

    Read the article

  • Eliminating Downtime During Database Upgrades: A Customer Case Study

    - by irem.radzik(at)oracle.com
    Planned outages, such as database, OS, hardware upgrades and migrations, are a fact of life. Even though they are "planned" and many of them are performed during "off business hours", they can still interrupt operations-- especially for global operations and online businesses. For this reason many IT organizations postpone these critical infrastructure improvement projects, which in turn result in delays in advancing business operations. This week, on Thursday January 13th, we will host a free webcast on this topic, and will feature Oracle GoldenGate's customer Atmos Energy. Atmos Energy implemented Oracle GoldenGate for eliminating downtime during their database upgrade from Oracle Database 8.1.7 to Oracle Database 11.1.0.7. Jos Francis, Lead DBA for Atmos, and Ronald Nedd, Sr. DBA for Atmos, will be presenting their database upgrade project and their solution architecture. Join us at this live webcast and hear from our customer and product management how to eliminate planned outages with Oracle GoldenGate's real-time, heterogeneous data replication capabilities.

    Read the article

  • A plan to study ASP.NET + C# + SQL + SQL Server [closed]

    - by ali saleem
    Possible Duplicates: Should I be a professional in C# programming in order to build good web applications using ASP.NET? Is there a combination of language and database that is both great to use and free/cheap? C# for web development? or C# as general purpose programming? ASP.NET MVC book for absolute beginners Will it cost me a lot if I chose ASP.NET and IIS? Is it possible to use MySQL in ASP.NET? Best books to start with ASP.NET MVC / C# and Visual Studio Is it enough for me to learn the above technologies to become a professional web developer? If so then how can I learn them? together or to start with C# for example at first? If there is another thing I should learn please tell me about it.

    Read the article

  • How the SPARC T4 Processor Optimizes Throughput Capacity: A Case Study

    - by Ruud
    This white paper demonstrates the architected latency hiding features of Oracle’s UltraSPARC T2+ and SPARC T4 processors That is the first sentence from this technical white paper, but what does it exactly mean? Let's consider a very simple example, the computation of a = b + c. This boils down to the following (pseudo-assembler) instructions that need to be executed: load @b, r1 load @c, r2 add r1,r2,r3 store r3, @a The first two instructions load variables b and c from an address in memory (here symbolized by @b and @c respectively). These values go into registers r1 and r2. The third instruction adds the values in r1 and r2. The result goes into register r3. The fourth instruction stores the contents of r3 into the memory address symbolized by @a. If we're lucky, both b and c are in a nearby cache and the load instructions only take a few processor cycles to execute. That is the good case, but what if b or c, or both, have to come from very far away? Perhaps both of them are in the main memory and then it easily takes hundreds of cycles for the values to arrive in the registers. Meanwhile the processor is doing nothing and simply waits for the data to arrive. Actually, it does something. It burns cycles while waiting. That is a waste of time and energy. Why not use these cycles to execute instructions from another application or thread in case of a parallel program? That is exactly what latency hiding on the SPARC T-Series processors does. It is a hardware feature totally transparent to the user and application. As soon as there is a delay in the execution, the hardware uses these otherwise idle cycles to execute instructions from another process. As a result, the throughput capacity of the system improves because idle cycles are no longer wasted and therefore more jobs can be run per unit of time. This feature has been in the SPARC T-series from the beginning, so why this paper? The difference with previous publications on this topic is in the amount of detail given. How this all works under the hood is fully explained using two example programs. Starting from the assembly language instructions, it is demonstrated in what way these programs execute. To really see what is happening we go down to the processor pipeline level, where the gaps in the execution are, and show in what way these idle cycles are filled by other copies of the same program running simultaneously. Both the SPARC T4 as well as the older UltraSPARC T2+ processor are covered. You may wonder why the UltraSPARC T2+ is included. The focus of this work is on the SPARC T4 processor, but to explain the basic concept of latency hiding at this very low level, we start with the UltraSPARC T2+ processor because it is architecturally a much simpler design. From the single issue, in-order pipelines of this processor we then shift gears and cover how this all works on the much more advanced dual issue, out-of-order architecture of the T4. The analysis and performance experiments have been conducted on both processors. The results depend on the processor, but in all cases the theoretical estimates are confirmed by the experiments. If you're interested to read a lot more about this and find out how things really work under the hood, you can download a copy of the paper here. A paper like this could not have been produced without the help of several other people. I want to thank the co-author of this paper, Jared Smolens, for his very valuable contributions and our highly inspiring discussions. I'm also indebted to Thomas Nau (Ulm University, Germany), Shane Sigler and Mark Woodyard (both at Oracle) for their feedback on earlier versions of this paper. Karen Perkins (Perkins Technical Writing and Editing) and Rick Ramsey at Oracle were very helpful in providing editorial and publishing assistance.

    Read the article

  • Never update systems tables directly - a study in Agent job scheduling

    It is often recommended that system tables should not be updated directly. Presenting a case in point built around nightly job configuration in order to demonstrate the possible issues with updating system tables directly. What can SQL Monitor 3.2 monitor?Whatever you think is most important. Use custom metrics to monitor and alert on data that's most important for your environment. Find out more.

    Read the article

  • Columnstore Case Study #1: MSIT SONAR Aggregations

    - by aspiringgeek
    Preamble This is the first in a series of posts documenting big wins encountered using columnstore indexes in SQL Server 2012 & 2014.  Many of these can be found in this deck along with details such as internals, best practices, caveats, etc.  The purpose of sharing the case studies in this context is to provide an easy-to-consume quick-reference alternative. Why Columnstore? If we’re looking for a subset of columns from one or a few rows, given the right indexes, SQL Server can do a superlative job of providing an answer. If we’re asking a question which by design needs to hit lots of rows—DW, reporting, aggregations, grouping, scans, etc., SQL Server has never had a good mechanism—until columnstore. Columnstore indexes were introduced in SQL Server 2012. However, they're still largely unknown. Some adoption blockers existed; yet columnstore was nonetheless a game changer for many apps.  In SQL Server 2014, potential blockers have been largely removed & they're going to profoundly change the way we interact with our data.  The purpose of this series is to share the performance benefits of columnstore & documenting columnstore is a compelling reason to upgrade to SQL Server 2014. App: MSIT SONAR Aggregations At MSIT, performance & configuration data is captured by SCOM. We archive much of the data in a partitioned data warehouse table in SQL Server 2012 for reporting via an application called SONAR.  By definition, this is a primary use case for columnstore—report queries requiring aggregation over large numbers of rows.  New data is refreshed each night by an automated table partitioning mechanism—a best practices scenario for columnstore. The Win Compared to performance using classic indexing which resulted in the expected query plan selection including partition elimination vs. SQL Server 2012 nonclustered columnstore, query performance increased significantly.  Logical reads were reduced by over a factor of 50; both CPU & duration improved by factors of 20 or more.  Other than creating the columnstore index, no special modifications or tweaks to the app or databases schema were necessary to achieve the performance improvements.  Existing nonclustered indexes were rendered superfluous & were deleted, thus mitigating maintenance challenges such as defragging as well as conserving disk capacity. Details The table provides the raw data & summarizes the performance deltas. Logical Reads (8K pages) CPU (ms) Durn (ms) Columnstore 160,323 20,360 9,786 Conventional Table & Indexes 9,053,423 549,608 193,903 ? x56 x27 x20 The charts provide additional perspective of this data.  "Conventional vs. Columnstore Metrics" document the raw data.  Note on this linear display the magnitude of the conventional index performance vs. columnstore.  The “Metrics (?)” chart expresses these values as a ratio. Summary For DW, reports, & other BI workloads, columnstore often provides significant performance enhancements relative to conventional indexing.  I have documented here, the first in a series of reports on columnstore implementations, results from an initial implementation at MSIT in which logical reads were reduced by over a factor of 50; both CPU & duration improved by factors of 20 or more.  Subsequent features in this series document performance enhancements that are even more significant. 

    Read the article

  • Case study: LOREX Technology Increases Website Traffic 90% with Oracle ATG

    - by Richard Lefebvre
    LOREX Technology Increases Website Traffic 90% by Enhancing the Online Customer Experience with a Flexible E-Commerce Platform LOREX Technology Inc. provides businesses and consumers with advanced video surveillance security products under the LOREX and Digimerge brands. LOREX, which caters to midsize business and consumer markets, is available in thousands of retail locations across North America. The Digimerge division sells its products through security system distributors in North America. Both brands concentrate on the sale of wired, wireless, and IP security surveillance and monitoring equipment, including cameras, digital video recorders, and all-in-one systems. LOREX conducted an extensive search for the right e-commerce platform to address its immediate need for a more intuitive shopping cart interface that could grow along with the company. After reviewing other solutions, including open source, LOREX chose Oracle ATG Web Commerce because it addressed every stage of the buying process and crossed all customer touch points, including the Web, contact center, mobile devices, social media, and its B2B partners’ physical stores. LOREX also found that Oracle ATG Web Commerce’s functionality was more robust than competing options, and it offered an attractive total cost of ownership. “Oracle ATG Web Commerce provided an optimal foundation to support rapid, scalable, long-term business growth while allowing full control of the platform,” said Sufi Khan Sulaiman, director, E-Commerce and Digital, LOREX. Read full story here  

    Read the article

  • The Evolution of Customer Experience in Retail - a study by Oracle and TCS

    - by Richard Lefebvre
    Two New Studies Point to the Direction Retailers are Taking in their CX Initiatives. Is it the Right Direction? The sheer velocity of change in retailing and customer behavior is forcing retailers to reinvigorate, expand and sharpen their vital Customer Experience (CX) strategies. Customers are becoming increasingly dynamic as they race to embrace the newest digital channels; shop in new ways on mobile devices, including smartphones and tablets, on the Web and in the store; share experiences socially; and interact with their preferred brands in new ways. Retailers are stepping up to their customers as they and their competitors create new modes of customer interaction. Underpinning these changes are vast quantities of customer data as customers flood digital channels and the social sphere. The informed retailer must now understand what their priorities are and what they should be for the future. To better understand this, Tata Consultancy Services (TCS) and Oracle independently launched CX-focused surveys to uncover what retailing leadership found important today. By comparing the results of these two studies together, we can further discover new insights about the industry. Click here to download this informative white paper.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >