Search Results

Search found 381 results on 16 pages for 'wind chimez'.

Page 3/16 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • SmtpClient and Locked File Attachments

    - by Rick Strahl
    Got a note a couple of days ago from a client using one of my generic routines that wraps SmtpClient. Apparently whenever a file has been attached to a message and emailed with SmtpClient the file remains locked after the message has been sent. Oddly this particular issue hasn’t cropped up before for me although these routines are in use in a number of applications I’ve built. The wrapper I use was built mainly to backfit an old pre-.NET 2.0 email client I built using Sockets to avoid the CDO nightmares of the .NET 1.x mail client. The current class retained the same class interface but now internally uses SmtpClient which holds a flat property interface that makes it less verbose to send off email messages. File attachments in this interface are handled by providing a comma delimited list for files in an Attachments string property which is then collected along with the other flat property settings and eventually passed on to SmtpClient in the form of a MailMessage structure. The jist of the code is something like this: /// <summary> /// Fully self contained mail sending method. Sends an email message by connecting /// and disconnecting from the email server. /// </summary> /// <returns>true or false</returns> public bool SendMail() { if (!this.Connect()) return false; try { // Create and configure the message MailMessage msg = this.GetMessage(); smtp.Send(msg); this.OnSendComplete(this); } catch (Exception ex) { string msg = ex.Message; if (ex.InnerException != null) msg = ex.InnerException.Message; this.SetError(msg); this.OnSendError(this); return false; } finally { // close connection and clear out headers // SmtpClient instance nulled out this.Close(); } return true; } /// <summary> /// Configures the message interface /// </summary> /// <param name="msg"></param> protected virtual MailMessage GetMessage() { MailMessage msg = new MailMessage(); msg.Body = this.Message; msg.Subject = this.Subject; msg.From = new MailAddress(this.SenderEmail, this.SenderName); if (!string.IsNullOrEmpty(this.ReplyTo)) msg.ReplyTo = new MailAddress(this.ReplyTo); // Send all the different recipients this.AssignMailAddresses(msg.To, this.Recipient); this.AssignMailAddresses(msg.CC, this.CC); this.AssignMailAddresses(msg.Bcc, this.BCC); if (!string.IsNullOrEmpty(this.Attachments)) { string[] files = this.Attachments.Split(new char[2] { ',', ';' }, StringSplitOptions.RemoveEmptyEntries); foreach (string file in files) { msg.Attachments.Add(new Attachment(file)); } } if (this.ContentType.StartsWith("text/html")) msg.IsBodyHtml = true; else msg.IsBodyHtml = false; msg.BodyEncoding = this.Encoding; … additional code omitted return msg; } Basically this code collects all the property settings of the wrapper object and applies them to the SmtpClient and in GetMessage() to an individual MailMessage properties. Specifically notice that attachment filenames are converted from a comma-delimited string to filenames from which new attachments are created. The code as it’s written however, will cause the problem with file attachments not being released properly. Internally .NET opens up stream handles and reads the files from disk to dump them into the email send stream. The attachments are always sent correctly but the local files are not immediately closed. As you probably guessed the issue is simply that some resources are not automatcially disposed when sending is complete and sure enough the following code change fixes the problem: // Create and configure the message using (MailMessage msg = this.GetMessage()) { smtp.Send(msg); if (this.SendComplete != null) this.OnSendComplete(this); // or use an explicit msg.Dispose() here } The Message object requires an explicit call to Dispose() (or a using() block as I have here) to force the attachment files to get closed. I think this is rather odd behavior for this scenario however. The code I use passes in filenames and my expectation of an API that accepts file names is that it uses the files by opening and streaming them and then closing them when done. Why keep the streams open and require an explicit .Dispose() by the calling code which is bound to lead to unexpected behavior just as my customer ran into? Any API level code should clean up as much as possible and this is clearly not happening here resulting in unexpected behavior. Apparently lots of other folks have run into this before as I found based on a few Twitter comments on this topic. Odd to me too is that SmtpClient() doesn’t implement IDisposable – it’s only the MailMessage (and Attachments) that implement it and require it to clean up for left over resources like open file handles. This means that you couldn’t even use a using() statement around the SmtpClient code to resolve this – instead you’d have to wrap it around the message object which again is rather unexpected. Well, chalk that one up to another small unexpected behavior that wasted a half an hour of my time – hopefully this post will help someone avoid this same half an hour of hunting and searching. Resources: Full code to SmptClientNative (West Wind Web Toolkit Repository) SmtpClient Documentation MSDN © Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  

    Read the article

  • Getting the innermost .NET Exception

    - by Rick Strahl
    Here's a trivial but quite useful function that I frequently need in dynamic execution of code: Finding the innermost exception when an exception occurs, because for many operations (for example Reflection invocations or Web Service calls) the top level errors returned can be rather generic. A good example - common with errors in Reflection making a method invocation - is this generic error: Exception has been thrown by the target of an invocation In the debugger it looks like this: In this case this is an AJAX callback, which dynamically executes a method (ExecuteMethod code) which in turn calls into an Amazon Web Service using the old Amazon WSE101 Web service extensions for .NET. An error occurs in the Web Service call and the innermost exception holds the useful error information which in this case points at an invalid web.config key value related to the System.Net connection APIs. The "Exception has been thrown by the target of an invocation" error is the Reflection APIs generic error message that gets fired when you execute a method dynamically and that method fails internally. The messages basically says: "Your code blew up in my face when I tried to run it!". Which of course is not very useful to tell you what actually happened. If you drill down the InnerExceptions eventually you'll get a more detailed exception that points at the original error and code that caused the exception. In the code above the actually useful exception is two innerExceptions down. In most (but not all) cases when inner exceptions are returned, it's the innermost exception that has the information that is really useful. It's of course a fairly trivial task to do this in code, but I do it so frequently that I use a small helper method for this: /// <summary> /// Returns the innermost Exception for an object /// </summary> /// <param name="ex"></param> /// <returns></returns> public static Exception GetInnerMostException(Exception ex) { Exception currentEx = ex; while (currentEx.InnerException != null) { currentEx = currentEx.InnerException; } return currentEx; } This code just loops through all the inner exceptions (if any) and assigns them to a temporary variable until there are no more inner exceptions. The end result is that you get the innermost exception returned from the original exception. It's easy to use this code then in a try/catch handler like this (from the example above) to retrieve the more important innermost exception: object result = null; string stringResult = null; try { if (parameterList != null) // use the supplied parameter list result = helper.ExecuteMethod(methodToCall,target, parameterList.ToArray(), CallbackMethodParameterType.Json,ref attr); else // grab the info out of QueryString Values or POST buffer during parameter parsing // for optimization result = helper.ExecuteMethod(methodToCall, target, null, CallbackMethodParameterType.Json, ref attr); } catch (Exception ex) { Exception activeException = DebugUtils.GetInnerMostException(ex); WriteErrorResponse(activeException.Message, ( HttpContext.Current.IsDebuggingEnabled ? ex.StackTrace : null ) ); return; } Another function that is useful to me from time to time is one that returns all inner exceptions and the original exception as an array: /// <summary> /// Returns an array of the entire exception list in reverse order /// (innermost to outermost exception) /// </summary> /// <param name="ex">The original exception to work off</param> /// <returns>Array of Exceptions from innermost to outermost</returns> public static Exception[] GetInnerExceptions(Exception ex) {     List<Exception> exceptions = new List<Exception>();     exceptions.Add(ex);       Exception currentEx = ex;     while (currentEx.InnerException != null)     {         exceptions.Add(ex);     }       // Reverse the order to the innermost is first     exceptions.Reverse();       return exceptions.ToArray(); } This function loops through all the InnerExceptions and returns them and then reverses the order of the array returning the innermost exception first. This can be useful in certain error scenarios where exceptions stack and you need to display information from more than one of the exceptions in order to create a useful error message. This is rare but certain database exceptions bury their exception info in mutliple inner exceptions and it's easier to parse through them in an array then to manually walk the exception stack. It's also useful if you need to log errors and want to see the all of the error detail from all exceptions. None of this is rocket science, but it's useful to have some helpers that make retrieval of the critical exception info trivial. Resources DebugUtils.cs utility class in the West Wind Web Toolkit© Rick Strahl, West Wind Technologies, 2005-2011Posted in CSharp  .NET  

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How do I use XML prefixes in C#?

    - by Andrew Mock
    EDIT: I have now published my app: http://pastebin.com/PYAxaTHU I was trying to make console-based application that returns my temperature. using System; using System.Xml; namespace GetTemp { class Program { static void Main(string[] args) { XmlDocument doc = new XmlDocument(); doc.LoadXml(downloadWebPage( "http://www.andrewmock.com/uploads/example.xml" )); XmlNamespaceManager man = new XmlNamespaceManager(doc.NameTable); man.AddNamespace("aws", "www.aws.com/aws"); XmlNode weather = doc.SelectSingleNode("aws:weather", man); Console.WriteLine(weather.InnerText); Console.ReadKey(false); } } } Here is the sample XML: <aws:weather xmlns:aws="http://www.aws.com/aws"> <aws:api version="2.0"/> <aws:WebURL>http://weather.weatherbug.com/WA/Kenmore-weather.html?ZCode=Z5546&Units=0&stat=BOTHL</aws:WebURL> <aws:InputLocationURL>http://weather.weatherbug.com/WA/Kenmore-weather.html?ZCode=Z5546&Units=0</aws:InputLocationURL> <aws:station requestedID="BOTHL" id="BOTHL" name="Moorlands ES" city="Kenmore" state=" WA" zipcode="98028" country="USA" latitude="47.7383346557617" longitude="-122.230278015137"/> <aws:current-condition icon="http://deskwx.weatherbug.com/images/Forecast/icons/cond024.gif">Mostly Cloudy</aws:current-condition> <aws:temp units="&deg;F">40.2</aws:temp> <aws:rain-today units=""">0</aws:rain-today> <aws:wind-speed units="mph">0</aws:wind-speed> <aws:wind-direction>WNW</aws:wind-direction> <aws:gust-speed units="mph">5</aws:gust-speed> <aws:gust-direction>NW</aws:gust-direction> </aws:weather> I'm just not sure how to use XML prefixes correctly here. What is wrong with this?

    Read the article

  • A free standing ASP.NET Pager Web Control

    - by Rick Strahl
    Paging in ASP.NET has been relatively easy with stock controls supporting basic paging functionality. However, recently I built an MVC application and one of the things I ran into was that I HAD TO build manual paging support into a few of my pages. Dealing with list controls and rendering markup is easy enough, but doing paging is a little more involved. I ended up with a small but flexible component that can be dropped anywhere. As it turns out the task of creating a semi-generic Pager control for MVC was fairly easily. Now I’m back to working in Web Forms and thought to myself that the way I created the pager in MVC actually would also work in ASP.NET – in fact quite a bit easier since the whole thing can be conveniently wrapped up into an easily reusable control. A standalone pager would provider easier reuse in various pages and a more consistent pager display regardless of what kind of 'control’ the pager is associated with. Why a Pager Control? At first blush it might sound silly to create a new pager control – after all Web Forms has pretty decent paging support, doesn’t it? Well, sort of. Yes the GridView control has automatic paging built in and the ListView control has the related DataPager control. The built in ASP.NET paging has several issues though: Postback and JavaScript requirements If you look at paging links in ASP.NET they are always postback links with javascript:__doPostback() calls that go back to the server. While that works fine and actually has some benefit like the fact that paging saves changes to the page and post them back, it’s not very SEO friendly. Basically if you use javascript based navigation nosearch engine will follow the paging links which effectively cuts off list content on the first page. The DataPager control does support GET based links via the QueryStringParameter property, but the control is effectively tied to the ListView control (which is the only control that implements IPageableItemContainer). DataSource Controls required for Efficient Data Paging Retrieval The only way you can get paging to work efficiently where only the few records you display on the page are queried for and retrieved from the database you have to use a DataSource control - only the Linq and Entity DataSource controls  support this natively. While you can retrieve this data yourself manually, there’s no way to just assign the page number and render the pager based on this custom subset. Other than that default paging requires a full resultset for ASP.NET to filter the data and display only a subset which can be very resource intensive and wasteful if you’re dealing with largish resultsets (although I’m a firm believer in returning actually usable sets :-}). If you use your own business layer that doesn’t fit an ObjectDataSource you’re SOL. That’s a real shame too because with LINQ based querying it’s real easy to retrieve a subset of data that is just the data you want to display but the native Pager functionality doesn’t support just setting properties to display just the subset AFAIK. DataPager is not Free Standing The DataPager control is the closest thing to a decent Pager implementation that ASP.NET has, but alas it’s not a free standing component – it works off a related control and the only one that it effectively supports from the stock ASP.NET controls is the ListView control. This means you can’t use the same data pager formatting for a grid and a list view or vice versa and you’re always tied to the control. Paging Events In order to handle paging you have to deal with paging events. The events fire at specific time instances in the page pipeline and because of this you often have to handle data binding in a way to work around the paging events or else end up double binding your data sources based on paging. Yuk. Styling The GridView pager is a royal pain to beat into submission for styled rendering. The DataPager control has many more options and template layout and it renders somewhat cleaner, but it too is not exactly easy to get a decent display for. Not a Generic Solution The problem with the ASP.NET controls too is that it’s not generic. GridView, DataGrid use their own internal paging, ListView can use a DataPager and if you want to manually create data layout – well you’re on your own. IOW, depending on what you use you likely have very different looking Paging experiences. So, I figured I’ve struggled with this once too many and finally sat down and built a Pager control. The Pager Control My goal was to create a totally free standing control that has no dependencies on other controls and certainly no requirements for using DataSource controls. The idea is that you should be able to use this pager control without any sort of data requirements at all – you should just be able to set properties and be able to display a pager. The Pager control I ended up with has the following features: Completely free standing Pager control – no control or data dependencies Complete manual control – Pager can render without any data dependency Easy to use: Only need to set PageSize, ActivePage and TotalItems Supports optional filtering of IQueryable for efficient queries and Pager rendering Supports optional full set filtering of IEnumerable<T> and DataTable Page links are plain HTTP GET href Links Control automatically picks up Page links on the URL and assigns them (automatic page detection no page index changing events to hookup) Full CSS Styling support On the downside there’s no templating support for the control so the layout of the pager is relatively fixed. All elements however are stylable and there are options to control the text, and layout options such as whether to display first and last pages and the previous/next buttons and so on. To give you an idea what the pager looks like, here are two differently styled examples (all via CSS):   The markup for these two pagers looks like this: <ww:Pager runat="server" id="ItemPager" PageSize="5" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PagesTextCssClass="gridpagertext" CssClass="gridpager" RenderContainerDiv="true" ContainerDivCssClass="gridpagercontainer" MaxPagesToDisplay="6" PagesText="Item Pages:" NextText="next" PreviousText="previous" /> <ww:Pager runat="server" id="ItemPager2" PageSize="5" RenderContainerDiv="true" MaxPagesToDisplay="6" /> The latter example uses default style settings so it there’s not much to set. The first example on the other hand explicitly assigns custom styles and overrides a few of the formatting options. Styling The styling is based on a number of CSS classes of which the the main pager, pagerbutton and pagerbutton-selected classes are the important ones. Other styles like pagerbutton-next/prev/first/last are based on the pagerbutton style. The default styling shown for the red outlined pager looks like this: .pagercontainer { margin: 20px 0; background: whitesmoke; padding: 5px; } .pager { float: right; font-size: 10pt; text-align: left; } .pagerbutton,.pagerbutton-selected,.pagertext { display: block; float: left; text-align: center; border: solid 2px maroon; min-width: 18px; margin-left: 3px; text-decoration: none; padding: 4px; } .pagerbutton-selected { font-size: 130%; font-weight: bold; color: maroon; border-width: 0px; background: khaki; } .pagerbutton-first { margin-right: 12px; } .pagerbutton-last,.pagerbutton-prev { margin-left: 12px; } .pagertext { border: none; margin-left: 30px; font-weight: bold; } .pagerbutton a { text-decoration: none; } .pagerbutton:hover { background-color: maroon; color: cornsilk; } .pagerbutton-prev { background-image: url(images/prev.png); background-position: 2px center; background-repeat: no-repeat; width: 35px; padding-left: 20px; } .pagerbutton-next { background-image: url(images/next.png); background-position: 40px center; background-repeat: no-repeat; width: 35px; padding-right: 20px; margin-right: 0px; } Yup that’s a lot of styling settings although not all of them are required. The key ones are pagerbutton, pager and pager selection. The others (which are implicitly created by the control based on the pagerbutton style) are for custom markup of the ‘special’ buttons. In my apps I tend to have two kinds of pages: Those that are associated with typical ‘grid’ displays that display purely tabular data and those that have a more looser list like layout. The two pagers shown above represent these two views and the pager and gridpager styles in my standard style sheet reflect these two styles. Configuring the Pager with Code Finally lets look at what it takes to hook up the pager. As mentioned in the highlights the Pager control is completely independent of other controls so if you just want to display a pager on its own it’s as simple as dropping the control and assigning the PageSize, ActivePage and either TotalPages or TotalItems. So for this markup: <ww:Pager runat="server" id="ItemPagerManual" PageSize="5" MaxPagesToDisplay="6" /> I can use code as simple as: ItemPagerManual.PageSize = 3; ItemPagerManual.ActivePage = 4;ItemPagerManual.TotalItems = 20; Note that ActivePage is not required - it will automatically use any Page=x query string value and assign it, although you can override it as I did above. TotalItems can be any value that you retrieve from a result set or manually assign as I did above. A more realistic scenario based on a LINQ to SQL IQueryable result is even easier. In this example, I have a UserControl that contains a ListView control that renders IQueryable data. I use a User Control here because there are different views the user can choose from with each view being a different user control. This incidentally also highlights one of the nice features of the pager: Because the pager is independent of the control I can put the pager on the host page instead of into each of the user controls. IOW, there’s only one Pager control, but there are potentially many user controls/listviews that hold the actual display data. The following code demonstrates how to use the Pager with an IQueryable that loads only the records it displays: protected voidPage_Load(objectsender, EventArgs e) {     Category = Request.Params["Category"] ?? string.Empty;     IQueryable<wws_Item> ItemList = ItemRepository.GetItemsByCategory(Category);     // Update the page and filter the list down     ItemList = ItemPager.FilterIQueryable<wws_Item>(ItemList); // Render user control with a list view Control ulItemList = LoadControl("~/usercontrols/" + App.Configuration.ItemListType + ".ascx"); ((IInventoryItemListControl)ulItemList).InventoryItemList = ItemList; phItemList.Controls.Add(ulItemList); // placeholder } The code uses a business object to retrieve Items by category as an IQueryable which means that the result is only an expression tree that hasn’t execute SQL yet and can be further filtered. I then pass this IQueryable to the FilterIQueryable() helper method of the control which does two main things: Filters the IQueryable to retrieve only the data displayed on the active page Sets the Totaltems property and calculates TotalPages on the Pager and that’s it! When the Pager renders it uses those values, plus the PageSize and ActivePage properties to render the Pager. In addition to IQueryable there are also filter methods for IEnumerable<T> and DataTable, but these versions just filter the data by removing rows/items from the entire already retrieved data. Output Generated and Paging Links The output generated creates pager links as plain href links. Here’s what the output looks like: <div id="ItemPager" class="pagercontainer"> <div class="pager"> <span class="pagertext">Pages: </span><a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=1" class="pagerbutton" />1</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=2" class="pagerbutton" />2</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton" />3</a> <span class="pagerbutton-selected">4</span> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton" />5</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=6" class="pagerbutton" />6</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=20" class="pagerbutton pagerbutton-last" />20</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton pagerbutton-prev" />Prev</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton pagerbutton-next" />Next</a></div> <br clear="all" /> </div> </div> The links point back to the current page and simply append a Page= page link into the page. When the page gets reloaded with the new page number the pager automatically detects the page number and automatically assigns the ActivePage property which results in the appropriate page to be displayed. The code shown in the previous section is all that’s needed to handle paging. Note that HTTP GET based paging is different than the Postback paging ASP.NET uses by default. Postback paging preserves modified page content when clicking on pager buttons, but this control will simply load a new page – no page preservation at this time. The advantage of not using Postback paging is that the URLs generated are plain HTML links that a search engine can follow where __doPostback() links are not. Pager with a Grid The pager also works in combination with grid controls so it’s easy to bypass the grid control’s paging features if desired. In the following example I use a gridView control and binds it to a DataTable result which is also filterable by the Pager control. The very basic plain vanilla ASP.NET grid markup looks like this: <div style="width: 600px; margin: 0 auto;padding: 20px; "> <asp:DataGrid runat="server" AutoGenerateColumns="True" ID="gdItems" CssClass="blackborder" style="width: 600px;"> <AlternatingItemStyle CssClass="gridalternate" /> <HeaderStyle CssClass="gridheader" /> </asp:DataGrid> <ww:Pager runat="server" ID="Pager" CssClass="gridpager" ContainerDivCssClass="gridpagercontainer" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PageSize="8" RenderContainerDiv="true" MaxPagesToDisplay="6" /> </div> and looks like this when rendered: using custom set of CSS styles. The code behind for this code is also very simple: protected void Page_Load(object sender, EventArgs e) { string category = Request.Params["category"] ?? ""; busItem itemRep = WebStoreFactory.GetItem(); var items = itemRep.GetItemsByCategory(category) .Select(itm => new {Sku = itm.Sku, Description = itm.Description}); // run query into a DataTable for demonstration DataTable dt = itemRep.Converter.ToDataTable(items,"TItems"); // Remove all items not on the current page dt = Pager.FilterDataTable(dt,0); // bind and display gdItems.DataSource = dt; gdItems.DataBind(); } A little contrived I suppose since the list could already be bound from the list of elements, but this is to demonstrate that you can also bind against a DataTable if your business layer returns those. Unfortunately there’s no way to filter a DataReader as it’s a one way forward only reader and the reader is required by the DataSource to perform the bindings.  However, you can still use a DataReader as long as your business logic filters the data prior to rendering and provides a total item count (most likely as a second query). Control Creation The control itself is a pretty brute force ASP.NET control. Nothing clever about this other than some basic rendering logic and some simple calculations and update routines to determine which buttons need to be shown. You can take a look at the full code from the West Wind Web Toolkit’s Repository (note there are a few dependencies). To give you an idea how the control works here is the Render() method: /// <summary> /// overridden to handle custom pager rendering for runtime and design time /// </summary> /// <param name="writer"></param> protected override void Render(HtmlTextWriter writer) { base.Render(writer); if (TotalPages == 0 && TotalItems > 0) TotalPages = CalculateTotalPagesFromTotalItems(); if (DesignMode) TotalPages = 10; // don't render pager if there's only one page if (TotalPages < 2) return; if (RenderContainerDiv) { if (!string.IsNullOrEmpty(ContainerDivCssClass)) writer.AddAttribute("class", ContainerDivCssClass); writer.RenderBeginTag("div"); } // main pager wrapper writer.WriteBeginTag("div"); writer.AddAttribute("id", this.ClientID); if (!string.IsNullOrEmpty(CssClass)) writer.WriteAttribute("class", this.CssClass); writer.Write(HtmlTextWriter.TagRightChar + "\r\n"); // Pages Text writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(PagesTextCssClass)) writer.WriteAttribute("class", PagesTextCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(this.PagesText); writer.WriteEndTag("span"); // if the base url is empty use the current URL FixupBaseUrl(); // set _startPage and _endPage ConfigurePagesToRender(); // write out first page link if (ShowFirstAndLastPageLinks && _startPage != 1) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-first"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write("1"); writer.WriteEndTag("a"); writer.Write("&nbsp;"); } // write out all the page links for (int i = _startPage; i < _endPage + 1; i++) { if (i == ActivePage) { writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(SelectedPageCssClass)) writer.WriteAttribute("class", SelectedPageCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(i.ToString()); writer.WriteEndTag("span"); } else { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, i.ToString()).TrimEnd('&'); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(i.ToString()); writer.WriteEndTag("a"); } writer.Write("\r\n"); } // write out last page link if (ShowFirstAndLastPageLinks && _endPage < TotalPages) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, TotalPages.ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-last"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(TotalPages.ToString()); writer.WriteEndTag("a"); } // Previous link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(PreviousText) && ActivePage > 1) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage - 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-prev"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(PreviousText); writer.WriteEndTag("a"); } // Next link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(NextText) && ActivePage < TotalPages) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage + 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-next"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(NextText); writer.WriteEndTag("a"); } writer.WriteEndTag("div"); if (RenderContainerDiv) { if (RenderContainerDivBreak) writer.Write("<br clear=\"all\" />\r\n"); writer.WriteEndTag("div"); } } As I said pretty much brute force rendering based on the control’s property settings of which there are quite a few: You can also see the pager in the designer above. unfortunately the VS designer (both 2010 and 2008) fails to render the float: left CSS styles properly and starts wrapping after margins are applied in the special buttons. Not a big deal since VS does at least respect the spacing (the floated elements overlay). Then again I’m not using the designer anyway :-}. Filtering Data What makes the Pager easy to use is the filter methods built into the control. While this functionality is clearly not the most politically correct design choice as it violates separation of concerns, it’s very useful for typical pager operation. While I actually have filter methods that do something similar in my business layer, having it exposed on the control makes the control a lot more useful for typical databinding scenarios. Of course these methods are optional – if you have a business layer that can provide filtered page queries for you can use that instead and assign the TotalItems property manually. There are three filter method types available for IQueryable, IEnumerable and for DataTable which tend to be the most common use cases in my apps old and new. The IQueryable version is pretty simple as it can simply rely on on .Skip() and .Take() with LINQ: /// <summary> /// <summary> /// Queries the database for the ActivePage applied manually /// or from the Request["page"] variable. This routine /// figures out and sets TotalPages, ActivePage and /// returns a filtered subset IQueryable that contains /// only the items from the ActivePage. /// </summary> /// <param name="query"></param> /// <param name="activePage"> /// The page you want to display. Sets the ActivePage property when passed. /// Pass 0 or smaller to use ActivePage setting. /// </param> /// <returns></returns> public IQueryable<T> FilterIQueryable<T>(IQueryable<T> query, int activePage) where T : class, new() { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = query.Count(); if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return query; } int skip = ActivePage - 1; if (skip > 0) query = query.Skip(skip * PageSize); _TotalPages = CalculateTotalPagesFromTotalItems(); return query.Take(PageSize); } The IEnumerable<T> version simply  converts the IEnumerable to an IQuerable and calls back into this method for filtering. The DataTable version requires a little more work to manually parse and filter records (I didn’t want to add the Linq DataSetExtensions assembly just for this): /// <summary> /// Filters a data table for an ActivePage. /// /// Note: Modifies the data set permanently by remove DataRows /// </summary> /// <param name="dt">Full result DataTable</param> /// <param name="activePage">Page to display. 0 to use ActivePage property </param> /// <returns></returns> public DataTable FilterDataTable(DataTable dt, int activePage) { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = dt.Rows.Count; if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return dt; } int skip = ActivePage - 1; if (skip > 0) { for (int i = 0; i < skip * PageSize; i++ ) dt.Rows.RemoveAt(0); } while(dt.Rows.Count > PageSize) dt.Rows.RemoveAt(PageSize); return dt; } Using the Pager Control The pager as it is is a first cut I built a couple of weeks ago and since then have been tweaking a little as part of an internal project I’m working on. I’ve replaced a bunch of pagers on various older pages with this pager without any issues and have what now feels like a more consistent user interface where paging looks and feels the same across different controls. As a bonus I’m only loading the data from the database that I need to display a single page. With the preset class tags applied too adding a pager is now as easy as dropping the control and adding the style sheet for styling to be consistent – no fuss, no muss. Schweet. Hopefully some of you may find this as useful as I have or at least as a baseline to build ontop of… Resources The Pager is part of the West Wind Web & Ajax Toolkit Pager.cs Source Code (some toolkit dependencies) Westwind.css base stylesheet with .pager and .gridpager styles Pager Example Page © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • The Benefits of Smart Grid Business Software

    - by Sylvie MacKenzie, PMP
    Smart Grid Background What Are Smart Grids?Smart Grids use computer hardware and software, sensors, controls, and telecommunications equipment and services to: Link customers to information that helps them manage consumption and use electricity wisely. Enable customers to respond to utility notices in ways that help minimize the duration of overloads, bottlenecks, and outages. Provide utilities with information that helps them improve performance and control costs. What Is Driving Smart Grid Development? Environmental ImpactSmart Grid development is picking up speed because of the widespread interest in reducing the negative impact that energy use has on the environment. Smart Grids use technology to drive efficiencies in transmission, distribution, and consumption. As a result, utilities can serve customers’ power needs with fewer generating plants, fewer transmission and distribution assets,and lower overall generation. With the possible exception of wind farm sprawl, landscape preservation is one obvious benefit. And because most generation today results in greenhouse gas emissions, Smart Grids reduce air pollution and the potential for global climate change.Smart Grids also more easily accommodate the technical difficulties of integrating intermittent renewable resources like wind and solar into the grid, providing further greenhouse gas reductions. CostsThe ability to defer the cost of plant and grid expansion is a major benefit to both utilities and customers. Utilities do not need to use as many internal resources for traditional infrastructure project planning and management. Large T&D infrastructure expansion costs are not passed on to customers.Smart Grids will not eliminate capital expansion, of course. Transmission corridors to connect renewable generation with customers will require major near-term expenditures. Additionally, in the future, electricity to satisfy the needs of population growth and additional applications will exceed the capacity reductions available through the Smart Grid. At that point, expansion will resume—but with greater overall T&D efficiency based on demand response, load control, and many other Smart Grid technologies and business processes. Energy efficiency is a second area of Smart Grid cost saving of particular relevance to customers. The timely and detailed information Smart Grids provide encourages customers to limit waste, adopt energy-efficient building codes and standards, and invest in energy efficient appliances. Efficiency may or may not lower customer bills because customer efficiency savings may be offset by higher costs in generation fuels or carbon taxes. It is clear, however, that bills will be lower with efficiency than without it. Utility Operations Smart Grids can serve as the central focus of utility initiatives to improve business processes. Many utilities have long “wish lists” of projects and applications they would like to fund in order to improve customer service or ease staff’s burden of repetitious work, but they have difficulty cost-justifying the changes, especially in the short term. Adding Smart Grid benefits to the cost/benefit analysis frequently tips the scales in favor of the change and can also significantly reduce payback periods.Mobile workforce applications and asset management applications work together to deploy assets and then to maintain, repair, and replace them. Many additional benefits result—for instance, increased productivity and fuel savings from better routing. Similarly, customer portals that provide customers with near-real-time information can also encourage online payments, thus lowering billing costs. Utilities can and should include these cost and service improvements in the list of Smart Grid benefits. What Is Smart Grid Business Software? Smart Grid business software gathers data from a Smart Grid and uses it improve a utility’s business processes. Smart Grid business software also helps utilities provide relevant information to customers who can then use it to reduce their own consumption and improve their environmental profiles. Smart Grid Business Software Minimizes the Impact of Peak Demand Utilities must size their assets to accommodate their highest peak demand. The higher the peak rises above base demand: The more assets a utility must build that are used only for brief periods—an inefficient use of capital. The higher the utility’s risk profile rises given the uncertainties surrounding the time needed for permitting, building, and recouping costs. The higher the costs for utilities to purchase supply, because generators can charge more for contracts and spot supply during high-demand periods. Smart Grids enable a variety of programs that reduce peak demand, including: Time-of-use pricing and critical peak pricing—programs that charge customers more when they consume electricity during peak periods. Pilot projects indicate that these programs are successful in flattening peaks, thus ensuring better use of existing T&D and generation assets. Direct load control, which lets utilities reduce or eliminate electricity flow to customer equipment (such as air conditioners). Contracts govern the terms and conditions of these turn-offs. Indirect load control, which signals customers to reduce the use of on-premises equipment for contractually agreed-on time periods. Smart Grid business software enables utilities to impose penalties on customers who do not comply with their contracts. Smart Grids also help utilities manage peaks with existing assets by enabling: Real-time asset monitoring and control. In this application, advanced sensors safely enable dynamic capacity load limits, ensuring that all grid assets can be used to their maximum capacity during peak demand periods. Real-time asset monitoring and control applications also detect the location of excessive losses and pinpoint need for mitigation and asset replacements. As a result, utilities reduce outage risk and guard against excess capacity or “over-build”. Better peak demand analysis. As a result: Distribution planners can better size equipment (e.g. transformers) to avoid over-building. Operations engineers can identify and resolve bottlenecks and other inefficiencies that may cause or exacerbate peaks. As above, the result is a reduction in the tendency to over-build. Supply managers can more closely match procurement with delivery. As a result, they can fine-tune supply portfolios, reducing the tendency to over-contract for peak supply and reducing the need to resort to spot market purchases during high peaks. Smart Grids can help lower the cost of remaining peaks by: Standardizing interconnections for new distributed resources (such as electricity storage devices). Placing the interconnections where needed to support anticipated grid congestion. Smart Grid Business Software Lowers the Cost of Field Services By processing Smart Grid data through their business software, utilities can reduce such field costs as: Vegetation management. Smart Grids can pinpoint momentary interruptions and tree-caused outages. Spatial mash-up tools leverage GIS models of tree growth for targeted vegetation management. This reduces the cost of unnecessary tree trimming. Service vehicle fuel. Many utility service calls are “false alarms.” Checking meter status before dispatching crews prevents many unnecessary “truck rolls.” Similarly, crews use far less fuel when Smart Grid sensors can pinpoint a problem and mobile workforce applications can then route them directly to it. Smart Grid Business Software Ensures Regulatory Compliance Smart Grids can ensure compliance with private contracts and with regional, national, or international requirements by: Monitoring fulfillment of contract terms. Utilities can use one-hour interval meters to ensure that interruptible (“non-core”) customers actually reduce or eliminate deliveries as required. They can use the information to levy fines against contract violators. Monitoring regulations imposed on customers, such as maximum use during specific time periods. Using accurate time-stamped event history derived from intelligent devices distributed throughout the smart grid to monitor and report reliability statistics and risk compliance. Automating business processes and activities that ensure compliance with security and reliability measures (e.g. NERC-CIP 2-9). Grid Business Software Strengthens Utilities’ Connection to Customers While Reducing Customer Service Costs During outages, Smart Grid business software can: Identify outages more quickly. Software uses sensors to pinpoint outages and nested outage locations. They also permit utilities to ensure outage resolution at every meter location. Size outages more accurately, permitting utilities to dispatch crews that have the skills needed, in appropriate numbers. Provide updates on outage location and expected duration. This information helps call centers inform customers about the timing of service restoration. Smart Grids also facilitates display of outage maps for customer and public-service use. Smart Grids can significantly reduce the cost to: Connect and disconnect customers. Meters capable of remote disconnect can virtually eliminate the costs of field crews and vehicles previously required to change service from the old to the new residents of a metered property or disconnect customers for nonpayment. Resolve reports of voltage fluctuation. Smart Grids gather and report voltage and power quality data from meters and grid sensors, enabling utilities to pinpoint reported problems or resolve them before customers complain. Detect and resolve non-technical losses (e.g. theft). Smart Grids can identify illegal attempts to reconnect meters or to use electricity in supposedly vacant premises. They can also detect theft by comparing flows through delivery assets with billed consumption. Smart Grids also facilitate outreach to customers. By monitoring and analyzing consumption over time, utilities can: Identify customers with unusually high usage and contact them before they receive a bill. They can also suggest conservation techniques that might help to limit consumption. This can head off “high bill” complaints to the contact center. Note that such “high usage” or “additional charges apply because you are out of range” notices—frequently via text messaging—are already common among mobile phone providers. Help customers identify appropriate bill payment alternatives (budget billing, prepayment, etc.). Help customers find and reduce causes of over-consumption. There’s no waiting for bills in the mail before they even understand there is a problem. Utilities benefit not just through improved customer relations but also through limiting the size of bills from customers who might struggle to pay them. Where permitted, Smart Grids can open the doors to such new utility service offerings as: Monitoring properties. Landlords reduce costs of vacant properties when utilities notify them of unexpected energy or water consumption. Utilities can perform similar services for owners of vacation properties or the adult children of aging parents. Monitoring equipment. Power-use patterns can reveal a need for equipment maintenance. Smart Grids permit utilities to alert owners or managers to a need for maintenance or replacement. Facilitating home and small-business networks. Smart Grids can provide a gateway to equipment networks that automate control or let owners access equipment remotely. They also facilitate net metering, offering some utilities a path toward involvement in small-scale solar or wind generation. Prepayment plans that do not need special meters. Smart Grid Business Software Helps Customers Control Energy Costs There is no end to the ways Smart Grids help both small and large customers control energy costs. For instance: Multi-premises customers appreciate having all meters read on the same day so that they can more easily compare consumption at various sites. Customers in competitive regions can match their consumption profile (detailed via Smart Grid data) with specific offerings from competitive suppliers. Customers seeing inexplicable consumption patterns and power quality problems may investigate further. The result can be discovery of electrical problems that can be resolved through rewiring or maintenance—before more serious fires or accidents happen. Smart Grid Business Software Facilitates Use of Renewables Generation from wind and solar resources is a popular alternative to fossil fuel generation, which emits greenhouse gases. Wind and solar generation may also increase energy security in regions that currently import fossil fuel for use in generation. Utilities face many technical issues as they attempt to integrate intermittent resource generation into traditional grids, which traditionally handle only fully dispatchable generation. Smart Grid business software helps solves many of these issues by: Detecting sudden drops in production from renewables-generated electricity (wind and solar) and automatically triggering electricity storage and smart appliance response to compensate as needed. Supporting industry-standard distributed generation interconnection processes to reduce interconnection costs and avoid adding renewable supplies to locations already subject to grid congestion. Facilitating modeling and monitoring of locally generated supply from renewables and thus helping to maximize their use. Increasing the efficiency of “net metering” (through which utilities can use electricity generated by customers) by: Providing data for analysis. Integrating the production and consumption aspects of customer accounts. During non-peak periods, such techniques enable utilities to increase the percent of renewable generation in their supply mix. During peak periods, Smart Grid business software controls circuit reconfiguration to maximize available capacity. Conclusion Utility missions are changing. Yesterday, they focused on delivery of reasonably priced energy and water. Tomorrow, their missions will expand to encompass sustainable use and environmental improvement.Smart Grids are key to helping utilities achieve this expanded mission. But they come at a relatively high price. Utilities will need to invest heavily in new hardware, software, business process development, and staff training. Customer investments in home area networks and smart appliances will be large. Learning to change the energy and water consumption habits of a lifetime could ultimately prove even more formidable tasks.Smart Grid business software can ease the cost and difficulties inherent in a needed transition to a more flexible, reliable, responsive electricity grid. Justifying its implementation, however, requires a full understanding of the benefits it brings—benefits that can ultimately help customers, utilities, communities, and the world address global issues like energy security and climate change while minimizing costs and maximizing customer convenience. This white paper is available for download here. For further information about Oracle's Primavera Solutions for Utilities, please read our Utilities e-book.

    Read the article

  • what is .motn file?

    - by Wind Chimez
    In a flash based project, i got a few files with extension as ".motn". I am not sure what this file is or more importantly, with what editor/tool i can work on this file. What i guess is this might be a way to create flv movies, out of pictures , vectors and otehr data, but it's just a guess.So, basically i have two doubts: 1. what is a .motn file 2. How /with what tool can i work on a .motn file efficiently. Can anybody help ?

    Read the article

  • TypeError: Error #1009 - (Null reference error) With Flash.

    - by Wind Chimez
    I am not an expert in flash, but i do work with AS and tweak Flash projects , though not having deep expertise in it. Currently i need to revamp a flash website done by one another guy, and the code base given to me, upon execution is throwing the following error. "--- TypeError: Error #1009: Cannot access a property or method of a null object reference. at NewSite_fla::MainTimeline/__setProp_ContactOutP1_ContactOut_Contents_0() at NewSite_fla::MainTimeline/frame1() --" The structure of the project is like, it has the different sections split into different movie clips. There is no single main timeline, but click actions on different areas of seperate movie clips will take them between one another. All the AS logic of event handling are written inline in FLA , no seperate Document class exists. Preloader Movie clip is the first one getting loaded. As i understood the error is getting thrown initially itself, and it is not happening due to any Action script logic written inline, because it is throwing error even before hitting the first inline AS code. I am not able to figure Out what exactly it causing the problem, or where to resolve it. I setup the stuff online, for reference if anybody want to take a look at it, and here is the link.You need to have flash debugger turned ON in your browser, if need to see the exception getting triggered. http://tinyurl.com/2alvlfx I really got stuck at this point. Any help will be great.I had not seen the particular solution i am looking for anywhere yet, though Error #1009 is common.

    Read the article

  • TypeError: Error #1009 - (Null reference error) With Flash.

    - by Wind Chimez
    I am not an expert in flash, but i do work with AS and tweak Flash projects , though not having deep expertise in it. Currently i need to revamp a flash website done by one another guy, and the code base given to me, upon execution is throwing the following error. "--- TypeError: Error #1009: Cannot access a property or method of a null object reference. at NewSite_fla::MainTimeline/__setProp_ContactOutP1_ContactOut_Contents_0() at NewSite_fla::MainTimeline/frame1() --" The structure of the project is like, it has the different sections split into different movie clips. There is no single main timeline, but click actions on different areas of seperate movie clips will take them between one another. All the AS logic of event handling are written inline in FLA , no seperate Document class exists. Preloader Movie clip is the first one getting loaded. As i understood the error is getting thrown initially itself, and it is not happening due to any Action script logic written inline, because it is throwing error even before hitting the first inline AS code. I am not able to figure Out what exactly it causing the problem, or where to resolve it. I really got stuck at this point. Any help will be great.I had not seen the particular solution i am looking for anywhere yet, though Error #1009 is common. I uploaded the fla, here ( http://tinyurl.com/249e95p ), for reference.It may not be working , since the included/refered video files and all are not there, but reviwing the action code/movie clips will be possible. Please let me know if somebody will be able to trace the issue exactly.

    Read the article

  • The dynamic Type in C# Simplifies COM Member Access from Visual FoxPro

    - by Rick Strahl
    I’ve written quite a bit about Visual FoxPro interoperating with .NET in the past both for ASP.NET interacting with Visual FoxPro COM objects as well as Visual FoxPro calling into .NET code via COM Interop. COM Interop with Visual FoxPro has a number of problems but one of them at least got a lot easier with the introduction of dynamic type support in .NET. One of the biggest problems with COM interop has been that it’s been really difficult to pass dynamic objects from FoxPro to .NET and get them properly typed. The only way that any strong typing can occur in .NET for FoxPro components is via COM type library exports of Visual FoxPro components. Due to limitations in Visual FoxPro’s type library support as well as the dynamic nature of the Visual FoxPro language where few things are or can be described in the form of a COM type library, a lot of useful interaction between FoxPro and .NET required the use of messy Reflection code in .NET. Reflection is .NET’s base interface to runtime type discovery and dynamic execution of code without requiring strong typing. In FoxPro terms it’s similar to EVALUATE() functionality albeit with a much more complex API and corresponiding syntax. The Reflection APIs are fairly powerful, but they are rather awkward to use and require a lot of code. Even with the creation of wrapper utility classes for common EVAL() style Reflection functionality dynamically access COM objects passed to .NET often is pretty tedious and ugly. Let’s look at a simple example. In the following code I use some FoxPro code to dynamically create an object in code and then pass this object to .NET. An alternative to this might also be to create a new object on the fly by using SCATTER NAME on a database record. How the object is created is inconsequential, other than the fact that it’s not defined as a COM object – it’s a pure FoxPro object that is passed to .NET. Here’s the code: *** Create .NET COM InstanceloNet = CREATEOBJECT('DotNetCom.DotNetComPublisher') *** Create a Customer Object Instance (factory method) loCustomer = GetCustomer() loCustomer.Name = "Rick Strahl" loCustomer.Company = "West Wind Technologies" loCustomer.creditLimit = 9999999999.99 loCustomer.Address.StreetAddress = "32 Kaiea Place" loCustomer.Address.Phone = "808 579-8342" loCustomer.Address.Email = "[email protected]" *** Pass Fox Object and echo back values ? loNet.PassRecordObject(loObject) RETURN FUNCTION GetCustomer LOCAL loCustomer, loAddress loCustomer = CREATEOBJECT("EMPTY") ADDPROPERTY(loCustomer,"Name","") ADDPROPERTY(loCustomer,"Company","") ADDPROPERTY(loCUstomer,"CreditLimit",0.00) ADDPROPERTY(loCustomer,"Entered",DATETIME()) loAddress = CREATEOBJECT("Empty") ADDPROPERTY(loAddress,"StreetAddress","") ADDPROPERTY(loAddress,"Phone","") ADDPROPERTY(loAddress,"Email","") ADDPROPERTY(loCustomer,"Address",loAddress) RETURN loCustomer ENDFUNC Now prior to .NET 4.0 you’d have to access this object passed to .NET via Reflection and the method code to do this would looks something like this in the .NET component: public string PassRecordObject(object FoxObject) { // *** using raw Reflection string Company = (string) FoxObject.GetType().InvokeMember( "Company", BindingFlags.GetProperty,null, FoxObject,null); // using the easier ComUtils wrappers string Name = (string) ComUtils.GetProperty(FoxObject,"Name"); // Getting Address object – then getting child properties object Address = ComUtils.GetProperty(FoxObject,"Address");    string Street = (string) ComUtils.GetProperty(FoxObject,"StreetAddress"); // using ComUtils 'Ex' functions you can use . Syntax     string StreetAddress = (string) ComUtils.GetPropertyEx(FoxObject,"AddressStreetAddress"); return Name + Environment.NewLine + Company + Environment.NewLine + StreetAddress + Environment.NewLine + " FOX"; } Note that the FoxObject is passed in as type object which has no specific type. Since the object doesn’t exist in .NET as a type signature the object is passed without any specific type information as plain non-descript object. To retrieve a property the Reflection APIs like Type.InvokeMember or Type.GetProperty().GetValue() etc. need to be used. I made this code a little simpler by using the Reflection Wrappers I mentioned earlier but even with those ComUtils calls the code is pretty ugly requiring passing the objects for each call and casting each element. Using .NET 4.0 Dynamic Typing makes this Code a lot cleaner Enter .NET 4.0 and the dynamic type. Replacing the input parameter to the .NET method from type object to dynamic makes the code to access the FoxPro component inside of .NET much more natural: public string PassRecordObjectDynamic(dynamic FoxObject) { // *** using raw Reflection string Company = FoxObject.Company; // *** using the easier ComUtils class string Name = FoxObject.Name; // *** using ComUtils 'ex' functions to use . Syntax string Address = FoxObject.Address.StreetAddress; return Name + Environment.NewLine + Company + Environment.NewLine + Address + Environment.NewLine + " FOX"; } As you can see the parameter is of type dynamic which as the name implies performs Reflection lookups and evaluation on the fly so all the Reflection code in the last example goes away. The code can use regular object ‘.’ syntax to reference each of the members of the object. You can access properties and call methods this way using natural object language. Also note that all the type casts that were required in the Reflection code go away – dynamic types like var can infer the type to cast to based on the target assignment. As long as the type can be inferred by the compiler at compile time (ie. the left side of the expression is strongly typed) no explicit casts are required. Note that although you get to use plain object syntax in the code above you don’t get Intellisense in Visual Studio because the type is dynamic and thus has no hard type definition in .NET . The above example calls a .NET Component from VFP, but it also works the other way around. Another frequent scenario is an .NET code calling into a FoxPro COM object that returns a dynamic result. Assume you have a FoxPro COM object returns a FoxPro Cursor Record as an object: DEFINE CLASS FoxData AS SESSION OlePublic cAppStartPath = "" FUNCTION INIT THIS.cAppStartPath = ADDBS( JustPath(Application.ServerName) ) SET PATH TO ( THIS.cAppStartpath ) ENDFUNC FUNCTION GetRecord(lnPk) LOCAL loCustomer SELECT * FROM tt_Cust WHERE pk = lnPk ; INTO CURSOR TCustomer IF _TALLY < 1 RETURN NULL ENDIF SCATTER NAME loCustomer MEMO RETURN loCustomer ENDFUNC ENDDEFINE If you call this from a .NET application you can now retrieve this data via COM Interop and cast the result as dynamic to simplify the data access of the dynamic FoxPro type that was created on the fly: int pk = 0; int.TryParse(Request.QueryString["id"],out pk); // Create Fox COM Object with Com Callable Wrapper FoxData foxData = new FoxData(); dynamic foxRecord = foxData.GetRecord(pk); string company = foxRecord.Company; DateTime entered = foxRecord.Entered; This code looks simple and natural as it should be – heck you could write code like this in days long gone by in scripting languages like ASP classic for example. Compared to the Reflection code that previously was necessary to run similar code this is much easier to write, understand and maintain. For COM interop and Visual FoxPro operation dynamic type support in .NET 4.0 is a huge improvement and certainly makes it much easier to deal with FoxPro code that calls into .NET. Regardless of whether you’re using COM for calling Visual FoxPro objects from .NET (ASP.NET calling a COM component and getting a dynamic result returned) or whether FoxPro code is calling into a .NET COM component from a FoxPro desktop application. At one point or another FoxPro likely ends up passing complex dynamic data to .NET and for this the dynamic typing makes coding much cleaner and more readable without having to create custom Reflection wrappers. As a bonus the dynamic runtime that underlies the dynamic type is fairly efficient in terms of making Reflection calls especially if members are repeatedly accessed. © Rick Strahl, West Wind Technologies, 2005-2010Posted in COM  FoxPro  .NET  CSharp  

    Read the article

  • Make your CHM Help Files show HTML5 and CSS3 content

    - by Rick Strahl
    The HTML Help 1.0 specification aka CHM files, is pretty old. In fact, it's practically ancient as it was introduced in 1997 when Internet Explorer 4 was introduced. Html Help 1.0 is basically a completely HTML based Help system that uses a Help Viewer that internally uses Internet Explorer to render the HTML Help content. Because of its use of the Internet Explorer shell for rendering there were many security issues in the past, which resulted in locking down of the Web Browser control in Windows and also the Help Engine which caused some unfortunate side effects. Even so, CHM continues to be a popular help format because it is very easy to produce content for it, using plain HTML and because it works with many Windows application platforms out of the box. While there have been various attempts to replace CHM help files CHM files still seem to be a popular choice for many applications to display their help systems. The biggest alternative these days is no system based help at all, but links to online documentation. For Windows apps though it's still very common to see CHM help files and there are still a ton of CHM help out there and lots of tools (including our own West Wind Html Help Builder) that produce output for CHM files as well as Web output. Image is Everything and you ain't got it! One problem with the CHM engine is that it's stuck with an ancient Internet Explorer version for rendering. For example if you have help content that uses HTML5 or CSS3 content you might have an HTML Help topic like the following shown here in a full Web Browser instance of Internet Explorer: The page clearly uses some CSS3 features like rounded corners and box shadows that are rendered using plain CSS 3 features. Note that I used Internet Explorer on purpose here to demonstrate that IE9 on Windows 7 can properly render this content using some of the new features of CSS, but the same is true for all other recent versions of the major browsers (FireFox 3.1+, Safari 4.5+, WebKit 9+ etc.). Unfortunately if you take this nice and simple CSS3 content and run it through the HTML Help compiler to produce a CHM file the resulting output on the same machine looks a bit less flashy: All the CSS3 styling is gone and although the page display and functionality still works, but all the extra styling features are gone. This even though I am running this on a Windows 7 machine that has IE9 that should be able to render these CSS features. Bummer. Web Browser Control - perpetually stuck in IE 7 Mode The problem is the Web Browser/Shell Components in Windows. This component is and has been part of Windows for as long as Internet Explorer has been around, but the Web Browser control hasn't kept up with the latest versions of IE. In a nutshell the control is stuck in IE7 rendering mode for engine compatibility reasons by default. However, there is at least one way to fix this explicitly using Registry keys on a per application basis. The key point from that blog article is that you can override the IE rendering engine for a particular executable by setting one (or more) registry flags that tell the Windows Shell which version of the Internet Explorer rendering engine to load. An application that wishes to use a more recent version of Internet Explorer can then register itself during installation for the specific IE version desired and from then on the application will use that version of the Web Browser component. If the application is older than the specified version it falls back to the default version (IE 7 rendering). Forcing CHM files to display with IE9 (or later) Rendering Knowing that we can force the IE usage for a given process it's also possible to affect the CHM rendering by setting same keys on the executable that's hosting the CHM file. What that executable file is depends on the type of application as there are a number of ways that can launch the help engine. hh.exeThe standalone Windows CHM Help Viewer that launches when you launch a CHM from Windows Explorer. You can manually add hh.exe to the registry keys. YourApplication.exeIf you're using .NET or any tool that internally uses the hhControl ActiveX control to launch help content your application is your host. You should add your application's exe to the registry during application startup. foxhhelp9.exeIf you're building a FoxPro application that uses the built-in help features, foxhhelp9.exe is used to actually host the help controls. Make sure to add this executable to the registry. What to set You can configure the Internet Explorer version used for an application in the registry by specifying the executable file name and a value that specifies the IE version desired. There are two different sets of keys for 32 bit and 64 bit applications. 32 bit only or 64 bit: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\MAIN\FeatureControl\FEATURE_BROWSER_EMULATION Value Key: hh.exe 32 bit on 64 bit machine: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Internet Explorer\MAIN\FeatureControl\FEATURE_BROWSER_EMULATION Value Key: hh.exe Note that it's best to always set both values ideally when you install your application so it works regardless of which platform you run on. The value specified is a DWORD value and the interesting values are decimal 9000 for IE9 rendering mode depending on !DOCTYPE settings or 9999 for IE 9 standards mode always. You can use the same logic for 8000 and 8888 for IE8 and the final value of 7000 for IE7 (one has to wonder what they're going todo for version 10 to perpetuate that pattern). I think 9000 is the value you'd most likely want to use. 9000 means that IE9 will be used for rendering but unless the right doctypes are used (XHTML and HTML5 specifically) IE will still fall back into quirks mode as needed. This should allow existing pages to continue to use the fallback engine while new pages that have the proper HTML doctype set can take advantage of the newest features. Here's an example of how I set the registry keys in my Tarma Installmate registry configuration: Note that I set all three values both under the Software and Wow6432Node keys so that this works regardless of where these EXEs are launched from. Even though all apps are 32 bit apps, the 64 bit (the default one shown selected) key is often used. So, now once I've set the registry key for hh.exe I can now launch my CHM help file from Explorer and see the following CSS3 IE9 rendered display: Summary It sucks that we have to go through all these hoops to get what should be natural behavior for an application to support the latest features available on a system. But it shouldn't be a surprise - the Windows Help team (if there even is such a thing) has not been known for forward looking technologies. It's a pretty big hassle that we have to resort to setting registry keys in order to get the Web Browser control and the internal CHM engine to render itself properly but at least it's possible to make it work after all. Using this technique it's possible to ship an application with a help file and allow your CHM help to display with richer CSS markup and correct rendering using the stricter and more consistent XHTML or HTML5 doctypes. If you provide both Web help and in-application help (and why not if you're building from a single source) you now can side step the issue of your customers asking: Why does my help file look so much shittier than the online help… No more!© Rick Strahl, West Wind Technologies, 2005-2012Posted in HTML5  Help  Html Help Builder  Internet Explorer  Windows   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • RequestValidation Changes in ASP.NET 4.0

    - by Rick Strahl
    There’s been a change in the way the ValidateRequest attribute on WebForms works in ASP.NET 4.0. I noticed this today while updating a post on my WebLog all of which contain raw HTML and so all pretty much trigger request validation. I recently upgraded this app from ASP.NET 2.0 to 4.0 and it’s now failing to update posts. At first this was difficult to track down because of custom error handling in my app – the custom error handler traps the exception and logs it with only basic error information so the full detail of the error was initially hidden. After some more experimentation in development mode the error that occurs is the typical ASP.NET validate request error (‘A potentially dangerous Request.Form value was detetected…’) which looks like this in ASP.NET 4.0: At first when I got this I was real perplexed as I didn’t read the entire error message and because my page does have: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="NewEntry.aspx.cs" Inherits="Westwind.WebLog.NewEntry" MasterPageFile="~/App_Templates/Standard/AdminMaster.master" ValidateRequest="false" EnableEventValidation="false" EnableViewState="false" %> WTF? ValidateRequest would seem like it should be enough, but alas in ASP.NET 4.0 apparently that setting alone is no longer enough. Reading the fine print in the error explains that you need to explicitly set the requestValidationMode for the application back to V2.0 in web.config: <httpRuntime executionTimeout="300" requestValidationMode="2.0" /> Kudos for the ASP.NET team for putting up a nice error message that tells me how to fix this problem, but excuse me why the heck would you change this behavior to require an explicit override to an optional and by default disabled page level switch? You’ve just made a relatively simple fix to a solution a nasty morass of hard to discover configuration settings??? The original way this worked was perfectly discoverable via attributes in the page. Now you can set this setting in the page and get completely unexpected behavior and you are required to set what effectively amounts to a backwards compatibility flag in the configuration file. It turns out the real reason for the .config flag is that the request validation behavior has moved from WebForms pipeline down into the entire ASP.NET/IIS request pipeline and is now applied against all requests. Here’s what the breaking changes page from Microsoft says about it: The request validation feature in ASP.NET provides a certain level of default protection against cross-site scripting (XSS) attacks. In previous versions of ASP.NET, request validation was enabled by default. However, it applied only to ASP.NET pages (.aspx files and their class files) and only when those pages were executing. In ASP.NET 4, by default, request validation is enabled for all requests, because it is enabled before the BeginRequest phase of an HTTP request. As a result, request validation applies to requests for all ASP.NET resources, not just .aspx page requests. This includes requests such as Web service calls and custom HTTP handlers. Request validation is also active when custom HTTP modules are reading the contents of an HTTP request. As a result, request validation errors might now occur for requests that previously did not trigger errors. To revert to the behavior of the ASP.NET 2.0 request validation feature, add the following setting in the Web.config file: <httpRuntime requestValidationMode="2.0" /> However, we recommend that you analyze any request validation errors to determine whether existing handlers, modules, or other custom code accesses potentially unsafe HTTP inputs that could be XSS attack vectors. Ok, so ValidateRequest of the form still works as it always has but it’s actually the ASP.NET Event Pipeline, not WebForms that’s throwing the above exception as request validation is applied to every request that hits the pipeline. Creating the runtime override removes the HttpRuntime checking and restores the WebForms only behavior. That fixes my immediate problem but still leaves me wondering especially given the vague wording of the above explanation. One thing that’s missing in the description is above is one important detail: The request validation is applied only to application/x-www-form-urlencoded POST content not to all inbound POST data. When I first read this this freaked me out because it sounds like literally ANY request hitting the pipeline is affected. To make sure this is not really so I created a quick handler: public class Handler1 : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World <hr>" + context.Request.Form.ToString()); } public bool IsReusable { get { return false; } } } and called it with Fiddler by posting some XML to the handler using a default form-urlencoded POST content type: and sure enough – hitting the handler also causes the request validation error and 500 server response. Changing the content type to text/xml effectively fixes the problem however, bypassing the request validation filter so Web Services/AJAX handlers and custom modules/handlers that implement custom protocols aren’t affected as long as they work with special input content types. It also looks that multipart encoding does not trigger event validation of the runtime either so this request also works fine: POST http://rasnote/weblog/handler1.ashx HTTP/1.1 Content-Type: multipart/form-data; boundary=------7cf2a327f01ae User-Agent: West Wind Internet Protocols 5.53 Host: rasnote Content-Length: 40 Pragma: no-cache <xml>asdasd</xml>--------7cf2a327f01ae *That* probably should trigger event validation – since it is a potential HTML form submission, but it doesn’t. New Runtime Feature, Global Scope Only? Ok, so request validation is now a runtime feature but sadly it’s a feature that’s scoped to the ASP.NET Runtime – effective scope to the entire running application/app domain. You can still manually force validation using Request.ValidateInput() which gives you the option to do this in code, but that realistically will only work with the requestValidationMode set to V2.0 as well since the 4.0 mode auto-fires before code ever gets a chance to intercept the call. Given all that, the new setting in ASP.NET 4.0 seems to limit options and makes things more difficult and less flexible. Of course Microsoft gets to say ASP.NET is more secure by default because of it but what good is that if you have to turn off this flag the very first time you need to allow one single request that bypasses request validation??? This is really shortsighted design… <sigh>© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • No Preview Images in File Open Dialogs on Windows 7

    - by Rick Strahl
    I’ve been updating some file uploader code in my photoalbum today and while I was working with the uploader I noticed that the File Open dialog using Silverlight that handles the file selections didn’t allow me to ever see an image preview for image files. It sure would be nice if I could preview the images I’m about to upload before selecting them from a list. Here’s what my list looked like: This is the Medium Icon view, but regardless of the views available including Content view only icons are showing up. Silverlight uses the standard Windows File Open Dialog so it uses all the same settings that apply to Explorer when displaying content. It turns out that the Customization options in particular are the problem here. Specifically the Always show icons, never thumbnails option: I had this option checked initially, because it’s one of the defenses against runaway random Explorer views that never stay set at my preferences. Alas, while this setting affects Explorer views apparently it also affects all dialog based views in the same way. Unchecking the option above brings back full thumbnailing for all content and icon views. Here’s the same Medium Icon view after turning the option off: which obviously works a whole lot better for selection of images. The bummer of this is that it’s not controllable at the dialog level – at least not in Silverlight. Dialogs obviously have different requirements than what you see in Explorer so the global configuration is a bit extreme especially when there are no overrides on the dialog interface. Certainly for Silverlight the ability to have previews is a key feature for many applications since it will be dealing with lots of media content most likely. Hope this helps somebody out. Thanks to Tim Heuer who helped me track this down on Twitter.© Rick Strahl, West Wind Technologies, 2005-2010Posted in Silverlight  Windows  

    Read the article

  • Set-Cookie Headers getting stripped in ASP.NET HttpHandlers

    - by Rick Strahl
    Yikes, I ran into a real bummer of an edge case yesterday in one of my older low level handler implementations (for West Wind Web Connection in this case). Basically this handler is a connector for a backend Web framework that creates self contained HTTP output. An ASP.NET Handler captures the full output, and then shoves the result down the ASP.NET Response object pipeline writing out the content into the Response.OutputStream and seperately sending the HttpHeaders in the Response.Headers collection. The headers turned out to be the problem and specifically Http Cookies, which for some reason ended up getting stripped out in some scenarios. My handler works like this: Basically the HTTP response from the backend app would return a full set of HTTP headers plus the content. The ASP.NET handler would read the headers one at a time and then dump them out via Response.AppendHeader(). But I found that in some situations Set-Cookie headers sent along were simply stripped inside of the Http Handler. After a bunch of back and forth with some folks from Microsoft (thanks Damien and Levi!) I managed to pin this down to a very narrow edge scenario. It's easiest to demonstrate the problem with a simple example HttpHandler implementation. The following simulates the very much simplified output generation process that fails in my handler. Specifically I have a couple of headers including a Set-Cookie header and some output that gets written into the Response object.using System.Web; namespace wwThreads { public class Handler : IHttpHandler { /* NOTE: * * Run as a web.config set handler (see entry below) * * Best way is to look at the HTTP Headers in Fiddler * or Chrome/FireBug/IE tools and look for the * WWHTREADSID cookie in the outgoing Response headers * ( If the cookie is not there you see the problem! ) */ public void ProcessRequest(HttpContext context) { HttpRequest request = context.Request; HttpResponse response = context.Response; // If ClearHeaders is used Set-Cookie header gets removed! // if commented header is sent... response.ClearHeaders(); response.ClearContent(); // Demonstrate that other headers make it response.AppendHeader("RequestId", "asdasdasd"); // This cookie gets removed when ClearHeaders above is called // When ClearHEaders is omitted above the cookie renders response.AppendHeader("Set-Cookie", "WWTHREADSID=ThisIsThEValue; path=/"); // *** This always works, even when explicit // Set-Cookie above fails and ClearHeaders is called //response.Cookies.Add(new HttpCookie("WWTHREADSID", "ThisIsTheValue")); response.Write(@"Output was created.<hr/> Check output with Fiddler or HTTP Proxy to see whether cookie was sent."); } public bool IsReusable { get { return false; } } } } In order to see the problem behavior this code has to be inside of an HttpHandler, and specifically in a handler defined in web.config with: <add name=".ck_handler" path="handler.ck" verb="*" type="wwThreads.Handler" preCondition="integratedMode" /> Note: Oddly enough this problem manifests only when configured through web.config, not in an ASHX handler, nor if you paste that same code into an ASPX page or MVC controller. What's the problem exactly? The code above simulates the more complex code in my live handler that picks up the HTTP response from the backend application and then peels out the headers and sends them one at a time via Response.AppendHeader. One of the headers in my app can be one or more Set-Cookie. I found that the Set-Cookie headers were not making it into the Response headers output. Here's the Chrome Http Inspector trace: Notice, no Set-Cookie header in the Response headers! Now, running the very same request after removing the call to Response.ClearHeaders() command, the cookie header shows up just fine: As you might expect it took a while to track this down. At first I thought my backend was not sending the headers but after closer checks I found that indeed the headers were set in the backend HTTP response, and they were indeed getting set via Response.AppendHeader() in the handler code. Yet, no cookie in the output. In the simulated example the problem is this line:response.AppendHeader("Set-Cookie", "WWTHREADSID=ThisIsThEValue; path=/"); which in my live code is more dynamic ( ie. AppendHeader(token[0],token[1[]) )as it parses through the headers. Bizzaro Land: Response.ClearHeaders() causes Cookie to get stripped Now, here is where it really gets bizarre: The problem occurs only if: Response.ClearHeaders() was called before headers are added It only occurs in Http Handlers declared in web.config Clearly this is an edge of an edge case but of course - knowing my relationship with Mr. Murphy - I ended up running smack into this problem. So in the code above if you remove the call to ClearHeaders(), the cookie gets set!  Add it back in and the cookie is not there. If I run the above code in an ASHX handler it works. If I paste the same code (with a Response.End()) into an ASPX page, or MVC controller it all works. Only in the HttpHandler configured through Web.config does it fail! Cue the Twilight Zone Music. Workarounds As is often the case the fix for this once you know the problem is not too difficult. The difficulty lies in tracking inconsistencies like this down. Luckily there are a few simple workarounds for the Cookie issue. Don't use AppendHeader for Cookies The easiest and obvious solution to this problem is simply not use Response.AppendHeader() to set Cookies. Duh! Under normal circumstances in application level code there's rarely a reason to write out a cookie like this:response.AppendHeader("Set-Cookie", "WWTHREADSID=ThisIsThEValue; path=/"); but rather create the cookie using the Response.Cookies collection:response.Cookies.Add(new HttpCookie("WWTHREADSID", "ThisIsTheValue")); Unfortunately, in my case where I dynamically read headers from the original output and then dynamically  write header key value pairs back  programmatically into the Response.Headers collection, I actually don't look at each header specifically so in my case the cookie is just another header. My first thought was to simply trap for the Set-Cookie header and then parse out the cookie and create a Cookie object instead. But given that cookies can have a lot of different options this is not exactly trivial, plus I don't really want to fuck around with cookie values which can be notoriously brittle. Don't use Response.ClearHeaders() The real mystery in all this is why calling Response.ClearHeaders() prevents a cookie value later written with Response.AppendHeader() to fail. I fired up Reflector and took a quick look at System.Web and HttpResponse.ClearHeaders. There's all sorts of resetting going on but nothing that seems to indicate that headers should be removed later on in the request. The code in ClearHeaders() does access the HttpWorkerRequest, which is the low level interface directly into IIS, and so I suspect it's actually IIS that's stripping the headers and not ASP.NET, but it's hard to know. Somebody from Microsoft and the IIS team would have to comment on that. In my application it's probably safe to simply skip ClearHeaders() in my handler. The ClearHeaders/ClearContent was mainly for safety but after reviewing my code there really should never be a reason that headers would be set prior to this method firing. However, if for whatever reason headers do need to be cleared, it's easy enough to manually clear the headers out:private void RemoveHeaders(HttpResponse response) { List<string> headers = new List<string>(); foreach (string header in response.Headers) { headers.Add(header); } foreach (string header in headers) { response.Headers.Remove(header); } response.Cookies.Clear(); } Now I can replace the call the Response.ClearHeaders() and I don't get the funky side-effects from Response.ClearHeaders(). Summary I realize this is a total edge case as this occurs only in HttpHandlers that are manually configured. It looks like you'll never run into this in any of the higher level ASP.NET frameworks or even in ASHX handlers - only web.config defined handlers - which is really, really odd. After all those frameworks use the same underlying ASP.NET architecture. Hopefully somebody from Microsoft has an idea what crazy dependency was triggered here to make this fail. IAC, there are workarounds to this should you run into it, although I bet when you do run into it, it'll likely take a bit of time to find the problem or even this post in a search because it's not easily to correlate the problem to the solution. It's quite possible that more than cookies are affected by this behavior. Searching for a solution I read a few other accounts where headers like Referer were mysteriously disappearing, and it's possible that something similar is happening in those cases. Again, extreme edge case, but I'm writing this up here as documentation for myself and possibly some others that might have run into this. © Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   IIS7   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Debugging .NET 2.0 assembly from unmanaged code in VS2010?

    - by Rick Strahl
    I’ve run into a serious snag trying to debug a .NET 2.0 assembly that is called from unmanaged code in Visual Studio 2010. I maintain a host of components that using COM interop and custom .NET runtime hosting and ever since installing Visual Studio 2010 I’ve been utterly blocked by VS 2010’s inability to apparently debug .NET 2.0 assemblies when launching through unmanaged code. Here’s what I’m actually doing (simplified scenario to demonstrate): I have a .NET 2.0 assembly that is compiled for COM Interop Compile project with .NET 2.0 target and register for COM Interop Set a breakpoint in the .NET component in one of the class methods Instantiate the .NET component via COM interop and call method The result is that the COM call works fine but the debugger never triggers on the breakpoint. If I now take that same assembly and target it at .NET 4.0 without any other changes everything works as expected – the breakpoint set in the assembly project triggers just fine. The easy answer to this problem seems to be “Just switch to .NET 4.0” but unfortunately the application and the way the runtime is actually hosted has a few complications. Specifically the runtime hosting uses .NET 2.0 hosting and apparently the only reliable way to host the .NET 4.0 runtime is to use the new hosting APIs that are provided only with .NET 4.0 (which all by itself is lame, lame, lame as once again the promise of backwards compatibility is broken once again by .NET). So for the moment I need to continue using the .NET 2.0 hosting APIs due to application requirements. I’ve been searching high and low and experimenting back and forth, posted a few questions on the MSDN forums but haven’t gotten any hints on what might be causing the apparent failure of Visual Studio 2010 to debug my .NET 2.0 assembly properly when called from un-managed code. Incidentally debugging .NET 2.0 targeted assemblies works fine when running with a managed startup application – it seems the issue is specific to the unmanaged code starting up. My particular issue is with custom runtime hosting which at first I thought was the problem. But the same issue manifests when using COM Interop against a .NET 2.0 assembly, so the hosting is probably not the issue. Curious if anybody has any ideas on what could be causing the lack of debugging in this scenario?© Rick Strahl, West Wind Technologies, 2005-2010

    Read the article

  • jQuery CSS Property Monitoring Plug-in updated

    - by Rick Strahl
    A few weeks back I had talked about the need to watch properties of an object and be able to take action when certain values changed. The need for this arose out of wanting to build generic components that could 'attach' themselves to other objects. One example is a drop shadow - if I add a shadow behavior to an object I want the shadow to be pinned to that object so when that object moves I also want the shadow to move with it, or when the panel is hidden the shadow should hide with it - automatically without having to explicitly hook up monitoring code to the panel. For example, in my shadow plug-in I can now do something like this (where el is the element that has the shadow attached and sh is the shadow): if (!exists) // if shadow was created el.watch("left,top,width,height,display", function() { if (el.is(":visible")) $(this).shadow(opt); // redraw else sh.hide(); }, 100, "_shadowMove"); The code now monitors several properties and if any of them change the provided function is called. So when the target object is moved or hidden or resized the watcher function is called and the shadow can be redrawn or hidden in the case of visibility going away. So if you run any of the following code: $("#box") .shadow() .draggable({ handle: ".blockheader" }); // drag around the box - shadow should follow // hide the box - shadow should disappear with box setTimeout(function() { $("#box").hide(); }, 4000); // show the box - shadow should come back too setTimeout(function() { $("#box").show(); }, 8000); This can be very handy functionality when you're dealing with objects or operations that you need to track generically and there are no native events for them. For example, with a generic shadow object that attaches itself to any another element there's no way that I know of to track whether the object has been moved or hidden either via some UI operation (like dragging) or via code. While some UI operations like jQuery.ui.draggable would allow events to fire when the mouse is moved nothing of the sort exists if you modify locations in code. Even tracking the object in drag mode this is hardly generic behavior - a generic shadow implementation can't know when dragging is hooked up. So the watcher provides an alternative that basically gives an Observer like pattern that notifies you when something you're interested in changes. In the watcher hookup code (in the shadow() plugin) above  a check is made if the object is visible and if it is the shadow is redrawn. Otherwise the shadow is hidden. The first parameter is a list of CSS properties to be monitored followed by the function that is called. The function called receives this as the element that's been changed and receives two parameters: The array of watched objects with their current values, plus an index to the object that caused the change function to fire. How does it work When I wrote it about this last time I started out with a simple timer that would poll for changes at a fixed interval with setInterval(). A few folks commented that there are is a DOM API - DOMAttrmodified in Mozilla and propertychange in IE that allow notification whenever any property changes which is much more efficient and smooth than the setInterval approach I used previously. On browser that support these events (FireFox and IE basically - WebKit has the DOMAttrModified event but it doesn't appear to work) the shadow effect is instant - no 'drag behind' of the shadow. Running on a browser that doesn't support still uses setInterval() and the shadow movement is slightly delayed which looks sloppy. There are a few additional changes to this code - it also supports monitoring multiple CSS properties now so a single object can monitor a host of CSS properties rather than one object per property which is easier to work with. For display purposes position, bounds and visibility will be common properties that are to be watched. Here's what the new version looks like: $.fn.watch = function (props, func, interval, id) { /// <summary> /// Allows you to monitor changes in a specific /// CSS property of an element by polling the value. /// when the value changes a function is called. /// The function called is called in the context /// of the selected element (ie. this) /// </summary> /// <param name="prop" type="String">CSS Properties to watch sep. by commas</param> /// <param name="func" type="Function"> /// Function called when the value has changed. /// </param> /// <param name="interval" type="Number"> /// Optional interval for browsers that don't support DOMAttrModified or propertychange events. /// Determines the interval used for setInterval calls. /// </param> /// <param name="id" type="String">A unique ID that identifies this watch instance on this element</param> /// <returns type="jQuery" /> if (!interval) interval = 200; if (!id) id = "_watcher"; return this.each(function () { var _t = this; var el$ = $(this); var fnc = function () { __watcher.call(_t, id) }; var itId = null; var data = { id: id, props: props.split(","), func: func, vals: [props.split(",").length], fnc: fnc, origProps: props, interval: interval }; $.each(data.props, function (i) { data.vals[i] = el$.css(data.props[i]); }); el$.data(id, data); hookChange(el$, id, data.fnc); }); function hookChange(el$, id, fnc) { el$.each(function () { var el = $(this); if (typeof (el.get(0).onpropertychange) == "object") el.bind("propertychange." + id, fnc); else if ($.browser.mozilla) el.bind("DOMAttrModified." + id, fnc); else itId = setInterval(fnc, interval); }); } function __watcher(id) { var el$ = $(this); var w = el$.data(id); if (!w) return; var _t = this; if (!w.func) return; // must unbind or else unwanted recursion may occur el$.unwatch(id); var changed = false; var i = 0; for (i; i < w.props.length; i++) { var newVal = el$.css(w.props[i]); if (w.vals[i] != newVal) { w.vals[i] = newVal; changed = true; break; } } if (changed) w.func.call(_t, w, i); // rebind event hookChange(el$, id, w.fnc); } } $.fn.unwatch = function (id) { this.each(function () { var el = $(this); var fnc = el.data(id).fnc; try { if (typeof (this.onpropertychange) == "object") el.unbind("propertychange." + id, fnc); else if ($.browser.mozilla) el.unbind("DOMAttrModified." + id, fnc); else clearInterval(id); } // ignore if element was already unbound catch (e) { } }); return this; } There are basically two jQuery functions - watch and unwatch. jQuery.fn.watch(props,func,interval,id) Starts watching an element for changes in the properties specified. props The CSS properties that are to be watched for changes. If any of the specified properties changes the function specified in the second parameter is fired. func (watchData,index) The function fired in response to a changed property. Receives this as the element changed and object that represents the watched properties and their respective values. The first parameter is passed in this structure:    { id: itId, props: [], func: func, vals: [] }; A second parameter is the index of the changed property so data.props[i] or data.vals[i] gets the property value that has changed. interval The interval for setInterval() for those browsers that don't support property watching in the DOM. In milliseconds. id An optional id that identifies this watcher. Required only if multiple watchers might be hooked up to the same element. The default is _watcher if not specified. jQuery.fn.unwatch(id) Unhooks watching of the element by disconnecting the event handlers. id Optional watcher id that was specified in the call to watch. This value can be omitted to use the default value of _watcher. You can also grab the latest version of the  code for this plug-in as well as the shadow in the full library at: http://www.west-wind.com:8080/svn/jquery/trunk/jQueryControls/Resources/ww.jquery.js watcher has no other dependencies although it lives in this larger library. The shadow plug-in depends on watcher.© Rick Strahl, West Wind Technologies, 2005-2011

    Read the article

  • C# node graph api to use

    - by wind
    I need display a node graph in c# and find the short possible path(figure 10 of http://msdn.microsoft.com/en-us/library/aa289152(VS.71).aspx). What API can i use to draw out all the node and link? Anyone can advise?

    Read the article

  • Compiling cpp code in netbeans produce errors, how to solve it ?

    - by Rupertt Wind
    i use the netbeans with MinGW and MYSY make /debugger but when i compile a basic cpp code in it and run it it produces two erorrs this is the code runned and the output![alt text][1] box #include <iostream> void main() { cout << "Hello World!" << endl; cout << "Welcome to C++ Programming" << endl; } output is /usr/bin/make -f nbproject/Makefile-Debug.mk SUBPROJECTS= .build-conf make[1]: Entering directory `/d/Users/Home/Documents/NetBeansProjects/newApp' /usr/bin/make -f nbproject/Makefile-Debug.mk dist/Debug/MinGW-Windows/newapp.exe make[2]: Entering directory `/d/Users/Home/Documents/NetBeansProjects/newApp' mkdir -p dist/Debug/MinGW-Windows g++.exe -o dist/Debug/MinGW-Windows/newapp build/Debug/MinGW-Windows/newmain.o build/Debug/MinGW-Windows/newfile.o build/Debug/MinGW-Windows/main.o build/Debug/MinGW-Windows/newfile.o: In function `main': D:/Users/Home/Documents/NetBeansProjects/newApp/newfile.cpp:5: multiple definition of `main' build/Debug/MinGW-Windows/newmain.o:D:/Users/Home/Documents/NetBeansProjects/newApp/newmain.c:15: first defined here build/Debug/MinGW-Windows/main.o: In function `main': D:/Users/Home/Documents/NetBeansProjects/newApp/main.cpp:13: multiple definition of `main' build/Debug/MinGW-Windows/newmain.o:D:/Users/Home/Documents/NetBeansProjects/newApp/newmain.c:15: first defined here collect2: ld returned 1 exit status make[2]: *** [dist/Debug/MinGW-Windows/newapp.exe] Error 1 make[2]: Leaving directory `/d/Users/Home/Documents/NetBeansProjects/newApp' make[1]: *** [.build-conf] Error 2 make[1]: Leaving directory `/d/Users/Home/Documents/NetBeansProjects/newApp' make: *** [.build-impl] Error 2 BUILD FAILED (exit value 2, total time: 1s) how can i solve this ?

    Read the article

  • Query data using LINQ to SQL and Entity Framework with foreign key? (Help me please)

    - by The Wind
    Hello! There is a problem I need help with your query on the data using LINQ to SQL and Entity Framework (I'm using Visual Studio 2010). My picure here: http://img.tamtay.vn/files/photo2/2010/5/28/10/962/4bff3a3b_1093f58f_untitled-1.gif I have three tables: tbl NewsDetails tblNewsCategories tblNewsInCategories (See screen 1 in my picture) Now, I want to retrieve records in the tblNewsDetails table, with condition: CategoryId=1, as the following results: (See screen 2 in my picture) But NewsID and CategoryId in tblNewsInCategories table is two foreign key, I do not see them and I do not know how to use them in your code. My code has errors: (See screen 3 in my picture) Please help me. Thanks! (I am a new member, should not have the right to insert images)

    Read the article

  • Loading jQuery Consistently in a .NET Web App

    - by Rick Strahl
    One thing that frequently comes up in discussions when using jQuery is how to best load the jQuery library (as well as other commonly used and updated libraries) in a Web application. Specifically the issue is the one of versioning and making sure that you can easily update and switch versions of script files with application wide settings in one place and having your script usage reflect those settings in the entire application on all pages that use the script. Although I use jQuery as an example here, the same concepts can be applied to any script library - for example in my Web libraries I use the same approach for jQuery.ui and my own internal jQuery support library. The concepts used here can be applied both in WebForms and MVC. Loading jQuery Properly From CDN Before we look at a generic way to load jQuery via some server logic, let me first point out my preferred way to embed jQuery into the page. I use the Google CDN to load jQuery and then use a fallback URL to handle the offline or no Internet connection scenario. Why use a CDN? CDN links tend to be loaded more quickly since they are very likely to be cached in user's browsers already as jQuery CDN is used by many, many sites on the Web. Using a CDN also removes load from your Web server and puts the load bearing on the CDN provider - in this case Google - rather than on your Web site. On the downside, CDN links gives the provider (Google, Microsoft) yet another way to track users through their Web usage. Here's how I use jQuery CDN plus a fallback link on my WebLog for example: <!DOCTYPE HTML> <html> <head> <script src="//ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.min.js"></script> <script> if (typeof (jQuery) == 'undefined') document.write(unescape("%3Cscript " + "src='/Weblog/wwSC.axd?r=Westwind.Web.Controls.Resources.jquery.js' %3E%3C/script%3E")); </script> <title>Rick Strahl's Web Log</title> ... </head>   You can see that the CDN is referenced first, followed by a small script block that checks to see whether jQuery was loaded (jQuery object exists). If it didn't load another script reference is added to the document dynamically pointing to a backup URL. In this case my backup URL points at a WebResource in my Westwind.Web  assembly, but the URL can also be local script like src="/scripts/jquery.min.js". Important: Use the proper Protocol/Scheme for  for CDN Urls [updated based on comments] If you're using a CDN to load an external script resource you should always make sure that the script is loaded with the same protocol as the parent page to avoid mixed content warnings by the browser. You don't want to load a script link to an http:// resource when you're on an https:// page. The easiest way to use this is by using a protocol relative URL: <script src="//ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.min.js"></script> which is an easy way to load resources from other domains. This URL syntax will automatically use the parent page's protocol (or more correctly scheme). As long as the remote domains support both http:// and https:// access this should work. BTW this also works in CSS (with some limitations) and links. BTW, I didn't know about this until it was pointed out in the comments. This is a very useful feature for many things - ah the benefits of my blog to myself :-) Version Numbers When you use a CDN you notice that you have to reference a specific version of jQuery. When using local files you may not have to do this as you can rename your private copy of jQuery.js, but for CDN the references are always versioned. The version number is of course very important to ensure you getting the version you have tested with, but it's also important to the provider because it ensures that cached content is always correct. If an existing file was updated the updates might take a very long time to get past the locally cached content and won't refresh properly. The version number ensures you get the right version and not some cached content that has been changed but not updated in your cache. On the other hand version numbers also mean that once you decide to use a new version of the script you now have to change all your script references in your pages. Depending on whether you use some sort of master/layout page or not this may or may not be easy in your application. Even if you do use master/layout pages, chances are that you probably have a few of them and at the very least all of those have to be updated for the scripts. If you use individual pages for all content this issue then spreads to all of your pages. Search and Replace in Files will do the trick, but it's still something that's easy to forget and worry about. Personaly I think it makes sense to have a single place where you can specify common script libraries that you want to load and more importantly which versions thereof and where they are loaded from. Loading Scripts via Server Code Script loading has always been important to me and as long as I can remember I've always built some custom script loading routines into my Web frameworks. WebForms makes this fairly easy because it has a reasonably useful script manager (ClientScriptManager and the ScriptManager) which allow injecting script into the page easily from anywhere in the Page cycle. What's nice about these components is that they allow scripts to be injected by controls so components can wrap up complex script/resource dependencies more easily without having to require long lists of CSS/Scripts/Image includes. In MVC or pure script driven applications like Razor WebPages  the process is more raw, requiring you to embed script references in the right place. But its also more immediate - it lets you know exactly which versions of scripts to use because you have to manually embed them. In WebForms with different controls loading resources this often can get confusing because it's quite possible to load multiple versions of the same script library into a page, the results of which are less than optimal… In this post I look a simple routine that embeds jQuery into the page based on a few application wide configuration settings. It returns only a string of the script tags that can be manually embedded into a Page template. It's a small function that merely a string of the script tags shown at the begging of this post along with some options on how that string is comprised. You'll be able to specify in one place which version loads and then all places where the help function is used will automatically reflect this selection. Options allow specification of the jQuery CDN Url, the fallback Url and where jQuery should be loaded from (script folder, Resource or CDN in my case). While this is specific to jQuery you can apply this to other resources as well. For example I use a similar approach with jQuery.ui as well using practically the same semantics. Providing Resources in ControlResources In my Westwind.Web Web utility library I have a class called ControlResources which is responsible for holding resource Urls, resource IDs and string contants that reference those resource IDs. The library also provides a few helper methods for loading common scriptscripts into a Web page. There are specific versions for WebForms which use the ClientScriptManager/ScriptManager and script link methods that can be used in any .NET technology that can embed an expression into the output template (or code for that matter). The ControlResources class contains mostly static content - references to resources mostly. But it also contains a few static properties that configure script loading: A Script LoadMode (CDN, Resource, or script url) A default CDN Url A fallback url They are  static properties in the ControlResources class: public class ControlResources { /// <summary> /// Determines what location jQuery is loaded from /// </summary> public static JQueryLoadModes jQueryLoadMode = JQueryLoadModes.ContentDeliveryNetwork; /// <summary> /// jQuery CDN Url on Google /// </summary> public static string jQueryCdnUrl = "//ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.min.js"; /// <summary> /// jQuery CDN Url on Google /// </summary> public static string jQueryUiCdnUrl = "//ajax.googleapis.com/ajax/libs/jqueryui/1.8.16/jquery-ui.min.js"; /// <summary> /// jQuery UI fallback Url if CDN is unavailable or WebResource is used /// Note: The file needs to exist and hold the minimized version of jQuery ui /// </summary> public static string jQueryUiLocalFallbackUrl = "~/scripts/jquery-ui.min.js"; } These static properties are fixed values that can be changed at application startup to reflect your preferences. Since they're static they are application wide settings and respected across the entire Web application running. It's best to set these default in Application_Init or similar startup code if you need to change them for your application: protected void Application_Start(object sender, EventArgs e) { // Force jQuery to be loaded off Google Content Network ControlResources.jQueryLoadMode = JQueryLoadModes.ContentDeliveryNetwork; // Allow overriding of the Cdn url ControlResources.jQueryCdnUrl = "http://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js"; // Route to our own internal handler App.OnApplicationStart(); } With these basic settings in place you can then embed expressions into a page easily. In WebForms use: <!DOCTYPE html> <html> <head runat="server"> <%= ControlResources.jQueryLink() %> <script src="scripts/ww.jquery.min.js"></script> </head> In Razor use: <!DOCTYPE html> <html> <head> @Html.Raw(ControlResources.jQueryLink()) <script src="scripts/ww.jquery.min.js"></script> </head> Note that in Razor you need to use @Html.Raw() to force the string NOT to escape. Razor by default escapes string results and this ensures that the HTML content is properly expanded as raw HTML text. Both the WebForms and Razor output produce: <!DOCTYPE html> <html> <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof (jQuery) == 'undefined') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/WebResource.axd?d=-b6oWzgbpGb8uTaHDrCMv59VSmGhilZP5_T_B8anpGx7X-PmW_1eu1KoHDvox-XHqA1EEb-Tl2YAP3bBeebGN65tv-7-yAimtG4ZnoWH633pExpJor8Qp1aKbk-KQWSoNfRC7rQJHXVP4tC0reYzVw2&t=634535391996872492' type='text/javascript'%3E%3C/script%3E"));</script> <script src="scripts/ww.jquery.min.js"></script> </head> which produces the desired effect for both CDN load and fallback URL. The implementation of jQueryLink is pretty basic of course: /// <summary> /// Inserts a script link to load jQuery into the page based on the jQueryLoadModes settings /// of this class. Default load is by CDN plus WebResource fallback /// </summary> /// <param name="url"> /// An optional explicit URL to load jQuery from. Url is resolved. /// When specified no fallback is applied /// </param> /// <returns>full script tag and fallback script for jQuery to load</returns> public static string jQueryLink(JQueryLoadModes jQueryLoadMode = JQueryLoadModes.Default, string url = null) { string jQueryUrl = string.Empty; string fallbackScript = string.Empty; if (jQueryLoadMode == JQueryLoadModes.Default) jQueryLoadMode = ControlResources.jQueryLoadMode; if (!string.IsNullOrEmpty(url)) jQueryUrl = WebUtils.ResolveUrl(url); else if (jQueryLoadMode == JQueryLoadModes.WebResource) { Page page = new Page(); jQueryUrl = page.ClientScript.GetWebResourceUrl(typeof(ControlResources), ControlResources.JQUERY_SCRIPT_RESOURCE); } else if (jQueryLoadMode == JQueryLoadModes.ContentDeliveryNetwork) { jQueryUrl = ControlResources.jQueryCdnUrl; if (!string.IsNullOrEmpty(jQueryCdnUrl)) { // check if jquery loaded - if it didn't we're not online and use WebResource fallbackScript = @"<script type=""text/javascript"">if (typeof(jQuery) == 'undefined') document.write(unescape(""%3Cscript src='{0}' type='text/javascript'%3E%3C/script%3E""));</script>"; fallbackScript = string.Format(fallbackScript, WebUtils.ResolveUrl(ControlResources.jQueryCdnFallbackUrl)); } } string output = "<script src=\"" + jQueryUrl + "\" type=\"text/javascript\"></script>"; // add in the CDN fallback script code if (!string.IsNullOrEmpty(fallbackScript)) output += "\r\n" + fallbackScript + "\r\n"; return output; } There's one dependency here on WebUtils.ResolveUrl() which resolves Urls without access to a Page/Control (another one of those features that should be in the runtime, not in the WebForms or MVC engine). You can see there's only a little bit of logic in this code that deals with potentially different load modes. I can load scripts from a Url, WebResources or - my preferred way - from CDN. Based on the static settings the scripts to embed are composed to be returned as simple string <script> tag(s). I find this extremely useful especially when I'm not connected to the internet so that I can quickly swap in a local jQuery resource instead of loading from CDN. While CDN loading with the fallback works it can be a bit slow as the CDN is probed first before the fallback kicks in. Switching quickly in one place makes this trivial. It also makes it very easy once a new version of jQuery rolls around to move up to the new version and ensure that all pages are using the new version immediately. I'm not trying to make this out as 'the' definite way to load your resources, but rather provide it here as a pointer so you can maybe apply your own logic to determine where scripts come from and how they load. You could even automate this some more by using configuration settings or reading the locations/preferences out of some sort of data/metadata store that can be dynamically updated instead via recompilation. FWIW, I use a very similar approach for loading jQuery UI and my own ww.jquery library - the same concept can be applied to any kind of script you might be loading from different locations. Hopefully some of you find this a useful addition to your toolset. Resources Google CDN for jQuery Full ControlResources Source Code ControlResource Documentation Westwind.Web NuGet This method is part of the Westwind.Web library of the West Wind Web Toolkit or you can grab the Web library from NuGet and add to your Visual Studio project. This package includes a host of Web related utilities and script support features. © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  jQuery   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Where does ASP.NET Web API Fit?

    - by Rick Strahl
    With the pending release of ASP.NET MVC 4 and the new ASP.NET Web API, there has been a lot of discussion of where the new Web API technology fits in the ASP.NET Web stack. There are a lot of choices to build HTTP based applications available now on the stack - we've come a long way from when WebForms and Http Handlers/Modules where the only real options. Today we have WebForms, MVC, ASP.NET Web Pages, ASP.NET AJAX, WCF REST and now Web API as well as the core ASP.NET runtime to choose to build HTTP content with. Web API definitely squarely addresses the 'API' aspect - building consumable services - rather than HTML content, but even to that end there are a lot of choices you have today. So where does Web API fit, and when doesn't it? But before we get into that discussion, let's talk about what a Web API is and why we should care. What's a Web API? HTTP 'APIs' (Microsoft's new terminology for a service I guess)  are becoming increasingly more important with the rise of the many devices in use today. Most mobile devices like phones and tablets run Apps that are using data retrieved from the Web over HTTP. Desktop applications are also moving in this direction with more and more online content and synching moving into even traditional desktop applications. The pending Windows 8 release promises an app like platform for both the desktop and other devices, that also emphasizes consuming data from the Cloud. Likewise many Web browser hosted applications these days are relying on rich client functionality to create and manipulate the browser user interface, using AJAX rather than server generated HTML data to load up the user interface with data. These mobile or rich Web applications use their HTTP connection to return data rather than HTML markup in the form of JSON or XML typically. But an API can also serve other kinds of data, like images or other binary files, or even text data and HTML (although that's less common). A Web API is what feeds rich applications with data. ASP.NET Web API aims to service this particular segment of Web development by providing easy semantics to route and handle incoming requests and an easy to use platform to serve HTTP data in just about any content format you choose to create and serve from the server. But .NET already has various HTTP Platforms The .NET stack already includes a number of technologies that provide the ability to create HTTP service back ends, and it has done so since the very beginnings of the .NET platform. From raw HTTP Handlers and Modules in the core ASP.NET runtime, to high level platforms like ASP.NET MVC, Web Forms, ASP.NET AJAX and the WCF REST engine (which technically is not ASP.NET, but can integrate with it), you've always been able to handle just about any kind of HTTP request and response with ASP.NET. The beauty of the raw ASP.NET platform is that it provides you everything you need to build just about any type of HTTP application you can dream up from low level APIs/custom engines to high level HTML generation engine. ASP.NET as a core platform clearly has stood the test of time 10+ years later and all other frameworks like Web API are built on top of this ASP.NET core. However, although it's possible to create Web APIs / Services using any of the existing out of box .NET technologies, none of them have been a really nice fit for building arbitrary HTTP based APIs. Sure, you can use an HttpHandler to create just about anything, but you have to build a lot of plumbing to build something more complex like a comprehensive API that serves a variety of requests, handles multiple output formats and can easily pass data up to the server in a variety of ways. Likewise you can use ASP.NET MVC to handle routing and creating content in various formats fairly easily, but it doesn't provide a great way to automatically negotiate content types and serve various content formats directly (it's possible to do with some plumbing code of your own but not built in). Prior to Web API, Microsoft's main push for HTTP services has been WCF REST, which was always an awkward technology that had a severe personality conflict, not being clear on whether it wanted to be part of WCF or purely a separate technology. In the end it didn't do either WCF compatibility or WCF agnostic pure HTTP operation very well, which made for a very developer-unfriendly environment. Personally I didn't like any of the implementations at the time, so much so that I ended up building my own HTTP service engine (as part of the West Wind Web Toolkit), as have a few other third party tools that provided much better integration and ease of use. With the release of Web API for the first time I feel that I can finally use the tools in the box and not have to worry about creating and maintaining my own toolkit as Web API addresses just about all the features I implemented on my own and much more. ASP.NET Web API provides a better HTTP Experience ASP.NET Web API differentiates itself from the previous Microsoft in-box HTTP service solutions in that it was built from the ground up around the HTTP protocol and its messaging semantics. Unlike WCF REST or ASP.NET AJAX with ASMX, it’s a brand new platform rather than bolted on technology that is supposed to work in the context of an existing framework. The strength of the new ASP.NET Web API is that it combines the best features of the platforms that came before it, to provide a comprehensive and very usable HTTP platform. Because it's based on ASP.NET and borrows a lot of concepts from ASP.NET MVC, Web API should be immediately familiar and comfortable to most ASP.NET developers. Here are some of the features that Web API provides that I like: Strong Support for URL Routing to produce clean URLs using familiar MVC style routing semantics Content Negotiation based on Accept headers for request and response serialization Support for a host of supported output formats including JSON, XML, ATOM Strong default support for REST semantics but they are optional Easily extensible Formatter support to add new input/output types Deep support for more advanced HTTP features via HttpResponseMessage and HttpRequestMessage classes and strongly typed Enums to describe many HTTP operations Convention based design that drives you into doing the right thing for HTTP Services Very extensible, based on MVC like extensibility model of Formatters and Filters Self-hostable in non-Web applications  Testable using testing concepts similar to MVC Web API is meant to handle any kind of HTTP input and produce output and status codes using the full spectrum of HTTP functionality available in a straight forward and flexible manner. Looking at the list above you can see that a lot of functionality is very similar to ASP.NET MVC, so many ASP.NET developers should feel quite comfortable with the concepts of Web API. The Routing and core infrastructure of Web API are very similar to how MVC works providing many of the benefits of MVC, but with focus on HTTP access and manipulation in Controller methods rather than HTML generation in MVC. There’s much improved support for content negotiation based on HTTP Accept headers with the framework capable of detecting automatically what content the client is sending and requesting and serving the appropriate data format in return. This seems like such a little and obvious thing, but it's really important. Today's service backends often are used by multiple clients/applications and being able to choose the right data format for what fits best for the client is very important. While previous solutions were able to accomplish this using a variety of mixed features of WCF and ASP.NET, Web API combines all this functionality into a single robust server side HTTP framework that intrinsically understands the HTTP semantics and subtly drives you in the right direction for most operations. And when you need to customize or do something that is not built in, there are lots of hooks and overrides for most behaviors, and even many low level hook points that allow you to plug in custom functionality with relatively little effort. No Brainers for Web API There are a few scenarios that are a slam dunk for Web API. If your primary focus of an application or even a part of an application is some sort of API then Web API makes great sense. HTTP ServicesIf you're building a comprehensive HTTP API that is to be consumed over the Web, Web API is a perfect fit. You can isolate the logic in Web API and build your application as a service breaking out the logic into controllers as needed. Because the primary interface is the service there's no confusion of what should go where (MVC or API). Perfect fit. Primary AJAX BackendsIf you're building rich client Web applications that are relying heavily on AJAX callbacks to serve its data, Web API is also a slam dunk. Again because much if not most of the business logic will probably end up in your Web API service logic, there's no confusion over where logic should go and there's no duplication. In Single Page Applications (SPA), typically there's very little HTML based logic served other than bringing up a shell UI and then filling the data from the server with AJAX which means the business logic required for data retrieval and data acceptance and validation too lives in the Web API. Perfect fit. Generic HTTP EndpointsAnother good fit are generic HTTP endpoints that to serve data or handle 'utility' type functionality in typical Web applications. If you need to implement an image server, or an upload handler in the past I'd implement that as an HTTP handler. With Web API you now have a well defined place where you can implement these types of generic 'services' in a location that can easily add endpoints (via Controller methods) or separated out as more full featured APIs. Granted this could be done with MVC as well, but Web API seems a clearer and more well defined place to store generic application services. This is one thing I used to do a lot of in my own libraries and Web API addresses this nicely. Great fit. Mixed HTML and AJAX Applications: Not a clear Choice  For all the commonality that Web API and MVC share they are fundamentally different platforms that are independent of each other. A lot of people have asked when does it make sense to use MVC vs. Web API when you're dealing with typical Web application that creates HTML and also uses AJAX functionality for rich functionality. While it's easy to say that all 'service'/AJAX logic should go into a Web API and all HTML related generation into MVC, that can often result in a lot of code duplication. Also MVC supports JSON and XML result data fairly easily as well so there's some confusion where that 'trigger point' is of when you should switch to Web API vs. just implementing functionality as part of MVC controllers. Ultimately there's a tradeoff between isolation of functionality and duplication. A good rule of thumb I think works is that if a large chunk of the application's functionality serves data Web API is a good choice, but if you have a couple of small AJAX requests to serve data to a grid or autocomplete box it'd be overkill to separate out that logic into a separate Web API controller. Web API does add overhead to your application (it's yet another framework that sits on top of core ASP.NET) so it should be worth it .Keep in mind that MVC can generate HTML and JSON/XML and just about any other content easily and that functionality is not going away, so just because you Web API is there it doesn't mean you have to use it. Web API is not a full replacement for MVC obviously either since there's not the same level of support to feed HTML from Web API controllers (although you can host a RazorEngine easily enough if you really want to go that route) so if you're HTML is part of your API or application in general MVC is still a better choice either alone or in combination with Web API. I suspect (and hope) that in the future Web API's functionality will merge even closer with MVC so that you might even be able to mix functionality of both into single Controllers so that you don't have to make any trade offs, but at the moment that's not the case. Some Issues To think about Web API is similar to MVC but not the Same Although Web API looks a lot like MVC it's not the same and some common functionality of MVC behaves differently in Web API. For example, the way single POST variables are handled is different than MVC and doesn't lend itself particularly well to some AJAX scenarios with POST data. Code Duplication I already touched on this in the Mixed HTML and Web API section, but if you build an MVC application that also exposes a Web API it's quite likely that you end up duplicating a bunch of code and - potentially - infrastructure. You may have to create authentication logic both for an HTML application and for the Web API which might need something different altogether. More often than not though the same logic is used, and there's no easy way to share. If you implement an MVC ActionFilter and you want that same functionality in your Web API you'll end up creating the filter twice. AJAX Data or AJAX HTML On a recent post's comments, David made some really good points regarding the commonality of MVC and Web API's and its place. One comment that caught my eye was a little more generic, regarding data services vs. HTML services. David says: I see a lot of merit in the combination of Knockout.js, client side templates and view models, calling Web API for a responsive UI, but sometimes late at night that still leaves me wondering why I would no longer be using some of the nice tooling and features that have evolved in MVC ;-) You know what - I can totally relate to that. On the last Web based mobile app I worked on, we decided to serve HTML partials to the client via AJAX for many (but not all!) things, rather than sending down raw data to inject into the DOM on the client via templating or direct manipulation. While there are definitely more bytes on the wire, with this, the overhead ended up being actually fairly small if you keep the 'data' requests small and atomic. Performance was often made up by the lack of client side rendering of HTML. Server rendered HTML for AJAX templating gives so much better infrastructure support without having to screw around with 20 mismatched client libraries. Especially with MVC and partials it's pretty easy to break out your HTML logic into very small, atomic chunks, so it's actually easy to create small rendering islands that can be used via composition on the server, or via AJAX calls to small, tight partials that return HTML to the client. Although this is often frowned upon as to 'heavy', it worked really well in terms of developer effort as well as providing surprisingly good performance on devices. There's still plenty of jQuery and AJAX logic happening on the client but it's more manageable in small doses rather than trying to do the entire UI composition with JavaScript and/or 'not-quite-there-yet' template engines that are very difficult to debug. This is not an issue directly related to Web API of course, but something to think about especially for AJAX or SPA style applications. Summary Web API is a great new addition to the ASP.NET platform and it addresses a serious need for consolidation of a lot of half-baked HTTP service API technologies that came before it. Web API feels 'right', and hits the right combination of usability and flexibility at least for me and it's a good fit for true API scenarios. However, just because a new platform is available it doesn't meant that other tools or tech that came before it should be discarded or even upgraded to the new platform. There's nothing wrong with continuing to use MVC controller methods to handle API tasks if that's what your app is running now - there's very little to be gained by upgrading to Web API just because. But going forward Web API clearly is the way to go, when building HTTP data interfaces and it's good to see that Microsoft got this one right - it was sorely needed! Resources ASP.NET Web API AspConf Ask the Experts Session (first 5 minutes) © Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >