Search Results

Search found 1099 results on 44 pages for 'arg geo'.

Page 30/44 | < Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >

  • Now Shipping! NetAdvantage for .NET 2010 Volume 3!

    The new NetAdvantage Ultimate includes all four Line of Business user interface control sets for ASP .NET, Windows Forms, WPF and Silverlight plus two advanced Data Visualization UI control sets for WPF and Silverlight. With six NetAdvantage products in one robust package, Infragistics® gives you hundreds of controls and infinite development possibilities. Unified XAML Product Strategy-Share Code, Get More Controls In the 10.3 release, Infragistics continues to deliver code parity between the XAML platforms, WPF and Silverlight. In the line of business toolsets, Infragistics introduces the new xamSchedule™, full-featured, Outlook® 2010-style schedule controls, and the new xamDataTree™, a data bound tree view that comfortably handles tens of thousands of tree nodes. Mimicking our Silverlight Drag and Drop Framework, the WPF Drag and Drop Framework CTP empowers you to add your own rich touches to your applications. Track Users' Behaviors New to all NetAdvantage Silverlight controls is the Infragistics Analytics Framework (IGAF), which empowers you to track user behavior in RIAs running on Silverlight 4. Building on the Microsoft® Silverlight Analytics Framework, with IGAF you can analyze the user's behaviors to ensure the experience you want to deliver. NetAdvantage for Windows Forms--New Office® 2010 Ribbon and Application Menu 2010 Create new experiences with Windows Forms. Now with Office 2010 styling, NetAdvantage for Windows Forms has new features such as Microsoft® Office 2010 ribbon and enhanced Infragistics.Excel to export the contents of the high performance WinGrid™ into Microsoft Excel® 2010. The new Windows Message Support enables Infragistics standalone editor controls to process numerous Windows® OS messages, allowing them to respond just like native controls to changes in the Windows environment. Create Faster Web 2.0 Experiences with NetAdvantage for ASP .NET Infragistics continues to push the envelope to deliver the fastest ASP .NET WebForms controls available on the market. Our lightning fast ASP .NET grids are now enhanced with XPS/PDF Exporting and Summary Rows. This release also includes support for jQuery Templating (as a CTP) within our WebDataGrid™ and WebDataTree™ controls allowing you to quickly cut down overall page size. Deliver Business Intelligence with Power, Flexibility and the Office 2010 Experience NetAdvantage for WPF Data Visualization and NetAdvantage for Silverlight Data Visualization help you deliver flexible, powerful and usable end user experiences in Business Intelligence applications. Both suites include the Pivot Grid that delivers the full power of online analytical processing (OLAP) to present multi-dimensional data, sliced and diced in cross-tabulated form for end users to drill down into, interact with and easily extract meaning from the data. Mapping Made Easy 10.3 marks the official release of the WPF Data Visualization xamMap™ control to map anything and everything from geographic to geo-spacial mapping data. Map layers allow you to add successive levels of detail, navigational panes for panning in all directions, color swatch panes that facilitate value scales like Choropleth shading, and scale panes allowing users to zoom-in and out. Both toolsets introduce the first of many relationship maps! With the xamOrgChart™ CTP you can map out organizational charts of up to 50K employees, competitive brackets (think World Cup) and any other relational, organizational map your application needs. http://www.infragistics.com span.fullpost {display:none;}

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Izenda Reports 6.3 Top 10 Features

    - by gt0084e1
    Izenda 6.3 Top 10 New Features and Capabilities 1. Izenda Maps Add-On The Izenda Maps add-on allows rapid visualization of geographic or geo-spacial data.  It is fully integrated with the the rest of Izenda report package and adds a Maps tab which allows users to add interactive maps to their reports. Contact your representative or [email protected] for limited time discounts. Izenda Maps even has rich drill-down capabilities that allow you to dive deeper with a simple hover (also requires dashboards). 2. Streamlined Pie Charts with "Other" Slices The advanced properties of the Pie Chart now allows you to combine the smaller slices into a single "Other" slice. This reduces the visual complexity without throwing off the scale of the chart. Compare the difference below. 3. Combined Bar + Line Charts The Bar chart now allows dual visualization of multiple metrics simultaneously by adding a line for secondary data. Enabled via AdHocSettings.AllowLineOnBar = true; 4. Stacked Bar Charts The stacked bar chart lets you see a breakdown of a measure based on categorical data.  It is enabled with the following code. AdHocSettings.AllowStackedBarChart = true; 5. Self-Joining Data Sources The self-join features allows for parent-child relationships to be accessed from the Data Sources tab. The same table can be used as a secondary child table within the Report Designer. 6. Report Design From Dashboard View Dashboards now sport both view and design icons to allow quick access to both. 7. Field Arithmetic on Dates Differences between dates can now be used as measures with the arithmetic feature. 8. Simplified Multi-Tenancy Integrating with multi-tenant systems is now easier than ever. The following APIs have been added to facilitate common scenarios. AdHocSettings.CurrentUserTenantId = value; AdHocSettings.SchedulerTenantID = value; AdHocSettings.SchedulerTenantField = "AccountID"; 9. Support For SQL 2008 R2 and SQL Azure Izenda now supports the latest version of Microsoft's database as well as the SQL Azure service. 10. Enhanced Performance and Compatibility for Stored Procedures Izenda now supports more stored procedures than ever and runs them faster too.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Mobile Shopping Alerts

    - by David Dorf
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} It’s been popular to offer coupons when people check-in to a store, because you’re catching them at the best possible time – they’re presumably in a shopping state-of-mind, and they’re at your store.  But wouldn’t it be even better to catch the people walking by your store and entice them to visit?  That’s the concept of geo-fences.  When people enter a geographic zone, they are sent a relevant text message alerting them about something nearby. I wrote about Placecast doing this for The North Face, noting that the messages were a unique combination of both offers and useful information about outdoor activities. After creating a program with European carrier O2, Placecast recently entered into an agreement to provide similar services to AT&T customers.  The ShopAlerts program allows AT&T customers in Chicago, Los Angeles, New York City, and San Francisco opt-in to receive these messages.  The program will be expanded nationwide as early as this summer. It’s a much better model for customers (and Placecast) to sign-up once with the carrier instead of each individual retailer, but I hope the messages aren’t restricted to advertising.  I really the like the idea of providing other information, such as nearby special events, races, and perhaps even things to avoid like construction.

    Read the article

  • mongoDB Management Studio

    - by Liam McLennan
    This weekend I have been in Sydney at the MS Web Camp, learning about web application development. At the end of the first day we came up with application ideas and pitched them. My idea was to build a web management application for mongoDB. mongoDB I pitched my idea, put down the microphone, and then someone asked, “what’s mongo?”. Good question. MongoDB is a document database that stores JSON style documents. This is a JSON document for a tweet from twitter: db.tweets.find()[0] { "_id" : ObjectId("4bfe4946cfbfb01420000001"), "created_at" : "Thu, 27 May 2010 10:25:46 +0000", "profile_image_url" : "http://a3.twimg.com/profile_images/600304197/Snapshot_2009-07-26_13-12-43_normal.jpg", "from_user" : "drearyclocks", "text" : "Does anyone know who has better coverage, Optus or Vodafone? Telstra is still too expensive.", "to_user_id" : null, "metadata" : { "result_type" : "recent" }, "id" : { "floatApprox" : 14825648892 }, "geo" : null, "from_user_id" : 6825770, "search_term" : "telstra", "iso_language_code" : "en", "source" : "&lt;a href=&quot;http://www.tweetdeck.com&quot; rel=&quot;nofollow&quot;&gt;TweetDeck&lt;/a&gt;" } A mongodb server can have many databases, each database has many collections (instead of tables) and a collection has many documents (instead of rows). Development Day 2 of the Sydney MS Web Camp was allocated to building our applications. First thing in the morning I identified the stories that I wanted to implement: Scenario: View databases Scenario: View Collections in a database Scenario: View Documents in a Collection Scenario: Delete a Collection Scenario: Delete a Database Scenario: Delete Documents Over the course of the day the team (3.5 developers) implemented all of the planned stories (except ‘delete a database’) and also implemented the following: Scenario: Create Database Scenario: Create Collection Lessons Learned I’m new to MongoDB and in the past I have only accessed it from Ruby (for my hare-brained scheme). When it came to implementing our MongoDB management studio we discovered that their is no official MongoDB driver for .NET. We chose to use NoRM, honestly just because it was the only one I had heard of. NoRM was a challenge. I think it is a fine library but it is focused on mapping strongly typed objects to MongoDB. For our application we had no prior knowledge of the types that would be in the MongoDB database so NoRM was probably a poor choice. Here are some screens (click to enlarge):

    Read the article

  • Now Shipping! NetAdvantage for .NET 2010 Volume 3!

    The new NetAdvantage Ultimate includes all four Line of Business user interface control sets for ASP .NET, Windows Forms, WPF and Silverlight plus two advanced Data Visualization UI control sets for WPF and Silverlight. With six NetAdvantage products in one robust package, Infragistics® gives you hundreds of controls and infinite development possibilities. Unified XAML Product Strategy-Share Code, Get More Controls In the 10.3 release, Infragistics continues to deliver code parity between the XAML platforms, WPF and Silverlight. In the line of business toolsets, Infragistics introduces the new xamSchedule™, full-featured, Outlook® 2010-style schedule controls, and the new xamDataTree™, a data bound tree view that comfortably handles tens of thousands of tree nodes. Mimicking our Silverlight Drag and Drop Framework, the WPF Drag and Drop Framework CTP empowers you to add your own rich touches to your applications. Track Users' Behaviors New to all NetAdvantage Silverlight controls is the Infragistics Analytics Framework (IGAF), which empowers you to track user behavior in RIAs running on Silverlight 4. Building on the Microsoft® Silverlight Analytics Framework, with IGAF you can analyze the user's behaviors to ensure the experience you want to deliver. NetAdvantage for Windows Forms--New Office® 2010 Ribbon and Application Menu 2010 Create new experiences with Windows Forms. Now with Office 2010 styling, NetAdvantage for Windows Forms has new features such as Microsoft® Office 2010 ribbon and enhanced Infragistics.Excel to export the contents of the high performance WinGrid™ into Microsoft Excel® 2010. The new Windows Message Support enables Infragistics standalone editor controls to process numerous Windows® OS messages, allowing them to respond just like native controls to changes in the Windows environment. Create Faster Web 2.0 Experiences with NetAdvantage for ASP .NET Infragistics continues to push the envelope to deliver the fastest ASP .NET WebForms controls available on the market. Our lightning fast ASP .NET grids are now enhanced with XPS/PDF Exporting and Summary Rows. This release also includes support for jQuery Templating (as a CTP) within our WebDataGrid™ and WebDataTree™ controls allowing you to quickly cut down overall page size. Deliver Business Intelligence with Power, Flexibility and the Office 2010 Experience NetAdvantage for WPF Data Visualization and NetAdvantage for Silverlight Data Visualization help you deliver flexible, powerful and usable end user experiences in Business Intelligence applications. Both suites include the Pivot Grid that delivers the full power of online analytical processing (OLAP) to present multi-dimensional data, sliced and diced in cross-tabulated form for end users to drill down into, interact with and easily extract meaning from the data. Mapping Made Easy 10.3 marks the official release of the WPF Data Visualization xamMap™ control to map anything and everything from geographic to geo-spacial mapping data. Map layers allow you to add successive levels of detail, navigational panes for panning in all directions, color swatch panes that facilitate value scales like Choropleth shading, and scale panes allowing users to zoom-in and out. Both toolsets introduce the first of many relationship maps! With the xamOrgChart™ CTP you can map out organizational charts of up to 50K employees, competitive brackets (think World Cup) and any other relational, organizational map your application needs. http://www.infragistics.com span.fullpost {display:none;}

    Read the article

  • Mounting an Azure blob container in a Linux VM Role

    - by djechelon
    I previously asked a question about this topic but now I prefer to rewrite it from scratch because I was very confused back then. I currently have a Linux XS VM Role in Azure. I basically want to create a self-managed and evoluted hosting service using VMs rather than Azure's more-expensive Web Roles. I also want to take advantage of load balancing (between VM Roles) and geo-replication (of Storage Roles), making sure that the "web files" of customers are located in a defined and manageable place. One way I found to "mount" a drive in Linux VM is described here and involves mounting a VHD onto the virtual machine. From what I could learn, the VHD is reliably-stored in a storage role, and is exclusively locked by the VM that uses it. Once the VM Role has its drive I can format the partition to any size I want. I don't want that!! I would like each hosted site to have its own blob directory, then each replicated/load-balanced VM Role to rw mount like in NFS that blob directory to read HTML and script files. The database is obviously courtesy of Microsoft :) My question is Is it possible to actually mount a blob storage into a directory in the Linux FS? Is it possible in Windows Server 2008?

    Read the article

  • com.jcraft.jsch.JSchException: UnknownHostKey

    - by Alex
    I don't know how SSH works and I think that's a simple question. How do I fix that exception: com.jcraft.jsch.JSchException: UnknownHostKey: mywebsite.com. RSA key fingerprint is 22:fb:ee:fe:18:cd:aa:9a:9c:78:89:9f:b4:78:75:b4 I know I should verify that key or something, but there is like zero documentation for Jsch. Here is my code it's really straightforward: import com.jcraft.jsch.JSch; import com.jcraft.jsch.Session; public class ssh{ public static void main(String[] arg){ try{ JSch jsch = new JSch(); //create SSH connection String host = "mywebsite.com"; String user = "username"; String password = "123456"; Session session = jsch.getSession(user, host, 22); session.setPassword(password); session.connect(); } catch(Exception e){ System.out.println(e); } } }

    Read the article

  • How to configure LocalSessionFactoryBean to release connections after transaction end?

    - by peter
    I am testing an application (Spring 2.5, Hibernate 3.5.0 Beta, Atomikos 3.6.2, and Postgreql 8.4.2) with the configuration for the DAO listed below. The problem that I see is that the pool of 10 connections with the dataSource gets exhausted after the 10's transaction. I know 'hibernate.connection.release_mode' has no effect unless the session is obtained with openSession rather then using a contextual session. I am wandering if anyone has found a way to configure the LocalSessionFactoryBean to release connections after any transaction. Thank you Peter <bean id="dataSource" class="com.atomikos.jdbc.AtomikosDataSourceBean" init-method="init" destroy-method="close"> <property name="uniqueResourceName"><value>XADBMS</value></property> <property name="xaDataSourceClassName"> <value>org.postgresql.xa.PGXADataSource</value> </property> <property name="xaProperties"> <props> <prop key="databaseName">${jdbc.name}</prop> <prop key="serverName">${jdbc.server}</prop> <prop key="portNumber">${jdbc.port}</prop> <prop key="user">${jdbc.username}</prop> <prop key="password">${jdbc.password}</prop> </props> </property> <property name="poolSize"><value>10</value></property> </bean> <bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"> <property name="dataSource"> <ref bean="dataSource" /> </property> <property name="mappingResources"> <list> <value>Abc.hbm.xml</value> </list> </property> <property name="hibernateProperties"> <props> <prop key="hibernate.dialect">org.hibernate.dialect.PostgreSQLDialect</prop> <prop key="hibernate.show_sql">on</prop> <prop key="hibernate.format_sql">true</prop> <prop key="hibernate.connection.isolation">3</prop> <prop key="hibernate.current_session_context_class">jta</prop> <prop key="hibernate.transaction.factory_class">org.hibernate.transaction.JTATransactionFactory</prop> <prop key="hibernate.transaction.manager_lookup_class">com.atomikos.icatch.jta.hibernate3.TransactionManagerLookup</prop> <prop key="hibernate.connection.release_mode">auto</prop> <prop key="hibernate.transaction.auto_close_session">true</prop> </props> </property> </bean> <!-- Transaction definition here --> <bean id="userTransactionService" class="com.atomikos.icatch.config.UserTransactionServiceImp" init-method="init" destroy-method="shutdownForce"> <constructor-arg> <props> <prop key="com.atomikos.icatch.service"> com.atomikos.icatch.standalone.UserTransactionServiceFactory </prop> </props> </constructor-arg> </bean> <!-- Construct Atomikos UserTransactionManager, needed to configure Spring --> <bean id="AtomikosTransactionManager" class="com.atomikos.icatch.jta.UserTransactionManager" init-method="init" destroy-method="close" depends-on="userTransactionService"> <property name="forceShutdown" value="false" /> </bean> <!-- Also use Atomikos UserTransactionImp, needed to configure Spring --> <bean id="AtomikosUserTransaction" class="com.atomikos.icatch.jta.UserTransactionImp" depends-on="userTransactionService"> <property name="transactionTimeout" value="300" /> </bean> <!-- Configure the Spring framework to use JTA transactions from Atomikos --> <bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager" depends-on="userTransactionService"> <property name="transactionManager" ref="AtomikosTransactionManager" /> <property name="userTransaction" ref="AtomikosUserTransaction" /> </bean> <!-- the transactional advice (what 'happens'; see the <aop:advisor/> bean below) --> <tx:advice id="txAdvice" transaction-manager="txManager"> <tx:attributes> <!-- all methods starting with 'get' are read-only --> <tx:method name="get*" read-only="true" propagation="REQUIRED"/> <!-- other methods use the default transaction settings (see below) --> <tx:method name="*" propagation="REQUIRED"/> </tx:attributes> </tx:advice> <aop:config> <aop:advisor pointcut="execution(* *.*.AbcDao.*(..))" advice-ref="txAdvice"/> </aop:config> <!-- DAO objects --> <bean id="abcDao" class="test.dao.impl.HibernateAbcDao" scope="singleton"> <property name="sessionFactory" ref="sessionFactory"/> </bean>

    Read the article

  • MSBuild cannot find SGen when compiling a solution

    - by Jaxidian
    I've looked at several other SGen-related questions on here and either their answers don't apply or their answers don't fix this for me. I have installed several SDKs to fix this issue with no luck. Reference types should not be changed since this is the only place this is a problem. Once suggestion is to put SGen.exe into the C:\Windows\Microsoft.NET\Framework\v3.5 folder, but that's not been done on the box where this is not a problem. In this scenario, SGen.exe actually exists and is right where it's supposed to be, but MSBuild still is having issues with finding it for some reason! Background: We have a NAnt script that automates our builds. In this scenario, NAnt is calling MSBuild and MSBuild is generating the error claiming to be unable to find SGen. The project is .NET 3.5-based. I have my primary dev environment (64-bit Vista Ultimate) where the script works perfectly and I am attempting to duplicate it in a VM (64-bit Win 7 Ultimate). I THINK I have everything to the point where I should be good-to-go but this fails on the Win7 box (works perfectly on the Vista box). I have done some comparisons between the two boxes and they both look identical in this regard, but it still fails. For example, the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework's sdkInstallRootv2.0 value is set to C:\Program Files\Microsoft.NET\SDK\v2.0 64bit\ on both machines. In both machines, SGen.exe is in that path's bin subdirectory. NAnt Script: <target name="report-installer" depends="fail-if-environment-not-set"> <exec program="MSBuild.exe" basedir="${framework35.directory}"> <arg value="${tools.directory.current}\ReportInstaller\ReportInstaller.sln" /> <arg value="/p:Configuration=${buildconfiguration.current}" /> </exec> </target> The error message I get is this: report-installer: [exec] Microsoft (R) Build Engine Version 3.5.30729.4926 [exec] [Microsoft .NET Framework, Version 2.0.50727.4927] [exec] Copyright (C) Microsoft Corporation 2007. All rights reserved. [exec] [exec] Build started 4/8/2010 11:28:23 AM. [exec] Project "C:\Projects\Production\Tools\ReportInstaller\ReportInstaller.sln" on node 0 (default targets). [exec] Building solution configuration "Release|Any CPU". [exec] Project "C:\Projects\Production\Tools\ReportInstaller\ReportInstaller.sln" (1) is building "C:\Projects\Production\Tools\ReportInstaller\ReportInstaller.csproj" (2) on node 0 (default targets). [exec] Could not locate the .NET Framework SDK. The task is looking for the path to the .NET Framework SDK at the location specified in the SDKInstallRootv2.0 value of the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework. You may be able to solve the problem by doing one of the following: 1.) Install the .NET Framework SDK. 2.) Manually set the above registry key to the correct location. [exec] CoreCompile: [exec] Skipping target "CoreCompile" because all output files are up-to-date with respect to the input files. [exec] C:\Windows\Microsoft.NET\Framework\v2.0.50727\Microsoft.Common.targets(1902,9): error MSB3091: Task failed because "sgen.exe" was not found, or the .NET Framework SDK v2.0 is not installed. The task is looking for "sgen.exe" in the "bin" subdirectory beneath the location specified in the SDKInstallRootv2.0 value of the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework. You may be able to solve the problem by doing one of the following: 1.) Install the .NET Framework SDK v2.0. 2.) Manually set the above registry key to the correct location. 3.) Pass the correct location into the "ToolPath" parameter of the task. [exec] Done Building Project "C:\Projects\Production\Tools\ReportInstaller\ReportInstaller.csproj" (default targets) -- FAILED. [exec] Done Building Project "C:\Projects\Production\Tools\ReportInstaller\ReportInstaller.sln" (default targets) -- FAILED. [exec] [exec] Build FAILED. [exec] [exec] "C:\Projects\Production\Tools\ReportInstaller\ReportInstaller.sln" (default target) (1) -> [exec] "C:\Projects\Production\Tools\ReportInstaller\ReportInstaller.csproj" (default target) (2) -> [exec] (GenerateSerializationAssemblies target) -> [exec] C:\Windows\Microsoft.NET\Framework\v2.0.50727\Microsoft.Common.targets(1902,9): error MSB3091: Task failed because "sgen.exe" was not found, or the .NET Framework SDK v2.0 is not installed. The task is looking for "sgen.exe" in the "bin" subdirectory beneath the location specified in the SDKInstallRootv2.0 value of the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework. You may be able to solve the problem by doing one of the following: 1.) Install the .NET Framework SDK v2.0. 2.) Manually set the above registry key to the correct location. 3.) Pass the correct location into the "ToolPath" parameter of the task. [exec] [exec] 0 Warning(s) [exec] 1 Error(s) [exec] [exec] Time Elapsed 00:00:00.24 [call] C:\Projects\Production\Source\reports.build(15,4): [call] External Program Failed: C:\Windows\Microsoft.NET\Framework\v3.5\MSBuild.exe (return code was 1) What am I doing wrong here that is causing MSBuild to STILL be unable to find SGen?

    Read the article

  • Email with extra '.com' behind sender email address

    - by CHT
    Currently I had a situation where I sent an email to [email protected], but when I receive mail from [email protected], it showed as [email protected], with extra '.com' behind the email address, this just happen within this week. Before this, I didn't change any setting, currently I am using Outlook 2010. When I checked the email in webmail, it also showed it as [email protected]. It seem that it has nothing to do with Outlook. However, I also tried on Thunderbird 16.0.1, but still the problem is the same. Has anyone experienced this before? Is the problem caused by the sender or receiver? Header Message as below: Return-Path: [email protected] Received: from colo4.roaringpenguin.com (not-assigned.privatedns.com [174.142.115.36] (may be forged)) by pioneerpos.com (8.12.11/8.12.11) with ESMTP id q9V6OsKU032650 for [email protected]; Wed, 31 Oct 2012 01:24:55 -0500 Received: from mail.pointsoft.com.tw (pointsoft.com.tw [59.124.242.126]) by colo4.roaringpenguin.com (8.14.3/8.14.3/Debian-9.4) with ESMTP id q9V6OmN0026374 for [email protected]; Wed, 31 Oct 2012 02:24:50 -0400 X-MimeOLE: Produced By Microsoft Exchange V6.5 Content-class: urn:content-classes:message MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="----_=_NextPart_001_01CDB730.6B3D5A51" Subject: =?big5?B?scTByrPmLblzpfM=?= Date: Wed, 31 Oct 2012 14:25:16 +0800 Message-ID: X-MS-Has-Attach: yes X-MS-TNEF-Correlator: thread-topic: =?big5?B?scTByrPmLblzpfM=?= thread-index: Ac23MH3YpZuLx2ejTYqR5PfoZ+IoBw== X-Priority: 1 Priority: Urgent Importance: high From: "Alice" [email protected] To: "Bob" [email protected] X-Spam-Score: undef - pointsoft.com.tw is whitelisted. X-CanIt-Geo: ip=59.124.242.126; country=TW; region=03; city=Taipei; latitude=25.0392; longitude=121.5250; http://maps.google.com/maps?q=25.0392,121.5250&z=6 X-CanItPRO-Stream: pioneerpos-com:default (inherits from rp-customers:default,base:default) X-Canit-Stats-ID: 02IhGoMJb - 2e7fa924443e - 20121031 X-CanIt-Archive-Cluster: irqpXI7aJGyo4Ewta7qVH399FOg X-Scanned-By: CanIt (www . roaringpenguin . com) on 174.142.115.36

    Read the article

  • Looping to provide multiple lines in linechart (django-googlecharts)

    - by mighty_bombero
    Hi, I'm trying to generate some charts using django-googlecharts. This works fine for rather static data but in one case I would like to render a different number of lines, based on a variable. I tried this: {% chart %} {% for line in line_data %} {% chart-data line %} {% endfor %} {% chart-size "390x200" %} {% chart-type "line" %} {% chart-labels days %} {% endchart %} Line data is a list containing lists. The template code fails with "Caught an exception while rendering: max() arg is an empty sequence". I guess the problem is that I try to loop over templatetags. What approach could be used here? Or am I completely missing something? Is this doable using inclusion tags? Thanks for your help.

    Read the article

  • Exception while exposing a bean in webservice using spring mvc

    - by Ajay
    Hi, I am using Spring 3.0.5.Release MVC for exposing a webservice and below is my servlet.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.0.xsd"> <!-- To enable @RequestMapping process on type level and method level --> <context:component-scan base-package="com.pyramid.qls.progressReporter.service" /> <bean class="org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping" /> <bean class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"> <property name="messageConverters"> <list> <ref bean="marshallingConverter" /> <ref bean="atomConverter" /> <ref bean="jsonConverter" /> </list> </property> </bean> <bean id="marshallingConverter" class="org.springframework.http.converter.xml.MarshallingHttpMessageConverter"> <constructor-arg ref="jaxbMarshaller" /> <property name="supportedMediaTypes" value="application/xml"/> </bean> <bean id="atomConverter" class="org.springframework.http.converter.feed.AtomFeedHttpMessageConverter"> <property name="supportedMediaTypes" value="application/atom+xml" /> </bean> <bean id="jsonConverter" class="org.springframework.http.converter.json.MappingJacksonHttpMessageConverter"> <property name="supportedMediaTypes" value="application/json" /> </bean> <!-- Client --> <bean id="restTemplate" class="org.springframework.web.client.RestTemplate"> <property name="messageConverters"> <list> <ref bean="marshallingConverter" /> <ref bean="atomConverter" /> <ref bean="jsonConverter" /> </list> </property> </bean> <bean id="jaxbMarshaller" class="org.springframework.oxm.jaxb.Jaxb2Marshaller"> <property name="classesToBeBound"> <list> <value>com.pyramid.qls.progressReporter.impl.BatchProgressMetricsImpl</value> <value>com.pyramid.qls.progressReporter.datatype.InstrumentStats</value> <value>com.pyramid.qls.progressReporter.datatype.InstrumentInfo</value> <value>com.pyramid.qls.progressReporter.datatype.LoadOnConsumer</value> <value>com.pyramid.qls.progressReporter.datatype.HighLevelTaskStats</value> <value>com.pyramid.qls.progressReporter.datatype.SessionStats</value> <value>com.pyramid.qls.progressReporter.datatype.TaskStats</value> <value>com.pyramid.qls.progressReporter.datatype.ComputeStats</value> <value>com.pyramid.qls.progressReporter.datatype.DetailedInstrumentStats</value> <value>com.pyramid.qls.progressReporter.datatype.ImntHistoricalStats</value> </list> </property> </bean> <bean id="QPRXmlView" class="org.springframework.web.servlet.view.xml.MarshallingView"> <constructor-arg ref="jaxbMarshaller" /> </bean> <bean class="org.springframework.web.servlet.view.ContentNegotiatingViewResolver"> <property name="mediaTypes"> <map> <entry key="xml" value="application/xml"/> <entry key="html" value="text/html"/> </map> </property> <property name="viewResolvers"> <list> <bean class="org.springframework.web.servlet.view.BeanNameViewResolver"/> <bean id="viewResolver" class="org.springframework.web.servlet.view.UrlBasedViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/WEB-INF/jsp/"/> <property name="suffix" value=".jsp"/> </bean> </list> </property> </bean> <bean id="QPRController" class="com.pyramid.qls.progressReporter.service.QPRController"> <property name="jaxb2Mashaller" ref="jaxbMarshaller" /> </bean> </beans> Following is what i am doing in controller (QPRController) @RequestMapping(value = "/clientMetrics/{clientId}", method = RequestMethod.GET) public ModelAndView getBatchProgressMetrics(@PathVariable String clientId) { List<BatchProgressMetrics> batchProgressMetricsList = null; batchProgressMetricsList = batchProgressReporter.getBatchProgressMetricsForClient(clientId); ModelAndView mav = new ModelAndView("QPRXmlView", BindingResult.MODEL_KEY_PREFIX + "batchProgressMetrics", batchProgressMetricsList); return mav; } And i get the following: SEVERE: Servlet.service() for servlet rest threw exception javax.servlet.ServletException: Unable to locate object to be marshalled in model: {org.springframework.validation.BindingResult.batchProgressMetrics= Note that BatchProgressMetrics is an interface so my MAV is returning list of BatchProgressMetrics objects and i have entry for its impl in classes to be bound in servlet.xml. Can you please help me as to what i am doing wrong. And yes if i send just batchProgressMetricsList.get(0) in MAV it just works fine.

    Read the article

  • How do I find out the Mac Address Firefox submits for Geolocation?

    - by Jim McKeeth
    I moved, but have the same router and cable box. Now when I visit Google Maps it still shows my old location. I went to the SkyhookWireless update page to update my Mac Address with my new location. The process is you put in your Mac address and it shows you the current location, and then you adjust that location and submit it. When I got the Mac Address from the status page on my router Skyhook reported that location as in Pakistan, which isn't even the correct continent (as my old or new address). I tried every other Mac address I could come up with: The cable router, the Wireless router's other Mac address, my PC's Mac address, etc. and none of them reported any location on the Skyhook page. So I am guessing that there is another Mac address, or some other bit of information that is used by Firefox when it reports to Google Maps my current location. Now that you have the back story, how do I find the Mac address or whatever information it is that Firefox (or other browsers) use to determine my Geolocation? Everything I have read online is rather vague. The next option I am considering is hooking a logging proxy onto Firefox and seeing what data it sends, but I'd rather find an easier method. Related: How do I update the geo location of my house?

    Read the article

  • Java - short and casting

    - by chr1s
    Hi all, I have the following code snippet. public static void main(String[] args) { short a = 4; short b = 5; short c = 5 + 4; short d = a; short e = a + b; // does not compile (expression treated as int) short z = 32767; short z_ = 32768; // does not compile (out of range) test(a); test(7); // does not compile (not applicable for arg int) } public static void test(short x) { } Is the following summary correct (with regard to only the example above using short)? direct initializations without casting is only possible using literals or single variables (as long as the value is in the range of the declared type) if the rhs of an assignment deals with expressions using variables, casting is necessary But why exactly do I need to cast the argument of the second method call taking into account the previous summary?

    Read the article

  • Why an empty MAIL FROM address can sent out email?

    - by garconcn
    We are using Smarter Mail system. Recently, we found that hacker had hacked some user accounts and sent out lots of spams. We have firewall to ratelimit the sender, but for the following email, the firewall couldn't do this because of the empty FROM address. Why an empty FROM address is consider OK? Actually, in our MTA(surgemail), we can see the sender in the email header. Any idea? Thanks. 11:17:06 [xx.xx.xx.xx][15459629] rsp: 220 mail30.server.com 11:17:06 [xx.xx.xx.xx][15459629] connected at 6/16/2010 11:17:06 AM 11:17:06 [xx.xx.xx.xx][15459629] cmd: EHLO ulix.geo.auth.gr 11:17:06 [xx.xx.xx.xx][15459629] rsp: 250-mail30.server.com Hello [xx.xx.xx.xx] 250-SIZE 31457280 250-AUTH LOGIN CRAM-MD5 250 OK 11:17:06 [xx.xx.xx.xx][15459629] cmd: AUTH LOGIN 11:17:06 [xx.xx.xx.xx][15459629] rsp: 334 VXNlcm5hbWU6 11:17:07 [xx.xx.xx.xx][15459629] rsp: 334 UGFzc3dvcmQ6 11:17:07 [xx.xx.xx.xx][15459629] rsp: 235 Authentication successful 11:17:07 [xx.xx.xx.xx][15459629] Authenticated as [email protected] 11:17:07 [xx.xx.xx.xx][15459629] cmd: MAIL FROM: 11:17:07 [xx.xx.xx.xx][15459629] rsp: 250 OK < Sender ok 11:17:07 [xx.xx.xx.xx][15459629] cmd: RCPT TO:[email protected] 11:17:07 [xx.xx.xx.xx][15459629] rsp: 250 OK Recipient ok 11:17:08 [xx.xx.xx.xx][15459629] cmd: DATA

    Read the article

  • Is ACE reactor timer managment thread safe?

    - by idimba
    I have a module that manages timers in my aplication. This class has basibly three functions: Instance of ACE_Reactor is used internally by the module to manage the timers. schedule timer - calls ACE_Reactor::schedule_timer(). One of the arguments is a callback, called upon timer experation. cancel timer - calls ACE_Reactor::cancel_timer() The reactor executed in private timer of execution, so schedule/cancel and timeout callback are executed in different threads. ACE_Reactor::schedule_timer() receives a heap allocatec structure ( arg argument). This structure later deleted when canceling timer or when timeout handler is called. But since cancel and timeout handler are executed in different threads it looks like there's cases that the structure is deleted twice. Isn't it responsibility of reactor to ensure that timer is canceled when timeout handler is called?

    Read the article

  • How do i import AWT?

    - by David
    Im teaching myself java and the book i'm looking at just got around to explaining AWT. here is my source code: java.awt.* class obj { public static void main (String[]arg) { Point blank; blank = new Point (3,4) ; int x = blank.x ; System.out.prinln (x) ; } } here is the error i get while trying to compile it: obj.java:1: 'class' or 'interface' expected java.awt.* ^ 1 error What did i do wrong? / whats going wrong here?

    Read the article

  • Why an empty MAIL FROM address can sent out email?

    - by garconcn
    We are using Smarter Mail system. Recently, we found that hacker had hacked some user accounts and sent out lots of spams. We have firewall to ratelimit the sender, but for the following email, the firewall couldn't do this because of the empty FROM address. Why an empty FROM address is consider OK? Actually, in our MTA(surgemail), we can see the sender in the email header. Any idea? Thanks. 11:17:06 [xx.xx.xx.xx][15459629] rsp: 220 mail30.server.com 11:17:06 [xx.xx.xx.xx][15459629] connected at 6/16/2010 11:17:06 AM 11:17:06 [xx.xx.xx.xx][15459629] cmd: EHLO ulix.geo.auth.gr 11:17:06 [xx.xx.xx.xx][15459629] rsp: 250-mail30.server.com Hello [xx.xx.xx.xx] 250-SIZE 31457280 250-AUTH LOGIN CRAM-MD5 250 OK 11:17:06 [xx.xx.xx.xx][15459629] cmd: AUTH LOGIN 11:17:06 [xx.xx.xx.xx][15459629] rsp: 334 VXNlcm5hbWU6 11:17:07 [xx.xx.xx.xx][15459629] rsp: 334 UGFzc3dvcmQ6 11:17:07 [xx.xx.xx.xx][15459629] rsp: 235 Authentication successful 11:17:07 [xx.xx.xx.xx][15459629] Authenticated as [email protected] 11:17:07 [xx.xx.xx.xx][15459629] cmd: MAIL FROM: 11:17:07 [xx.xx.xx.xx][15459629] rsp: 250 OK < Sender ok 11:17:07 [xx.xx.xx.xx][15459629] cmd: RCPT TO:[email protected] 11:17:07 [xx.xx.xx.xx][15459629] rsp: 250 OK Recipient ok 11:17:08 [xx.xx.xx.xx][15459629] cmd: DATA

    Read the article

  • Why does does my stack overflow error occur after 518669 specifically?

    - by David
    I created a java program to count up toward infinity: class up { public static void up (int n) { System.out.println (n) ; up (n+1) ; } public static void main (String[] arg) { up (1) ; } } i didn't actually expect it to get there but the thing that i noticed that was a bit curious was that it stopped at the same number each time: 518669 what is the significance of this number? (or of this number +1 i suppose). (also as a bit of an aside question, I've been told that the way i format my code is bad [indentation and such] what am i doing that isn't desirable?)

    Read the article

  • Atomikos with Hibernate will exhaust db connections

    - by peter
    I am testing an application (Spring 2.5, Hibernate 3.5.0 Beta, Atomikos 3.6.2, and Postgreql 8.4.2) with the configuration for the DAO listed below. The problem that I see is that the pool of 10 connections with the dataSource gets exhausted after the 10's transaction. I know 'hibernate.connection.release_mode' has no effect unless the session is obtained with openSession rather then using a contextual session. I am wandering if anyone has found a way to instruct atomikos code to release connections after any transaction. Thank you Peter <bean id="dataSource" class="com.atomikos.jdbc.AtomikosDataSourceBean" init-method="init" destroy-method="close"> <property name="uniqueResourceName"><value>XADBMS</value></property> <property name="xaDataSourceClassName"> <value>org.postgresql.xa.PGXADataSource</value> </property> <property name="xaProperties"> <props> <prop key="databaseName">${jdbc.name}</prop> <prop key="serverName">${jdbc.server}</prop> <prop key="portNumber">${jdbc.port}</prop> <prop key="user">${jdbc.username}</prop> <prop key="password">${jdbc.password}</prop> </props> </property> <property name="poolSize"><value>10</value></property> </bean> <bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"> <property name="dataSource"> <ref bean="dataSource" /> </property> <property name="mappingResources"> <list> <value>Abc.hbm.xml</value> </list> </property> <property name="hibernateProperties"> <props> <prop key="hibernate.dialect">org.hibernate.dialect.PostgreSQLDialect</prop> <prop key="hibernate.show_sql">on</prop> <prop key="hibernate.format_sql">true</prop> <prop key="hibernate.connection.isolation">3</prop> <prop key="hibernate.current_session_context_class">jta</prop> <prop key="hibernate.transaction.factory_class">org.hibernate.transaction.JTATransactionFactory</prop> <prop key="hibernate.transaction.manager_lookup_class">com.atomikos.icatch.jta.hibernate3.TransactionManagerLookup</prop> <prop key="hibernate.connection.release_mode">auto</prop> <prop key="hibernate.current_session_context_class">org.hibernate.context.JTASessionContext</prop> <prop key="hibernate.transaction.auto_close_session">true</prop> </props> </property> </bean> <!-- Transaction definition here --> <bean id="userTransactionService" class="com.atomikos.icatch.config.UserTransactionServiceImp" init-method="init" destroy-method="shutdownForce"> <constructor-arg> <props> <prop key="com.atomikos.icatch.service"> com.atomikos.icatch.standalone.UserTransactionServiceFactory </prop> </props> </constructor-arg> </bean> <!-- Construct Atomikos UserTransactionManager, needed to configure Spring --> <bean id="AtomikosTransactionManager" class="com.atomikos.icatch.jta.UserTransactionManager" init-method="init" destroy-method="close" depends-on="userTransactionService"> <property name="forceShutdown" value="false" /> </bean> <!-- Also use Atomikos UserTransactionImp, needed to configure Spring --> <bean id="AtomikosUserTransaction" class="com.atomikos.icatch.jta.UserTransactionImp" depends-on="userTransactionService"> <property name="transactionTimeout" value="300" /> </bean> <!-- Configure the Spring framework to use JTA transactions from Atomikos --> <bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager" depends-on="userTransactionService"> <property name="transactionManager" ref="AtomikosTransactionManager" /> <property name="userTransaction" ref="AtomikosUserTransaction" /> </bean> <!-- the transactional advice (what 'happens'; see the <aop:advisor/> bean below) --> <tx:advice id="txAdvice" transaction-manager="txManager"> <tx:attributes> <!-- all methods starting with 'get' are read-only --> <tx:method name="get*" read-only="true" propagation="REQUIRED"/> <!-- other methods use the default transaction settings (see below) --> <tx:method name="*" propagation="REQUIRED"/> </tx:attributes> </tx:advice> <aop:config> <aop:advisor pointcut="execution(* *.*.AbcDao.*(..))" advice-ref="txAdvice"/> </aop:config> <!-- DAO objects --> <bean id="abcDao" class="test.dao.impl.HibernateAbcDao" scope="singleton"> <property name="sessionFactory" ref="sessionFactory"/> </bean>

    Read the article

  • Spring 3.0: Handler mapping issue

    - by Yaniv Cohen
    I am having a trouble mapping a specific URL request to one of the controllers in my project. the URL is : http://HOSTNAME/api/v1/profiles.json the war which is deployed is: api.war the error I get is the following: [PageNotFound] No mapping found for HTTP request with URI [/api/v1/profiles.json] in DispatcherServlet with name 'action' The configuration I have is the following: web.xml : <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/applicationContext.xml,/WEB-INF/applicationContext-security.xml</param-value> </context-param> <!-- Cache Control filter --> <filter> <filter-name>cacheControlFilter</filter-name> <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class> </filter> <!-- Cache Control filter mapping --> <filter-mapping> <filter-name>cacheControlFilter</filter-name> <url-pattern>/*</url-pattern> </filter-mapping> <!-- Spring security filter --> <filter> <filter-name>springSecurityFilterChain</filter-name> <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class> </filter> <!-- Spring security filter mapping --> <filter-mapping> <filter-name>springSecurityFilterChain</filter-name> <url-pattern>/*</url-pattern> </filter-mapping> <!-- Spring listener --> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> <!-- Spring Controller --> <servlet> <servlet-name>action</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>action</servlet-name> <url-pattern>/v1/*</url-pattern> </servlet-mapping> The action-servlet.xml: <mvc:annotation-driven/> <bean id="contentNegotiatingViewResolver" class="org.springframework.web.servlet.view.ContentNegotiatingViewResolver"> <property name="favorPathExtension" value="true" /> <property name="favorParameter" value="true" /> <!-- default media format parameter name is 'format' --> <property name="ignoreAcceptHeader" value="false" /> <property name="order" value="1" /> <property name="mediaTypes"> <map> <entry key="html" value="text/html"/> <entry key="json" value="application/json" /> <entry key="xml" value="application/xml" /> </map> </property> <property name="viewResolvers"> <list> <bean class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="prefix" value="/WEB-INF/jsp/"/> <property name="suffix" value=".jsp"/> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView" /> </bean> </list> </property> <property name="defaultViews"> <list> <bean class="org.springframework.web.servlet.view.json.MappingJacksonJsonView" /> <bean class="org.springframework.web.servlet.view.xml.MarshallingView"> <constructor-arg> <bean class="org.springframework.oxm.xstream.XStreamMarshaller" /> </constructor-arg> </bean> </list> </property> </bean> the application context security: <sec:http auto-config='true' > <sec:intercept-url pattern="/login.*" filters="none"/> <sec:intercept-url pattern="/oauth/**" access="ROLE_USER" /> <sec:intercept-url pattern="/v1/**" access="ROLE_USER" /> <sec:intercept-url pattern="/request_token_authorized.jsp" access="ROLE_USER" /> <sec:intercept-url pattern="/**" access="ROLE_USER"/> <sec:form-login authentication-failure-url ="/login.html" default-target-url ="/login.html" login-page ="/login.html" login-processing-url ="/login.html" /> <sec:logout logout-success-url="/index.html" logout-url="/logout.html" /> </sec:http> the controller: @Controller public class ProfilesController { @RequestMapping(value = {"/v1/profiles"}, method = {RequestMethod.GET,RequestMethod.POST}) public void getProfilesList(@ModelAttribute("response") Response response) { .... } } the request never reaches this controller. Any ideas?

    Read the article

  • NSButton argument binding doesn't pass argument?

    - by Jeff
    I have a NSCollectionView with a NSButton in the collection view item. The xib's owner is set to my BatchListViewController and the controller has the method @interface BatchListViewController : NSViewController -(IBAction)another_click; @end I set the binding for target to be: This works fine but I also want to send the underlying model to the another_click method. According to the Apple docs, The objects specified in the argument bindings are passed as parameters to the selector specified in the target binding when the NSButton is clicked. So I set the binding for argument to be: This runs fine if I keep the selector method's signature the same another_click: but if I change it to -(IBAction)another_click:(id)arg; I get the dreaded error: BatchListViewController another_click]: unrecognized selector sent to instance What am I doing wrong? Apple's docs say this is possible but I haven't been able to find an example of this working. Even other SO threads are saying this isn't possible but that can't be right.

    Read the article

  • testing dao with hibernate genericdao pattern with spring.Headache

    - by black sensei
    Hello good fellas! in my journey of learning hibernate i came across an article on hibernate site. i' learning spring too and wanted to do certain things to discover the flexibility of spring by letting you implement you own session.yes i don't want to use the hibernateTemplate(for experiment). and i'm now having a problem and even the test class.I followed the article on the hibernate site especially the section an "implementation with hibernate" so we have the generic dao interface : public interface GenericDAO<T, ID extends Serializable> { T findById(ID id, boolean lock); List<T> findAll(); List<T> findByExample(T exampleInstance); T makePersistent(T entity); void makeTransient(T entity); } it's implementation in an abstract class that is the same as the one on the web site.Please refer to it from the link i provide.i'll like to save this post to be too long now come my dao's messagedao interface package com.project.core.dao; import com.project.core.model.MessageDetails; import java.util.List; public interface MessageDAO extends GenericDAO<MessageDetails, Long>{ //Message class is on of my pojo public List<Message> GetAllByStatus(String status); } its implementation is messagedaoimpl: public class MessageDAOImpl extends GenericDAOImpl <Message, Long> implements MessageDAO { // mySContainer is an interface which my HibernateUtils implement mySContainer sessionManager; /** * */ public MessageDAOImpl(){} /** * * @param sessionManager */ public MessageDAOImpl(HibernateUtils sessionManager){ this.sessionManager = sessionManager; } //........ plus other methods } here is my HibernatUtils public class HibernateUtils implements SessionContainer { private final SessionFactory sessionFactory; private Session session; public HibernateUtils() { this.sessionFactory = new AnnotationConfiguration().configure().buildSessionFactory(); } public HibernateUtils(SessionFactory sessionFactory) { this.sessionFactory = sessionFactory; } /** * * this is the function that return a session.So i'm free to implements any type of session in here. */ public Session requestSession() { // if (session != null || session.isOpen()) { // return session; // } else { session = sessionFactory.openSession(); // } return session; } } So in my understanding while using spring(will provide the conf), i'ld wire sessionFactory to my HiberbernateUtils and then wire its method RequestSession to the Session Property of the GenericDAOImpl (the one from the link provided). here is my spring config core.xml <bean id="sessionManager" class="com.project.core.dao.hibernate.HibernateUtils"> <constructor-arg ref="sessionFactory" /> </bean> <bean id="messageDao" class="com.project.core.dao.hibernate.MessageDAOImpl"> <constructor-arg ref="sessionManager"/> </bean> <bean id="genericDAOimpl" class="com.project.core.dao.GenericDAO"> <property name="session" ref="mySession"/> </bean> <bean id="mySession" factory-bean="com.project.core.dao.SessionContainer" factory-method="requestSession"/> now my test is this public class MessageDetailsDAOImplTest extends AbstractDependencyInjectionSpringContextTests{ HibernateUtils sessionManager = (HibernateUtils) applicationContext.getBean("sessionManager"); MessageDAO messagedao =(MessageDAO) applicationContext.getBean("messageDao"); static Message[] message = new Message[] { new Message("text",1,"test for dummies 1","1234567890","Pending",new Date()), new Message("text",2,"test for dummies 2","334455669990","Delivered",new Date()) }; public MessageDAOImplTest() { } @Override protected String[] getConfigLocations(){ return new String[]{"file:src/main/resources/core.xml"}; } @Test public void testMakePersistent() { System.out.println("MakePersistent"); messagedao.makePersistent(message[0]); Session session = sessionManager.RequestSession(); session.beginTransaction(); MessageDetails fromdb = ( Message) session.load(Message.class, message[0].getMessageId()); assertEquals(fromdb.getMessageId(), message[0].getMessageId()); assertEquals(fromdb.getDateSent(),message.getDateSent()); assertEquals(fromdb.getGlobalStatus(),message.getGlobalStatus()); assertEquals(fromdb.getNumberOfPages(),message.getNumberOfPages()); } i'm having this error exception in constructor testMakePersistent(java.lang.NullPointerException at com.project.core.dao.hibernate.MessageDAOImplTest) with this stack : at com.project.core.dao.hibernate.MessageDAOImplTest.(MessageDAOImplTest.java:28) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at junit.framework.TestSuite.createTest(TestSuite.java:61) at junit.framework.TestSuite.addTestMethod(TestSuite.java:283) at junit.framework.TestSuite.(TestSuite.java:146) at org.apache.tools.ant.taskdefs.optional.junit.JUnitTestRunner.run(JUnitTestRunner.java:481) at org.apache.tools.ant.taskdefs.optional.junit.JUnitTestRunner.launch(JUnitTestRunner.java:1031) at org.apache.tools.ant.taskdefs.optional.junit.JUnitTestRunner.main(JUnitTestRunner.java:888) )) How to actually make this one work.I know this is a lot to stuffs and i'm thanking you for reading it.Please give me a solution.How would you do this? thanks

    Read the article

< Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >