Search Results

Search found 75 results on 3 pages for 'unions'.

Page 3/3 | < Previous Page | 1 2 3 

  • Anonymous union definition/declaration in a macro GNU vs VS2008

    - by Alan_m
    I am attempting to alter an IAR specific header file for a lpc2138 so it can compile with Visual Studio 2008 (to enable compatible unit testing). My problem involves converting register definitions to be hardware independent (not at a memory address) The "IAR-safe macro" is: #define __IO_REG32_BIT(NAME, ADDRESS, ATTRIBUTE, BIT_STRUCT) \ volatile __no_init ATTRIBUTE union \ { \ unsigned long NAME; \ BIT_STRUCT NAME ## _bit; \ } @ ADDRESS //declaration //(where __gpio0_bits is a structure that names //each of the 32 bits as P0_0, P0_1, etc) __IO_REG32_BIT(IO0PIN,0xE0028000,__READ_WRITE,__gpio0_bits); //usage IO0PIN = 0x0xAA55AA55; IO0PIN_bit.P0_5 = 0; This is my comparable "hardware independent" code: #define __IO_REG32_BIT(NAME, BIT_STRUCT)\ volatile union \ { \ unsigned long NAME; \ BIT_STRUCT NAME##_bit; \ } NAME; //declaration __IO_REG32_BIT(IO0PIN,__gpio0_bits); //usage IO0PIN.IO0PIN = 0xAA55AA55; IO0PIN.IO0PIN_bit.P0_5 = 1; This compiles and works but quite obviously my "hardware independent" usage does not match the "IAR-safe" usage. How do I alter my macro so I can use IO0PIN the same way I do in IAR? I feel this is a simple anonymous union matter but multiple attempts and variants have proven unsuccessful. Maybe the IAR GNU compiler supports anonymous unions and vs2008 does not. Thank you.

    Read the article

  • How does someone without a CS degree get an interview in a sluggish economy?

    - by Anon
    I've been programming off and on since 4th grade (for about 20 years). Technology is one of my passions but after working in the field for a couple years out of High School, I spent nine months and $15,000 getting an accredited certificate in music performance instead of CS. I've been doing lots of self study but I think a CS degree is overkill for most line of business applications. Even so, HR departments can't be expected to know that... How does one get their foot in the proverbial door without a degree, especially in a smaller "fly-over country" market? ...or... Where can I get the cheapest/easiest degree that will pass muster (including testing out of as much as possible)? Don't get me wrong, I'm down with learning new things but I don't necessarily need the expense or coaching to motivate me. EDIT Consolidating good answers: Networking/User Groups Portfolio/Open Source Contributions Look for hybrid jobs (How I got my start :) ) Seek un-elitist companies/hiring managers. (Play the numbers game) Start my own business. (This is a bit challenging for a family man but a very good answer. My reason for searching is to reduce my commute thereby allowing more time to cultivate income on the side) Avail myself of political subsidies to constituents in the teachers' unions ;) .

    Read the article

  • SQL string manipulation to return multiple rows

    - by Andy Jacobs
    I'm an experienced programmer, but relatively new to SQL. We're using Oracle 10 and 11. I have a system in place using SQL that combines actual rows with virtual rows (e.g. "SELECT 1 from DUAL") doing unions and intersects as needed, which all seems to work. My problem is that I need to combine this system which is expecting rows of data, with new data that will have the data in (let's say for simplification) comma delimited strings. So I think what I need is a way to convert a string like: "5,6,7,8" into 4 rows with one column each, with "5" in the first row, "6" in the second, etc. In other languages, I'd do a "Split" with comma as the delimiter. Of course, the data won't always have 4 entries. There's a second question, but I'll ask it separately. But I suspect it will simplify things, if possible, if the solution to the above could be used as a table in another SQL statement (i.e., to work with my existing system). Thanks for any help.

    Read the article

  • Join Where Rows Don't Exist or Where Criteria Matches...?

    - by Greg
    I'm trying to write a query to tell me which orders have valid promocodes. Promocodes are only valid between certain dates and optionally certain packages. I'm having trouble even explaining how this works (see psudo-ish code below) but basically if there are packages associated with a promocode then the order has to have one of those packages and be within a valid date range otherwise it just has to be in a valid date range. The whole "if PrmoPackage rows exist" thing is really throwing me off and I feel like I should be able to do this without a whole bunch of Unions. (I'm not even sure if that would make it easier at this point...) Anybody have any ideas for the query? if `OrderPromoCode` = `PromoCode` then if `OrderTimestamp` is between `PromoStartTimestamp` and `PromoEndTimestamp` then if `PromoCode` has packages associated with it //yes then if `PackageID` is one of the specified packages //yes code is valid //no invalid //no code is valid Order: OrderID* | OrderTimestamp | PackageID | OrderPromoCode 1 | 1/2/11 | 1 | ABC 2 | 1/3/11 | 2 | ABC 3 | 3/2/11 | 2 | DEF 4 | 4/2/11 | 3 | GHI Promo: PromoCode* | PromoStartTimestamp* | PromoEndTimestamp* ABC | 1/1/11 | 2/1/11 ABC | 3/1/11 | 4/1/11 DEF | 1/1/11 | 1/11/13 GHI | 1/1/11 | 1/11/13 PromoPackage: PromoCode* | PromoStartTimestamp* | PromoEndTimestamp* | PackageID* ABC | 1/1/11 | 2/1/11 | 1 ABC | 1/1/11 | 2/1/11 | 3 GHI | 1/1/11 | 1/11/13 | 1 Desired Result: OrderID | IsPromoCodeValid 1 | 1 2 | 0 3 | 1 4 | 0

    Read the article

  • Using ADO.NET Entities LINQ Provider to model complex SQL Queries?

    - by Ivan Zlatanov
    What I find really powerful in ADO.NET Entities or LINQ to SQL, is the ability to model complex queries. I really don't need the mappings that Entities or LINQ to SQL are doing for me - I just need the ability to model complex expressions that can be translated into T-SQL. My question is - am I abusing too much? Can I use the Entity Framework for modeling queries and just that? Should I? I know I can write my own custom LINQ to SQL provider, but that is just not possible to handle in the time spans I have. What is the best approach to model complex T-SQL queries? How do you handle conditional group byes, orders, joins, unions etc in the OOP world? Using StringBuilders for this kind of job feels too ugly and harder to maintain given the possibilities we have with Expression Trees. When I use StringBuilder to model a complex SQL Query I feel kind of guilty! I feel the same way as when I have to hard code any number into my code that is different than 0 or 1. Feeling that makes you ask yourself if there is a better and cleaner way of doing it... I must mention that I am using C# 4.0, but I am not specifically looking for an answer in this language, but rather in the domain of CLR 4.

    Read the article

  • How Best to Replace PL/SQL with C#?

    - by Mike
    Hi, I write a lot of one-off Oracle SQL queries/reports (in Toad), and sometimes they can get complex, involving lots of unions, joins, and subqueries, and/or requiring dynamic SQL, and/or procedural logic. PL/SQL is custom made for handling these situations, but as a language it does not compare to C#, and even if it did, it's tooling does not, and if even that did, forcing yet another language on the team is something to be avoided whenever possible. Experience has shown me that using SQL for the set based processing, coupled with C# for the procedural processing, is a powerful combination indeed, and far more readable, maintainable and enhanceable than PL/SQL. So, we end up with a number of small C# programs which typically would construct a SQL query string piece by piece and/or run several queries and process them as needed. This kind of code could easily be a disaster, but a good developer can make this work out quite well, and end up with very readable code. So, I don't think it's a bad way to code for smaller DB focused projects. My main question is, how best to create and package all these little C# programs that run ad hoc queries and reports against the database? Right now I create little report objects in a DLL, developed and tested with NUnit, but then I continue to use NUnit as the GUI to select and run them. NUnit just happens to provide a nice GUI for this kind of thing, even after testing has been completed. I'm also interested in suggestions for reporting apps generally. I feel like there is a missing piece or product. The perfect tool would allow writing and running C# inside of Toad, or SQL inside of Visual Studio, along with simple reporting facilities. All ideas will be appreciated, but let's make the assumption that PL/SQL is not the solution.

    Read the article

  • MySQL: How to pull information from multiple tables based on information in other tables?

    - by Greg
    Ok, I have 5 tables which I need to pull information from based on one variable. gameinfo id | name | platforminfoid gamerinfo id | name | contact | tag platforminfo id | name | abbreviation rosterinfo id | name | gameinfoid rosters id | gamerinfoid | rosterinfoid The 1 variable would be gamerinfo.id, which would then pull all relevant data from gamerinfo, which would pull all relevant data from rosters, which would pull all relevant data from rosterinfo, which would pull all relevant data from gameinfo, which would then pull all relevant data from platforminfo. Basically it breaks down like this: gamerinfo contains the gamers basic information. rosterinfo contains basic information about the rosters (ie name and the game the roster is aimed towards) rosters contains the actual link from the gamer to the different rosters (gamers can be on multiple rosters) gameinfo contains basic information about the games (ie name and platform) platform info contains information about the different platforms the games are played on (it is possible for a game to be played on multiple platforms) I am pretty new to SQL queries involving JOINs and UNIONs and such, usually I would just break it up into multiple queries but I thought there has to be a better way, so after looking around the net, I couldn't find (or maybe I just couldn't understand what I was looking at) what I was looking for. If anyone can point me in the right direction I would be most grateful.

    Read the article

  • How to wrap a C function whose parameters are pointer to structs, so that it can be called from Lua?

    - by pierr
    I have the follwing C function. How should I wrap it so it can be called from a Lua script? typedef struct tagT{ int a ; int b ; } type_t; int lib_a_f_4(type_t *t) { return t->a * t->b ; } I know how to wrapr it if the function parameter type were int or char *. Should I use table type for a C structure? EDIT: I am using SWIG for the wraping , according to this doc, It seems that I should automatically have this funtion new_type_t(2,3) , but it is not the case. If you wrap a C structure, it is also mapped to a Lua userdata. By adding a metatable to the userdata, this provides a very natural interface. For example, struct Point{ int x,y; }; is used as follows: p=example.new_Point() p.x=3 p.y=5 print(p.x,p.y) 3 5 Similar access is provided for unions and the data members of C++ classes. C structures are created using a function new_Point(), but for C++ classes are created using just the name Point().

    Read the article

  • Efficiently select top row for each category in the set

    - by VladV
    I need to select a top row for each category from a known set (somewhat similar to this question). The problem is, how to make this query efficient on the large number of rows. For example, let's create a table that stores temperature recording in several places. CREATE TABLE #t ( placeId int, ts datetime, temp int, PRIMARY KEY (ts, placeId) ) -- insert some sample data SET NOCOUNT ON DECLARE @n int, @ts datetime SELECT @n = 1000, @ts = '2000-01-01' WHILE (@n>0) BEGIN INSERT INTO #t VALUES (@n % 10, @ts, @n % 37) IF (@n % 10 = 0) SET @ts = DATEADD(hour, 1, @ts) SET @n = @n - 1 END Now I need to get the latest recording for each of the places 1, 2, 3. This way is efficient, but doesn't scale well (and looks dirty). SELECT * FROM ( SELECT TOP 1 placeId, temp FROM #t WHERE placeId = 1 ORDER BY ts DESC ) t1 UNION ALL SELECT * FROM ( SELECT TOP 1 placeId, temp FROM #t WHERE placeId = 2 ORDER BY ts DESC ) t2 UNION ALL SELECT * FROM ( SELECT TOP 1 placeId, temp FROM #t WHERE placeId = 3 ORDER BY ts DESC ) t3 The following looks better but works much less efficiently (30% vs 70% according to the optimizer). SELECT placeId, ts, temp FROM ( SELECT placeId, ts, temp, ROW_NUMBER() OVER (PARTITION BY placeId ORDER BY ts DESC) rownum FROM #t WHERE placeId IN (1, 2, 3) ) t WHERE rownum = 1 The problem is, during the latter query execution plan a clustered index scan is performed on #t and 300 rows are retrieved, sorted, numbered, and then filtered, leaving only 3 rows. For the former query three times one row is fetched. Is there a way to perform the query efficiently without lots of unions?

    Read the article

  • SQL Server: String Manipulation, Unpivoting

    - by OMG Ponies
    I have a column called body, which contains body content for our CMS. The data looks like: ...{cloak:id=1.1.1}...{cloak}...{cloak:id=1.1.2}...{cloak}...{cloak:id=1.1.3}...{cloak}... A moderately tweaked for readability example: ## h5. A formal process for approving and testing all external network connections and changes to the firewall and router configurations? {toggle-cloak:id=1.1.1}{tree-plus-icon} *Compliance:* {color:red}{*}Partial{*}{color} (?) {cloak:id=1.1.1} || Date: | 2010-03-15 || || Owner: | Brian || || Researched by: | || || Narrative: | Jira tickets are normally used to approve and track network changes\\ || || Artifacts: | Jira.bccampus.ca\\ || || Recommendation: | Need to update policy that no Jira = no change\\ || || Proposed Remedy(ies): | || || Approved Remedy(ies): | || || Date: | || || Reviewed by: | || || Remarks/comments: | || {cloak}## h5. Current network diagrams with all connections to cardholder data, including any wireless networks? {toggle-cloak:id=1.1.2}{tree-plus-icon} *Compliance:* {color:red}{*}TBD{*}{color} (?) {cloak:id=1.1.2} I'd like to get the cloak values out in the following format: requirement_num ----------------- 1.1.1 1.1.2 1.1.3 I'm looking at using UNIONs - does anyone have a better recommendation? Forgot to mention: I can't use regex, because CLR isn't enabled on the database. The numbers aren't sequencial. The current record jumps from 1.1.6 to 1.2.1

    Read the article

  • How Best to Replace Ugly Queries and Dynamic PL/SQL with C#?

    - by Mike
    Hi, I write a lot of one-off Oracle SQL queries (in Toad), and sometimes they can get complex, involving lots of unions, joins, and subqueries, and sometimes requiring dynamic SQL. That is, sometimes SQL queries require set based processing along with significant procedural processing. This is what PL/SQL is custom made for, but as a language it does not begin to compare to C#. Now and then I convert a PL/SQL procedure to C#, and am always amazed at how much cleaner and easier to both read and write the C# version is. The C# program might for example construct a SQL query string piece by piece and/or run several queries and process them as needed. The C# version is usually much faster as well, which must mean that I'm not very good at PL/SQL either. I do not currently have access to LINQ. My question is, how best to package all these little C# programs, which are really just mini reports, that is, replacements for ugly SQL queries? Right now I'm actually using NUnit to hold them, and calling each report a [Test], even though they aren't really tests. NUnit just happens to provide a convenient packaging framework.

    Read the article

  • Nagios3: Conditional operators for service checks?

    - by Dave
    I'm trying to setup Nagios to monitor my various using hostgroups to define 'machine roles', against which I run services to check the machines by role. However, I'd like to use conditional operators that would enable me to run the service check against an intersection of two host groups, rather than their unions... i.e. using &&, ||, or () operators. For example, imagine I have the following servers: www-eu: Linux WWW (Apache) server, in the EU www-us: Windows WWW (IIS) server, in the US (West coast) ftp-eu: Linux FTP server, in the EU ftp-us: Windows FTP server, in the US I would want to create the following host groups: US-Servers: www-us, ftp-us EU-Servers: www-eu, ftp-eu WWW-Servers: www-us, www-eu FTP-Servers: ftp-us, ftp-eu Now say I'm interested in checking the HTTP response time for my web servers. Then let's say this particular Nagios service is running from the US (West Coast), and that I have a command called *check_http_response_time*. This command will check the responsiveness of the HTTP server, which I can provide an argument which defines the max response time before raising critical. My command might look like: check_http_response_time $HOSTNAME$ 50 Now traditionally, I can run my checks by specifying a list of host or hostgroups. define service{ use local-service hostgroup_name WWW-Servers # Servers = www-us, www-eu servicegroups WWW Checks service_description Check HTTP Response Time check_command check_http_response_time!50 } However, with the above service definition, given my Nagios service is in US West, I could reasonably expect that my EU server will return critical. Really, I want different thresholds for each region (50 for US West, 200 for EU.) I would have to permutate my service for each host and set their custom threshold, or alternatively permutate out my service groups by role & region (i.e. WWW-Servers-EU), and run my specific thresholds against those. Though the latter is better, both are much messier than I'd like... What I would love, and what this post is asking for, is a way to use hostgroups to perform an intersection using conditional logic, rather than a simple union. It might look like: define service{ use local-service hostgroup_name WWW-Servers && US-Servers servicegroups WWW Checks service_description Check HTTP Response Time check_command check_http_response_time!50 } It then would run the check only against servers that are in both WWW-Servers and US-Servers, in my example, just www-us. The benefits of such a feature would be significant for Nagios services configured for large-scale. Is this feature available? If it isn't, will it be available in the future? Is there an alternative way to accomplish this given the most recent Nagios version? Any tips/suggestions are most appreciated! Dave

    Read the article

  • Process Centric Banking: Loan Origination Solution

    - by Manish Palaparthy
    There is an old proverb that goes, "The difference between theory and practice is greater in practice than in theory". So, we keep doing numerous "Proof of Concepts" with our own products on various business cases to analyze them deeply, understand and explain to our customers. We then present our learnings as they happened. The awareness of each PoC should help readers increase the trustworthiness of the results coming out of these PoCs. I present one such PoC where we invested a lot of time&effort.  Process Centric Banking : Loan Origination Solution Loan Origination is a process by which a borrower applies for a new loan and the lender processes that application. Loan origination includes the series of steps taken by the bank from the point the customer shows interest in a loan product all the way to disbursal of funds. The Loan Origination process is relevant for many kind of lenders in Financial services: Banks, Credit Unions, NBFCs(Non Banking Financial Companies) and so on. For simplicity sake, I will use "Bank" as the lending institution in the rest of my article.  Loan Origination is one of the core processes for Banks as it is the process by which the it creates assets against which the Institution earns most of its profits from. A well tuned loan origination process can affect the Bank in many positive ways. Banks have always shown great interest in automating the loan origination process for the above reason. However, due the constant changes in customer environment, market dynamics, prevailing economic conditions, cost pressures & regulatory environment they run into lot of challenges. Let me categorize some of these challenges for you Customer Environment Multiple Channels: Customer can use any of the available channels (Internet Banking, Email, Fax, Branch, Phone Banking, ATM, Broker, Mobile, Snail Mail) to perform all or some of the activities related to her Visibility into the origination process: Expect immediate update on the status of loan processing & alert messages Reduced Turn Around Time: Expect loans to be processed with least turn around time Reduced loan processing fees: Partly due to market dynamics the customer expects the loan processing fee to be negligible Market Dynamics Competitive environment:  The competition keeps creating many variants of loan products to attract customers, the bank needs to create similar product variants with better offers to attract customers or keep existing ones Ability to migrate loans from one vendor to another: It has become really easy for retail customers to move from one bank to the other given the low fee of loan processing and highly attractive offers. How does the bank protect it's customer base while actively engaging with potential customers banking with competitor banks Flexibility to react to market developments: Market development greatly influence loan processing, underwriting, asset valuation, risk mitigation rules. Can the bank modify rules and policies, the idea is not just to react to market developments but to pro-actively manage new developments Economic conditions Constant change in various rates and their implications on the rates and rules applied when on-boarding a loan: How quickly can the bank apply changes to rates offered to customers when the central bank changes various rates Requirements of Audit by the central banker: Tough economic conditions have demanded much more stringent audit rules and tests. The banks needs to produce ready reports(historic & operational) for audit compliance Risk Mitigation: While risk mitigation has always been a key concern for the bank, this is the area where the bank's underwriters & risk analysts spend the maximum time when processing a loan application. In order to reduce TAT the bank cannot compromise on its risk mitigation strategies Cost pressures Reduce Cost of processing per application: To deliver a reduced loan processing fee to the customer, the bank needs to keep its cost per processing loan application low. Meet customer TAT expectations while reducing the queues and the systems being used to process the loan application: The loan application could potentially be spending a lot of time waiting in the queue for further processing. Different volumes & patterns of applications demand different queuing algorithms. The bank needs to have real-time visibility into these queues and have the flexibility to change queuing algorithms at runtime  Increase the use of electronic communication and reduce the branch channel usage: Lesser automation leads not only leads to Increased turn around time, it also impacts more costs to reach out to customers The objective of our PoC was to implement a Loan Origination Solution whose ownership lies with the bank and effectively meet the challenges listed above. We built a simple story board for the solution We then went about implementing our storyboard using Oracle BPM Suite, Webcenter Content : Imaging. The web UI has been built on ADF technolgies, while the integration with core-services has been implemented using the underlying SOA infrastructure. The BPM process model is quite exhaustive can meet all the challenges listed above to reasonable degree. A bank intending to implement an end-to-end Loan Origination Solution has multiple options at it's disposal. It can Develop a customer Loan Origination Application from scratch: Gives maximum opportunity to build what you want but inflexible to upgrade and maintain. Higher TCO in long term Buy a Packaged application & customize it: Customizing a generic loan application can be tedious and prove as difficult as above. Build it using many disparate & un-integrated tools: Initially seems easier than developing from scratch. But, without integrated tool sets this is not a viable approach either or A solution based on a Framework: Independent Services and Business Process Modeling provide decoupled architecture that is flexible. We built this framework end-to-end with processes the core process of loan origination & several sub-processes such as Analyse and define customer needs, customer credit verification, identity check processes, legal review process, New customer registration & risk assessment.

    Read the article

  • Linq To Sql Concat() dropping fields in created TSQL

    - by user191468
    This is strange. I am moving a stored proc to a service. The TSQL unions multiple selects. To replicate this I created multiple queries resulting in a common new concrete type. Then I issue a return result.ToString(); and the resulting SQL selects have varying numbers of columns specified thus causing an MSSQL Msg 205... using (var db = GetDb()) { var fundInv = from f in db.funds select new Investments { Company = f.company, FullName = f.fullname, Admin = f.admin, Fund = f.fund1, FundCode = f.fundcode, Source = STR_FUNDS, IsPortfolio = false, IsActive = f.active, Strategy = f.strategy, SubStrategy = f.substrategy, AltStrategy = f.altstrategy, AltSubStrategy = f.altsubstrategy, Region = f.region, AltRegion = f.altregion, UseAlternate = f.usealt, ClassesAllowed = f.classallowed }; var stocksInv = from s in db.stocks where !fundInv.Select(f => f.Company).Contains(s.vehcode) select new Investments { Company = s.company, FullName = s.issuer, Admin = STR_PRS, Fund = s.shortname, FundCode = s.vehcode, Source = STR_STOCK, IsPortfolio = false, IsActive = (s.inactive == null), Strategy = s.style, SubStrategy = s.substyle, AltStrategy = s.altstyle, AltSubStrategy = s.altsubsty, Region = s.geography, AltRegion = s.altgeo, UseAlternate = s.usealt, ClassesAllowed = STR_GENERIC }; var bondsInv = from oi in db.bonds where !fundInv.Select(f => f.Company).Contains(oi.vehcode) select new Investments { Company = string.Empty, FullName = oi.issue, Admin = STR_PRS1, Fund = oi.issue, FundCode = oi.vehcode, Source = STR_BONDS, IsPortfolio = false, IsActive = oi.closed, Strategy = STR_OTH, SubStrategy = STR_OTH, AltStrategy = STR_OTH, AltSubStrategy = STR_OTH, Region = STR_OTH, AltRegion = STR_OTH, UseAlternate = false, ClassesAllowed = STR_GENERIC }; return (fundInv.Concat(stocksInv).Concat(bondsInv)).ToList(); } The code above results in a complex select statement where each "table" above has different column count. (see SQL below) I've been trying a few things but no change yet. Ideas are welcome. SELECT [t6].[company] AS [Company], [t6].[fullname] AS [FullName], [t6].[admin] AS [Admin], [t6].[fund] AS [Fund], [t6].[fundcode] AS [FundCode], [t6].[value] AS [Source], [t6].[value2] AS [IsPortfolio], [t6].[active] AS [IsActive], [t6].[strategy] AS [Strategy], [t6].[substrategy] AS [SubStrategy], [t6].[altstrategy] AS [AltStrategy], [t6].[altsubstrategy] AS [AltSubStrategy], [t6].[region] AS [Region], [t6].[altregion] AS [AltRegion], [t6].[usealt] AS [UseAlternate], [t6].[classallowed] AS [ClassesAllowed] FROM ( SELECT [t3].[company], [t3].[fullname], [t3].[admin], [t3].[fund], [t3].[fundcode], [t3].[value], [t3].[value2], [t3].[active], [t3].[strategy], [t3].[substrategy], [t3].[altstrategy], [t3].[altsubstrategy], [t3].[region], [t3].[altregion], [t3].[usealt], [t3].[classallowed] FROM ( SELECT [t0].[company], [t0].[fullname], [t0].[admin], [t0].[fund], [t0].[fundcode], @p0 AS [value], [t0].[active], [t0].[strategy], [t0].[substrategy], [t0].[altstrategy], [t0].[altsubstrategy], [t0].[region], [t0].[altregion], [t0].[usealt], [t0].[classallowed] FROM [zInvest].[funds] AS [t0] UNION ALL SELECT [t1].[company], [t1].[issuer], @p6 AS [value], [t1].[shortname], [t1].[vehcode], @p7 AS [value2], @p8 AS [value3], (CASE WHEN [t1].[inactive] IS NULL THEN 1 ELSE 0 END) AS [value5], [t1].[style], [t1].[substyle], [t1].[altstyle], [t1].[altsubsty], [t1].[geography], [t1].[altgeo], [t1].[usealt], @p10 AS [value6] FROM [zBank].[stocks] AS [t1] WHERE (NOT (EXISTS( SELECT NULL AS [EMPTY] FROM [zInvest].[funds] AS [t2] WHERE [t2].[company] = [t1].[vehcode] ))) AND ([t1].[vehcode] <> @p2) AND (SUBSTRING([t1].[vehcode], @p3 + 1, @p4) <> @p5) ) AS [t3] UNION ALL SELECT @p11 AS [value], [t4].[issue], @p12 AS [value2], [t4].[vehcode], @p13 AS [value3], @p14 AS [value4], [t4].[closed], @p16 AS [value6], @p17 AS [value7] FROM [zMut].[bonds] AS [t4] WHERE NOT (EXISTS( SELECT NULL AS [EMPTY] FROM [zInvest].[funds] AS [t5] WHERE [t5].[company] = [t4].[vehcode] )) ) AS [t6]

    Read the article

  • Union struct produces garbage and general question about struct nomenclature

    - by SoulBeaver
    I read about unions the other day( today ) and tried the sample functions that came with them. Easy enough, but the result was clear and utter garbage. The first example is: union Test { int Int; struct { char byte1; char byte2; char byte3; char byte4; } Bytes; }; where an int is assumed to have 32 bits. After I set a value Test t; t.Int = 7; and then cout cout << t.Bytes.byte1 << etc... the individual bytes, there is nothing displayed, but my computer beeps. Which is fairly odd I guess. The second example gave me even worse results. union SwitchEndian { unsigned short word; struct { unsigned char hi; unsigned char lo; } data; } Switcher; Looks a little wonky in my opinion. Anyway, from the description it says, this should automatically store the result in a high/little endian format when I set the value like Switcher.word = 7656; and calling with cout << Switcher.data.hi << endl The result of this were symbols not even defined in the ASCII chart. Not sure why those are showing up. Finally, I had an error when I tried correcting the example by, instead of placing Bytes at the end of the struct, positioning it right next to it. So instead of struct {} Bytes; I wanted to write struct Bytes {}; This tossed me a big ol' error. What's the difference between these? Since C++ cannot have unnamed structs it seemed, at the time, pretty obvious that the Bytes positioned at the beginning and at the end are the things that name it. Except no, that's not the entire answer I guess. What is it then?

    Read the article

  • Can I append to a preprocessor macro?

    - by JCSalomon
    Is there any way in standard C—or with GNU extensions—to append stuff to a macro definition? E.g., given a macro defined as #define quux_list X(foo) X(bar) can I append X(bas) so that it now expands as if I’d defined it #define quux_list X(foo) X(bar) X(bas)? I’m playing with discriminated/tagged unions along these lines: struct quux_foo { int x; }; struct quux_bar { char *s; }; struct quux_bas { void *p; }; enum quux_type {quux_foo, quux_bar, quux_bas}; struct quux { enum quux_type type; union { struct quux_foo foo; struct quux_bar bar; struct quux_bas bas; } t; }; I figure this is a good place for the X-macro. If I define a macro #define quux_table X(foo) X(bar) X(bas) the enumeration & structure can be defined thus, and never get out of sync: #define X(t) quux_ ## t, enum quux_type {quux_table}; #undef X #define X(t) struct quux_ ## t t; struct quux { enum quux_type type; union {quux_table} t; }; #undef X Of course, the quux_* structures can get out of sync, so I’d like to do something like this, only legally: struct quux_foo { int x; }; #define quux_table quux_table X(foo) struct quux_bar { char *s; }; #define quux_table quux_table X(bar) struct quux_bas { void *p; }; #define quux_table quux_table X(bas) (Well, what I really want to be able to do is something like member_struct(quux, foo) { int x; }; but I’m well aware that macros cannot be (re)defined from within macros.) Anyhow, that’s my motivating example. Is there a way to accomplish this? Boost.Preprocessor examples are fine, if you can show me how to make the X-macro technique work with that library.

    Read the article

  • rewritten mysql query returning unexpected results, trying to figure out why

    - by dq
    I created a messy query in a hurry a while ago to get a list of product codes. I am now trying to clean up my tables and my code. I recently tried to rewrite the query in order for it to be easier to use and understand. The original query works great, but it requires multiple search strings in order to do one search because it uses UNIONS, and it has a few other issues. My newly modified query is easier to understand, and only requires one search string, but is returning different results. Basically the new query is leaving records out, and I would like to understand why, and how to fix it. Here are the two queries (search strings are all null): Original Query: $query = 'SELECT product_code FROM bus_warehouse_lots WHERE status=\'2\''.$search_string_1 .' UNION SELECT product_code FROM bus_po WHERE status=\'0\''.$search_string_2 .' UNION SELECT bus_warehouse_entries.new_product_code AS product_code FROM (bus_warehouse_entries LEFT JOIN bus_warehouse_transfers ON bus_warehouse_entries.picking_ticket_num=bus_warehouse_transfers.pt_number) LEFT JOIN bus_warehouse_lots ON bus_warehouse_entries.ebooks_lot_id=bus_warehouse_lots.id WHERE bus_warehouse_entries.type=\'6\' AND bus_warehouse_transfers.status=\'0\''.$search_string_3 .' UNION SELECT bus_contracts.main_product AS product_code FROM bus_contracts LEFT JOIN bus_warehouse_lots ON bus_contracts.main_product=bus_warehouse_lots.product_code WHERE bus_contracts.status=\'0\''.$search_string_4 .' UNION SELECT prod_id AS product_code FROM bus_products WHERE last_usage > \''.date('Y-m-d', strtotime('-12 months')).'\''.$search_string_5 .' ORDER BY product_code'; New Query: $query = 'SELECT bus_products.prod_id FROM bus_products' .' LEFT JOIN (bus_warehouse_lots, bus_po, bus_warehouse_entries, bus_contracts) ON (' .'bus_products.prod_id = bus_warehouse_lots.product_code' .' AND bus_products.prod_id = bus_po.product_code' .' AND bus_products.prod_id = bus_warehouse_entries.new_product_code' .' AND bus_products.prod_id = bus_contracts.main_product)' .' LEFT JOIN bus_warehouse_transfers ON' .' bus_warehouse_entries.picking_ticket_num = bus_warehouse_transfers.pt_number' .' WHERE (bus_products.last_usage > \''.date('Y-m-d', strtotime('-12 months')).'\'' .' OR bus_warehouse_lots.status = \'2\'' .' OR bus_po.status = \'0\'' .' OR (bus_warehouse_entries.type = \'6\' AND bus_warehouse_transfers.status = \'0\')' .' OR bus_contracts.status = \'0\')' .$search_string_6 .' GROUP BY bus_products.prod_id' .' ORDER BY bus_products.prod_id';

    Read the article

  • Please help fix and optimize this query

    - by user607217
    I am working on a system to find potential duplicates in our customers table (SQL 2005). I am using the built-in SOUNDEX value that our software computes when customers are added/updated, but I also implemented the double metaphone algorithm for better matching. This is the most-nested query I have created, and I can't help but think there is a better way to do it and I'd like to learn. In the inner-most query I am joining the customer table to the metaphone table I created, then finding customers that have identical pKey (primary phonetic key). I take that, union that with customers that have matching soundex values, and then proceed to score those matches with various text similarity functions. This is currently working, but I would also like to add a union of customers whose aKey (alternate phonetic key) match. This would be identical to "QUERY A" except to substitute on (c1Akey = c2Akey) for the join. However, when I attempt to include that, I get errors when I try to execute my query. Here is the code: --Create aggregate ranking select c1Name, c2Name, nDiff, c1Addr, c2Addr, aDiff, c1SSN, c2SSN, sDiff, c1DOB, c2DOB, dDiff, nDiff+aDiff+dDiff+sDiff as Score ,(sDiff+dDiff)*1.5 + (nDiff+dDiff)*1.5 + (nDiff+sDiff)*1.5 + aDiff *.5 + nDiff *.5 as [Rank] FROM ( --Create match scores for different fields SELECT c1Name, c2Name, c1Addr, c2Addr, c1SSN, c2SSN, c1LTD, c2LTD, c1DOB, c2DOB, dbo.Jaro(c1name, c2name) AS nDiff, dbo.JaroWinkler(c1addr, c2addr) AS aDiff, CASE WHEN c1dob = '1901-01-01' OR c2dob = '1901-01-01' OR c1dob = '1800-01-01' OR c2dob = '1800-01-01' THEN .5 ELSE dbo.SmithWaterman(c1dob, c2dob) END AS dDiff, CASE WHEN c1ssn = '000-00-0000' OR c2ssn = '000-00-0000' THEN .5 ELSE dbo.Jaro(c1ssn, c2ssn) END AS sDiff FROM -- Generate list of possible matches based on multiple phonetic matching fields ( select * from -- List of similar names from pKey field of ##Metaphone table --QUERY A BEGIN (select customers.custno as c1Custno, name as c1Name, haddr as c1Addr, ssn as c1SSN, lasttripdate as c1LTD, dob as c1DOB, soundex as c1Soundex, pkey as c1Pkey, akey as c1Akey from Customers WITH (nolock) join ##Metaphone on customers.custno = ##Metaphone.custno) as c1 JOIN (select customers.custno as c2Custno, name as c2Name, haddr as c2Addr, ssn as c2SSN, lasttripdate as c2LTD, dob as c2DOB, soundex as c2Soundex, pkey as c2Pkey, akey as c2Akey from Customers with (nolock) join ##Metaphone on customers.custno = ##Metaphone.custno) as c2 on (c1Pkey = c2Pkey) and (c1Custno < c2Custno) WHERE (c1Name <> 'PARENT, GUARDIAN') and c1soundex != c2soundex --QUERY A END union --List of similar names from pregenerated SOUNDEX field (select t1.custno, t1.name, t1.haddr, t1.ssn, t1.lasttripdate, t1.dob, t1.[soundex], 0, 0, t2.custno, t2.name, t2.haddr, t2.ssn, t2.lasttripdate, t2.dob, t2.[soundex], 0, 0 from Customers t1 WITH (nolock) join customers t2 with (nolock) on t1.[soundex] = t2.[soundex] and t1.custno < t2.custno where (t1.name <> 'PARENT, GUARDIAN')) ) as a ) as b where (sDiff+dDiff)*1.5 + (nDiff+dDiff)*1.5 + (nDiff+sDiff)*1.5 + aDiff *.5 + nDiff *.5 >= 7.5 order by [rank] desc, score desc Previously, I was using joins such as on c1.pkey = c2.pkey or c1.akey = c2.akey or c1.soundex = c2.soundex but the performance was horrendous, and using unions seems to be working a lot better. Out of 103K customers, tt is currently generating a list of 8.5M potential matches (based on the phonetic codes) in 2.25 minutes, and then taking another 2 to score, rank and filter those down to about 3000. So I am happy with the performance, I just can't help but think there is a better way to structure this, and I need help adding the extra union condition. Thanks!

    Read the article

  • Normalizing a table

    - by Alex
    I have a legacy table, which I can't change. The values in it can be modified from legacy application (application also can't be changed). Due to a lot of access to the table from new application (new requirement), I'd like to create a temporary table, which would hopefully speed up the queries. The actual requirement, is to calculate number of business days from X to Y. For example, give me all business days from Jan 1'st 2001 until Dec 24'th 2004. The table is used to mark which days are off, as different companies may have different days off - it isn't just Saturday + Sunday) The temporary table would be created from a .NET program, each time user enters the screen for this query (user may run query multiple times, with different values, table is created once), so I'd like it to be as fast as possible. Approach below runs in under a second, but I only tested it with a small dataset, and still it takes probably close to half a second, which isn't great for UI - even though it's just the overhead for first query. The legacy table looks like this: CREATE TABLE [business_days]( [country_code] [char](3) , [state_code] [varchar](4) , [calendar_year] [int] , [calendar_month] [varchar](31) , [calendar_month2] [varchar](31) , [calendar_month3] [varchar](31) , [calendar_month4] [varchar](31) , [calendar_month5] [varchar](31) , [calendar_month6] [varchar](31) , [calendar_month7] [varchar](31) , [calendar_month8] [varchar](31) , [calendar_month9] [varchar](31) , [calendar_month10] [varchar](31) , [calendar_month11] [varchar](31) , [calendar_month12] [varchar](31) , misc. ) Each month has 31 characters, and any day off (Saturday + Sunday + holiday) is marked with X. Each half day is marked with an 'H'. For example, if a month starts on a Thursday, than it will look like (Thursday+Friday workdays, Saturday+Sunday marked with X): ' XX XX ..' I'd like the new table to look like so: create table #Temp (country varchar(3), state varchar(4), date datetime, hours int) And I'd like to only have rows for days which are off (marked with X or H from previous query) What I ended up doing, so far is this: Create a temporary-intermediate table, that looks like this: create table #Temp_2 (country_code varchar(3), state_code varchar(4), calendar_year int, calendar_month varchar(31), month_code int) To populate it, I have a union which basically unions calendar_month, calendar_month2, calendar_month3, etc. Than I have a loop which loops through all the rows in #Temp_2, after each row is processed, it is removed from #Temp_2. To process the row there is a loop from 1 to 31, and substring(calendar_month, counter, 1) is checked for either X or H, in which case there is an insert into #Temp table. [edit added code] Declare @country_code char(3) Declare @state_code varchar(4) Declare @calendar_year int Declare @calendar_month varchar(31) Declare @month_code int Declare @calendar_date datetime Declare @day_code int WHILE EXISTS(SELECT * From #Temp_2) -- where processed = 0) BEGIN Select Top 1 @country_code = t2.country_code, @state_code = t2.state_code, @calendar_year = t2.calendar_year, @calendar_month = t2.calendar_month, @month_code = t2.month_code From #Temp_2 t2 -- where processed = 0 set @day_code = 1 while @day_code <= 31 begin if substring(@calendar_month, @day_code, 1) = 'X' begin set @calendar_date = convert(datetime, (cast(@month_code as varchar) + '/' + cast(@day_code as varchar) + '/' + cast(@calendar_year as varchar))) insert into #Temp (country, state, date, hours) values (@country_code, @state_code, @calendar_date, 8) end if substring(@calendar_month, @day_code, 1) = 'H' begin set @calendar_date = convert(datetime, (cast(@month_code as varchar) + '/' + cast(@day_code as varchar) + '/' + cast(@calendar_year as varchar))) insert into #Temp (country, state, date, hours) values (@country_code, @state_code, @calendar_date, 4) end set @day_code = @day_code + 1 end delete from #Temp_2 where @country_code = country_code AND @state_code = state_code AND @calendar_year = calendar_year AND @calendar_month = calendar_month AND @month_code = month_code --update #Temp_2 set processed = 1 where @country_code = country_code AND @state_code = state_code AND @calendar_year = calendar_year AND @calendar_month = calendar_month AND @month_code = month_code END I am not an expert in SQL, so I'd like to get some input on my approach, and maybe even a much better approach suggestion. After having the temp table, I'm planning to do (dates would be coming from a table): select cast(convert(datetime, ('01/31/2012'), 101) -convert(datetime, ('01/17/2012'), 101) as int) - ((select sum(hours) from #Temp where date between convert(datetime, ('01/17/2012'), 101) and convert(datetime, ('01/31/2012'), 101)) / 8) Besides the solution of normalizing the table, the other solution I implemented for now, is a function which does all this logic of getting the business days by scanning the current table. It runs pretty fast, but I'm hesitant to call a function, if I can instead add a simpler query to get result. (I'm currently trying this on MSSQL, but I would need to do same for Sybase ASE and Oracle)

    Read the article

  • When Your Boss Doesn't Want you to Succeed

    - by Phil Factor
    You're working hard to get an application finished. You are programming long into the evenings sometimes, and eating sandwiches at your desk instead of taking a lunch break. Then one day you glance up at the IT manager, serene in his mysterious round of meetings, and think 'Does he actually care whether this project succeeds or not?'. The question may seem absurd. Of course the project must succeed. The truth, as always, is often far more complex. Your manager may even be doing his best to make sure you don't succeed. Why? There have always been rich pickings for the unscrupulous in IT.  In extreme cases, where administrators struggle with scarcely-comprehended technical issues, huge sums of money can be lost and gained without any perceptible results. In a very few cases can fraud be proven: most of the time, the intricacies of the 'game' are such that one can do little more than harbor suspicion.  Where does over-enthusiastic salesmanship end and fraud begin? The Business of Information Technology provides rich opportunities for White-collar crime. The poor developer has his, or her, hands full with the task of wrestling with the sheer complexity of building an application. He, or she, has no time for following the complexities of the chicanery of the management that is directing affairs.  Most likely, the developers wouldn't even suspect that their company management had ulterior motives. I'll illustrate what I mean with an entirely fictional, hypothetical, example. The Opportunist and the Aged Charities often do good, unexciting work that is funded by the income from a bequest that dates back maybe hundreds of years.  In our example, it isn't exciting work, for it involves the welfare of elderly people who have fallen on hard times.  Volunteers visit, giving a smile and a chat, and check that they are all right, but are able to spend a little money on their discretion to ameliorate any pressing needs for these old folk.  The money is made to work very hard and the charity averts a great deal of suffering and eases the burden on the state. Daisy hears the garden gate creak as Mrs Rainer comes up the path. She looks forward to her twice-weekly visit from the nice lady from the trust. She always asked ‘is everything all right, Love’. Cheeky but nice. She likes her cheery manner. She seems interested in hearing her memories, and talking about her far-away family. She helps her with those chores in the house that she couldn’t manage and once even paid to fill the back-shed with coke, the other year. Nice, Mrs. Rainer is, she thought as she goes to open the door. The trustees are getting on in years themselves, and worry about the long-term future of the charity: is it relevant to modern society? Is it likely to attract a new generation of workers to take it on. They are instantly attracted by the arrival to the board of a smartly dressed University lecturer with the ear of the present Government. Alain 'Stalin' Jones is earnest, persuasive and energetic. The trustees welcome him to the board and quickly forgive his humorless political-correctness. He talks of 'diversity', 'relevance', 'social change', 'equality' and 'communities', but his eye is on that huge bequest. Alain first came to notice as a Trotskyite union official, who insinuated himself into one of the duller Trades Unions and turned it, through his passionate leadership, into a radical, headline-grabbing organization.  Middle age, and the rise of European federal socialism, had brought him quiet prosperity and charcoal suits, an ear in the current government, and a wide influence as a member of various Quangos (government bodies staffed by well-paid unelected courtiers).  He was employed as a 'consultant' by several organizations that relied on government contracts. After gaining the confidence of the trustees, and showing a surprising knowledge of mundane processes and the regulatory framework of charities, Alain launches his plan.  The trust will expand their work by means of a bold IT initiative that will coordinate the interventions of several 'caring agencies', and provide  emergency cover, a special Website so anxious relatives can see how their elderly charges are doing, and a vastly more efficient way of coordinating the work of the volunteer carers. It will also provide a special-purpose site that gives 'social networking' facilities, rather like Facebook, to the few elderly folk on the lists with access to the internet. The trustees perk up. Their own experience of the internet is restricted to the occasional scanning of railway timetables, but they can see that it is 'relevant'. In his next report to the other trustees, Alain proudly announces that all this glamorous and exciting technology can be paid for by a grant from the government. He admits darkly that he has influence. True to his word, the government promises a grant of a size that is an order of magnitude greater than any budget that the trustees had ever handled. There was the understandable proviso that the company that would actually do the IT work would have to be one of the government's preferred suppliers and the work would need to be tendered under EU competition rules. The only company that tenders, a multinational IT company with a long track record of government work, quotes ten million pounds for the work. A trustee questions the figure as it seems enormous for the reasonably trivial internet facilities being built, but the IT Salesmen dazzle them with presentations and three-letter acronyms until they subside into quiescent acceptance. After all, they can’t stay locked in the Twentieth century practices can they? The work is put in hand with a large project team, in a splendid glass building near west London. The trustees see rooms of programmers working diligently at screens, and who talk with enthusiasm of the project. Paul, the project manager, looked through his resource schedule with growing unease. His initial excitement at being given his first major project hadn’t lasted. He’d been allocated a lackluster team of developers whose skills didn’t seem right, and he was allowed only a couple of contractors to make good the deficit. Strangely, the presentation he’d given to his management, where he’d saved time and resources with a OTS solution to a great deal of the development work, and a sound conservative architecture, hadn’t gone down nearly as big as he’d hoped. He almost got the feeling they wanted a more radical and ambitious solution. The project starts slipping its dates. The costs build rapidly. There are certain uncomfortable extra charges that appear, such as the £600-a-day charge by the 'Business Manager' appointed to act as a point of liaison between the charity and the IT Company.  When he appeared, his face permanently split by a 'Mr Sincerity' smile, they'd thought he was provided at the cost of the IT Company. Derek, the DBA, didn’t have to go to the server room quite some much as he did: but It got him away from the poisonous despair of the development group. Wave after wave of events had conspired to delay the project.  Why the management had imposed hideous extra bureaucracy to cover ISO 9000 and 9001:2008 accreditation just as the project was struggling to get back on-schedule was  beyond belief.  Then  the Business manager was coming back with endless changes in scope, sorrowing saying that the Trustees were very insistent, though hopelessly out in touch with the reality of technical challenges. Suddenly, the costs mount to the point of consuming the government grant in its entirety. The project remains tantalizingly just out of reach. Alain Jones gives an emotional rallying speech at the trustees review meeting, urging them not to lose their nerve. Sadly, the trustees dip into the accumulated capital of the trust, the seed-corn of all their revenues, in order to save the IT project. A few months later it is all over. The IT project is never delivered, even though it had seemed so incredibly close.  With the trust's capital all gone, the activities it funded have to be terminated and the trust becomes just a shell. There aren't even the funds to mount a legal challenge against the IT company, even had the trust's solicitor advised such a foolish thing. Alain leaves as suddenly as he had arrived, only to pop up a few months later, bronzed and rested, at another charity. The IT workers who were permanent employees are dispersed to other projects, and the contractors leave to other contracts. Within months the entire project is but a vague memory. One or two developers remain  puzzled that their managers had been so obstructive when they should have welcomed progress toward completion of the project, but they put it down to incompetence and testosterone. Few suspected that they were actively preventing the project from getting finished. The relationships between the IT consultancy, and the government of the day are intricate, and made more complex by the Private Finance initiatives and political patronage.  The losers in this case were the taxpayers, and the beneficiaries of the trust, and, perhaps the soul of the original benefactor of the trust, whose bid to give his name some immortality had been scuppered by smooth-talking white-collar political apparatniks.  Even now, nobody is certain whether a crime was ever committed. The perfect heist, I guess. Where’s the victim? "I hear that Daisy’s cottage is up for sale. She’s had to go into a care home.  She didn’t want to at all, but then there is nobody to keep an eye on her since she had that minor stroke a while back.  A charity used to help out. The ‘social’ don’t have the funding, evidently for community care. Yes, her old cat was put down. There was a good clearout, and now the house is all scrubbed and cleared ready for sale. The skip was full of old photos and letters, memories. No room in her new ‘home’."

    Read the article

  • How to programatically read native DLL imports in C#?

    - by Eric
    The large hunk of C# code below is intended to print the imports of a native DLL. I copied it from from this link and modified it very slightly, just to use LoadLibraryEx as Mike Woodring does here. I find that when I call the Foo.Test method with the original example's target, MSCOREE.DLL, it prints all the imports fine. But when I use other dlls like GDI32.DLL or WSOCK32.DLL the imports do not get printed. What's missing from this code that would let it print all the imports as, for example, DUMPBIN.EXE does? (Is there a hint I'm not grokking in the original comment that says, "using mscoree.dll as an example as it doesnt export any thing"?) Here's the extract that just shows how it's being invoked: public static void Test() { // WORKS: var path = @"c:\windows\system32\mscoree.dll"; // NO ERRORS, BUT NO IMPORTS PRINTED EITHER: //var path = @"c:\windows\system32\gdi32.dll"; //var path = @"c:\windows\system32\wsock32.dll"; var hLib = LoadLibraryEx(path, 0, DONT_RESOLVE_DLL_REFERENCES | LOAD_IGNORE_CODE_AUTHZ_LEVEL); TestImports(hLib, true); } And here is the whole code example: namespace PETest2 { [StructLayout(LayoutKind.Explicit)] public unsafe struct IMAGE_IMPORT_BY_NAME { [FieldOffset(0)] public ushort Hint; [FieldOffset(2)] public fixed char Name[1]; } [StructLayout(LayoutKind.Explicit)] public struct IMAGE_IMPORT_DESCRIPTOR { #region union /// <summary> /// CSharp doesnt really support unions, but they can be emulated by a field offset 0 /// </summary> [FieldOffset(0)] public uint Characteristics; // 0 for terminating null import descriptor [FieldOffset(0)] public uint OriginalFirstThunk; // RVA to original unbound IAT (PIMAGE_THUNK_DATA) #endregion [FieldOffset(4)] public uint TimeDateStamp; [FieldOffset(8)] public uint ForwarderChain; [FieldOffset(12)] public uint Name; [FieldOffset(16)] public uint FirstThunk; } [StructLayout(LayoutKind.Explicit)] public struct THUNK_DATA { [FieldOffset(0)] public uint ForwarderString; // PBYTE [FieldOffset(4)] public uint Function; // PDWORD [FieldOffset(8)] public uint Ordinal; [FieldOffset(12)] public uint AddressOfData; // PIMAGE_IMPORT_BY_NAME } public unsafe class Interop { #region Public Constants public static readonly ushort IMAGE_DIRECTORY_ENTRY_IMPORT = 1; #endregion #region Private Constants #region CallingConvention CALLING_CONVENTION /// <summary> /// Specifies the calling convention. /// </summary> /// <remarks> /// Specifies <see cref="CallingConvention.Winapi" /> for Windows to /// indicate that the default should be used. /// </remarks> private const CallingConvention CALLING_CONVENTION = CallingConvention.Winapi; #endregion CallingConvention CALLING_CONVENTION #region IMPORT DLL FUNCTIONS private const string KERNEL_DLL = "kernel32"; private const string DBGHELP_DLL = "Dbghelp"; #endregion #endregion Private Constants [DllImport(KERNEL_DLL, CallingConvention = CALLING_CONVENTION, EntryPoint = "GetModuleHandleA"), SuppressUnmanagedCodeSecurity] public static extern void* GetModuleHandleA(/*IN*/ char* lpModuleName); [DllImport(KERNEL_DLL, CallingConvention = CALLING_CONVENTION, EntryPoint = "GetModuleHandleW"), SuppressUnmanagedCodeSecurity] public static extern void* GetModuleHandleW(/*IN*/ char* lpModuleName); [DllImport(KERNEL_DLL, CallingConvention = CALLING_CONVENTION, EntryPoint = "IsBadReadPtr"), SuppressUnmanagedCodeSecurity] public static extern bool IsBadReadPtr(void* lpBase, uint ucb); [DllImport(DBGHELP_DLL, CallingConvention = CALLING_CONVENTION, EntryPoint = "ImageDirectoryEntryToData"), SuppressUnmanagedCodeSecurity] public static extern void* ImageDirectoryEntryToData(void* Base, bool MappedAsImage, ushort DirectoryEntry, out uint Size); } static class Foo { // From winbase.h in the Win32 platform SDK. // const uint DONT_RESOLVE_DLL_REFERENCES = 0x00000001; const uint LOAD_IGNORE_CODE_AUTHZ_LEVEL = 0x00000010; [DllImport("kernel32.dll"), SuppressUnmanagedCodeSecurity] static extern uint LoadLibraryEx(string fileName, uint notUsedMustBeZero, uint flags); public static void Test() { //var path = @"c:\windows\system32\mscoree.dll"; //var path = @"c:\windows\system32\gdi32.dll"; var path = @"c:\windows\system32\wsock32.dll"; var hLib = LoadLibraryEx(path, 0, DONT_RESOLVE_DLL_REFERENCES | LOAD_IGNORE_CODE_AUTHZ_LEVEL); TestImports(hLib, true); } // using mscoree.dll as an example as it doesnt export any thing // so nothing shows up if you use your own module. // and the only none delayload in mscoree.dll is the Kernel32.dll private static void TestImports( uint hLib, bool mappedAsImage ) { unsafe { //fixed (char* pszModule = "mscoree.dll") { //void* hMod = Interop.GetModuleHandleW(pszModule); void* hMod = (void*)hLib; uint size = 0; uint BaseAddress = (uint)hMod; if (hMod != null) { Console.WriteLine("Got handle"); IMAGE_IMPORT_DESCRIPTOR* pIID = (IMAGE_IMPORT_DESCRIPTOR*)Interop.ImageDirectoryEntryToData((void*)hMod, mappedAsImage, Interop.IMAGE_DIRECTORY_ENTRY_IMPORT, out size); if (pIID != null) { Console.WriteLine("Got Image Import Descriptor"); while (!Interop.IsBadReadPtr((void*)pIID->OriginalFirstThunk, (uint)size)) { try { char* szName = (char*)(BaseAddress + pIID->Name); string name = Marshal.PtrToStringAnsi((IntPtr)szName); Console.WriteLine("pIID->Name = {0} BaseAddress - {1}", name, (uint)BaseAddress); THUNK_DATA* pThunkOrg = (THUNK_DATA*)(BaseAddress + pIID->OriginalFirstThunk); while (!Interop.IsBadReadPtr((void*)pThunkOrg->AddressOfData, 4U)) { char* szImportName; uint Ord; if ((pThunkOrg->Ordinal & 0x80000000) > 0) { Ord = pThunkOrg->Ordinal & 0xffff; Console.WriteLine("imports ({0}).Ordinal{1} - Address: {2}", name, Ord, pThunkOrg->Function); } else { IMAGE_IMPORT_BY_NAME* pIBN = (IMAGE_IMPORT_BY_NAME*)(BaseAddress + pThunkOrg->AddressOfData); if (!Interop.IsBadReadPtr((void*)pIBN, (uint)sizeof(IMAGE_IMPORT_BY_NAME))) { Ord = pIBN->Hint; szImportName = (char*)pIBN->Name; string sImportName = Marshal.PtrToStringAnsi((IntPtr)szImportName); // yes i know i am a lazy ass Console.WriteLine("imports ({0}).{1}@{2} - Address: {3}", name, sImportName, Ord, pThunkOrg->Function); } else { Console.WriteLine("Bad ReadPtr Detected or EOF on Imports"); break; } } pThunkOrg++; } } catch (AccessViolationException e) { Console.WriteLine("An Access violation occured\n" + "this seems to suggest the end of the imports section\n"); Console.WriteLine(e); } pIID++; } } } } } Console.WriteLine("Press Any Key To Continue......"); Console.ReadKey(); } }

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5 Part 1: Table per Hierarchy (TPH)

    - by mortezam
    A simple strategy for mapping classes to database tables might be “one table for every entity persistent class.” This approach sounds simple enough and, indeed, works well until we encounter inheritance. Inheritance is such a visible structural mismatch between the object-oriented and relational worlds because object-oriented systems model both “is a” and “has a” relationships. SQL-based models provide only "has a" relationships between entities; SQL database management systems don’t support type inheritance—and even when it’s available, it’s usually proprietary or incomplete. There are three different approaches to representing an inheritance hierarchy: Table per Hierarchy (TPH): Enable polymorphism by denormalizing the SQL schema, and utilize a type discriminator column that holds type information. Table per Type (TPT): Represent "is a" (inheritance) relationships as "has a" (foreign key) relationships. Table per Concrete class (TPC): Discard polymorphism and inheritance relationships completely from the SQL schema.I will explain each of these strategies in a series of posts and this one is dedicated to TPH. In this series we'll deeply dig into each of these strategies and will learn about "why" to choose them as well as "how" to implement them. Hopefully it will give you a better idea about which strategy to choose in a particular scenario. Inheritance Mapping with Entity Framework Code FirstAll of the inheritance mapping strategies that we discuss in this series will be implemented by EF Code First CTP5. The CTP5 build of the new EF Code First library has been released by ADO.NET team earlier this month. EF Code-First enables a pretty powerful code-centric development workflow for working with data. I’m a big fan of the EF Code First approach, and I’m pretty excited about a lot of productivity and power that it brings. When it comes to inheritance mapping, not only Code First fully supports all the strategies but also gives you ultimate flexibility to work with domain models that involves inheritance. The fluent API for inheritance mapping in CTP5 has been improved a lot and now it's more intuitive and concise in compare to CTP4. A Note For Those Who Follow Other Entity Framework ApproachesIf you are following EF's "Database First" or "Model First" approaches, I still recommend to read this series since although the implementation is Code First specific but the explanations around each of the strategies is perfectly applied to all approaches be it Code First or others. A Note For Those Who are New to Entity Framework and Code-FirstIf you choose to learn EF you've chosen well. If you choose to learn EF with Code First you've done even better. To get started, you can find a great walkthrough by Scott Guthrie here and another one by ADO.NET team here. In this post, I assume you already setup your machine to do Code First development and also that you are familiar with Code First fundamentals and basic concepts. You might also want to check out my other posts on EF Code First like Complex Types and Shared Primary Key Associations. A Top Down Development ScenarioThese posts take a top-down approach; it assumes that you’re starting with a domain model and trying to derive a new SQL schema. Therefore, we start with an existing domain model, implement it in C# and then let Code First create the database schema for us. However, the mapping strategies described are just as relevant if you’re working bottom up, starting with existing database tables. I’ll show some tricks along the way that help you dealing with nonperfect table layouts. Let’s start with the mapping of entity inheritance. -- The Domain ModelIn our domain model, we have a BillingDetail base class which is abstract (note the italic font on the UML class diagram below). We do allow various billing types and represent them as subclasses of BillingDetail class. As for now, we support CreditCard and BankAccount: Implement the Object Model with Code First As always, we start with the POCO classes. Note that in our DbContext, I only define one DbSet for the base class which is BillingDetail. Code First will find the other classes in the hierarchy based on Reachability Convention. public abstract class BillingDetail  {     public int BillingDetailId { get; set; }     public string Owner { get; set; }             public string Number { get; set; } } public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } public class CreditCard : BillingDetail {     public int CardType { get; set; }                     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } This object model is all that is needed to enable inheritance with Code First. If you put this in your application you would be able to immediately start working with the database and do CRUD operations. Before going into details about how EF Code First maps this object model to the database, we need to learn about one of the core concepts of inheritance mapping: polymorphic and non-polymorphic queries. Polymorphic Queries LINQ to Entities and EntitySQL, as object-oriented query languages, both support polymorphic queries—that is, queries for instances of a class and all instances of its subclasses, respectively. For example, consider the following query: IQueryable<BillingDetail> linqQuery = from b in context.BillingDetails select b; List<BillingDetail> billingDetails = linqQuery.ToList(); Or the same query in EntitySQL: string eSqlQuery = @"SELECT VAlUE b FROM BillingDetails AS b"; ObjectQuery<BillingDetail> objectQuery = ((IObjectContextAdapter)context).ObjectContext                                                                          .CreateQuery<BillingDetail>(eSqlQuery); List<BillingDetail> billingDetails = objectQuery.ToList(); linqQuery and eSqlQuery are both polymorphic and return a list of objects of the type BillingDetail, which is an abstract class but the actual concrete objects in the list are of the subtypes of BillingDetail: CreditCard and BankAccount. Non-polymorphic QueriesAll LINQ to Entities and EntitySQL queries are polymorphic which return not only instances of the specific entity class to which it refers, but all subclasses of that class as well. On the other hand, Non-polymorphic queries are queries whose polymorphism is restricted and only returns instances of a particular subclass. In LINQ to Entities, this can be specified by using OfType<T>() Method. For example, the following query returns only instances of BankAccount: IQueryable<BankAccount> query = from b in context.BillingDetails.OfType<BankAccount>() select b; EntitySQL has OFTYPE operator that does the same thing: string eSqlQuery = @"SELECT VAlUE b FROM OFTYPE(BillingDetails, Model.BankAccount) AS b"; In fact, the above query with OFTYPE operator is a short form of the following query expression that uses TREAT and IS OF operators: string eSqlQuery = @"SELECT VAlUE TREAT(b as Model.BankAccount)                       FROM BillingDetails AS b                       WHERE b IS OF(Model.BankAccount)"; (Note that in the above query, Model.BankAccount is the fully qualified name for BankAccount class. You need to change "Model" with your own namespace name.) Table per Class Hierarchy (TPH)An entire class hierarchy can be mapped to a single table. This table includes columns for all properties of all classes in the hierarchy. The concrete subclass represented by a particular row is identified by the value of a type discriminator column. You don’t have to do anything special in Code First to enable TPH. It's the default inheritance mapping strategy: This mapping strategy is a winner in terms of both performance and simplicity. It’s the best-performing way to represent polymorphism—both polymorphic and nonpolymorphic queries perform well—and it’s even easy to implement by hand. Ad-hoc reporting is possible without complex joins or unions. Schema evolution is straightforward. Discriminator Column As you can see in the DB schema above, Code First has to add a special column to distinguish between persistent classes: the discriminator. This isn’t a property of the persistent class in our object model; it’s used internally by EF Code First. By default, the column name is "Discriminator", and its type is string. The values defaults to the persistent class names —in this case, “BankAccount” or “CreditCard”. EF Code First automatically sets and retrieves the discriminator values. TPH Requires Properties in SubClasses to be Nullable in the Database TPH has one major problem: Columns for properties declared by subclasses will be nullable in the database. For example, Code First created an (INT, NULL) column to map CardType property in CreditCard class. However, in a typical mapping scenario, Code First always creates an (INT, NOT NULL) column in the database for an int property in persistent class. But in this case, since BankAccount instance won’t have a CardType property, the CardType field must be NULL for that row so Code First creates an (INT, NULL) instead. If your subclasses each define several non-nullable properties, the loss of NOT NULL constraints may be a serious problem from the point of view of data integrity. TPH Violates the Third Normal FormAnother important issue is normalization. We’ve created functional dependencies between nonkey columns, violating the third normal form. Basically, the value of Discriminator column determines the corresponding values of the columns that belong to the subclasses (e.g. BankName) but Discriminator is not part of the primary key for the table. As always, denormalization for performance can be misleading, because it sacrifices long-term stability, maintainability, and the integrity of data for immediate gains that may be also achieved by proper optimization of the SQL execution plans (in other words, ask your DBA). Generated SQL QueryLet's take a look at the SQL statements that EF Code First sends to the database when we write queries in LINQ to Entities or EntitySQL. For example, the polymorphic query for BillingDetails that you saw, generates the following SQL statement: SELECT  [Extent1].[Discriminator] AS [Discriminator],  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift],  [Extent1].[CardType] AS [CardType],  [Extent1].[ExpiryMonth] AS [ExpiryMonth],  [Extent1].[ExpiryYear] AS [ExpiryYear] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] IN ('BankAccount','CreditCard') Or the non-polymorphic query for the BankAccount subclass generates this SQL statement: SELECT  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] = 'BankAccount' Note how Code First adds a restriction on the discriminator column and also how it only selects those columns that belong to BankAccount entity. Change Discriminator Column Data Type and Values With Fluent API Sometimes, especially in legacy schemas, you need to override the conventions for the discriminator column so that Code First can work with the schema. The following fluent API code will change the discriminator column name to "BillingDetailType" and the values to "BA" and "CC" for BankAccount and CreditCard respectively: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) {     modelBuilder.Entity<BillingDetail>()                 .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue("BA"))                 .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue("CC")); } Also, changing the data type of discriminator column is interesting. In the above code, we passed strings to HasValue method but this method has been defined to accepts a type of object: public void HasValue(object value); Therefore, if for example we pass a value of type int to it then Code First not only use our desired values (i.e. 1 & 2) in the discriminator column but also changes the column type to be (INT, NOT NULL): modelBuilder.Entity<BillingDetail>()             .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue(1))             .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue(2)); SummaryIn this post we learned about Table per Hierarchy as the default mapping strategy in Code First. The disadvantages of the TPH strategy may be too serious for your design—after all, denormalized schemas can become a major burden in the long run. Your DBA may not like it at all. In the next post, we will learn about Table per Type (TPT) strategy that doesn’t expose you to this problem. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 3 – Table per Concrete Type (TPC) and Choosing Strategy Guidelines

    - by mortezam
    This is the third (and last) post in a series that explains different approaches to map an inheritance hierarchy with EF Code First. I've described these strategies in previous posts: Part 1 – Table per Hierarchy (TPH) Part 2 – Table per Type (TPT)In today’s blog post I am going to discuss Table per Concrete Type (TPC) which completes the inheritance mapping strategies supported by EF Code First. At the end of this post I will provide some guidelines to choose an inheritance strategy mainly based on what we've learned in this series. TPC and Entity Framework in the Past Table per Concrete type is somehow the simplest approach suggested, yet using TPC with EF is one of those concepts that has not been covered very well so far and I've seen in some resources that it was even discouraged. The reason for that is just because Entity Data Model Designer in VS2010 doesn't support TPC (even though the EF runtime does). That basically means if you are following EF's Database-First or Model-First approaches then configuring TPC requires manually writing XML in the EDMX file which is not considered to be a fun practice. Well, no more. You'll see that with Code First, creating TPC is perfectly possible with fluent API just like other strategies and you don't need to avoid TPC due to the lack of designer support as you would probably do in other EF approaches. Table per Concrete Type (TPC)In Table per Concrete type (aka Table per Concrete class) we use exactly one table for each (nonabstract) class. All properties of a class, including inherited properties, can be mapped to columns of this table, as shown in the following figure: As you can see, the SQL schema is not aware of the inheritance; effectively, we’ve mapped two unrelated tables to a more expressive class structure. If the base class was concrete, then an additional table would be needed to hold instances of that class. I have to emphasize that there is no relationship between the database tables, except for the fact that they share some similar columns. TPC Implementation in Code First Just like the TPT implementation, we need to specify a separate table for each of the subclasses. We also need to tell Code First that we want all of the inherited properties to be mapped as part of this table. In CTP5, there is a new helper method on EntityMappingConfiguration class called MapInheritedProperties that exactly does this for us. Here is the complete object model as well as the fluent API to create a TPC mapping: public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } }          public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } }          public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } }      public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; }              protected override void OnModelCreating(ModelBuilder modelBuilder)     {         modelBuilder.Entity<BankAccount>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("BankAccounts");         });         modelBuilder.Entity<CreditCard>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("CreditCards");         });                 } } The Importance of EntityMappingConfiguration ClassAs a side note, it worth mentioning that EntityMappingConfiguration class turns out to be a key type for inheritance mapping in Code First. Here is an snapshot of this class: namespace System.Data.Entity.ModelConfiguration.Configuration.Mapping {     public class EntityMappingConfiguration<TEntityType> where TEntityType : class     {         public ValueConditionConfiguration Requires(string discriminator);         public void ToTable(string tableName);         public void MapInheritedProperties();     } } As you have seen so far, we used its Requires method to customize TPH. We also used its ToTable method to create a TPT and now we are using its MapInheritedProperties along with ToTable method to create our TPC mapping. TPC Configuration is Not Done Yet!We are not quite done with our TPC configuration and there is more into this story even though the fluent API we saw perfectly created a TPC mapping for us in the database. To see why, let's start working with our object model. For example, the following code creates two new objects of BankAccount and CreditCard types and tries to add them to the database: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount();     CreditCard creditCard = new CreditCard() { CardType = 1 };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Running this code throws an InvalidOperationException with this message: The changes to the database were committed successfully, but an error occurred while updating the object context. The ObjectContext might be in an inconsistent state. Inner exception message: AcceptChanges cannot continue because the object's key values conflict with another object in the ObjectStateManager. Make sure that the key values are unique before calling AcceptChanges. The reason we got this exception is because DbContext.SaveChanges() internally invokes SaveChanges method of its internal ObjectContext. ObjectContext's SaveChanges method on its turn by default calls AcceptAllChanges after it has performed the database modifications. AcceptAllChanges method merely iterates over all entries in ObjectStateManager and invokes AcceptChanges on each of them. Since the entities are in Added state, AcceptChanges method replaces their temporary EntityKey with a regular EntityKey based on the primary key values (i.e. BillingDetailId) that come back from the database and that's where the problem occurs since both the entities have been assigned the same value for their primary key by the database (i.e. on both BillingDetailId = 1) and the problem is that ObjectStateManager cannot track objects of the same type (i.e. BillingDetail) with the same EntityKey value hence it throws. If you take a closer look at the TPC's SQL schema above, you'll see why the database generated the same values for the primary keys: the BillingDetailId column in both BankAccounts and CreditCards table has been marked as identity. How to Solve The Identity Problem in TPC As you saw, using SQL Server’s int identity columns doesn't work very well together with TPC since there will be duplicate entity keys when inserting in subclasses tables with all having the same identity seed. Therefore, to solve this, either a spread seed (where each table has its own initial seed value) will be needed, or a mechanism other than SQL Server’s int identity should be used. Some other RDBMSes have other mechanisms allowing a sequence (identity) to be shared by multiple tables, and something similar can be achieved with GUID keys in SQL Server. While using GUID keys, or int identity keys with different starting seeds will solve the problem but yet another solution would be to completely switch off identity on the primary key property. As a result, we need to take the responsibility of providing unique keys when inserting records to the database. We will go with this solution since it works regardless of which database engine is used. Switching Off Identity in Code First We can switch off identity simply by placing DatabaseGenerated attribute on the primary key property and pass DatabaseGenerationOption.None to its constructor. DatabaseGenerated attribute is a new data annotation which has been added to System.ComponentModel.DataAnnotations namespace in CTP5: public abstract class BillingDetail {     [DatabaseGenerated(DatabaseGenerationOption.None)]     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } As always, we can achieve the same result by using fluent API, if you prefer that: modelBuilder.Entity<BillingDetail>()             .Property(p => p.BillingDetailId)             .HasDatabaseGenerationOption(DatabaseGenerationOption.None); Working With The Object Model Our TPC mapping is ready and we can try adding new records to the database. But, like I said, now we need to take care of providing unique keys when creating new objects: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount()      {          BillingDetailId = 1                          };     CreditCard creditCard = new CreditCard()      {          BillingDetailId = 2,         CardType = 1     };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Polymorphic Associations with TPC is Problematic The main problem with this approach is that it doesn’t support Polymorphic Associations very well. After all, in the database, associations are represented as foreign key relationships and in TPC, the subclasses are all mapped to different tables so a polymorphic association to their base class (abstract BillingDetail in our example) cannot be represented as a simple foreign key relationship. For example, consider the the domain model we introduced here where User has a polymorphic association with BillingDetail. This would be problematic in our TPC Schema, because if User has a many-to-one relationship with BillingDetail, the Users table would need a single foreign key column, which would have to refer both concrete subclass tables. This isn’t possible with regular foreign key constraints. Schema Evolution with TPC is Complex A further conceptual problem with this mapping strategy is that several different columns, of different tables, share exactly the same semantics. This makes schema evolution more complex. For example, a change to a base class property results in changes to multiple columns. It also makes it much more difficult to implement database integrity constraints that apply to all subclasses. Generated SQLLet's examine SQL output for polymorphic queries in TPC mapping. For example, consider this polymorphic query for all BillingDetails and the resulting SQL statements that being executed in the database: var query = from b in context.BillingDetails select b; Just like the SQL query generated by TPT mapping, the CASE statements that you see in the beginning of the query is merely to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type). TPC's SQL Queries are Union Based As you can see in the above screenshot, the first SELECT uses a FROM-clause subquery (which is selected with a red rectangle) to retrieve all instances of BillingDetails from all concrete class tables. The tables are combined with a UNION operator, and a literal (in this case, 0 and 1) is inserted into the intermediate result; (look at the lines highlighted in yellow.) EF reads this to instantiate the correct class given the data from a particular row. A union requires that the queries that are combined, project over the same columns; hence, EF has to pad and fill up nonexistent columns with NULL. This query will really perform well since here we can let the database optimizer find the best execution plan to combine rows from several tables. There is also no Joins involved so it has a better performance than the SQL queries generated by TPT where a Join is required between the base and subclasses tables. Choosing Strategy GuidelinesBefore we get into this discussion, I want to emphasize that there is no one single "best strategy fits all scenarios" exists. As you saw, each of the approaches have their own advantages and drawbacks. Here are some rules of thumb to identify the best strategy in a particular scenario: If you don’t require polymorphic associations or queries, lean toward TPC—in other words, if you never or rarely query for BillingDetails and you have no class that has an association to BillingDetail base class. I recommend TPC (only) for the top level of your class hierarchy, where polymorphism isn’t usually required, and when modification of the base class in the future is unlikely. If you do require polymorphic associations or queries, and subclasses declare relatively few properties (particularly if the main difference between subclasses is in their behavior), lean toward TPH. Your goal is to minimize the number of nullable columns and to convince yourself (and your DBA) that a denormalized schema won’t create problems in the long run. If you do require polymorphic associations or queries, and subclasses declare many properties (subclasses differ mainly by the data they hold), lean toward TPT. Or, depending on the width and depth of your inheritance hierarchy and the possible cost of joins versus unions, use TPC. By default, choose TPH only for simple problems. For more complex cases (or when you’re overruled by a data modeler insisting on the importance of nullability constraints and normalization), you should consider the TPT strategy. But at that point, ask yourself whether it may not be better to remodel inheritance as delegation in the object model (delegation is a way of making composition as powerful for reuse as inheritance). Complex inheritance is often best avoided for all sorts of reasons unrelated to persistence or ORM. EF acts as a buffer between the domain and relational models, but that doesn’t mean you can ignore persistence concerns when designing your classes. SummaryIn this series, we focused on one of the main structural aspect of the object/relational paradigm mismatch which is inheritance and discussed how EF solve this problem as an ORM solution. We learned about the three well-known inheritance mapping strategies and their implementations in EF Code First. Hopefully it gives you a better insight about the mapping of inheritance hierarchies as well as choosing the best strategy for your particular scenario. Happy New Year and Happy Code-Firsting! References ADO.NET team blog Java Persistence with Hibernate book a { color: #5A99FF; } a:visited { color: #5A99FF; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } .exception { background-color: #f0f0f0; font-style: italic; padding-bottom: 5px; padding-left: 5px; padding-top: 5px; padding-right: 5px; }

    Read the article

  • C#/.NET Little Wonders: The Useful But Overlooked Sets

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  Today we will be looking at two set implementations in the System.Collections.Generic namespace: HashSet<T> and SortedSet<T>.  Even though most people think of sets as mathematical constructs, they are actually very useful classes that can be used to help make your application more performant if used appropriately. A Background From Math In mathematical terms, a set is an unordered collection of unique items.  In other words, the set {2,3,5} is identical to the set {3,5,2}.  In addition, the set {2, 2, 4, 1} would be invalid because it would have a duplicate item (2).  In addition, you can perform set arithmetic on sets such as: Intersections: The intersection of two sets is the collection of elements common to both.  Example: The intersection of {1,2,5} and {2,4,9} is the set {2}. Unions: The union of two sets is the collection of unique items present in either or both set.  Example: The union of {1,2,5} and {2,4,9} is {1,2,4,5,9}. Differences: The difference of two sets is the removal of all items from the first set that are common between the sets.  Example: The difference of {1,2,5} and {2,4,9} is {1,5}. Supersets: One set is a superset of a second set if it contains all elements that are in the second set. Example: The set {1,2,5} is a superset of {1,5}. Subsets: One set is a subset of a second set if all the elements of that set are contained in the first set. Example: The set {1,5} is a subset of {1,2,5}. If We’re Not Doing Math, Why Do We Care? Now, you may be thinking: why bother with the set classes in C# if you have no need for mathematical set manipulation?  The answer is simple: they are extremely efficient ways to determine ownership in a collection. For example, let’s say you are designing an order system that tracks the price of a particular equity, and once it reaches a certain point will trigger an order.  Now, since there’s tens of thousands of equities on the markets, you don’t want to track market data for every ticker as that would be a waste of time and processing power for symbols you don’t have orders for.  Thus, we just want to subscribe to the stock symbol for an equity order only if it is a symbol we are not already subscribed to. Every time a new order comes in, we will check the list of subscriptions to see if the new order’s stock symbol is in that list.  If it is, great, we already have that market data feed!  If not, then and only then should we subscribe to the feed for that symbol. So far so good, we have a collection of symbols and we want to see if a symbol is present in that collection and if not, add it.  This really is the essence of set processing, but for the sake of comparison, let’s say you do a list instead: 1: // class that handles are order processing service 2: public sealed class OrderProcessor 3: { 4: // contains list of all symbols we are currently subscribed to 5: private readonly List<string> _subscriptions = new List<string>(); 6:  7: ... 8: } Now whenever you are adding a new order, it would look something like: 1: public PlaceOrderResponse PlaceOrder(Order newOrder) 2: { 3: // do some validation, of course... 4:  5: // check to see if already subscribed, if not add a subscription 6: if (!_subscriptions.Contains(newOrder.Symbol)) 7: { 8: // add the symbol to the list 9: _subscriptions.Add(newOrder.Symbol); 10: 11: // do whatever magic is needed to start a subscription for the symbol 12: } 13:  14: // place the order logic! 15: } What’s wrong with this?  In short: performance!  Finding an item inside a List<T> is a linear - O(n) – operation, which is not a very performant way to find if an item exists in a collection. (I used to teach algorithms and data structures in my spare time at a local university, and when you began talking about big-O notation you could immediately begin to see eyes glossing over as if it was pure, useless theory that would not apply in the real world, but I did and still do believe it is something worth understanding well to make the best choices in computer science). Let’s think about this: a linear operation means that as the number of items increases, the time that it takes to perform the operation tends to increase in a linear fashion.  Put crudely, this means if you double the collection size, you might expect the operation to take something like the order of twice as long.  Linear operations tend to be bad for performance because they mean that to perform some operation on a collection, you must potentially “visit” every item in the collection.  Consider finding an item in a List<T>: if you want to see if the list has an item, you must potentially check every item in the list before you find it or determine it’s not found. Now, we could of course sort our list and then perform a binary search on it, but sorting is typically a linear-logarithmic complexity – O(n * log n) - and could involve temporary storage.  So performing a sort after each add would probably add more time.  As an alternative, we could use a SortedList<TKey, TValue> which sorts the list on every Add(), but this has a similar level of complexity to move the items and also requires a key and value, and in our case the key is the value. This is why sets tend to be the best choice for this type of processing: they don’t rely on separate keys and values for ordering – so they save space – and they typically don’t care about ordering – so they tend to be extremely performant.  The .NET BCL (Base Class Library) has had the HashSet<T> since .NET 3.5, but at that time it did not implement the ISet<T> interface.  As of .NET 4.0, HashSet<T> implements ISet<T> and a new set, the SortedSet<T> was added that gives you a set with ordering. HashSet<T> – For Unordered Storage of Sets When used right, HashSet<T> is a beautiful collection, you can think of it as a simplified Dictionary<T,T>.  That is, a Dictionary where the TKey and TValue refer to the same object.  This is really an oversimplification, but logically it makes sense.  I’ve actually seen people code a Dictionary<T,T> where they store the same thing in the key and the value, and that’s just inefficient because of the extra storage to hold both the key and the value. As it’s name implies, the HashSet<T> uses a hashing algorithm to find the items in the set, which means it does take up some additional space, but it has lightning fast lookups!  Compare the times below between HashSet<T> and List<T>: Operation HashSet<T> List<T> Add() O(1) O(1) at end O(n) in middle Remove() O(1) O(n) Contains() O(1) O(n)   Now, these times are amortized and represent the typical case.  In the very worst case, the operations could be linear if they involve a resizing of the collection – but this is true for both the List and HashSet so that’s a less of an issue when comparing the two. The key thing to note is that in the general case, HashSet is constant time for adds, removes, and contains!  This means that no matter how large the collection is, it takes roughly the exact same amount of time to find an item or determine if it’s not in the collection.  Compare this to the List where almost any add or remove must rearrange potentially all the elements!  And to find an item in the list (if unsorted) you must search every item in the List. So as you can see, if you want to create an unordered collection and have very fast lookup and manipulation, the HashSet is a great collection. And since HashSet<T> implements ICollection<T> and IEnumerable<T>, it supports nearly all the same basic operations as the List<T> and can use the System.Linq extension methods as well. All we have to do to switch from a List<T> to a HashSet<T>  is change our declaration.  Since List and HashSet support many of the same members, chances are we won’t need to change much else. 1: public sealed class OrderProcessor 2: { 3: private readonly HashSet<string> _subscriptions = new HashSet<string>(); 4:  5: // ... 6:  7: public PlaceOrderResponse PlaceOrder(Order newOrder) 8: { 9: // do some validation, of course... 10: 11: // check to see if already subscribed, if not add a subscription 12: if (!_subscriptions.Contains(newOrder.Symbol)) 13: { 14: // add the symbol to the list 15: _subscriptions.Add(newOrder.Symbol); 16: 17: // do whatever magic is needed to start a subscription for the symbol 18: } 19: 20: // place the order logic! 21: } 22:  23: // ... 24: } 25: Notice, we didn’t change any code other than the declaration for _subscriptions to be a HashSet<T>.  Thus, we can pick up the performance improvements in this case with minimal code changes. SortedSet<T> – Ordered Storage of Sets Just like HashSet<T> is logically similar to Dictionary<T,T>, the SortedSet<T> is logically similar to the SortedDictionary<T,T>. The SortedSet can be used when you want to do set operations on a collection, but you want to maintain that collection in sorted order.  Now, this is not necessarily mathematically relevant, but if your collection needs do include order, this is the set to use. So the SortedSet seems to be implemented as a binary tree (possibly a red-black tree) internally.  Since binary trees are dynamic structures and non-contiguous (unlike List and SortedList) this means that inserts and deletes do not involve rearranging elements, or changing the linking of the nodes.  There is some overhead in keeping the nodes in order, but it is much smaller than a contiguous storage collection like a List<T>.  Let’s compare the three: Operation HashSet<T> SortedSet<T> List<T> Add() O(1) O(log n) O(1) at end O(n) in middle Remove() O(1) O(log n) O(n) Contains() O(1) O(log n) O(n)   The MSDN documentation seems to indicate that operations on SortedSet are O(1), but this seems to be inconsistent with its implementation and seems to be a documentation error.  There’s actually a separate MSDN document (here) on SortedSet that indicates that it is, in fact, logarithmic in complexity.  Let’s put it in layman’s terms: logarithmic means you can double the collection size and typically you only add a single extra “visit” to an item in the collection.  Take that in contrast to List<T>’s linear operation where if you double the size of the collection you double the “visits” to items in the collection.  This is very good performance!  It’s still not as performant as HashSet<T> where it always just visits one item (amortized), but for the addition of sorting this is a good thing. Consider the following table, now this is just illustrative data of the relative complexities, but it’s enough to get the point: Collection Size O(1) Visits O(log n) Visits O(n) Visits 1 1 1 1 10 1 4 10 100 1 7 100 1000 1 10 1000   Notice that the logarithmic – O(log n) – visit count goes up very slowly compare to the linear – O(n) – visit count.  This is because since the list is sorted, it can do one check in the middle of the list, determine which half of the collection the data is in, and discard the other half (binary search).  So, if you need your set to be sorted, you can use the SortedSet<T> just like the HashSet<T> and gain sorting for a small performance hit, but it’s still faster than a List<T>. Unique Set Operations Now, if you do want to perform more set-like operations, both implementations of ISet<T> support the following, which play back towards the mathematical set operations described before: IntersectWith() – Performs the set intersection of two sets.  Modifies the current set so that it only contains elements also in the second set. UnionWith() – Performs a set union of two sets.  Modifies the current set so it contains all elements present both in the current set and the second set. ExceptWith() – Performs a set difference of two sets.  Modifies the current set so that it removes all elements present in the second set. IsSupersetOf() – Checks if the current set is a superset of the second set. IsSubsetOf() – Checks if the current set is a subset of the second set. For more information on the set operations themselves, see the MSDN description of ISet<T> (here). What Sets Don’t Do Don’t get me wrong, sets are not silver bullets.  You don’t really want to use a set when you want separate key to value lookups, that’s what the IDictionary implementations are best for. Also sets don’t store temporal add-order.  That is, if you are adding items to the end of a list all the time, your list is ordered in terms of when items were added to it.  This is something the sets don’t do naturally (though you could use a SortedSet with an IComparer with a DateTime but that’s overkill) but List<T> can. Also, List<T> allows indexing which is a blazingly fast way to iterate through items in the collection.  Iterating over all the items in a List<T> is generally much, much faster than iterating over a set. Summary Sets are an excellent tool for maintaining a lookup table where the item is both the key and the value.  In addition, if you have need for the mathematical set operations, the C# sets support those as well.  The HashSet<T> is the set of choice if you want the fastest possible lookups but don’t care about order.  In contrast the SortedSet<T> will give you a sorted collection at a slight reduction in performance.   Technorati Tags: C#,.Net,Little Wonders,BlackRabbitCoder,ISet,HashSet,SortedSet

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

< Previous Page | 1 2 3