Search Results

Search found 4159 results on 167 pages for 'deferred execution'.

Page 30/167 | < Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >

  • Logic - Time measurement

    - by user73384
    To measure the following for tasks- Last execution time and maximum execution time for each task. CPU load/time consumed by each task over a defined period informed by application at run time. Maximum CPU load consumed by each task. Tasks have following characteristics- First task runs as background – Event information for entering only Second task - periodic – Event information for entering and exiting from task Third task is interrupt , can start any time – no information available from this task Forth task highest priority interrupt , can start any time – Event information for entering and exiting from task Should use least possible execution time and memory. 32bit increment timer available for time counting. Lets prepare and discuss the logic, It’s OK to have limitations …! Questions on understanding problem statement are welcome

    Read the article

  • Terminal echo issue

    - by user107602
    I've been using Ubuntu 10.04 LTS for a while, am quite new, using the terminal, made a script to open a project of mine containing multiple files with gedit - after execution of the respective script - gedit [filename1] [filename2] ... , terminal executes it successfully, gedit opens passed files and terminal is ready for another line. Well, today I came across a strange issue - after the execution of the above mentioned script, gedit initiates successfully, but terminal denies execution of commands and echoes all keyboard events, even specific ctrl+... functions - all until gedit is closed. I can't figure what caused this as my recent activity was focused around a C project, not regarding the terminal in any way. I recall being able to execute another line after initiating e.g. open gedit and compile a project within a single tab and session of a terminal window. Any help would be appreciated! Regards!

    Read the article

  • Python twisted Reactor class

    - by anijhaw
    What is the significance of the decorators @reactor.callWhenRunning, @results_deferred.addCallback @results_deferred.addErrback. Also what are deferred strings, for example in the twisted.internet.utils.getProcessOutput() returns a deferred string what exactly is happening here? I am new to twisted hence this might be a very simple question but reading twisted documentation did not help me much

    Read the article

  • validator="" attribute of <h:inputtext> in jsf causing exception

    - by Amit
    We are trying to migrate from WS5 to WAS7 and the jsf code is causing the following error Original Exception: Error Message: JSPG0227E: Exception caught while translating /jsp/listView/listViewUPD_MAP_UM01.jsp: JSPG0301E: Invalid attribute, validator, for deferred method returning void. Error Code: 500 Target Servlet: /jsp/listView/listViewUPD_MAP_UM01.jsp Error Stack: com.ibm.ws.jsp.translator.JspTranslationException: JSPG0227E: Exception caught while translating /jsp/listView/listViewUPD_MAP_UM01.jsp: JSPG0301E: Invalid attribute, validator, for deferred method returning void. at com.ibm.ws.jsp.translator.visitor.generator.BaseTagGenerator.evaluateAttribute(BaseTagGenerator.java:527)

    Read the article

  • AngularJS service returning promise unit test gives error No more request expected

    - by softweave
    I want to test a service (Bar) that invokes another service (Foo) and returns a promise. The test is currently failing with this error: Error: Unexpected request: GET foo.json No more request expected Here are the service definitions: // Foo service returns new objects having get function returning a promise angular.module('foo', []). factory('Foo', ['$http', function ($http) { function FooFactory(config) { var Foo = function (config) { angular.extend(this, config); }; Foo.prototype = { get: function (url, params, successFn, errorFn) { successFn = successFn || function (response) {}; errorFn = errorFn || function (response) {}; return $http.get(url, {}).then(successFn, errorFn); } }; return new Foo(config); }; return FooFactory; }]); // Bar service uses Foo service angular.module('bar', ['foo']). factory('Bar', ['Foo', function (Foo) { var foo = Foo(); return { getCurrentTime: function () { return foo.get('foo.json', {}, function (response) { return Date.parse(response.data.now); }); } }; }]); Here is my current test: 'use strict'; describe('bar tests', function () { var currentTime, currentTimeInMs, $q, $rootScope, mockFoo, mockFooFactory, Foo, Bar, now; currentTime = "March 26, 2014 13:10 UTC"; currentTimeInMs = Date.parse(currentTime); beforeEach(function () { // stub out enough of Foo to satisfy Bar service: // create mock object with function get: function(url, params, successFn, errorFn) // that promises to return a response with this property // { data: { now: "March 26, 2014 13:10 UTC" }}) mockFoo = { get: function (url, params, successFn, errorFn) { successFn = successFn || function (response) {}; errorFn = errorFn || function (response) {}; // setup deferred promise var deferred = $q.defer(); deferred.resolve({data: { now: currentTime }}); return (deferred.promise).then(successFn, errorFn); } }; // create mock Foo service mockFooFactory = function(config) { return mockFoo; }; module(function ($provide) { $provide.value('Foo', mockFooFactory); }); module('bar'); inject(function (_$q_, _$rootScope_, _Foo_, _Bar_) { $q = _$q_; $rootScope = _$rootScope_; Foo = _Foo_; Bar = _Bar_; }); }); it('getCurrentTime should return currentTimeInMs', function () { Bar.getCurrentTime().then(function (serverCurrentTime) { now = serverCurrentTime; }); $rootScope.$apply(); // resolve Bar promise expect(now).toEqual(currentTimeInMs); }); }); The error is being thrown at $rootScope.$apply(). I also tried using $rootScope.$digest(), but it gives the same error. Thanks in advance for any insight you can give me.

    Read the article

  • The Evolution Of C#

    - by Paulo Morgado
    The first release of C# (C# 1.0) was all about building a new language for managed code that appealed, mostly, to C++ and Java programmers. The second release (C# 2.0) was mostly about adding what wasn’t time to built into the 1.0 release. The main feature for this release was Generics. The third release (C# 3.0) was all about reducing the impedance mismatch between general purpose programming languages and databases. To achieve this goal, several functional programming features were added to the language and LINQ was born. Going forward, new trends are showing up in the industry and modern programming languages need to be more: Declarative With imperative languages, although having the eye on the what, programs need to focus on the how. This leads to over specification of the solution to the problem in hand, making next to impossible to the execution engine to be smart about the execution of the program and optimize it to run it more efficiently (given the hardware available, for example). Declarative languages, on the other hand, focus only on the what and leave the how to the execution engine. LINQ made C# more declarative by using higher level constructs like orderby and group by that give the execution engine a much better chance of optimizing the execution (by parallelizing it, for example). Concurrent Concurrency is hard and needs to be thought about and it’s very hard to shoehorn it into a programming language. Parallel.For (from the parallel extensions) looks like a parallel for because enough expressiveness has been built into C# 3.0 to allow this without having to commit to specific language syntax. Dynamic There was been lots of debate on which ones are the better programming languages: static or dynamic. The fact is that both have good qualities and users of both types of languages want to have it all. All these trends require a paradigm switch. C# is, in many ways, already a multi-paradigm language. It’s still very object oriented (class oriented as some might say) but it can be argued that C# 3.0 has become a functional programming language because it has all the cornerstones of what a functional programming language needs. Moving forward, will have even more. Besides the influence of these trends, there was a decision of co-evolution of the C# and Visual Basic programming languages. Since its inception, there was been some effort to position C# and Visual Basic against each other and to try to explain what should be done with each language or what kind of programmers use one or the other. Each language should be chosen based on the past experience and familiarity of the developer/team/project/company and not by particular features. In the past, every time a feature was added to one language, the users of the other wanted that feature too. Going forward, when a feature is added to one language, the other will work hard to add the same feature. This doesn’t mean that XML literals will be added to C# (because almost the same can be achieved with LINQ To XML), but Visual Basic will have auto-implemented properties. Most of these features require or are built on top of features of the .NET Framework and, the focus for C# 4.0 was on dynamic programming. Not just dynamic types but being able to talk with anything that isn’t a .NET class. Also introduced in C# 4.0 is co-variance and contra-variance for generic interfaces and delegates. Stay tuned for more on the new C# 4.0 features.

    Read the article

  • Introduction to WebCenter Personalization: &ldquo;The Conductor&rdquo;

    - by Steve Pepper
    There are some new faces in the town of WebCenter with the latest 11g PS3 release.  A new component has introduced itself as "Oracle WebCenter Personalization", a.k.a WCP, to simplify delivery of a personalized experience and content to end users.  This posting reviews one of the primary components within WCP: "The Conductor". The Conductor: This ain't just an ordinary cloud... One of the founding principals behind WebCenter Personalization was to provide an open client-side API that remains independent of the technology invoking it, in addition to independence from the architecture running it.  The Conductor delivers this, and much, much more. The Conductor is the engine behind WebCenter Personalization that allows flow-based documents, called "Scenarios", to be managed and executed on the server-side through a well published and RESTful api.      The Conductor also supports an extensible model for custom provider integration that can be easily invoked within a Scenario to promote seamless integration with existing business assets. Introducing the Scenario Conductor Scenarios are declarative offline-authored documents using the custom Personalization JDeveloper bundle included with WebCenter.  A Scenario contains one (or more) statements that can: Create variables that are scoped to the current execution context Iterate over collections, or loop until a specific condition is met Execute one or more statements when a condition is met Invoke other scenarios that exist within the same namespace Invoke a data provider that integrates with custom applications Once a variable is assigned within the Scenario's execution context, it can be referenced anywhere within the same Scenario using the common Expression Language syntax used in J2EE web containers. Scenarios are then published and tested to the Integrated WebLogic Server domain, or published remotely to other domains running WebCenter Personalization. Various Client-side Models The Conductor server API is built upon RESTful services that support a wide variety of clients able to communicate over HTTP.  The Conductor supports the following client-side models: REST:  Popular browser-based languages can be used to manage and execute Conductor Scenarios.  There are other public methods to retrieve configured provider metadata that can be used by custom applications. The Conductor currently supports XML and JSON for it's API syntax. Java: WebCenter Personalization delivers a robust and light-weight java client with the popular Jersey framework as it's foundation.  It has never been easier to write a remote java client to manage remote RESTful services. Expression Language (EL): Allow the results of Scenario execution to control your user interface or embed personalized content using the session-scoped managed bean.  The EL client can also be used in straight JSP pages with minimal configuration. Extensible Provider Framework The Conductor supports a pluggable provider framework for integrating custom code with Scenario execution.  There are two types of providers supported by the Conductor: Function Provider: Function Providers are simple java annotated classes with static methods that are meant to be served as utilities.  Some common uses would include: object creation or instantiation, data transformation, and the like.  Function Providers can be invoked using the common EL syntax from variable assignments, conditions, and loops. For example:  ${myUtilityClass:doStuff(arg1,arg2))} If you are familiar with EL Functions, Function Providers are based on the same concept. Data Provider: Like Function Providers, Data Providers are annotated java classes, but they must adhere to a much more strict object model.  Data Providers have access to a wealth of Conductor services, such as: Access to namespace-scoped configuration API that can be managed by Oracle Enterprise Manager, Scenario execution context for expression resolution, and more.  Oracle ships with three out-of-the-box data providers that supports integration with: Standardized Content Servers(CMIS),  Federated Profile Properties through the Properties Service, and WebCenter Activity Graph. Useful References If you are looking to immediately get started writing your own application using WebCenter Personalization Services, you will find the following references helpful in getting you on your way: Personalizing WebCenter Applications Authoring Personalized Scenarios in JDeveloper Using Personalization APIs Externally Implementing and Calling Function Providers Implementing and Calling Data Providers

    Read the article

  • Executing a workflow from another workflow ?

    - by Mina Samy
    Hi all I have a console sequential workflow that at a certain step I use the InvokeWorkflow activity to invoke another workflow and then check a certain value that is set by the second workflow, and continue the execution of the first workflow normally the problem is when InvokeWorkflow activity is executed the program executes the second workflow and exits, the execution is not returned back to the first workflow. is there a way to call the second workflow from the first and wait till it ends and then continue the execution of the first. thanks

    Read the article

  • PHP Performance Metrics

    - by bigstylee
    I am currently developing a PHP MVC Framework for a personal project. While I am developing the framework I am interested to see any notable performance by implementing different techniques for optimization. I have implemented a crude BenchMark class that logs mircotime. The problem is I have no frame of reference for execution times. I am very near the beginnig of this project with a database connection and a few queries but no output (bar some debugging text and BenchMark log). I have a current execution time of 0.01917 seconds. I was expecting this to be lower but as I said before I have no frame of reference. I appreciate there are many variables to take into account when juding performance but I am hoping to find some sort of metric to a) techniques to measure performance for example requests per second and b) compare results for example; how a "moderately" sized PHP application on a "standard" webserver will perform. I appreciate "moderately" and "standard" are very subjective words so perhaps a table of known execution times for a particular application (eg StackOverFlow's executing time). What are other techniques of measuring performance are there other than execution time? When looking at MVC Framework Performance Comparisom it talks about Requests Per Second (RPS). How is this calculated? I am guessing with my current execution time of 0.01917 seconds can handle 52 RPS (= 1 / 0.01917 ). This seems to be significantly lower than that quoted on the graph especially when you consider my current limited funcitonality.

    Read the article

  • Which non-clustered index should I use?

    - by Junior Mayhé
    Here I am studying nonclustered indexes on SQL Server Management Studio. I've created a table with more than 1 million records. This table has a primary key. CREATE TABLE [dbo].[Customers]( [CustomerId] [int] IDENTITY(1,1) NOT NULL, [CustomerName] [varchar](100) NOT NULL, [Deleted] [bit] NOT NULL, [Active] [bit] NOT NULL, CONSTRAINT [PK_Customers] PRIMARY KEY CLUSTERED ( [CustomerId] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] ) ON [PRIMARY] This is the query I'll be using to see what execution plan is showing: SELECT CustomerName FROM Customers Well, executing this command with no additional non-clustered index, it leads the execution plan to show me: I/O cost = 3.45646 Operator cost = 4.57715 Now I'm trying to see if it's possible to improve performance, so I've created a non-clustered index for this table: 1) First non-clustered index CREATE NONCLUSTERED INDEX [IX_CustomerID_CustomerName] ON [dbo].[Customers] ( [CustomerId] ASC, [CustomerName] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] GO Executing again the select against Customers table, the execution plan shows me: I/O cost = 2.79942 Operator cost = 3.92001 It seems better. Now I've deleted this just created non-clustered index, in order to create a new one: 2) First non-clustered index CREATE NONCLUSTERED INDEX [IX_CustomerIDIncludeCustomerName] ON [dbo].[Customers] ( [CustomerId] ASC ) INCLUDE ( [CustomerName]) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] GO With this new non-clustered index, I've executed the select statement again and the execution plan shows me the same result: I/O cost = 2.79942 Operator cost = 3.92001 So, which non-clustered index should I use? Why the costs are the same on execution plan for I/O and Operator? Am I doing something wrong or this is expected? thank you

    Read the article

  • Xcode 5 new bug

    - by user2874675
    Since the recent IOS update last month I have been having issues with this new bug that has hampered my program. The bug is as follows: using a UIButton and I want to insert a value into it, only after my execution ends does a letter actually appear. But if I create a method during execution to tell me, using NSLog, what my properties contain then that letter I added never shows up. I'm thinking I need to find a way to refresh a property during execution instead in the end. For example: Let's say you want to insert the letter F into a UIButton. Immediately after writing F into that UIButton, look to see that F hasn't isn't in there. But it will only show up after that particular execution sequence finishes. Any help would be great. Thanks in advance.

    Read the article

  • PHP max_execution_time ignored (no safe mode, no shared host, just localhost/windows7/php 5.3.1 and

    - by Felix
    This problem drives me nuts, because the max_execution_time in the php.ini and in the htaccess and reported from php is definitely higher, than reportet in the warning message. <?php echo "Max execution time: ".ini_get("max_execution_time")."<br />"; while(true) { sleep(1); } ?> Output: Max execution time: 240 Fatal error: Maximum execution time of 60 seconds exceeded in C:\xampp\htdocs\timetest.php on line 5

    Read the article

  • 5.1 surround sound on Acer Aspire 5738ZG with Ubuntu 11.10

    - by kbargais_LV
    I got a problem with sound. I tried everything but no results. :( I got 3 sound ports. my daemon: # This file is part of PulseAudio. # # PulseAudio is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # PulseAudio is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with PulseAudio; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 # USA. ## Configuration file for the PulseAudio daemon. See pulse-daemon.conf(5) for ## more information. Default values are commented out. Use either ; or # for ## commenting. ; daemonize = no ; fail = yes ; allow-module-loading = yes ; allow-exit = yes ; use-pid-file = yes ; system-instance = no ; local-server-type = user ; enable-shm = yes ; shm-size-bytes = 0 # setting this 0 will use the system-default, usually 64 MiB ; lock-memory = no ; cpu-limit = no ; high-priority = yes ; nice-level = -11 ; realtime-scheduling = yes ; realtime-priority = 5 ; exit-idle-time = 20 ; scache-idle-time = 20 ; dl-search-path = (depends on architecture) ; load-default-script-file = yes ; default-script-file = /etc/pulse/default.pa ; log-target = auto ; log-level = notice ; log-meta = no ; log-time = no ; log-backtrace = 0 resample-method = speex-float-1 ; enable-remixing = yes ; enable-lfe-remixing = no flat-volumes = no ; rlimit-fsize = -1 ; rlimit-data = -1 ; rlimit-stack = -1 ; rlimit-core = -1 ; rlimit-as = -1 ; rlimit-rss = -1 ; rlimit-nproc = -1 ; rlimit-nofile = 256 ; rlimit-memlock = -1 ; rlimit-locks = -1 ; rlimit-sigpending = -1 ; rlimit-msgqueue = -1 ; rlimit-nice = 31 ; rlimit-rtprio = 9 ; rlimit-rttime = 1000000 ; default-sample-format = s16le ; default-sample-rate = 44100 ; default-sample-channels = 6 ; default-channel-map = front-left,front-right default-fragments = 8 default-fragment-size-msec = 10 ; enable-deferred-volume = yes ; deferred-volume-safety-margin-usec = 8000 ; deferred-volume-extra-delay-usec = 0

    Read the article

  • How do I get 5.1 surround sound working on an Acer Aspire 5738ZG?

    - by kbargais_LV
    I got a problem with sound. I tried everything but no results. :( I got 3 sound ports. my daemon: # This file is part of PulseAudio. # # PulseAudio is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # PulseAudio is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with PulseAudio; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 # USA. ## Configuration file for the PulseAudio daemon. See pulse-daemon.conf(5) for ## more information. Default values are commented out. Use either ; or # for ## commenting. ; daemonize = no ; fail = yes ; allow-module-loading = yes ; allow-exit = yes ; use-pid-file = yes ; system-instance = no ; local-server-type = user ; enable-shm = yes ; shm-size-bytes = 0 # setting this 0 will use the system-default, usually 64 MiB ; lock-memory = no ; cpu-limit = no ; high-priority = yes ; nice-level = -11 ; realtime-scheduling = yes ; realtime-priority = 5 ; exit-idle-time = 20 ; scache-idle-time = 20 ; dl-search-path = (depends on architecture) ; load-default-script-file = yes ; default-script-file = /etc/pulse/default.pa ; log-target = auto ; log-level = notice ; log-meta = no ; log-time = no ; log-backtrace = 0 resample-method = speex-float-1 ; enable-remixing = yes ; enable-lfe-remixing = no flat-volumes = no ; rlimit-fsize = -1 ; rlimit-data = -1 ; rlimit-stack = -1 ; rlimit-core = -1 ; rlimit-as = -1 ; rlimit-rss = -1 ; rlimit-nproc = -1 ; rlimit-nofile = 256 ; rlimit-memlock = -1 ; rlimit-locks = -1 ; rlimit-sigpending = -1 ; rlimit-msgqueue = -1 ; rlimit-nice = 31 ; rlimit-rtprio = 9 ; rlimit-rttime = 1000000 ; default-sample-format = s16le ; default-sample-rate = 44100 ; default-sample-channels = 6 ; default-channel-map = front-left,front-right default-fragments = 8 default-fragment-size-msec = 10 ; enable-deferred-volume = yes ; deferred-volume-safety-margin-usec = 8000 ; deferred-volume-extra-delay-usec = 0

    Read the article

  • Basics of Join Predicate Pushdown in Oracle

    - by Maria Colgan
    Happy New Year to all of our readers! We hope you all had a great holiday season. We start the new year by continuing our series on Optimizer transformations. This time it is the turn of Predicate Pushdown. I would like to thank Rafi Ahmed for the content of this blog.Normally, a view cannot be joined with an index-based nested loop (i.e., index access) join, since a view, in contrast with a base table, does not have an index defined on it. A view can only be joined with other tables using three methods: hash, nested loop, and sort-merge joins. Introduction The join predicate pushdown (JPPD) transformation allows a view to be joined with index-based nested-loop join method, which may provide a more optimal alternative. In the join predicate pushdown transformation, the view remains a separate query block, but it contains the join predicate, which is pushed down from its containing query block into the view. The view thus becomes correlated and must be evaluated for each row of the outer query block. These pushed-down join predicates, once inside the view, open up new index access paths on the base tables inside the view; this allows the view to be joined with index-based nested-loop join method, thereby enabling the optimizer to select an efficient execution plan. The join predicate pushdown transformation is not always optimal. The join predicate pushed-down view becomes correlated and it must be evaluated for each outer row; if there is a large number of outer rows, the cost of evaluating the view multiple times may make the nested-loop join suboptimal, and therefore joining the view with hash or sort-merge join method may be more efficient. The decision whether to push down join predicates into a view is determined by evaluating the costs of the outer query with and without the join predicate pushdown transformation under Oracle's cost-based query transformation framework. The join predicate pushdown transformation applies to both non-mergeable views and mergeable views and to pre-defined and inline views as well as to views generated internally by the optimizer during various transformations. The following shows the types of views on which join predicate pushdown is currently supported. UNION ALL/UNION view Outer-joined view Anti-joined view Semi-joined view DISTINCT view GROUP-BY view Examples Consider query A, which has an outer-joined view V. The view cannot be merged, as it contains two tables, and the join between these two tables must be performed before the join between the view and the outer table T4. A: SELECT T4.unique1, V.unique3 FROM T_4K T4,            (SELECT T10.unique3, T10.hundred, T10.ten             FROM T_5K T5, T_10K T10             WHERE T5.unique3 = T10.unique3) VWHERE T4.unique3 = V.hundred(+) AND       T4.ten = V.ten(+) AND       T4.thousand = 5; The following shows the non-default plan for query A generated by disabling join predicate pushdown. When query A undergoes join predicate pushdown, it yields query B. Note that query B is expressed in a non-standard SQL and shows an internal representation of the query. B: SELECT T4.unique1, V.unique3 FROM T_4K T4,           (SELECT T10.unique3, T10.hundred, T10.ten             FROM T_5K T5, T_10K T10             WHERE T5.unique3 = T10.unique3             AND T4.unique3 = V.hundred(+)             AND T4.ten = V.ten(+)) V WHERE T4.thousand = 5; The execution plan for query B is shown below. In the execution plan BX, note the keyword 'VIEW PUSHED PREDICATE' indicates that the view has undergone the join predicate pushdown transformation. The join predicates (shown here in red) have been moved into the view V; these join predicates open up index access paths thereby enabling index-based nested-loop join of the view. With join predicate pushdown, the cost of query A has come down from 62 to 32.  As mentioned earlier, the join predicate pushdown transformation is cost-based, and a join predicate pushed-down plan is selected only when it reduces the overall cost. Consider another example of a query C, which contains a view with the UNION ALL set operator.C: SELECT R.unique1, V.unique3 FROM T_5K R,            (SELECT T1.unique3, T2.unique1+T1.unique1             FROM T_5K T1, T_10K T2             WHERE T1.unique1 = T2.unique1             UNION ALL             SELECT T1.unique3, T2.unique2             FROM G_4K T1, T_10K T2             WHERE T1.unique1 = T2.unique1) V WHERE R.unique3 = V.unique3 and R.thousand < 1; The execution plan of query C is shown below. In the above, 'VIEW UNION ALL PUSHED PREDICATE' indicates that the UNION ALL view has undergone the join predicate pushdown transformation. As can be seen, here the join predicate has been replicated and pushed inside every branch of the UNION ALL view. The join predicates (shown here in red) open up index access paths thereby enabling index-based nested loop join of the view. Consider query D as an example of join predicate pushdown into a distinct view. We have the following cardinalities of the tables involved in query D: Sales (1,016,271), Customers (50,000), and Costs (787,766).  D: SELECT C.cust_last_name, C.cust_city FROM customers C,            (SELECT DISTINCT S.cust_id             FROM sales S, costs CT             WHERE S.prod_id = CT.prod_id and CT.unit_price > 70) V WHERE C.cust_state_province = 'CA' and C.cust_id = V.cust_id; The execution plan of query D is shown below. As shown in XD, when query D undergoes join predicate pushdown transformation, the expensive DISTINCT operator is removed and the join is converted into a semi-join; this is possible, since all the SELECT list items of the view participate in an equi-join with the outer tables. Under similar conditions, when a group-by view undergoes join predicate pushdown transformation, the expensive group-by operator can also be removed. With the join predicate pushdown transformation, the elapsed time of query D came down from 63 seconds to 5 seconds. Since distinct and group-by views are mergeable views, the cost-based transformation framework also compares the cost of merging the view with that of join predicate pushdown in selecting the most optimal execution plan. Summary We have tried to illustrate the basic ideas behind join predicate pushdown on different types of views by showing example queries that are quite simple. Oracle can handle far more complex queries and other types of views not shown here in the examples. Again many thanks to Rafi Ahmed for the content of this blog post.

    Read the article

  • La bêta de Chrome 10 est disponible avec un nouveau moteur JavaScript et l'accélération GPU

    La bêta de Chrome 10 est disponible Avec un nouveau moteur JavaScript et l'accélération GPU Google vient de mettre à la disponible des utilisateurs la bêta de Chrome 10. Dans cette nouvelle version, Google améliore encore la vitesse d'exécution du code JavaScript avec l'introduction d'une nouvelle version de sa machine virtuelle JavaScript V8 CrankShaft. CrankShaft apporte une hausse de l'exécution du JavaScript de 66% sur le benchmark V8 par rapport à la version finale de Chrome 9. [IMG]https://lh4.googleusercontent.com/PAxHeU25m_QWU83fp_RAPnrtAaWN_m8XOplzXtMZQW7g5wwGEetXbSmje_y2uZBhZjuaNvJCf6kGPHPSehn0z80mi5h1srPdtpJxpP4wfkqr4uoHTnRoEx2EyPOsx4nw[/IMG]...

    Read the article

  • Code Coverage for Maven Integrated in NetBeans IDE 7.2

    - by Geertjan
    In NetBeans IDE 7.2, JaCoCo is supported natively, i.e., out of the box, as a code coverage engine for Maven projects, since Cobertura does not work with JDK 7 language constructs. (Although, note that Cobertura is supported as well in NetBeans IDE 7.2.) It isn't part of NetBeans IDE 7.2 Beta, so don't even try there; you need some development build from after that. I downloaded the latest development build today. To enable JaCoCo features in NetBeans IDE, you need do no different to what you'd do when enabling JaCoCo in Maven itself, which is rather wonderful. In both cases, all you need to do is add this to the "plugins" section of your POM: <plugin> <groupId>org.jacoco</groupId> <artifactId>jacoco-maven-plugin</artifactId> <version>0.5.7.201204190339</version> <executions> <execution> <goals> <goal>prepare-agent</goal> </goals> </execution> <execution> <id>report</id> <phase>prepare-package</phase> <goals> <goal>report</goal> </goals> </execution> </executions> </plugin> Now you're done and ready to examine the code coverage of your tests, whether they are JUnit or TestNG. At this point, i.e., for no other reason than that you added the above snippet into your POM, you will have a new Code Coverage menu when you right-click on the project node: If you click Show Report above, the Code Coverage Report window opens. Here, once you've run your tests, you can actually see how many classes have been covered by your tests, which is pretty useful since 100% tests passing doesn't mean much when you've only tested one class, as you can see very graphically below: Then, when you click the bars in the Code Coverage Report window, the class under test is shown, with the methods for which tests exist highlighted in green and those that haven't been covered in red: (Note: Of course, striving for 100% code coverage is a bit nonsensical. For example, writing tests for your getters and setters may not be the most useful way to spend one's time. But being able to measure, and visualize, code coverage is certainly useful regardless of the percentage you're striving to achieve.) Best of all about all this is that everything you see above is available out of the box in NetBeans IDE 7.2. Take a look at what else NetBeans IDE 7.2 brings for the first time to the world of Maven: http://wiki.netbeans.org/NewAndNoteworthyNB72#Maven

    Read the article

  • Creating spotlight in OpenGL scene

    - by Victor Oliveira
    Im studying OpenGL and trying to create a spot light at my application. The code that Im using for my #vertex-shader is below: #:vertex-shader #{ #version 150 core in vec3 in_pos; in vec2 in_tc; out vec2 tc; glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 20.0f); GLfloat spot_direction[] = { -1.0, -1.0, 0.0 }; glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, spot_direction); glEnable(GL_LIGHT0); void main() { vec4 pos= vec4(vec3(1.0)*in_pos - vec3(1.0), 1.0); pos.z=0.0; gl_Position = pos; tc = in_tc; } } The thing is, everytime Im trying to run the code an Error that says: Type: other, Source: api, ID: 131169, Severity: low Message: Framebuffer detailed info: The driver allocated storage for renderbuffer 1. len = 157, written = 0 failed to compile vertex shader of deferred: directional info log for shader deferred: directional vertex info log for shader deferred: directional: ERROR: Unbound variable: when Specifications: Renderer: GeForce GTX 580/PCIe/SSE2 Version: 3.3.0 NVIDIA 319.17 GLSL: 3.30 NVIDIA via Cg compiler Status: Using GLEW 1.9.0 1024 x 768 OS: Linux debian I guess to create this spotlight is pretty much simple, but since Im really new to OpenGL I dont have a clue how to do it until now, even reading sources like: http://www.glprogramming.com/red/chapter05.html#name3 Read also in some place that light spots can get really hard to understand, but I cant avoid this step right now since Im following my lecture schedule. Could anybody help me?

    Read the article

  • Emptying the datastore in GAE

    - by colwilson
    I know what you're thinking, 'O not that again!', but here we are since Google have not yet provided a simpler method. I have been using a queue based solution which worked fine: import datetime from models import * DELETABLE_MODELS = [Alpha, Beta, AlphaBeta] def initiate_purge(): for e in config.DELETABLE_MODELS: deferred.defer(delete_entities, e, 'purging', _queue = 'purging') class NotEmptyException(Exception): pass def delete_entities(e, queue): try: q = e.all(keys_only=True) db.delete(q.fetch(200)) ct = q.count(1) if ct > 0: raise NotEmptyException('there are still entities to be deleted') else: logging.info('processing %s completed' % queue) except Exception, err: deferred.defer(delete_entities, e, then, queue, _queue = queue) logging.info('processing %s deferred: %s' % (queue, err)) All this does is queue a request to delete some data (once for each class) and then if the queued process either fails or knows there is still some stuff to delete, it re-queues itself. This beats the heck out of hitting the refresh on a browser for 10 minutes. However, I'm having trouble deleting AlphaBeta entities, there are always a few left at the end. I think because it contains Reference Properties: class AlphaBeta(db.Model): alpha = db.ReferenceProperty(Alpha, required=True, collection_name='betas') beta = db.ReferenceProperty(Beta, required=True, collection_name='alphas') I have tried deleting the indexes relating to these entity types, but that did not make any difference. Any advice would be appreciated please.

    Read the article

  • Plan Caching and Query Memory Part II (Hash Match) – When not to use stored procedure - Most common performance mistake SQL Server developers make.

    - by sqlworkshops
    SQL Server estimates Memory requirement at compile time, when stored procedure or other plan caching mechanisms like sp_executesql or prepared statement are used, the memory requirement is estimated based on first set of execution parameters. This is a common reason for spill over tempdb and hence poor performance. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union. This article covers Hash Match operations with examples. It is recommended to read Plan Caching and Query Memory Part I before this article which covers an introduction and Query memory for Sort. In most cases it is cheaper to pay for the compilation cost of dynamic queries than huge cost for spill over tempdb, unless memory requirement for a query does not change significantly based on predicates.   This article covers underestimation / overestimation of memory for Hash Match operation. Plan Caching and Query Memory Part I covers underestimation / overestimation for Sort. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   To read additional articles I wrote click here.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script. Most of these concepts are also covered in our webcasts: www.sqlworkshops.com/webcasts  Let’s create a Customer’s State table that has 99% of customers in NY and the rest 1% in WA.Customers table used in Part I of this article is also used here.To observe Hash Warning, enable 'Hash Warning' in SQL Profiler under Events 'Errors and Warnings'. --Example provided by www.sqlworkshops.com drop table CustomersState go create table CustomersState (CustomerID int primary key, Address char(200), State char(2)) go insert into CustomersState (CustomerID, Address) select CustomerID, 'Address' from Customers update CustomersState set State = 'NY' where CustomerID % 100 != 1 update CustomersState set State = 'WA' where CustomerID % 100 = 1 go update statistics CustomersState with fullscan go   Let’s create a stored procedure that joins customers with CustomersState table with a predicate on State. --Example provided by www.sqlworkshops.com create proc CustomersByState @State char(2) as begin declare @CustomerID int select @CustomerID = e.CustomerID from Customers e inner join CustomersState es on (e.CustomerID = es.CustomerID) where es.State = @State option (maxdop 1) end go  Let’s execute the stored procedure first with parameter value ‘WA’ – which will select 1% of data. set statistics time on go --Example provided by www.sqlworkshops.com exec CustomersByState 'WA' goThe stored procedure took 294 ms to complete.  The stored procedure was granted 6704 KB based on 8000 rows being estimated.  The estimated number of rows, 8000 is similar to actual number of rows 8000 and hence the memory estimation should be ok.  There was no Hash Warning in SQL Profiler. To observe Hash Warning, enable 'Hash Warning' in SQL Profiler under Events 'Errors and Warnings'.   Now let’s execute the stored procedure with parameter value ‘NY’ – which will select 99% of data. -Example provided by www.sqlworkshops.com exec CustomersByState 'NY' go  The stored procedure took 2922 ms to complete.   The stored procedure was granted 6704 KB based on 8000 rows being estimated.    The estimated number of rows, 8000 is way different from the actual number of rows 792000 because the estimation is based on the first set of parameter value supplied to the stored procedure which is ‘WA’ in our case. This underestimation will lead to spill over tempdb, resulting in poor performance.   There was Hash Warning (Recursion) in SQL Profiler. To observe Hash Warning, enable 'Hash Warning' in SQL Profiler under Events 'Errors and Warnings'.   Let’s recompile the stored procedure and then let’s first execute the stored procedure with parameter value ‘NY’.  In a production instance it is not advisable to use sp_recompile instead one should use DBCC FREEPROCCACHE (plan_handle). This is due to locking issues involved with sp_recompile, refer to our webcasts, www.sqlworkshops.com/webcasts for further details.   exec sp_recompile CustomersByState go --Example provided by www.sqlworkshops.com exec CustomersByState 'NY' go  Now the stored procedure took only 1046 ms instead of 2922 ms.   The stored procedure was granted 146752 KB of memory. The estimated number of rows, 792000 is similar to actual number of rows of 792000. Better performance of this stored procedure execution is due to better estimation of memory and avoiding spill over tempdb.   There was no Hash Warning in SQL Profiler.   Now let’s execute the stored procedure with parameter value ‘WA’. --Example provided by www.sqlworkshops.com exec CustomersByState 'WA' go  The stored procedure took 351 ms to complete, higher than the previous execution time of 294 ms.    This stored procedure was granted more memory (146752 KB) than necessary (6704 KB) based on parameter value ‘NY’ for estimation (792000 rows) instead of parameter value ‘WA’ for estimation (8000 rows). This is because the estimation is based on the first set of parameter value supplied to the stored procedure which is ‘NY’ in this case. This overestimation leads to poor performance of this Hash Match operation, it might also affect the performance of other concurrently executing queries requiring memory and hence overestimation is not recommended.     The estimated number of rows, 792000 is much more than the actual number of rows of 8000.  Intermediate Summary: This issue can be avoided by not caching the plan for memory allocating queries. Other possibility is to use recompile hint or optimize for hint to allocate memory for predefined data range.Let’s recreate the stored procedure with recompile hint. --Example provided by www.sqlworkshops.com drop proc CustomersByState go create proc CustomersByState @State char(2) as begin declare @CustomerID int select @CustomerID = e.CustomerID from Customers e inner join CustomersState es on (e.CustomerID = es.CustomerID) where es.State = @State option (maxdop 1, recompile) end go  Let’s execute the stored procedure initially with parameter value ‘WA’ and then with parameter value ‘NY’. --Example provided by www.sqlworkshops.com exec CustomersByState 'WA' go exec CustomersByState 'NY' go  The stored procedure took 297 ms and 1102 ms in line with previous optimal execution times.   The stored procedure with parameter value ‘WA’ has good estimation like before.   Estimated number of rows of 8000 is similar to actual number of rows of 8000.   The stored procedure with parameter value ‘NY’ also has good estimation and memory grant like before because the stored procedure was recompiled with current set of parameter values.  Estimated number of rows of 792000 is similar to actual number of rows of 792000.    The compilation time and compilation CPU of 1 ms is not expensive in this case compared to the performance benefit.   There was no Hash Warning in SQL Profiler.   Let’s recreate the stored procedure with optimize for hint of ‘NY’. --Example provided by www.sqlworkshops.com drop proc CustomersByState go create proc CustomersByState @State char(2) as begin declare @CustomerID int select @CustomerID = e.CustomerID from Customers e inner join CustomersState es on (e.CustomerID = es.CustomerID) where es.State = @State option (maxdop 1, optimize for (@State = 'NY')) end go  Let’s execute the stored procedure initially with parameter value ‘WA’ and then with parameter value ‘NY’. --Example provided by www.sqlworkshops.com exec CustomersByState 'WA' go exec CustomersByState 'NY' go  The stored procedure took 353 ms with parameter value ‘WA’, this is much slower than the optimal execution time of 294 ms we observed previously. This is because of overestimation of memory. The stored procedure with parameter value ‘NY’ has optimal execution time like before.   The stored procedure with parameter value ‘WA’ has overestimation of rows because of optimize for hint value of ‘NY’.   Unlike before, more memory was estimated to this stored procedure based on optimize for hint value ‘NY’.    The stored procedure with parameter value ‘NY’ has good estimation because of optimize for hint value of ‘NY’. Estimated number of rows of 792000 is similar to actual number of rows of 792000.   Optimal amount memory was estimated to this stored procedure based on optimize for hint value ‘NY’.   There was no Hash Warning in SQL Profiler.   This article covers underestimation / overestimation of memory for Hash Match operation. Plan Caching and Query Memory Part I covers underestimation / overestimation for Sort. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   Summary: Cached plan might lead to underestimation or overestimation of memory because the memory is estimated based on first set of execution parameters. It is recommended not to cache the plan if the amount of memory required to execute the stored procedure has a wide range of possibilities. One can mitigate this by using recompile hint, but that will lead to compilation overhead. However, in most cases it might be ok to pay for compilation rather than spilling sort over tempdb which could be very expensive compared to compilation cost. The other possibility is to use optimize for hint, but in case one sorts more data than hinted by optimize for hint, this will still lead to spill. On the other side there is also the possibility of overestimation leading to unnecessary memory issues for other concurrently executing queries. In case of Hash Match operations, this overestimation of memory might lead to poor performance. When the values used in optimize for hint are archived from the database, the estimation will be wrong leading to worst performance, so one has to exercise caution before using optimize for hint, recompile hint is better in this case.   I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.  Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan

    Read the article

  • Zimbra Relaying from Postfix connection timed out sending multiple emails?

    - by liamTc
    I have a web server setup with postfix which is relaying email to a zimbra server. This working fine however I have attempted to send a few thousand emails and now the connection from postfix to zimbra is timing out. All of the emails have been deferred on the postfix queue. If I try to send individual emails from postfix to zimbra it works fine. But if I try to flush the postfix queue all of the emails time out. In mail.log the emails look like this: postfix/error[2494]: 32B0950C04: to=, relay=none, delay=19431, delays=19402/29/0/0.01, dsn=4.4.1, status=deferred (delivery temporarily suspended: connect to mail.server.com[123.45.678.91]:25: Connection timed out) I have also noticed that in the above message it says "relay=none" for these emails that are failing. But the emails that do send say "relay=domainname.com". How I can resolve this, by sending the emails in the queue and avoiding this from happening again?

    Read the article

  • Using AWS SES with Sendmail

    - by Abs
    I am trying to send mail via AWS SES uisng Sendmail. I have Sendmail version 8.14.4 installed and I followed the first section of this useful tutorial by Amazon. However, I get this: root@:/etc/mail# echo "Subject: test" | sendmail -v [email protected] [email protected]... Connecting to [127.0.0.1] via relay... [email protected]... Deferred: Connection timed out with [127.0.0.1] Can anyone help me get this working? The logs have the following: Dec 14 10:35:21 ip-10-xx-xx-181 sm-msp-queue[17910]: qBE8K1Lu016411: to=root, delay=00:21:24, xdelay=00:06:19, mailer=relay, pri=121806, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1]

    Read the article

  • Oracle Database 11g upgrade egy érdekes hozadéka

    - by Lajos Sárecz
    A napokban olvastam egy érdekes 11g upgrade hatást Tom Kyte blogjában. Mivel mostanában sok hazai ügyfél tervez 11g upgrade-et, úgy gondoltam beszámolok én is errol, hátha valakinek hasznos lehet, bár szerintem viszonylag kevesen futnak majd bele ebbe a problémába. Az érdekes jelenséget az Oracle Database 11g Release 2 verzióban bevezetett deferred segment creation okozza. Ez egy alapértelmezetten bekapcsolt képesség, ami arra való, hogy egy új tábla készítésekor az adatbázis-kezelo automatikusan nem foglal tárterületet, azaz nincs initial extent allokáció. Ennek az újításnak a célja az, hogy alkalmazások telepítésekor a létrejövo számtalan táblának ne legyen lefoglalva a tároló terület, amíg azokba nem kerül adat. Ez azért hasznos, mert sok dobozos alkalmazás számos olyan táblát létrehoz, amihez aztán végül nem is nyúl az adott környezetben (pl. nem használt alkalmazás funkció miatt). Összességében tehát sok feleslegesen lefoglalt diszk területet spórolhatunk ezzel, azonban ha egy táblatérre nincs kvótánk, akkor az eddig tapasztalt muködéssel szemben létre tudunk hozni táblákat, hiszen nem foglalunk le vele területet. Viszont az elso insert muveletnél kapunk egy "ORA-01950: no privileges on tablespace 'USERS'" hibát, ami nem volt megszokott insert muveletek esetén korábban. Hogy ez most bug, vagy feature, azt döntse el mindenki maga :-) Ha valakinek nem tetszik így, akkor persze kikapcsolhatja a deferred segment creation képességet akár az init/spfile szintjén, akár session szintjén ("alter session set deferred_segment_creation = false;"), de lehet a tábla létrehozásakor is szabályozni: "create table t ( x int ) segment creation immediate;"

    Read the article

  • Implementing Light Volume Front Faces

    - by cubrman
    I recently read an article about light indexed deferred rendering from here: http://code.google.com/p/lightindexed-deferredrender/ It explains its ideas in a clear way, but there was one point that I failed to understand. It in fact is one of the most interesting ones, as it explains how to implement transparency with this approach: Typically when rendering light volumes in deferred rendering, only surfaces that intersect the light volume are marked and lit. This is generally accomplished by a “shadow volume like” technique of rendering back faces – incrementing stencil where depth is greater than – then rendering front faces and only accepting when depth is less than and stencil is not zero. By only rendering front faces where depth is less than, all future lookups by fragments in the forward rendering pass will get all possible lights that could hit the fragment. Can anyone explain how exactly you need to render only front faces? Another question is why do you need the front faces at all? Why can't we simply render all the lights and store the ones that overlap at this pixel in a texture? Does this approach serves as a cut-off plane to discard lights blocked by opaque geometry?

    Read the article

< Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >