Search Results

Search found 62771 results on 2511 pages for 'visual studio net'.

Page 3/2511 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • The Image ASP.Net web server control

    - by nikolaosk
    In this post I will try to show you how to use the ImageMap web server control. This is going to be a very easy example. We will write no code but I will use the control to create navigation hotspots. 1) Launch Visual Studio 2010/2005/2008. Express editions will be fine. 2) Create a new asp.net empty web site and call it “ NavigationHotspot ”. 3) Drag and drop in the default.aspx page a ImageMap web server control from the Toolbox. 4) Let me explain what I did. I have an image that contains two flags...(read more)

    Read the article

  • Membership in ASP.Net applications - part 1

    - by nikolaosk
    So far in all my posts, I have never mentioned anything about how to implement authentication/authorisation mechanisms in a web site. In all our professional web applications we do need some sort of mechanism to verify who are users are and what privileges have in our site. This is the first post in a series of posts investigating how to implement membership (authentication+authorisation) in ASP.Net applications. We will look into the built-in web server security controls.We will look at the built...(read more)

    Read the article

  • Integrate Bing Search API into ASP.Net application

    - by sreejukg
    Couple of months back, I wrote an article about how to integrate Bing Search engine (API 2.0) with ASP.Net website. You can refer the article here http://weblogs.asp.net/sreejukg/archive/2012/04/07/integrate-bing-api-for-search-inside-asp-net-web-application.aspx Things are changing rapidly in the tech world and Bing has also changed! The Bing Search API 2.0 will work until August 1, 2012, after that it will not return results. Shocked? Don’t worry the API has moved to Windows Azure market place and available for you to sign up and continue using it and there is a free version available based on your usage. In this article, I am going to explain how you can integrate the new Bing API that is available in the Windows Azure market place with your website. You can access the Windows Azure market place from the below link https://datamarket.azure.com/ There is lot of applications available for you to subscribe and use. Bing is one of them. You can find the new Bing Search API from the below link https://datamarket.azure.com/dataset/5BA839F1-12CE-4CCE-BF57-A49D98D29A44 To get access to Bing Search API, first you need to register an account with Windows Azure market place. Sign in to the Windows Azure market place site using your windows live account. Once you sign in with your windows live account, you need to register to Windows Azure Market place account. From the Windows Azure market place, you will see the sign in button it the top right of the page. Clicking on the sign in button will take you to the Windows live ID authentication page. You can enter a windows live ID here to login. Once logged in you will see the Registration page for the Windows Azure market place as follows. You can agree or disagree for the email address usage by Microsoft. I believe selecting the check box means you will get email about what is happening in Windows Azure market place. Click on continue button once you are done. In the next page, you should accept the terms of use, it is not optional, you must agree to terms and conditions. Scroll down to the page and select the I agree checkbox and click on Register Button. Now you are a registered member of Windows Azure market place. You can subscribe to data applications. In order to use BING API in your application, you must obtain your account Key, in the previous version of Bing you were required an API key, the current version uses Account Key instead. Once you logged in to the Windows Azure market place, you can see “My Account” in the top menu, from the Top menu; go to “My Account” Section. From the My Account section, you can manage your subscriptions and Account Keys. Account Keys will be used by your applications to access the subscriptions from the market place. Click on My Account link, you can see Account Keys in the left menu and then Add an account key or you can use the default Account key available. Creating account key is very simple process. Also you can remove the account keys you create if necessary. The next step is to subscribe to BING Search API. At this moment, Bing Offers 2 APIs for search. The available options are as follows. 1. Bing Search API - https://datamarket.azure.com/dataset/5ba839f1-12ce-4cce-bf57-a49d98d29a44 2. Bing Search API – Web Results only - https://datamarket.azure.com/dataset/8818f55e-2fe5-4ce3-a617-0b8ba8419f65 The difference is that the later will give you only web results where the other you can specify the source type such as image, video, web, news etc. Carefully choose the API based on your application requirements. In this article, I am going to use Web Results Only API, but the steps will be similar to both. Go to the API page https://datamarket.azure.com/dataset/8818f55e-2fe5-4ce3-a617-0b8ba8419f65, you can see the subscription options in the right side. And in the bottom of the page you can see the free option Since I am going to use the free options, just Click the Sign Up link for that. Just select I agree check box and click on the Sign Up button. You will get a recipt pagethat detail your subscription. Now you are ready Bing Search API – Web results. The next step is to integrate the API into your ASP.Net application. Now if you go to the Search API page (as well as in the Receipt page), you can see a .Net C# Class Library link, click on the link, you will get a code file named “BingSearchContainer.cs”. In the following sections I am going to demonstrate the use of Bing Search API from an ASP.Net application. Create an empty ASP.Net web application. In the solution explorer, the application will looks as follows. Now add the downloaded code file (“BingSearchContainer.cs”) to the project. Right click your project in solution explorer, Add -> existing item, then browse to the downloaded location, select the “BingSearchContainer.cs” file and add it to the project. To build the code file you need to add reference to the following library. System.Data.Services.Client You can find the library in the .Net tab, when you select Add -> Reference Try to build your project now; it should build without any errors. Add an ASP.Net page to the project. I have included a text box and a button, then a Grid View to the page. The idea is to Search the text entered and display the results in the gridview. The page will look in the Visual Studio Designer as follows. The markup of the page is as follows. In the button click event handler for the search button, I have used the following code. Now run your project and enter some text in the text box and click the Search button, you will see the results coming from Bing, cool. I entered the text “Microsoft” in the textbox and clicked on the button and I got the following results. Searching Specific Websites If you want to search a particular website, you pass the site url with site:<site url name> and if you have more sites, use pipe (|). e.g. The following search query site:microsoft.com | site:adobe.com design will search the word design and return the results from Microsoft.com and Adobe.com See the sample code that search only Microsoft.com for the text entered for the above sample. var webResults = bingContainer.Web("site:www.Microsoft.com " + txtSearch.Text, null, null, null, null, null, null); Paging the results returned by the API By default the BING API will return 100 results based on your query. The default code file that you downloaded from BING doesn’t include any option for this. You can modify the downloaded code to perform this paging. The BING API supports two parameters $top (for number of results to return) and $skip (for number of records to skip). So if you want 3rd page of results with page size = 10, you need to pass $top = 10 and $skip=20. Open the BingSearchContainer.cs in the editor. You can see the Web method in it as follows. public DataServiceQuery<WebResult> Web(String Query, String Market, String Adult, Double? Latitude, Double? Longitude, String WebFileType, String Options) {  In the method signature, I have added two more parameters public DataServiceQuery<WebResult> Web(String Query, String Market, String Adult, Double? Latitude, Double? Longitude, String WebFileType, String Options, int resultCount, int pageNo) { and in the method, you need to pass the parameters to the query variable. query = query.AddQueryOption("$top", resultCount); query = query.AddQueryOption("$skip", (pageNo -1)*resultCount); return query; Note that I didn’t perform any validation, but you need to check conditions such as resultCount and pageCount should be greater than or equal to 1. If the parameters are not valid, the Bing Search API will throw the error. The modified method is as follows. The changes are highlighted. Now see the following code in the SearchPage.aspx.cs file protected void btnSearch_Click(object sender, EventArgs e) {     var bingContainer = new Bing.BingSearchContainer(new Uri(https://api.datamarket.azure.com/Bing/SearchWeb/));     // replace this value with your account key     var accountKey = "your key";     // the next line configures the bingContainer to use your credentials.     bingContainer.Credentials = new NetworkCredential(accountKey, accountKey);     var webResults = bingContainer.Web("site:microsoft.com" +txtSearch.Text , null, null, null, null, null, null,3,2);     lstResults.DataSource = webResults;     lstResults.DataBind(); } The following code will return 3 results starting from second page (by skipping first 3 results). See the result page as follows. Bing provides complete integration to its offerings. When you develop search based applications, you can use the power of Bing to perform the search. Integrating Bing Search API to ASP.Net application is a simple process and without investing much time, you can develop a good search based application. Make sure you read the terms of use before designing the application and decide which API usage is suitable for you. Further readings BING API Migration Guide http://go.microsoft.com/fwlink/?LinkID=248077 Bing API FAQ http://go.microsoft.com/fwlink/?LinkID=252146 Bing API Schema Guide http://go.microsoft.com/fwlink/?LinkID=252151

    Read the article

  • ASP.Net performance counters

    - by nikolaosk
    I was involved in designing and implementing an ASP.Net application some time ago. After we deployed the application we wanted to monitor various aspects of the application. We can use the Performance Monitor. In my windows Server 2008 machine, I go to Start-Run and type " perfmon " and the Performance monitor window pops up. There are thousands of counters in there and it is impossible for anyone to know them all. Most people I know use the Performance Monitor to add counters to monitor SQL Server...(read more)

    Read the article

  • How to create selectable themes in your ASP.Net applications

    - by nikolaosk
    In this post I am going to show you something that we see in most websites. When we visit a website we are given the choice through a control to select the theme(colors,font size,font family) that we want to be applied to the site. In almost all asp.net web sites we define the look and feel of the site through Themes , skins , Master Pages and Stylesheets . I assume that you know a little bit about CSS,XHTML. I assume that you have little knowledge of web forms and master pages. Before you go on...(read more)

    Read the article

  • Migrating ASP.NET (MVC 2) on .NET 3.5 over to .NET 4

    - by Charlino
    I've currently got a ASP.NET MVC 2 application on .NET 3.5 and I want to migrate it over to the new .NET 4.0 with Visual Studio 2010. Reason being that it's always good to stay on top of these things - plus I really like the new automatic encoding with <%: %> and clean web.config :-) So, does anyone have any experience they could share? Looking for gotchas and the likes. I guess this could also apply to any ASP.NET Forms projects aswell. TIA, Charles

    Read the article

  • Migrating ASP.NET (MVC 2) on .NET 3.5 over to .NET 4 #gotchas

    - by Charlino
    I've currently got a ASP.NET MVC 2 application on .NET 3.5 and I want to migrate it over to the new .NET 4.0 with Visual Studio 2010. Reason being that it's always good to stay on top of these things - plus I really like the new automatic encoding with <%: %> and clean web.config :-) So, does anyone have any experience they could share? Looking for gotchas and the likes. I guess this could also apply to any ASP.NET Forms projects aswell. TIA, Charles

    Read the article

  • Data caching in ASP.Net applications

    - by nikolaosk
    In this post I will continue my series of posts on caching. You can read my other post in Output caching here .You can read on how to cache a page depending on the user's browser language. Output caching has its place as a caching mechanism. But right now I will focus on data caching .The advantages of data caching are well known but I will highlight the main points. We have improvements in response times We have reduced database round trips We have different levels of caching and it is up to us...(read more)

    Read the article

  • Visual Studio 2013 Static Code Analysis in depth: What? When and How?

    - by Hosam Kamel
    In this post I'll illustrate in details the following points What is static code analysis? When to use? Supported platforms Supported Visual Studio versions How to use Run Code Analysis Manually Run Code Analysis Automatically Run Code Analysis while check-in source code to TFS version control (TFSVC) Run Code Analysis as part of Team Build Understand the Code Analysis results & learn how to fix them Create your custom rule set Q & A References What is static Rule analysis? Static Code Analysis feature of Visual Studio performs static code analysis on code to help developers identify potential design, globalization, interoperability, performance, security, and a lot of other categories of potential problems according to Microsoft's rules that mainly targets best practices in writing code, and there is a large set of those rules included with Visual Studio grouped into different categorized targeting specific coding issues like security, design, Interoperability, globalizations and others. Static here means analyzing the source code without executing it and this type of analysis can be performed through automated tools (like Visual Studio 2013 Code Analysis Tool) or manually through Code Review which already supported in Visual Studio 2012 and 2013 (check Using Code Review to Improve Quality video on Channel9) There is also Dynamic analysis which performed on executing programs using software testing techniques such as Code Coverage for example. When to use? Running Code analysis tool at regular intervals during your development process can enhance the quality of your software, examines your code for a set of common defects and violations is always a good programming practice. Adding that Code analysis can also find defects in your code that are difficult to discover through testing allowing you to achieve first level quality gate for you application during development phase before you release it to the testing team. Supported platforms .NET Framework, native (C and C++) Database applications. Support Visual Studio versions All version of Visual Studio starting Visual Studio 2013 (except Visual Studio Test Professional) check Feature comparisons Create and modify a custom rule set required Visual Studio Premium or Ultimate. How to use? Code Analysis can be run manually at any time from within the Visual Studio IDE, or even setup to automatically run as part of a Team Build or check-in policy for Team Foundation Server. Run Code Analysis Manually To run code analysis manually on a project, on the Analyze menu, click Run Code Analysis on your project or simply right click on the project name on the Solution Explorer choose Run Code Analysis from the context menu Run Code Analysis Automatically To run code analysis each time that you build a project, you select Enable Code Analysis on Build on the project's Property Page Run Code Analysis while check-in source code to TFS version control (TFSVC) Team Foundation Version Control (TFVC) provides a way for organizations to enforce practices that lead to better code and more efficient group development through Check-in policies which are rules that are set at the team project level and enforced on developer computers before code is allowed to be checked in. (This is available only if you're using Team Foundation Server) Require permissions on Team Foundation Server: you must have the Edit project-level information permission set to Allow typically your account must be part of Project Administrators, Project Collection Administrators, for more information about Team Foundation permissions check http://msdn.microsoft.com/en-us/library/ms252587(v=vs.120).aspx In Team Explorer, right-click the team project name, point to Team Project Settings, and then click Source Control. In the Source Control dialog box, select the Check-in Policy tab. Click Add to create a new check-in policy. Double-click the existing Code Analysis item in the Policy Type list to change the policy. Check or Uncheck the policy option based on the configurations you need to perform as illustrated below: Enforce check-in to only contain files that are part of current solution: code analysis can run only on files specified in solution and project configuration files. This policy guarantees that all code that is part of a solution is analyzed. Enforce C/C++ Code Analysis (/analyze): Requires that all C or C++ projects be built with the /analyze compiler option to run code analysis before they can be checked in. Enforce Code Analysis for Managed Code: Requires that all managed projects run code analysis and build before they can be checked in. Check Code analysis rule set reference on MSDN What is Rule Set? Rule Set is a group of code analysis rules like the example below where Microsoft.Design is the rule set name where "Do not declare static members on generic types" is the code analysis rule Once you configured the Analysis rule the policy will be enabled for all the team member in this project whenever a team member check-in any source code to the TFSVC the policy section will highlight the Code Analysis policy as below TFS is a very extensible platform so you can simply implement your own custom Code Analysis Check-in policy, check this link for more details http://msdn.microsoft.com/en-us/library/dd492668.aspx but you have to be aware also about compatibility between different TFS versions check http://msdn.microsoft.com/en-us/library/bb907157.aspx Run Code Analysis as part of Team Build With Team Foundation Build (TFBuild), you can create and manage build processes that automatically compile and test your applications, and perform other important functions. Code Analysis can be enabled in the Build Definition file by selecting the correct value for the build process parameter "Perform Code Analysis" Once configure, Kick-off your build definition to queue a new build, Code Analysis will run as part of build workflow and you will be able to see code analysis warning as part of build report Understand the Code Analysis results & learn how to fix them Now after you went through Code Analysis configurations and the different ways of running it, we will go through the Code Analysis result how to understand them and how to resolve them. Code Analysis window in Visual Studio will show all the analysis results based on the rule sets you configured in the project file properties, let's dig deep into what each result item contains: 1 Check ID The unique identifier for the rule. CheckId and Category are used for in-source suppression of a warning.       2 Title The title of warning message       3 Description A description of the problem or suggested fix 4 File Name File name and the line of code number which violate the code analysis rule set 5 Category The code analysis category for this error 6 Warning /Error Depend on how you configure it in the rule set the default is Warning level 7 Action Copy: copy the warning information to the clipboard Create Work Item: If you're connected to Team Foundation Server you can create a work item most probably you may create a Task or Bug and assign it for a developer to fix certain code analysis warning Suppress Message: There are times when you might decide not to fix a code analysis warning. You might decide that resolving the warning requires too much recoding in relation to the probability that the issue will arise in any real-world implementation of your code. Or you might believe that the analysis that is used in the warning is inappropriate for the particular context. You can suppress individual warnings so that they no longer appear in the Code Analysis window. Two options available: In Source inserts a SuppressMessage attribute in the source file above the method that generated the warning. This makes the suppression more discoverable. In Suppression File adds a SuppressMessage attribute to the GlobalSuppressions.cs file of the project. This can make the management of suppressions easier. Note that the SuppressMessage attribute added to GlobalSuppression.cs also targets the method that generated the warning. It does not suppress the warning globally.       Visual Studio makes it very easy to fix Code analysis warning, all you have to do is clicking on the Check Id hyperlink if you are not aware how to fix the warring and you'll be directed to MSDN online or local copy based on the configuration you did while installing Visual Studio and you will find all the information about the warring including how to fix it. Create a Custom Code Analysis Rule Set The Microsoft standard rule sets provide groups of rules that are organized by function and depth. For example, the Microsoft Basic Design Guidelines Rules and the Microsoft Extended Design Guidelines Rules contain rules that focus on usability and maintainability issues, with added emphasis on naming rules in the Extended rule set, you can create and modify a custom rule set to meet specific project needs associated with code analysis. To create a custom rule set, you open one or more standard rule sets in the rule set editor. Create and modify a custom rule set required Visual Studio Premium or Ultimate. You can check How to: Create a Custom Rule Set on MSDN for more details http://msdn.microsoft.com/en-us/library/dd264974.aspx Q & A Visual Studio static code analysis vs. FxCop vs. StyleCpp http://www.excella.com/blog/stylecop-vs-fxcop-difference-between-code-analysis-tools/ Code Analysis for SharePoint Apps and SPDisposeCheck? This post lists some of the rule set you can run specifically for SharePoint applications and how to integrate SPDisposeCheck as well. Code Analysis for SQL Server Database Projects? This post illustrate how to run static code analysis on T-SQL through SSDT ReSharper 8 vs. Visual Studio 2013? This document lists some of the features that are provided by ReSharper 8 but are missing or not as fully implemented in Visual Studio 2013. References A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext What is New in Code Analysis for Visual Studio 2013 http://blogs.msdn.com/b/visualstudioalm/archive/2013/07/03/what-is-new-in-code-analysis-for-visual-studio-2013.aspx Analyze the code quality of Windows Store apps using Visual Studio static code analysis http://msdn.microsoft.com/en-us/library/windows/apps/hh441471.aspx [Hands-on-lab] Using Code Analysis with Visual Studio 2012 to Improve Code Quality http://download.microsoft.com/download/A/9/2/A9253B14-5F23-4BC8-9C7E-F5199DB5F831/Using%20Code%20Analysis%20with%20Visual%20Studio%202012%20to%20Improve%20Code%20Quality.docx Originally posted at "Hosam Kamel| Developer & Platform Evangelist" http://blogs.msdn.com/hkamel

    Read the article

  • Integrating Flickr with ASP.Net application

    - by sreejukg
    Flickr is the popular photo management and sharing application offered by yahoo. The services from flicker allow you to store and share photos and videos online. Flicker offers strong API support for almost all services they provide. Using this API, developers can integrate photos to their public website. Since 2005, developers have collaborated on top of Flickr's APIs to build fun, creative, and gorgeous experiences around photos that extend beyond Flickr. In this article I am going to demonstrate how easily you can bring the photos stored on flicker to your website. Let me explain the scenario this article is trying to address. I have a flicker account where I upload photos and share in many ways offered by Flickr. Now I have a public website, instead of re-upload the photos again to public website, I want to show this from Flickr. Also I need complete control over what photo to display. So I went and referred the Flickr documentation and there is API support ready to address my scenario (and more… ). FlickerAPI for ASP.Net To Integrate Flicker with ASP.Net applications, there is a library available in CodePlex. You can find it here http://flickrnet.codeplex.com/ Visit the URL and download the latest version. The download includes a Zip file, when you unzip you will get a number of dlls. Since I am going to use ASP.Net application, I need FlickrNet.dll. See the screenshot of all the dlls, and there is a help file available in the download (.chm) for your reference. Once you have the dll, you need to use Flickr API from your website. I assume you have a flicker account and you are familiar with Flicker services. Arrange your photos using Sets in Flickr In flicker, you can define sets and add your uploaded photos to sets. You can compare set to photo album. A set is a logical collection of photos, which is an excellent option for you to categorize your photos. Typically you will have a number of sets each set having few photos. You can write application that brings photos from sets to your website. For the purpose of this article I already created a set Flickr and added some photos to it. Once you logged in to Flickr, you can see the Sets under the Menu. In the Sets page, you will see all the sets you have created. As you notice, you can see certain sample images I have uploaded just to test the functionality. Though I wish I couldn’t create good photos so please bear with me. I have created 2 photo sets named Blue Album and Red Album. Click on the image for the set, will take you to the corresponding set page. In the set “Red Album” there are 4 photos and the set has a unique ID (highlighted in the URL). You can simply retrieve the photos with the set id from your application. In this article I am going to retrieve the images from Red album in my ASP.Net page. For that First I need to setup FlickrAPI for my usage. Configure Flickr API Key As I mentioned, we are going to use Flickr API to retrieve the photos stored in Flickr. In order to get access to Flickr API, you need an API key. To create an API key, navigate to the URL http://www.flickr.com/services/apps/create/ Click on Request an API key link, now you need to tell Flickr whether your application in commercial or non-commercial. I have selected a non-commercial key. Now you need to enter certain information about your application. Once you enter the details, Click on the submit button. Now Flickr will create the API key for your application. Generating non-commercial API key is very easy, in couple of steps the key will be generated and you can use the key in your application immediately. ASP.Net application for retrieving photos Now we need write an ASP.Net application that display pictures from Flickr. Create an empty web application (I named this as FlickerIntegration) and add a reference to FlickerNet.dll. Add a web form page to the application where you will retrieve and display photos(I have named this as Gallery.aspx). After doing all these, the solution explorer will look similar to following. I have used the below code in the Gallery.aspx page. The output for the above code is as follows. I am going to explain the code line by line here. First it is adding a reference to the FlickrNet namespace. using FlickrNet; Then create a Flickr object by using your API key. Flickr f = new Flickr("<yourAPIKey>"); Now when you retrieve photos, you can decide what all fields you need to retrieve from Flickr. Every photo in Flickr contains lots of information. Retrieving all will affect the performance. For the demonstration purpose, I have retrieved all the available fields as follows. PhotoSearchExtras.All But if you want to specify the fields you can use logical OR operator(|). For e.g. the following statement will retrieve owner name and date taken. PhotoSearchExtras extraInfo = PhotoSearchExtras.OwnerName | PhotoSearchExtras.DateTaken; Then retrieve all the photos from a photo set using PhotoSetsGetPhotos method. I have passed the PhotoSearchExtras object created earlier. PhotosetPhotoCollection photos = f.PhotosetsGetPhotos("72157629872940852", extraInfo); The PhotoSetsGetPhotos method will return a collection of Photo objects. You can just navigate through the collection using a foreach statement. foreach (Photo p in photos) {     //access each photo properties } Photo class have lot of properties that map with the properties from Flickr. The chm documentation comes along with the CodePlex download is a great asset for you to understand the fields. In the above code I just used the following p.LargeUrl – retrieves the large image url for the photo. p.ThumbnailUrl – retrieves the thumbnail url for the photo p.Title – retrieves the Title of the photo p.DateUploaded – retrieves the date of upload Visual Studio intellisense will give you all properties, so it is easy, you can just try with Visual Studio intellisense to find the right properties you are looking for. Most of hem are self-explanatory. So you can try retrieving the required properties. In the above code, I just pushed the photos to the page. In real time you can use the retrieved photos along with JQuery libraries to create animated photo galleries, slideshows etc. Configuration and Troubleshooting If you get access denied error while executing the code, you need to disable the caching in Flickr API. FlickrNet cache the photos to your local disk when retrieved. You can specify a cache folder where the application need write permission. You can specify the Cache folder in the code as follows. Flickr.CacheLocation = Server.MapPath("./FlickerCache/"); If the application doesn’t have have write permission to the cache folder, the application will throw access denied error. If you cannot give write permission to the cache folder, then you must disable the caching. You can do this from code as follows. Flickr.CacheDisabled = true; Disabling cache will have an impact on the performance. Take care! Also you can define the Flickr settings in web.config file.You can find the documentation here. http://flickrnet.codeplex.com/wikipage?title=ExampleConfigFile&ProjectName=flickrnet Flickr is a great place for storing and sharing photos. The API access allows developers to do seamless integration with the photos uploaded on Flickr.

    Read the article

  • Integrate BING API for Search inside ASP.Net web application

    - by sreejukg
    As you might already know, Bing is the Microsoft Search engine and is getting popular day by day. Bing offers APIs that can be integrated into your website to increase your website functionality. At this moment, there are two important APIs available. They are Bing Search API Bing Maps The Search API enables you to build applications that utilize Bing’s technology. The API allows you to search multiple source types such as web; images, video etc. and supports various output prototypes such as JSON, XML, and SOAP. Also you will be able to customize the search results as you wish for your public facing website. Bing Maps API allows you to build robust applications that use Bing Maps. In this article I am going to describe, how you can integrate Bing search into your website. In order to start using Bing, First you need to sign in to http://www.bing.com/toolbox/bingdeveloper/ using your windows live credentials. Click on the Sign in button, you will be asked to enter your windows live credentials. Once signed in you will be redirected to the Developer page. Here you can create applications and get AppID for each application. Since I am a first time user, I don’t have any applications added. Click on the Add button to add a new application. You will be asked to enter certain details about your application. The fields are straight forward, only thing you need to note is the website field, here you need to enter the website address from where you are going to use this application, and this field is optional too. Of course you need to agree on the terms and conditions and then click Save. Once you click on save, the application will be created and application ID will be available for your use. Now we got the APP Id. Basically Bing supports three protocols. They are JSON, XML and SOAP. JSON is useful if you want to call the search requests directly from the browser and use JavaScript to parse the results, thus JSON is the favorite choice for AJAX application. XML is the alternative for applications that does not support SOAP, e.g. flash/ Silverlight etc. SOAP is ideal for strongly typed languages and gives a request/response object model. In this article I am going to demonstrate how to search BING API using SOAP protocol from an ASP.Net application. For the purpose of this demonstration, I am going to create an ASP.Net project and implement the search functionality in an aspx page. Open Visual Studio, navigate to File-> New Project, select ASP.Net empty web application, I named the project as “BingSearchSample”. Add a Search.aspx page to the project, once added the solution explorer will looks similar to the following. Now you need to add a web reference to the SOAP service available from Bing. To do this, from the solution explorer, right click your project, select Add Service Reference. Now the new service reference dialog will appear. In the left bottom of the dialog, you can find advanced button, click on it. Now the service reference settings dialog will appear. In the bottom left, you can find Add Web Reference button, click on it. The add web reference dialog will appear now. Enter the URL as http://api.bing.net/search.wsdl?AppID=<YourAppIDHere>&version=2.2 (replace <yourAppIDHere> with the appID you have generated previously) and click on the button next to it. This will find the web service methods available. You can change the namespace suggested by Bing, but for the purpose of this demonstration I have accepted all the default settings. Click on the Add reference button once you are done. Now the web reference to Search service will be added your project. You can find this under solution explorer of your project. Now in the Search.aspx, that you previously created, place one textbox, button and a grid view. For the purpose of this demonstration, I have given the identifiers (ID) as txtSearch, btnSearch, gvSearch respectively. The idea is to search the text entered in the text box using Bing service and show the results in the grid view. In the design view, the search.aspx looks as follows. In the search.aspx.cs page, add a using statement that points to net.bing.api. I have added the following code for button click event handler. The code is very straight forward. It just calls the service with your AppID, a query to search and a source for searching. Let us run this page and see the output when I enter Microsoft in my textbox. If you want to search a specific site, you can include the site name in the query parameter. For e.g. the following query will search the word Microsoft from www.microsoft.com website. searchRequest.Query = “site:www.microsoft.com Microsoft”; The output of this query is as follows. Integrating BING search API to your website is easy and there is no limit on the customization of the interface you can do. There is no Bing branding required so I believe this is a great option for web developers when they plan for site search.

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Employee Info Starter Kit - Visual Studio 2010 and .NET 4.0 Version (4.0.0) Available

    - by joycsharp
    Employee Info Starter Kit is a ASP.NET based web application, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a company. Based on just a database table, it explores and solves all major problems in web development architectural space.  This open source starter kit extensively uses major features available in latest Visual Studio, ASP.NET and Sql Server to make robust, scalable, secured and maintanable web applications quickly and easily. Since it's first release, this starter kit achieved a huge popularity in web developer community and includes 1,40,000+ download from project web site. Visual Studio 2010 and .NET 4.0 came up with lots of exciting features to make software developers life easier.  A new version (v4.0.0) of Employee Info Starter Kit is now available in both MSDN Code Gallery and CodePlex. Chckout the latest version of this starter kit to enjoy cool features available in Visual Studio 2010 and .NET 4.0. [ Release Notes ] Architectural Overview Simple 2 layer architecture (user interface and data access layer) with 1 optional cache layer ASP.NET Web Form based user interface Custom Entity Data Container implemented (with primitive C# types for data fields) Active Record Design Pattern based Data Access Layer, implemented in C# and Entity Framework 4.0 Sql Server Stored Procedure to perform actual CRUD operation Standard infrastructure (architecture, helper utility) for automated integration (bottom up manner) and unit testing Technology UtilizedProgramming Languages/Scripts Browser side: JavaScript Web server side: C# 4.0 Database server side: T-SQL .NET Framework Components .NET 4.0 Entity Framework .NET 4.0 Optional/Named Parameters .NET 4.0 Tuple .NET 3.0+ Extension Method .NET 3.0+ Lambda Expressions .NET 3.0+ Aanonymous Type .NET 3.0+ Query Expressions .NET 3.0+ Automatically Implemented Properties .NET 3.0+ LINQ .NET 2.0 + Partial Classes .NET 2.0 + Generic Type .NET 2.0 + Nullable Type   ASP.NET 3.5+ List View (TBD) ASP.NET 3.5+ Data Pager (TBD) ASP.NET 2.0+ Grid View ASP.NET 2.0+ Form View ASP.NET 2.0+ Skin ASP.NET 2.0+ Theme ASP.NET 2.0+ Master Page ASP.NET 2.0+ Object Data Source ASP.NET 1.0+ Role Based Security Visual Studio Features Visual Studio 2010 CodedUI Test Visual Studio 2010 Layer Diagram Visual Studio 2010 Sequence Diagram Visual Studio 2010 Directed Graph Visual Studio 2005+ Database Unit Test Visual Studio 2005+ Unit Test Visual Studio 2005+ Web Test Visual Studio 2005+ Load Test Sql Server Features Sql Server 2005 Stored Procedure Sql Server 2005 Xml type Sql Server 2005 Paging support

    Read the article

  • How to access HTML elements from server side code in an asp.net website

    - by nikolaosk
    In this post I will demonstrate with a hands on example how HTML elements in an .aspx page can be processed exactly like standard ASP.Net server controls. Basically how to make them accessible from server side code. 1) Launch Visual Studio 2010/2008/2005. (express editions will work fine). Create a new empty website and choose a suitable name for it. Choose VB as the development language. 2) Add a new item in your site, a web form. Leave the default name. 3) Let's say that we want to change the background...(read more)

    Read the article

  • Visual Studio 2010 Extension Manager (and the new VS 2010 PowerCommands Extension)

    - by ScottGu
    This is the twenty-third in a series of blog posts I’m doing on the VS 2010 and .NET 4 release. Today’s blog post covers some of the extensibility improvements made in VS 2010 – as well as a cool new "PowerCommands for Visual Studio 2010” extension that Microsoft just released (and which can be downloaded and used for free). [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Extensibility in VS 2010 VS 2010 provides a much richer extensibility model than previous releases.  Anyone can build extensions that add, customize, and light-up the Visual Studio 2010 IDE, Code Editors, Project System and associated Designers. VS 2010 Extensions can be created using the new MEF (Managed Extensibility Framework) which is built-into .NET 4.  You can learn more about how to create VS 2010 extensions from this this blog post from the Visual Studio Team Blog. VS 2010 Extension Manager Developers building extensions can distribute them on their own (via their own web-sites or by selling them).  Visual Studio 2010 also now includes a built-in “Extension Manager” within the IDE that makes it much easier for developers to find, download, and enable extensions online.  You can launch the “Extension Manager” by selecting the Tools->Extension Manager menu option: This loads an “Extension Manager” dialog which accesses an “online gallery” at Microsoft, and then populates a list of available extensions that you can optionally download and enable within your copy of Visual Studio: There are already hundreds of cool extensions populated within the online gallery.  You can browse them by category (use the tree-view on the top-left to filter them).  Clicking “download” on any of the extensions will download, install, and enable it. PowerCommands for Visual Studio 2010 This weekend Microsoft released the free PowerCommands for Visual Studio 2010 extension to the online gallery.  You can learn more about it here, and download and install it via the “Extension Manager” above (search for PowerCommands to find it). The PowerCommands download adds dozens of useful commands to Visual Studio 2010.  Below is a screen-shot of just a few of the useful commands that it adds to the Solution Explorer context menus: Below is a list of all the commands included with this weekend’s PowerCommands for Visual Studio 2010 release: Enable/Disable PowerCommands in Options dialog This feature allows you to select which commands to enable in the Visual Studio IDE. Point to the Tools menu, then click Options. Expand the PowerCommands options, then click Commands. Check the commands you would like to enable. Note: All power commands are initially defaulted Enabled. Format document on save / Remove and Sort Usings on save The Format document on save option formats the tabs, spaces, and so on of the document being saved. It is equivalent to pointing to the Edit menu, clicking Advanced, and then clicking Format Document. The Remove and sort usings option removes unused using statements and sorts the remaining using statements in the document being saved. Note: The Remove and sort usings option is only available for C# documents. Format document on save and Remove and sort usings both are initially defaulted OFF. Clear All Panes This command clears all output panes. It can be executed from the button on the toolbar of the Output window. Copy Path This command copies the full path of the currently selected item to the clipboard. It can be executed by right-clicking one of these nodes in the Solution Explorer: The solution node; A project node; Any project item node; Any folder. Email CodeSnippet To email the lines of text you select in the code editor, right-click anywhere in the editor and then click Email CodeSnippet. Insert Guid Attribute This command adds a Guid attribute to a selected class. From the code editor, right-click anywhere within the class definition, then click Insert Guid Attribute. Show All Files This command shows the hidden files in all projects displayed in the Solution Explorer when the solution node is selected. It enhances the Show All Files button, which normally shows only the hidden files in the selected project node. Undo Close This command reopens a closed document , returning the cursor to its last position. To reopen the most recently closed document, point to the Edit menu, then click Undo Close. Alternately, you can use the CtrlShiftZ shortcut. To reopen any other recently closed document, point to the View menu, click Other Windows, and then click Undo Close Window. The Undo Close window appears, typically next to the Output window. Double-click any document in the list to reopen it. Collapse Projects This command collapses a project or projects in the Solution Explorer starting from the root selected node. Collapsing a project can increase the readability of the solution. This command can be executed from three different places: solution, solution folders and project nodes respectively. Copy Class This command copies a selected class entire content to the clipboard, renaming the class. This command is normally followed by a Paste Class command, which renames the class to avoid a compilation error. It can be executed from a single project item or a project item with dependent sub items. Paste Class This command pastes a class entire content from the clipboard, renaming the class to avoid a compilation error. This command is normally preceded by a Copy Class command. It can be executed from a project or folder node. Copy References This command copies a reference or set of references to the clipboard. It can be executed from the references node, a single reference node or set of reference nodes. Paste References This command pastes a reference or set of references from the clipboard. It can be executed from different places depending on the type of project. For CSharp projects it can be executed from the references node. For Visual Basic and Website projects it can be executed from the project node. Copy As Project Reference This command copies a project as a project reference to the clipboard. It can be executed from a project node. Edit Project File This command opens the MSBuild project file for a selected project inside Visual Studio. It combines the existing Unload Project and Edit Project commands. Open Containing Folder This command opens a Windows Explorer window pointing to the physical path of a selected item. It can be executed from a project item node Open Command Prompt This command opens a Visual Studio command prompt pointing to the physical path of a selected item. It can be executed from four different places: solution, project, folder and project item nodes respectively. Unload Projects This command unloads all projects in a solution. This can be useful in MSBuild scenarios when multiple projects are being edited. This command can be executed from the solution node. Reload Projects This command reloads all unloaded projects in a solution. It can be executed from the solution node. Remove and Sort Usings This command removes and sort using statements for all classes given a project. It is useful, for example, in removing or organizing the using statements generated by a wizard. This command can be executed from a solution node or a single project node. Extract Constant This command creates a constant definition statement for a selected text. Extracting a constant effectively names a literal value, which can improve readability. This command can be executed from the code editor by right-clicking selected text. Clear Recent File List This command clears the Visual Studio recent file list. The Clear Recent File List command brings up a Clear File dialog which allows any or all recent files to be selected. Clear Recent Project List This command clears the Visual Studio recent project list. The Clear Recent Project List command brings up a Clear File dialog which allows any or all recent projects to be selected. Transform Templates This command executes a custom tool with associated text templates items. It can be executed from a DSL project node or a DSL folder node. Close All This command closes all documents. It can be executed from a document tab. How to temporarily disable extensions Extensions provide a great way to make Visual Studio even more powerful, and can help improve your overall productivity.  One thing to keep in mind, though, is that extensions run within the Visual Studio process (DevEnv.exe) and so a bug within an extension can impact both the stability and performance of Visual Studio.  If you ever run into a situation where things seem slower than they should, or if you crash repeatedly, please temporarily disable any installed extensions and see if that fixes the problem.  You can do this for extensions that were installed via the online gallery by re-running the extension manager (using the Tools->Extension Manager menu option) and by selecting the “Installed Extensions” node on the top-left of the dialog – and then by clicking “Disable” on any of the extensions within your installed list: Hope this helps, Scott

    Read the article

  • Daily tech links for .net and related technologies - June 14-16, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - June 14-16, 2010 Web Development ASP.Net MVC 2 Auto Complete Textbox With Custom View Model Attribute & EditorTemplate - Sean McAlinden Localization with ASP.NET MVC ModelMetadata - Kazi Manzur Rashid Securing Dynamic Data 4 (Replay) - Steve Adding Client-Side Script to an MVC Conditional Validator - Simon Ince jQuery: Storing and retrieving data related to elements - Rebecca Murphey Web Design 48 Examples of Excellent Layout in Web Design...(read more)

    Read the article

  • New <%: %> Syntax for HTML Encoding Output in ASP.NET 4 (and ASP.NET MVC 2)

    - by ScottGu
    [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] This is the nineteenth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release. Today’s post covers a small, but very useful, new syntax feature being introduced with ASP.NET 4 – which is the ability to automatically HTML encode output within code nuggets.  This helps protect your applications and sites against cross-site script injection (XSS) and HTML injection attacks, and enables you to do so using a nice concise syntax. HTML Encoding Cross-site script injection (XSS) and HTML encoding attacks are two of the most common security issues that plague web-sites and applications.  They occur when hackers find a way to inject client-side script or HTML markup into web-pages that are then viewed by other visitors to a site.  This can be used to both vandalize a site, as well as enable hackers to run client-script code that steals cookie data and/or exploits a user’s identity on a site to do bad things. One way to help mitigate against cross-site scripting attacks is to make sure that rendered output is HTML encoded within a page.  This helps ensures that any content that might have been input/modified by an end-user cannot be output back onto a page containing tags like <script> or <img> elements.  ASP.NET applications (especially those using ASP.NET MVC) often rely on using <%= %> code-nugget expressions to render output.  Developers today often use the Server.HtmlEncode() or HttpUtility.Encode() helper methods within these expressions to HTML encode the output before it is rendered.  This can be done using code like below: While this works fine, there are two downsides of it: It is a little verbose Developers often forget to call the HtmlEncode method New <%: %> Code Nugget Syntax With ASP.NET 4 we are introducing a new code expression syntax (<%:  %>) that renders output like <%= %> blocks do – but which also automatically HTML encodes it before doing so.  This eliminates the need to explicitly HTML encode content like we did in the example above.  Instead you can just write the more concise code below to accomplish the same thing: We chose the <%: %> syntax so that it would be easy to quickly replace existing instances of <%= %> code blocks.  It also enables you to easily search your code-base for <%= %> elements to find and verify any cases where you are not using HTML encoding within your application to ensure that you have the correct behavior. Avoiding Double Encoding While HTML encoding content is often a good best practice, there are times when the content you are outputting is meant to be HTML or is already encoded – in which case you don’t want to HTML encode it again.  ASP.NET 4 introduces a new IHtmlString interface (along with a concrete implementation: HtmlString) that you can implement on types to indicate that its value is already properly encoded (or otherwise examined) for displaying as HTML, and that therefore the value should not be HTML-encoded again.  The <%: %> code-nugget syntax checks for the presence of the IHtmlString interface and will not HTML encode the output of the code expression if its value implements this interface.  This allows developers to avoid having to decide on a per-case basis whether to use <%= %> or <%: %> code-nuggets.  Instead you can always use <%: %> code nuggets, and then have any properties or data-types that are already HTML encoded implement the IHtmlString interface. Using ASP.NET MVC HTML Helper Methods with <%: %> For a practical example of where this HTML encoding escape mechanism is useful, consider scenarios where you use HTML helper methods with ASP.NET MVC.  These helper methods typically return HTML.  For example: the Html.TextBox() helper method returns markup like <input type=”text”/>.  With ASP.NET MVC 2 these helper methods now by default return HtmlString types – which indicates that the returned string content is safe for rendering and should not be encoded by <%: %> nuggets.  This allows you to use these methods within both <%= %> code nugget blocks: As well as within <%: %> code nugget blocks: In both cases above the HTML content returned from the helper method will be rendered to the client as HTML – and the <%: %> code nugget will avoid double-encoding it. This enables you to default to always using <%: %> code nuggets instead of <%= %> code blocks within your applications.  If you want to be really hardcore you can even create a build rule that searches your application looking for <%= %> usages and flags any cases it finds as an error to enforce that HTML encoding always takes place. Scaffolding ASP.NET MVC 2 Views When you use VS 2010 (or the free Visual Web Developer 2010 Express) you’ll find that the views that are scaffolded using the “Add View” dialog now by default always use <%: %> blocks when outputting any content.  For example, below I’ve scaffolded a simple “Edit” view for an article object.  Note the three usages of <%: %> code nuggets for the label, textbox, and validation message (all output with HTML helper methods): Summary The new <%: %> syntax provides a concise way to automatically HTML encode content and then render it as output.  It allows you to make your code a little less verbose, and to easily check/verify that you are always HTML encoding content throughout your site.  This can help protect your applications against cross-site script injection (XSS) and HTML injection attacks.  Hope this helps, Scott

    Read the article

  • Fixing the Model Binding issue of ASP.NET MVC 4 and ASP.NET Web API

    - by imran_ku07
            Introduction:                     Yesterday when I was checking ASP.NET forums, I found an important issue/bug in ASP.NET MVC 4 and ASP.NET Web API. The issue is present in System.Web.PrefixContainer class which is used by both ASP.NET MVC and ASP.NET Web API assembly. The details of this issue is available in this thread. This bug can be a breaking change for you if you upgraded your application to ASP.NET MVC 4 and your application model properties using the convention available in the above thread. So, I have created a package which will fix this issue both in ASP.NET MVC and ASP.NET Web API. In this article, I will show you how to use this package.           Description:                     Create or open an ASP.NET MVC 4 project and install ImranB.ModelBindingFix NuGet package. Then, add this using statement on your global.asax.cs file, using ImranB.ModelBindingFix;                     Then, just add this line in Application_Start method,   Fixer.FixModelBindingIssue(); // For fixing only in MVC call this //Fixer.FixMvcModelBindingIssue(); // For fixing only in Web API call this //Fixer.FixWebApiModelBindingIssue(); .                     This line will fix the model binding issue. If you are using Html.Action or Html.RenderAction then you should use Html.FixedAction or Html.FixedRenderAction instead to avoid this bug(make sure to reference ImranB.ModelBindingFix.SystemWebMvc namespace). If you are using FormDataCollection.ReadAs extension method then you should use FormDataCollection.FixedReadAs instead to avoid this bug(make sure to reference ImranB.ModelBindingFix.SystemWebHttp namespace). The source code of this package is available at github.          Summary:                     There is a small but important issue/bug in ASP.NET MVC 4. In this article, I showed you how to fix this issue/bug by using a package. Hopefully you will enjoy this article too.

    Read the article

  • Announcing the release of the Windows Azure SDK 2.1 for .NET

    - by ScottGu
    Today we released the v2.1 update of the Windows Azure SDK for .NET.  This is a major refresh of the Windows Azure SDK and it includes some great new features and enhancements. These new capabilities include: Visual Studio 2013 Preview Support: The Windows Azure SDK now supports using the new VS 2013 Preview Visual Studio 2013 VM Image: Windows Azure now has a built-in VM image that you can use to host and develop with VS 2013 in the cloud Visual Studio Server Explorer Enhancements: Redesigned with improved filtering and auto-loading of subscription resources Virtual Machines: Start and Stop VM’s w/suspend billing directly from within Visual Studio Cloud Services: New Emulator Express option with reduced footprint and Run as Normal User support Service Bus: New high availability options, Notification Hub support, Improved VS tooling PowerShell Automation: Lots of new PowerShell commands for automating Web Sites, Cloud Services, VMs and more All of these SDK enhancements are now available to start using immediately and you can download the SDK from the Windows Azure .NET Developer Center.  Visual Studio’s Team Foundation Service (http://tfs.visualstudio.com/) has also been updated to support today’s SDK 2.1 release, and the SDK 2.1 features can now be used with it (including with automated builds + tests). Below are more details on the new features and capabilities released today: Visual Studio 2013 Preview Support Today’s Window Azure SDK 2.1 release adds support for the recent Visual Studio 2013 Preview. The 2.1 SDK also works with Visual Studio 2010 and Visual Studio 2012, and works side by side with the previous Windows Azure SDK 1.8 and 2.0 releases. To install the Windows Azure SDK 2.1 on your local computer, choose the “install the sdk” link from the Windows Azure .NET Developer Center. Then, chose which version of Visual Studio you want to use it with.  Clicking the third link will install the SDK with the latest VS 2013 Preview: If you don’t already have the Visual Studio 2013 Preview installed on your machine, this will also install Visual Studio Express 2013 Preview for Web. Visual Studio 2013 VM Image Hosted in the Cloud One of the requests we’ve heard from several customers has been to have the ability to host Visual Studio within the cloud (avoiding the need to install anything locally on your computer). With today’s SDK update we’ve added a new VM image to the Windows Azure VM Gallery that has Visual Studio Ultimate 2013 Preview, SharePoint 2013, SQL Server 2012 Express and the Windows Azure 2.1 SDK already installed on it.  This provides a really easy way to create a development environment in the cloud with the latest tools. With the recent shutdown and suspend billing feature we shipped on Windows Azure last month, you can spin up the image only when you want to do active development, and then shut down the virtual machine and not have to worry about usage charges while the virtual machine is not in use. You can create your own VS image in the cloud by using the New->Compute->Virtual Machine->From Gallery menu within the Windows Azure Management Portal, and then by selecting the “Visual Studio Ultimate 2013 Preview” template: Visual Studio Server Explorer: Improved Filtering/Management of Subscription Resources With the Windows Azure SDK 2.1 release you’ll notice significant improvements in the Visual Studio Server Explorer. The explorer has been redesigned so that all Windows Azure services are now contained under a single Windows Azure node.  From the top level node you can now manage your Windows Azure credentials, import a subscription file or filter Server Explorer to only show services from particular subscriptions or regions. Note: The Web Sites and Mobile Services nodes will appear outside the Windows Azure Node until the final release of VS 2013. If you have installed the ASP.NET and Web Tools Preview Refresh, though, the Web Sites node will appear inside the Windows Azure node even with the VS 2013 Preview. Once your subscription information is added, Windows Azure services from all your subscriptions are automatically enumerated in the Server Explorer. You no longer need to manually add services to Server Explorer individually. This provides a convenient way of viewing all of your cloud services, storage accounts, service bus namespaces, virtual machines, and web sites from one location: Subscription and Region Filtering Support Using the Windows Azure node in Server Explorer, you can also now filter your Windows Azure services in the Server Explorer by the subscription or region they are in.  If you have multiple subscriptions but need to focus your attention to just a few subscription for some period of time, this a handy way to hide the services from other subscriptions view until they become relevant. You can do the same sort of filtering by region. To enable this, just select “Filter Services” from the context menu on the Windows Azure node: Then choose the subscriptions and/or regions you want to filter by. In the below example, I’ve decided to show services from my pay-as-you-go subscription within the East US region: Visual Studio will then automatically filter the items that show up in the Server Explorer appropriately: With storage accounts and service bus namespaces, you sometimes need to work with services outside your subscription. To accommodate that scenario, those services allow you to attach an external account (from the context menu). You’ll notice that external accounts have a slightly different icon in server explorer to indicate they are from outside your subscription. Other Improvements We’ve also improved the Server Explorer by adding additional properties and actions to the service exposed. You now have access to most of the properties on a cloud service, deployment slot, role or role instance as well as the properties on storage accounts, virtual machines and web sites. Just select the object of interest in Server Explorer and view the properties in the property pane. We also now have full support for creating/deleting/update storage tables, blobs and queues from directly within Server Explorer.  Simply right-click on the appropriate storage account node and you can create them directly within Visual Studio: Virtual Machines: Start/Stop within Visual Studio Virtual Machines now have context menu actions that allow you start, shutdown, restart and delete a Virtual Machine directly within the Visual Studio Server Explorer. The shutdown action enables you to shut down the virtual machine and suspend billing when the VM is not is use, and easily restart it when you need it: This is especially useful in Dev/Test scenarios where you can start a VM – such as a SQL Server – during your development session and then shut it down / suspend billing when you are not developing (and no longer be billed for it). You can also now directly remote desktop into VMs using the “Connect using Remote Desktop” context menu command in VS Server Explorer.  Cloud Services: Emulator Express with Run as Normal User Support You can now launch Visual Studio and run your cloud services locally as a Normal User (without having to elevate to an administrator account) using a new Emulator Express option included as a preview feature with this SDK release.  Emulator Express is a version of the Windows Azure Compute Emulator that runs a restricted mode – one instance per role – and it doesn’t require administrative permissions and uses 40% less resources than the full Windows Azure Emulator. Emulator Express supports both web and worker roles. To run your application locally using the Emulator Express option, simply change the following settings in the Windows Azure project. On the shortcut menu for the Windows Azure project, choose Properties, and then choose the Web tab. Check the setting for IIS (Internet Information Services). Make sure that the option is set to IIS Express, not the full version of IIS. Emulator Express is not compatible with full IIS. On the Web tab, choose the option for Emulator Express. Service Bus: Notification Hubs With the Windows Azure SDK 2.1 release we are adding support for Windows Azure Notification Hubs as part of our official Windows Azure SDK, inside of Microsoft.ServiceBus.dll (previously the Notification Hub functionality was in a preview assembly). You are now able to create, update and delete Notification Hubs programmatically, manage your device registrations, and send push notifications to all your mobile clients across all platforms (Windows Store, Windows Phone 8, iOS, and Android). Learn more about Notification Hubs on MSDN here, or watch the Notification Hubs //BUILD/ presentation here. Service Bus: Paired Namespaces One of the new features included with today’s Windows Azure SDK 2.1 release is support for Service Bus “Paired Namespaces”.  Paired Namespaces enable you to better handle situations where a Service Bus service namespace becomes unavailable (for example: due to connectivity issues or an outage) and you are unable to send or receive messages to the namespace hosting the queue, topic, or subscription. Previously,to handle this scenario you had to manually setup separate namespaces that can act as a backup, then implement manual failover and retry logic which was sometimes tricky to get right. Service Bus now supports Paired Namespaces, which enables you to connect two namespaces together. When you activate the secondary namespace, messages are stored in the secondary queue for delivery to the primary queue at a later time. If the primary container (namespace) becomes unavailable for some reason, automatic failover enables the messages in the secondary queue. For detailed information about paired namespaces and high availability, see the new topic Asynchronous Messaging Patterns and High Availability. Service Bus: Tooling Improvements In this release, the Windows Azure Tools for Visual Studio contain several enhancements and changes to the management of Service Bus messaging entities using Visual Studio’s Server Explorer. The most noticeable change is that the Service Bus node is now integrated into the Windows Azure node, and supports integrated subscription management. Additionally, there has been a change to the code generated by the Windows Azure Worker Role with Service Bus Queue project template. This code now uses an event-driven “message pump” programming model using the QueueClient.OnMessage method. PowerShell: Tons of New Automation Commands Since my last blog post on the previous Windows Azure SDK 2.0 release, we’ve updated Windows Azure PowerShell (which is a separate download) five times. You can find the full change log here. We’ve added new cmdlets in the following areas: China instance and Windows Azure Pack support Environment Configuration VMs Cloud Services Web Sites Storage SQL Azure Service Bus China Instance and Windows Azure Pack We now support the following cmdlets for the China instance and Windows Azure Pack, respectively: China Instance: Web Sites, Service Bus, Storage, Cloud Service, VMs, Network Windows Azure Pack: Web Sites, Service Bus We will have full cmdlet support for these two Windows Azure environments in PowerShell in the near future. Virtual Machines: Stop/Start Virtual Machines Similar to the Start/Stop VM capability in VS Server Explorer, you can now stop your VM and suspend billing: If you want to keep the original behavior of keeping your stopped VM provisioned, you can pass in the -StayProvisioned switch parameter. Virtual Machines: VM endpoint ACLs We’ve added and updated a bunch of cmdlets for you to configure fine-grained network ACL on your VM endpoints. You can use the following cmdlets to create ACL config and apply them to a VM endpoint: New-AzureAclConfig Get-AzureAclConfig Set-AzureAclConfig Remove-AzureAclConfig Add-AzureEndpoint -ACL Set-AzureEndpoint –ACL The following example shows how to add an ACL rule to an existing endpoint of a VM. Other improvements for Virtual Machine management includes Added -NoWinRMEndpoint parameter to New-AzureQuickVM and Add-AzureProvisioningConfig to disable Windows Remote Management Added -DirectServerReturn parameter to Add-AzureEndpoint and Set-AzureEndpoint to enable/disable direct server return Added Set-AzureLoadBalancedEndpoint cmdlet to modify load balanced endpoints Cloud Services: Remote Desktop and Diagnostics Remote Desktop and Diagnostics are popular debugging options for Cloud Services. We’ve introduced cmdlets to help you configure these two Cloud Service extensions from Windows Azure PowerShell. Windows Azure Cloud Services Remote Desktop extension: New-AzureServiceRemoteDesktopExtensionConfig Get-AzureServiceRemoteDesktopExtension Set-AzureServiceRemoteDesktopExtension Remove-AzureServiceRemoteDesktopExtension Windows Azure Cloud Services Diagnostics extension New-AzureServiceDiagnosticsExtensionConfig Get-AzureServiceDiagnosticsExtension Set-AzureServiceDiagnosticsExtension Remove-AzureServiceDiagnosticsExtension The following example shows how to enable Remote Desktop for a Cloud Service. Web Sites: Diagnostics With our last SDK update, we introduced the Get-AzureWebsiteLog –Tail cmdlet to get the log streaming of your Web Sites. Recently, we’ve also added cmdlets to configure Web Site application diagnostics: Enable-AzureWebsiteApplicationDiagnostic Disable-AzureWebsiteApplicationDiagnostic The following 2 examples show how to enable application diagnostics to the file system and a Windows Azure Storage Table: SQL Database Previously, you had to know the SQL Database server admin username and password if you want to manage the database in that SQL Database server. Recently, we’ve made the experience much easier by not requiring the admin credential if the database server is in your subscription. So you can simply specify the -ServerName parameter to tell Windows Azure PowerShell which server you want to use for the following cmdlets. Get-AzureSqlDatabase New-AzureSqlDatabase Remove-AzureSqlDatabase Set-AzureSqlDatabase We’ve also added a -AllowAllAzureServices parameter to New-AzureSqlDatabaseServerFirewallRule so that you can easily add a firewall rule to whitelist all Windows Azure IP addresses. Besides the above experience improvements, we’ve also added cmdlets get the database server quota and set the database service objective. Check out the following cmdlets for details. Get-AzureSqlDatabaseServerQuota Get-AzureSqlDatabaseServiceObjective Set-AzureSqlDatabase –ServiceObjective Storage and Service Bus Other new cmdlets include Storage: CRUD cmdlets for Azure Tables and Queues Service Bus: Cmdlets for managing authorization rules on your Service Bus Namespace, Queue, Topic, Relay and NotificationHub Summary Today’s release includes a bunch of great features that enable you to build even better cloud solutions.  All the above features/enhancements are shipped and available to use immediately as part of the 2.1 release of the Windows Azure SDK for .NET. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Running ASP.NET Webforms and ASP.NET MVC side by side

    - by rajbk
    One of the nice things about ASP.NET MVC and its older brother ASP.NET WebForms is that they are both built on top of the ASP.NET runtime environment. The advantage of this is that, you can still run them side by side even though MVC and WebForms are different frameworks. Another point to note is that with the release of the ASP.NET routing in .NET 3.5 SP1, we are able to create SEO friendly URLs that do not map to specific files on disk. The routing is part of the core runtime environment and therefore can be used by both WebForms and MVC. To run both frameworks side by side, we could easily create a separate folder in your MVC project for all our WebForm files and be good to go. What this post shows you instead, is how to have an MVC application with WebForm pages  that both use a common master page and common routing for SEO friendly URLs.  A sample project that shows WebForms and MVC running side by side is attached at the bottom of this post. So why would we want to run WebForms and MVC in the same project?  WebForms come with a lot of nice server controls that provide a lot of functionality. One example is the ReportViewer control. Using this control and client report definition files (RDLC), we can create rich interactive reports (with charting controls). I show you how to use the ReportViewer control in a WebForm project here :  Creating an ASP.NET report using Visual Studio 2010. We can create even more advanced reports by using SQL reporting services that can also be rendered by the ReportViewer control. Now, consider the sample MVC application I blogged about called ASP.NET MVC Paging/Sorting/Filtering using the MVCContrib Grid and Pager. Assume you were given the requirement to add a UI to the MVC application where users could interact with a report and be given the option to export the report to Excel, PDF or Word. How do you go about doing it?   This is a perfect scenario to use the ReportViewer control and RDLCs. As you saw in the post on creating the ASP.NET report, the ReportViewer control is a Web Control and is designed to be run in a WebForm project with dependencies on, amongst others, a ScriptManager control and the beloved Viewstate.  Since MVC and WebForm both run under the same runtime, the easiest thing to is to add the WebForm application files (index.aspx, rdlc, related class files) into our MVC project. You can copy the files over from the WebForm project into the MVC project. Create a new folder in our MVC application called CommonReports. Add the index.aspx and rdlc file from the Webform project   Right click on the Index.aspx file and convert it to a web application. This will add the index.aspx.designer.cs file (this step is not required if you are manually adding a WebForm aspx file into the MVC project).    Verify that all the type names for the ObjectDataSources in code behind to point to the correct ProductRepository and fix any compiler errors. Right click on Index.aspx and select “View in browser”. You should see a screen like the one below:   There are two issues with our page. It does not use our site master page and the URL is not SEO friendly. Common Master Page The easiest way to use master pages with both MVC and WebForm pages is to have a common master page that each inherits from as shown below. The reason for this is most WebForm controls require them to be inside a Form control and require ControlState or ViewState. ViewMasterPages used in MVC, on the other hand, are designed to be used with content pages that derive from ViewPage with Viewstate turned off. By having a separate master page for MVC and WebForm that inherit from the Root master page,, we can set properties that are specific to each. For example, in the Webform master, we can turn on ViewState, add a form tag etc. Another point worth noting is that if you set a WebForm page to use a MVC site master page, you may run into errors like the following: A ViewMasterPage can be used only with content pages that derive from ViewPage or ViewPage<TViewItem> or Control 'MainContent_MyButton' of type 'Button' must be placed inside a form tag with runat=server. Since the ViewMasterPage inherits from MasterPage as seen below, we make our Root.master inherit from MasterPage, MVC.master inherit from ViewMasterPage and Webform.master inherits from MasterPage. We define the attributes on the master pages like so: Root.master <%@ Master Inherits="System.Web.UI.MasterPage"  … %> MVC.master <%@ Master MasterPageFile="~/Views/Shared/Root.Master" Inherits="System.Web.Mvc.ViewMasterPage" … %> WebForm.master <%@ Master MasterPageFile="~/Views/Shared/Root.Master" Inherits="NorthwindSales.Views.Shared.Webform" %> Code behind: public partial class Webform : System.Web.UI.MasterPage {} We make changes to our reports aspx file to use the Webform.master. See the source of the master pages in the sample project for a better understanding of how they are connected. SEO friendly links We want to create SEO friendly links that point to our report. A request to /Reports/Products should render the report located in ~/CommonReports/Products.aspx. Simillarly to support future reports, a request to /Reports/Sales should render a report in ~/CommonReports/Sales.aspx. Lets start by renaming our index.aspx file to Products.aspx to be consistent with our routing criteria above. As mentioned earlier, since routing is part of the core runtime environment, we ca easily create a custom route for our reports by adding an entry in Global.asax. public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}");   //Custom route for reports routes.MapPageRoute( "ReportRoute", // Route name "Reports/{reportname}", // URL "~/CommonReports/{reportname}.aspx" // File );     routes.MapRoute( "Default", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Parameter defaults ); } With our custom route in place, a request to Reports/Employees will render the page at ~/CommonReports/Employees.aspx. We make this custom route the first entry since the routing system walks the table from top to bottom, and the first route to match wins. Note that it is highly recommended that you write unit tests for your routes to ensure that the mappings you defined are correct. Common Menu Structure The master page in our original MVC project had a menu structure like so: <ul id="menu"> <li> <%=Html.ActionLink("Home", "Index", "Home") %></li> <li> <%=Html.ActionLink("Products", "Index", "Products") %></li> <li> <%=Html.ActionLink("Help", "Help", "Home") %></li> </ul> We want this menu structure to be common to all pages/views and hence should reside in Root.master. Unfortunately the Html.ActionLink helpers will not work since Root.master inherits from MasterPage which does not have the helper methods available. The quickest way to resolve this issue is to use RouteUrl expressions. Using  RouteUrl expressions, we can programmatically generate URLs that are based on route definitions. By specifying parameter values and a route name if required, we get back a URL string that corresponds to a matching route. We move our menu structure to Root.master and change it to use RouteUrl expressions: <ul id="menu"> <li> <asp:HyperLink ID="hypHome" runat="server" NavigateUrl="<%$RouteUrl:routename=default,controller=home,action=index%>">Home</asp:HyperLink></li> <li> <asp:HyperLink ID="hypProducts" runat="server" NavigateUrl="<%$RouteUrl:routename=default,controller=products,action=index%>">Products</asp:HyperLink></li> <li> <asp:HyperLink ID="hypReport" runat="server" NavigateUrl="<%$RouteUrl:routename=ReportRoute,reportname=products%>">Product Report</asp:HyperLink></li> <li> <asp:HyperLink ID="hypHelp" runat="server" NavigateUrl="<%$RouteUrl:routename=default,controller=home,action=help%>">Help</asp:HyperLink></li> </ul> We are done adding the common navigation to our application. The application now uses a common theme, routing and navigation structure. Conclusion We have seen how to do the following through this post Add a WebForm page from a WebForm project to an existing ASP.NET MVC application Use a common master page for both WebForm and MVC pages Use routing for SEO friendly links Use a common menu structure for both WebForm and MVC. The sample project is attached below. Version: VS 2010 RTM Remember to change your connection string to point to your Northwind database NorthwindSalesMVCWebform.zip

    Read the article

  • Web 2.0 Extension for ASP.NET

    - by Visual WebGui
    ASP.NET is now much extended to support line of business and data centric applications, providing Web 2.0 rich user interfaces within a native web environment. New capabilities allowed by the Visual WebGui extension turn Visual Studio into a rapid development tool for the web, leveraging the wide set of ASP.NET web infrastructures runtime and extending its paradigms to support highly interactive applications. Taking advantage of the ASP.NET infrastructures Using the native ASP.NET ISAPI filter: aspnet_isapi...(read more)

    Read the article

  • Microsoft 2010 Product Tour

    - by dmccollough
    Randy Walker, Co-Founder of the Northwest Arkansas .Net User Group and Microsoft MVP has arranged for a couple of Microsoft experts, Sarika Calla Team Lead on the IDE Team and Kevin Halverson to give presentations on newly released Visual Studio 2010.   June 1 – Bentonville, Arkansas Wal-Mart .Net User Group June 1 – Rogers, Arkansas Northwest Arkansas SQL Server User Group (lunch meeting) June 1 – Springdale, Arkansas Tyson devLoop June 1 – Fayetteville, Arkansas Northwest Arkansas .Net User Group June 2 – Fort Smith, Arkansas Datatronics June 2 – Little Rock, Arkansas Little Rock .Net User Group June 3 – Fort Worth, Texas Fort Worth .Net User Group   Please contact Randy Walker with questions at [email protected].

    Read the article

  • Getting Current with Visual Studio 2010 for Web Developers

    - by plitwin
    I don't know about you, but I find it kind of crazy at times figuring out if I have the latest of everything there is for the Visual Studio 2010 developer from Microsoft. (This does not include any third-party components, just recommended updates from Microsoft.) And the be honest, the msn.microsoft.com and asp.net sites are not that helpful in figuring this out.In an effort to help, I have enumerated here what the latest VS 2010 setup should include, complete with download links. When you install everything here, you will be able to develop ASP.NET 4.0 Web Forms and ASP.NET MVC 3 applications and web sites in addition to the other stuff your version of Visual Studio supports (e.g., Silverlight, WPF, etc.). These downloads will also include NuGet and the Entity Framework 4.1, so there is no need to download this software separately.Visual Studio 2010. First of all, you need to purchase and install Visual Studio 2010 itself. For the free Express version, you can download it from Visual Web Developer 2010 ExpressVisual Studio Service Pack 1 (released Spring 2011).This is a must-have download that fixes a bunch of bugs and a number of enhancements too including preliminary support for HTML5 and CSS3. See #4 below for better support of these web technologies. Download and install from VS 2010 SP1 download page. You can find details on the features of the service pack here. ASP.NET MVC3 Tools Update (released Spring 2011)If you are using ASP.NET MVC 3, then you should also download install this update for Visual Studio from ASP.NET MVC3 Tools Update download page. This update improves Visual Studio's support for MVC 3, including better scaffolding, NuGet, Entity Framework 4.1, and more. A good overview of the updates can be found in Phil Haack's blog post.Web Standards Update for Microsoft Visual Studio 2010 SP1 (released June 2011)This is an update to VS 2010 SP1 that "brings VS 2010 intellisense & validation as close to W3C specification as we could get via means of an extension". Download and install from Web Standards Update download page. A good description of the changes can be found in the Visual Web Developer Team blog post.Note: I don't control these download pages, so it is possible they will change. If so, I will do my best to update these links. This information was current as of June 24, 2011.

    Read the article

  • Installing Ajax Control Toolkit in Visual Studio 2010

    - by nannette
    I needed to install the Ajax Control Toolkit for Visual Studio 2010 4.0 Framework, so I googled "install ajax control toolkit visual studio 2010" and found this step by step guide: http://www.asp.net/ajaxlibrary/act.ashx It installed perfectly for me the first time, so I'd recommend following the above link. There were just a few steps and voila! I'm including this link here, because a in February 2008, I posted a blog for installing the toolkit in Visual Web Developer. http://weblogs.asp.net/nannettethacker...(read more)

    Read the article

  • EFMVC Migrated to .NET 4.5, Visual Studio 2012, ASP.NET MVC 4 and EF 5 Code First

    - by shiju
    I have just migrated my EFMVC app from .NET 4.0 and ASP.NET MVC 4 RC to .NET 4.5, ASP.NET MVC 4 RTM and Entity Framework 5 Code First. In this release, the EFMVC solution is built with Visual Studio 2012 RTM. The migration process was very smooth and did not made any major changes other than adding simple unit tests with NUnit and Moq. I will add more unit tests on later and will also modify the existing solution. Source Code You can download the source code from http://efmvc.codeplex.com/

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >