Search Results

Search found 3775 results on 151 pages for 'higher education'.

Page 30/151 | < Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >

  • KScope 2014 Preview: Debra Lilley - The Learning Never Stops

    - by OTN ArchBeat
    When it comes to business travel Oracle ACE Director Debra Lilley never seems to stand still. The same can be said for her approach to sharpening her professional skills. In this interview Debra talks about the role ODTUG Kscope 2104 will play in her ongoing technical education, and about Kscope's efforts to get a new generation of IT professionals off to a great start. Connect with Debra Lilley

    Read the article

  • Simple and Easy Online SEO Training

    Training is a method acquiring skills, knowledge or experience from one that trains. It is always important for everyone to gain education and I believe that each one of us passed through to a lot of trainings both formal and informal before we got whatever status we are right now.

    Read the article

  • Announcing Fusion Applications Training through 2012

    - by Theresa Hickman
    The schedule for Fusion Applications courses is now available! You can get training on the various Fusion Applications, such as CRM, Procurement, HCM, and Financials, just to name a few. Courses will run until the end of 2012 in multiple locales, such as Bangalore, India, Chicago, IL, and Belmont, CA! Please visit http://education.oracle.com/fusionapps for full schedule and course details.

    Read the article

  • Google Maps API Round-up

    Google Maps API Round-up This week, Mano Marks and Paul Saxman go over recent launches and things you might have missed with the Google Maps APIs, including the new Google Time Zone API, traffic estimates with the Directions API (for enterprise customers), and the Places Autocomplete API query results and data service enhancements. From: GoogleDevelopers Views: 0 0 ratings Time: 00:00 More in Education

    Read the article

  • How to apply Data Oriented Design with Object Oriented Programming?

    - by Pombal
    Hi. I've read lots of articles about DOD and I understand it but I can't design an Object Oriented system with DOD in mind, I think my OOP education is blocking me. How should I think to mix the two? The objective is to have a nice OO interface while using DOD behind the scenes. I saw this too but didn't help much: http://stackoverflow.com/questions/3872354/how-to-apply-dop-and-keep-a-nice-user-interface

    Read the article

  • Do I need "cube subclasses" to represent the blocks in a Minecraft-like world?

    - by stighy
    I would like to try to develop a very simple game like Minecraft for my own education. My main problem at the moment is figuring out how to model classes that represent the world, which will be made of blocks of various types (such as dirt, stone and sand). I am thinking of creating the following class structure: Cube (with proprerties like color, strength, flammable, gravity) with subclasses: Dirt Stone Sand et cetera My question is, do I need the Cube subclasses or a single class Cube sufficient?

    Read the article

  • Google Maps Developers Live: Ships, Polylines, Symbols, Oh My!

    Google Maps Developers Live: Ships, Polylines, Symbols, Oh My! For the second part of our "A Journey of 245k Points" series, Paul shows some cool tricks for making stunning map visualizations of numerous ship voyages using polylines, making polylines interactive, and animating voyages with symbols. Data Source: CLIWOC (Climatological Database for the World's Oceans, 1750-1850): www.ucm.es From: GoogleDevelopers Views: 0 0 ratings Time: 30:00 More in Education

    Read the article

  • Google Maps Developers Live: Mapping with Style

    Google Maps Developers Live: Mapping with Style Compelling and informative map visualizations require simple, yet useful, maps... and some beautiful data. For this episode of Google Maps Developers Live, Paul Saxman discusses how he designed a few of his favorite map styles, and shares a few of his tools and techniques for designing maps for visualizations. From: GoogleDevelopers Views: 0 0 ratings Time: 30:00 More in Education

    Read the article

  • Want to become and WebLogic 12c expert? free WebLogic 12c partner bootcamps – new location: Madrid Spain

    - by JuergenKress
    We offer free 2 days hands-on WebLogic 12c workshops for Oracle partners who want to become WebLogic Specialize: Spain 18 - 19 September 2012 Oracle Ibérica For details please visit our registration page. WebLogic Partner Community For regular information become a member in the WebLogic Partner Community please visit: http://www.oracle.com/partners/goto/wls-emea ( OPN account required). If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Wiki Technorati Tags: WebLogic 12c bootcamp,WebLogic training,education,WebLogic,WebLogic Community,Oracle,OPN,Jürgen Kress

    Read the article

  • OpenSUSE Li-F-E vs. Edubuntu vs. Ubuntu

    <b>ZDNet:</b> "As I noted in my post over on Between the Lines (&#8221;Why doesn&#8217;t IBM just buy Novell already?&#8221;), I&#8217;ve been testing OpenSUSE&#8217;s Linux for Education Project and Ubuntu 10.04 server beta 1."

    Read the article

  • LinuxCon Brazil 2010

    <b>Linux Foundation:</b> "The Linux Foundation is pleased to announce the launch of LinuxCon Brazil taking place this fall in SãPaulo. LinuxCon is already the premiere Linux conference in both North America and Asia, providing an unmatched collaboration and education space for all matters Linux, and we are pleased to be able to extend this event into South America."

    Read the article

  • Visualizing Data with the Google Maps API: A Journey of 245k Points

    Visualizing Data with the Google Maps API: A Journey of 245k Points What can you do with some awesome geospatial data, the Google Maps API, and a couple of days of hacking and analysis? Brendan and Paul walk through how they used the Maps API to visualize the CLIWOC database, and pass on tips and trick for doing the same with other geospatial datasets. CLIWOC (Climatological Database for the World's Oceans, 1750-1850): www.ucm.es From: GoogleDevelopers Views: 0 0 ratings Time: 00:00 More in Education

    Read the article

  • Secure Your Future While Sitting at Home

    Gaining education and then achieving a quality degree is thought to be a very devoting and scheduled task in previous times. People set aims and then strive for it the whole of their lives. The aim or goal which would be taken in the context of professional status or qualification over here was usually a typical profession which was famous at the hour.

    Read the article

  • Overview: Unique offerings for OPN members

    - by michaela.seika(at)oracle.com
    You need knowledge and skills to pass the exams to get specialised. We have mapped the Bootcamps and Courses that will enable you to do this. Oracle University knows that you need knowledge and skills quickly and recognises that you learn fast. Accelerate your learning curve by taking one of our OPN Only Bootcamps . They have highly attractive prices and your OPN discount is applied on top of this. View the schedule for each country at the following webpage:http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=400&p_name=OPNOFFERS

    Read the article

  • In Order to Be Recognized Professionally a SEO Certification is Required

    One can now obtain a host of information as well as education on SEO which includes certification assessments worldwide. SEO certification is the first certification developed by professionals for those wanting to study SEO professionally. Certification ensures that an individual has met all the requirements and standards needed to be recognized by the public sector.

    Read the article

  • Increase Availability for Data Center Virtual Environments

    - by Antoinette O'Sullivan
    With Oracle VM, you can increase availability and add flexibility for data center virtual environments. To get started, take training on Oracle VM Server for x86 and Oracle VM Server for SPARC as appropriate for your systems. You can take these live instructor-led courses from your own desk as a live-virtual event or travel to an education center for an in-class event. The Oracle VM Administration: Oracle VM Server for x86 course, in 3 days, teaches you about creating NFS and iSCI repositories, migration, cloning and exercising high availabillity. In-class events already on the schedule include:  Location  Date  Delivery Language  Zagreb, Croatia  11 November 2013  Croatian  Prague, Czech Republic  21 October 2013  Czech  Ballerup, Denmark  26 August 2013  English  Bordeaux, France  18 September 2013  French  Paris, France  9 October 2013  French  Strasbourg, France  11 September 2013  French  Hamburg, Germany  30 Septemeber 2013  German  Munich, Germany  28 October 2013  German  Budapest, Hungary  9 September 2013  Hungarian  Riga, Latvia  30 September 2013  Latvian  Oslo, Norway  16 September 2013  English  Warsaw, Poland  28 October 2013  Polish  Bucharest, Romania  14 October 2013  English  Istanbul, Turkey  23 December 2013  Turkish  Indonesia, Jakarta  19 August 2013  English  Canberra, Australia  4 November 2013  English  Melbourne, Australia  6 November 2013  English  Sydney, Australia  25 November 2013  English  San Francisco, CA, United States  16 September 2013  English  Roseville, MN, United States  21 October 2013  English  St Louis, MO, United States  11 November 2013  English  Reston, VA, United States  31 July 2013  English  Buenos Aires, Argentina  21 August 2013  Spanish The Oracle VM Server for SPARC: Installation and Configuration course, in 2 days, teaches you about configuring control and service domains, creating guest domains, using virtual disks and networks, and migration. In-class events already on the schedule include:  Location  Date  Delivery Language  Budapest, Hungary  12 September 2013  Hungarian  Prague, Czech Republic  9 September 2013  Czech  Colombes, France  7 October 2013  French  Stuttgart, Germany  28 October 2013  German  Madrid, Spain  5 September 2013  Spanish  Istanbul, Turkey 30 September 2013  Turkish   Petaling Jaya, Malaysia 15 August 2013  English   Singapore 5 August 2013  English   Cnaberra, Australia  12 August 2013 English  Melbourne, Australia  30 October 2013 English  Sydney, Australia  26 August 2013 English To register for a course or to learn more about Oracle's virtualization curriculum, go to http://education.oracle.com/virtualization.

    Read the article

  • WWW - Why Websites Work

    In this ever changing world of digital domination, the internet is the most effective way to communicate to others, your ideas, products, services, or information. Learn why having a website is so important for effective online marketing and education.

    Read the article

  • links for 2010-05-15

    - by Bob Rhubart
    Live Virtual SOA Training from Oracle University Enroll in "SOA: Architectural Concepts and Design Principles," a four-day Live Virtual Class that teaches you the key concepts associated with a SOA architecture, including principles, service design, and infrastructure. (tags: otn oracle soa architect training education)

    Read the article

  • Register now to a complementary Oracle Health Sciences 3-day workshop on Enterprise Healthcare Analytics training in Dallas, US, Nov 12-14, 2013!

    - by Roxana Babiciu
    Join Oracle Health Sciences for an informative overview for Sales / Business Development and Implementation team members on Oracle Enterprise Healthcare Analytics (EHA). You’ll gain an understanding of the Oracle EHA product strategy, garner a platform overview and hear customer success stories that will enable you in the field. Be ready for technical education and training spanning three days of deep expertise sharing.

    Read the article

  • Microsoft dévoile « Bing for schools », une version sans publicité de son moteur de recherche, axée sur l'apprentissage pour les écoles

    Microsoft dévoile « Bing for Schools » une version sans publicité de son moteur de recherche, axée sur l'apprentissage pour les écolesMicrosoft veut faire du moteur de recherche Bing une plateforme de référence pour les écoliers.La firme a annoncé le lancement dans quelques mois du nouveau « Bing for Schools », une version axée vers l'éducation de son moteur de recherche, dépourvue de publicités et de contenus pour adultes.Cette nouvelle version sera disponible gratuitement pour les écoles qui pourront s'inscrire volontairement au programme. Aucun logiciel spécial ne sera requis et les redirections vers « Bing for schools » se feront automatiquement à partir de l'adresse Bing.com.L'enga...

    Read the article

  • More CPU cores may not always lead to better performance – MAXDOP and query memory distribution in spotlight

    - by sqlworkshops
    More hardware normally delivers better performance, but there are exceptions where it can hinder performance. Understanding these exceptions and working around it is a major part of SQL Server performance tuning.   When a memory allocating query executes in parallel, SQL Server distributes memory to each task that is executing part of the query in parallel. In our example the sort operator that executes in parallel divides the memory across all tasks assuming even distribution of rows. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union.   In reality, how often are column values evenly distributed, think about an example; are employees working for your company distributed evenly across all the Zip codes or mainly concentrated in the headquarters? What happens when you sort result set based on Zip codes? Do all products in the catalog sell equally or are few products hot selling items?   One of my customers tested the below example on a 24 core server with various MAXDOP settings and here are the results:MAXDOP 1: CPU time = 1185 ms, elapsed time = 1188 msMAXDOP 4: CPU time = 1981 ms, elapsed time = 1568 msMAXDOP 8: CPU time = 1918 ms, elapsed time = 1619 msMAXDOP 12: CPU time = 2367 ms, elapsed time = 2258 msMAXDOP 16: CPU time = 2540 ms, elapsed time = 2579 msMAXDOP 20: CPU time = 2470 ms, elapsed time = 2534 msMAXDOP 0: CPU time = 2809 ms, elapsed time = 2721 ms - all 24 cores.In the above test, when the data was evenly distributed, the elapsed time of parallel query was always lower than serial query.   Why does the query get slower and slower with more CPU cores / higher MAXDOP? Maybe you can answer this question after reading the article; let me know: [email protected].   Well you get the point, let’s see an example.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script.   Let’s update the Employees table with 49 out of 50 employees located in Zip code 2001. update Employees set Zip = EmployeeID / 400 + 1 where EmployeeID % 50 = 1 update Employees set Zip = 2001 where EmployeeID % 50 != 1 go update statistics Employees with fullscan go   Let’s create the temporary table #FireDrill with all possible Zip codes. drop table #FireDrill go create table #FireDrill (Zip int primary key) insert into #FireDrill select distinct Zip from Employees update statistics #FireDrill with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --First serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) goThe query took 1011 ms to complete.   The execution plan shows the 77816 KB of memory was granted while the estimated rows were 799624.  No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 1912 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 799624.  The estimated number of rows between serial and parallel plan are the same. The parallel plan has slightly more memory granted due to additional overhead. Sort properties shows the rows are unevenly distributed over the 4 threads.   Sort Warnings in SQL Server Profiler.   Intermediate Summary: The reason for the higher duration with parallel plan was sort spill. This is due to uneven distribution of employees over Zip codes, especially concentration of 49 out of 50 employees in Zip code 2001. Now let’s update the Employees table and distribute employees evenly across all Zip codes.   update Employees set Zip = EmployeeID / 400 + 1 go update statistics Employees with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go   The query took 751 ms to complete.  The execution plan shows the 77816 KB of memory was granted while the estimated rows were 784707.  No Sort Warnings in SQL Server Profiler.   Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 661 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 784707.  Sort properties shows the rows are evenly distributed over the 4 threads. No Sort Warnings in SQL Server Profiler.    Intermediate Summary: When employees were distributed unevenly, concentrated on 1 Zip code, parallel sort spilled while serial sort performed well without spilling to tempdb. When the employees were distributed evenly across all Zip codes, parallel sort and serial sort did not spill to tempdb. This shows uneven data distribution may affect the performance of some parallel queries negatively. For detailed discussion of memory allocation, refer to webcasts available at www.sqlworkshops.com/webcasts.     Some of you might conclude from the above execution times that parallel query is not faster even when there is no spill. Below you can see when we are joining limited amount of Zip codes, parallel query will be fasted since it can use Bitmap Filtering.   Let’s update the Employees table with 49 out of 50 employees located in Zip code 2001. update Employees set Zip = EmployeeID / 400 + 1 where EmployeeID % 50 = 1 update Employees set Zip = 2001 where EmployeeID % 50 != 1 go update statistics Employees with fullscan go  Let’s create the temporary table #FireDrill with limited Zip codes. drop table #FireDrill go create table #FireDrill (Zip int primary key) insert into #FireDrill select distinct Zip       from Employees where Zip between 1800 and 2001 update statistics #FireDrill with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go The query took 989 ms to complete.  The execution plan shows the 77816 KB of memory was granted while the estimated rows were 785594. No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 1799 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 785594.  Sort Warnings in SQL Server Profiler.    The estimated number of rows between serial and parallel plan are the same. The parallel plan has slightly more memory granted due to additional overhead.  Intermediate Summary: The reason for the higher duration with parallel plan even with limited amount of Zip codes was sort spill. This is due to uneven distribution of employees over Zip codes, especially concentration of 49 out of 50 employees in Zip code 2001.   Now let’s update the Employees table and distribute employees evenly across all Zip codes. update Employees set Zip = EmployeeID / 400 + 1 go update statistics Employees with fullscan go Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go The query took 250  ms to complete.  The execution plan shows the 9016 KB of memory was granted while the estimated rows were 79973.8.  No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0.  --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 85 ms to complete.  The execution plan shows the 13152 KB of memory was granted while the estimated rows were 784707.  No Sort Warnings in SQL Server Profiler.    Here you see, parallel query is much faster than serial query since SQL Server is using Bitmap Filtering to eliminate rows before the hash join.   Parallel queries are very good for performance, but in some cases it can hinder performance. If one identifies the reason for these hindrances, then it is possible to get the best out of parallelism. I covered many aspects of monitoring and tuning parallel queries in webcasts (www.sqlworkshops.com/webcasts) and articles (www.sqlworkshops.com/articles). I suggest you to watch the webcasts and read the articles to better understand how to identify and tune parallel query performance issues.   Summary: One has to avoid sort spill over tempdb and the chances of spills are higher when a query executes in parallel with uneven data distribution. Parallel query brings its own advantage, reduced elapsed time and reduced work with Bitmap Filtering. So it is important to understand how to avoid spills over tempdb and when to execute a query in parallel.   I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.   Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan  

    Read the article

  • The Benefits of Smart Grid Business Software

    - by Sylvie MacKenzie, PMP
    Smart Grid Background What Are Smart Grids?Smart Grids use computer hardware and software, sensors, controls, and telecommunications equipment and services to: Link customers to information that helps them manage consumption and use electricity wisely. Enable customers to respond to utility notices in ways that help minimize the duration of overloads, bottlenecks, and outages. Provide utilities with information that helps them improve performance and control costs. What Is Driving Smart Grid Development? Environmental ImpactSmart Grid development is picking up speed because of the widespread interest in reducing the negative impact that energy use has on the environment. Smart Grids use technology to drive efficiencies in transmission, distribution, and consumption. As a result, utilities can serve customers’ power needs with fewer generating plants, fewer transmission and distribution assets,and lower overall generation. With the possible exception of wind farm sprawl, landscape preservation is one obvious benefit. And because most generation today results in greenhouse gas emissions, Smart Grids reduce air pollution and the potential for global climate change.Smart Grids also more easily accommodate the technical difficulties of integrating intermittent renewable resources like wind and solar into the grid, providing further greenhouse gas reductions. CostsThe ability to defer the cost of plant and grid expansion is a major benefit to both utilities and customers. Utilities do not need to use as many internal resources for traditional infrastructure project planning and management. Large T&D infrastructure expansion costs are not passed on to customers.Smart Grids will not eliminate capital expansion, of course. Transmission corridors to connect renewable generation with customers will require major near-term expenditures. Additionally, in the future, electricity to satisfy the needs of population growth and additional applications will exceed the capacity reductions available through the Smart Grid. At that point, expansion will resume—but with greater overall T&D efficiency based on demand response, load control, and many other Smart Grid technologies and business processes. Energy efficiency is a second area of Smart Grid cost saving of particular relevance to customers. The timely and detailed information Smart Grids provide encourages customers to limit waste, adopt energy-efficient building codes and standards, and invest in energy efficient appliances. Efficiency may or may not lower customer bills because customer efficiency savings may be offset by higher costs in generation fuels or carbon taxes. It is clear, however, that bills will be lower with efficiency than without it. Utility Operations Smart Grids can serve as the central focus of utility initiatives to improve business processes. Many utilities have long “wish lists” of projects and applications they would like to fund in order to improve customer service or ease staff’s burden of repetitious work, but they have difficulty cost-justifying the changes, especially in the short term. Adding Smart Grid benefits to the cost/benefit analysis frequently tips the scales in favor of the change and can also significantly reduce payback periods.Mobile workforce applications and asset management applications work together to deploy assets and then to maintain, repair, and replace them. Many additional benefits result—for instance, increased productivity and fuel savings from better routing. Similarly, customer portals that provide customers with near-real-time information can also encourage online payments, thus lowering billing costs. Utilities can and should include these cost and service improvements in the list of Smart Grid benefits. What Is Smart Grid Business Software? Smart Grid business software gathers data from a Smart Grid and uses it improve a utility’s business processes. Smart Grid business software also helps utilities provide relevant information to customers who can then use it to reduce their own consumption and improve their environmental profiles. Smart Grid Business Software Minimizes the Impact of Peak Demand Utilities must size their assets to accommodate their highest peak demand. The higher the peak rises above base demand: The more assets a utility must build that are used only for brief periods—an inefficient use of capital. The higher the utility’s risk profile rises given the uncertainties surrounding the time needed for permitting, building, and recouping costs. The higher the costs for utilities to purchase supply, because generators can charge more for contracts and spot supply during high-demand periods. Smart Grids enable a variety of programs that reduce peak demand, including: Time-of-use pricing and critical peak pricing—programs that charge customers more when they consume electricity during peak periods. Pilot projects indicate that these programs are successful in flattening peaks, thus ensuring better use of existing T&D and generation assets. Direct load control, which lets utilities reduce or eliminate electricity flow to customer equipment (such as air conditioners). Contracts govern the terms and conditions of these turn-offs. Indirect load control, which signals customers to reduce the use of on-premises equipment for contractually agreed-on time periods. Smart Grid business software enables utilities to impose penalties on customers who do not comply with their contracts. Smart Grids also help utilities manage peaks with existing assets by enabling: Real-time asset monitoring and control. In this application, advanced sensors safely enable dynamic capacity load limits, ensuring that all grid assets can be used to their maximum capacity during peak demand periods. Real-time asset monitoring and control applications also detect the location of excessive losses and pinpoint need for mitigation and asset replacements. As a result, utilities reduce outage risk and guard against excess capacity or “over-build”. Better peak demand analysis. As a result: Distribution planners can better size equipment (e.g. transformers) to avoid over-building. Operations engineers can identify and resolve bottlenecks and other inefficiencies that may cause or exacerbate peaks. As above, the result is a reduction in the tendency to over-build. Supply managers can more closely match procurement with delivery. As a result, they can fine-tune supply portfolios, reducing the tendency to over-contract for peak supply and reducing the need to resort to spot market purchases during high peaks. Smart Grids can help lower the cost of remaining peaks by: Standardizing interconnections for new distributed resources (such as electricity storage devices). Placing the interconnections where needed to support anticipated grid congestion. Smart Grid Business Software Lowers the Cost of Field Services By processing Smart Grid data through their business software, utilities can reduce such field costs as: Vegetation management. Smart Grids can pinpoint momentary interruptions and tree-caused outages. Spatial mash-up tools leverage GIS models of tree growth for targeted vegetation management. This reduces the cost of unnecessary tree trimming. Service vehicle fuel. Many utility service calls are “false alarms.” Checking meter status before dispatching crews prevents many unnecessary “truck rolls.” Similarly, crews use far less fuel when Smart Grid sensors can pinpoint a problem and mobile workforce applications can then route them directly to it. Smart Grid Business Software Ensures Regulatory Compliance Smart Grids can ensure compliance with private contracts and with regional, national, or international requirements by: Monitoring fulfillment of contract terms. Utilities can use one-hour interval meters to ensure that interruptible (“non-core”) customers actually reduce or eliminate deliveries as required. They can use the information to levy fines against contract violators. Monitoring regulations imposed on customers, such as maximum use during specific time periods. Using accurate time-stamped event history derived from intelligent devices distributed throughout the smart grid to monitor and report reliability statistics and risk compliance. Automating business processes and activities that ensure compliance with security and reliability measures (e.g. NERC-CIP 2-9). Grid Business Software Strengthens Utilities’ Connection to Customers While Reducing Customer Service Costs During outages, Smart Grid business software can: Identify outages more quickly. Software uses sensors to pinpoint outages and nested outage locations. They also permit utilities to ensure outage resolution at every meter location. Size outages more accurately, permitting utilities to dispatch crews that have the skills needed, in appropriate numbers. Provide updates on outage location and expected duration. This information helps call centers inform customers about the timing of service restoration. Smart Grids also facilitates display of outage maps for customer and public-service use. Smart Grids can significantly reduce the cost to: Connect and disconnect customers. Meters capable of remote disconnect can virtually eliminate the costs of field crews and vehicles previously required to change service from the old to the new residents of a metered property or disconnect customers for nonpayment. Resolve reports of voltage fluctuation. Smart Grids gather and report voltage and power quality data from meters and grid sensors, enabling utilities to pinpoint reported problems or resolve them before customers complain. Detect and resolve non-technical losses (e.g. theft). Smart Grids can identify illegal attempts to reconnect meters or to use electricity in supposedly vacant premises. They can also detect theft by comparing flows through delivery assets with billed consumption. Smart Grids also facilitate outreach to customers. By monitoring and analyzing consumption over time, utilities can: Identify customers with unusually high usage and contact them before they receive a bill. They can also suggest conservation techniques that might help to limit consumption. This can head off “high bill” complaints to the contact center. Note that such “high usage” or “additional charges apply because you are out of range” notices—frequently via text messaging—are already common among mobile phone providers. Help customers identify appropriate bill payment alternatives (budget billing, prepayment, etc.). Help customers find and reduce causes of over-consumption. There’s no waiting for bills in the mail before they even understand there is a problem. Utilities benefit not just through improved customer relations but also through limiting the size of bills from customers who might struggle to pay them. Where permitted, Smart Grids can open the doors to such new utility service offerings as: Monitoring properties. Landlords reduce costs of vacant properties when utilities notify them of unexpected energy or water consumption. Utilities can perform similar services for owners of vacation properties or the adult children of aging parents. Monitoring equipment. Power-use patterns can reveal a need for equipment maintenance. Smart Grids permit utilities to alert owners or managers to a need for maintenance or replacement. Facilitating home and small-business networks. Smart Grids can provide a gateway to equipment networks that automate control or let owners access equipment remotely. They also facilitate net metering, offering some utilities a path toward involvement in small-scale solar or wind generation. Prepayment plans that do not need special meters. Smart Grid Business Software Helps Customers Control Energy Costs There is no end to the ways Smart Grids help both small and large customers control energy costs. For instance: Multi-premises customers appreciate having all meters read on the same day so that they can more easily compare consumption at various sites. Customers in competitive regions can match their consumption profile (detailed via Smart Grid data) with specific offerings from competitive suppliers. Customers seeing inexplicable consumption patterns and power quality problems may investigate further. The result can be discovery of electrical problems that can be resolved through rewiring or maintenance—before more serious fires or accidents happen. Smart Grid Business Software Facilitates Use of Renewables Generation from wind and solar resources is a popular alternative to fossil fuel generation, which emits greenhouse gases. Wind and solar generation may also increase energy security in regions that currently import fossil fuel for use in generation. Utilities face many technical issues as they attempt to integrate intermittent resource generation into traditional grids, which traditionally handle only fully dispatchable generation. Smart Grid business software helps solves many of these issues by: Detecting sudden drops in production from renewables-generated electricity (wind and solar) and automatically triggering electricity storage and smart appliance response to compensate as needed. Supporting industry-standard distributed generation interconnection processes to reduce interconnection costs and avoid adding renewable supplies to locations already subject to grid congestion. Facilitating modeling and monitoring of locally generated supply from renewables and thus helping to maximize their use. Increasing the efficiency of “net metering” (through which utilities can use electricity generated by customers) by: Providing data for analysis. Integrating the production and consumption aspects of customer accounts. During non-peak periods, such techniques enable utilities to increase the percent of renewable generation in their supply mix. During peak periods, Smart Grid business software controls circuit reconfiguration to maximize available capacity. Conclusion Utility missions are changing. Yesterday, they focused on delivery of reasonably priced energy and water. Tomorrow, their missions will expand to encompass sustainable use and environmental improvement.Smart Grids are key to helping utilities achieve this expanded mission. But they come at a relatively high price. Utilities will need to invest heavily in new hardware, software, business process development, and staff training. Customer investments in home area networks and smart appliances will be large. Learning to change the energy and water consumption habits of a lifetime could ultimately prove even more formidable tasks.Smart Grid business software can ease the cost and difficulties inherent in a needed transition to a more flexible, reliable, responsive electricity grid. Justifying its implementation, however, requires a full understanding of the benefits it brings—benefits that can ultimately help customers, utilities, communities, and the world address global issues like energy security and climate change while minimizing costs and maximizing customer convenience. This white paper is available for download here. For further information about Oracle's Primavera Solutions for Utilities, please read our Utilities e-book.

    Read the article

  • Abstracting functionality

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/22/abstracting-functionality.aspxWhat is more important than data? Functionality. Yes, I strongly believe we should switch to a functionality over data mindset in programming. Or actually switch back to it. Focus on functionality Functionality once was at the core of software development. Back when algorithms were the first thing you heard about in CS classes. Sure, data structures, too, were important - but always from the point of view of algorithms. (Niklaus Wirth gave one of his books the title “Algorithms + Data Structures” instead of “Data Structures + Algorithms” for a reason.) The reason for the focus on functionality? Firstly, because software was and is about doing stuff. Secondly because sufficient performance was hard to achieve, and only thirdly memory efficiency. But then hardware became more powerful. That gave rise to a new mindset: object orientation. And with it functionality was devalued. Data took over its place as the most important aspect. Now discussions revolved around structures motivated by data relationships. (John Beidler gave his book the title “Data Structures and Algorithms: An Object Oriented Approach” instead of the other way around for a reason.) Sure, this data could be embellished with functionality. But nevertheless functionality was second. When you look at (domain) object models what you mostly find is (domain) data object models. The common object oriented approach is: data aka structure over functionality. This is true even for the most modern modeling approaches like Domain Driven Design. Look at the literature and what you find is recommendations on how to get data structures right: aggregates, entities, value objects. I´m not saying this is what object orientation was invented for. But I´m saying that´s what I happen to see across many teams now some 25 years after object orientation became mainstream through C++, Delphi, and Java. But why should we switch back? Because software development cannot become truly agile with a data focus. The reason for that lies in what customers need first: functionality, behavior, operations. To be clear, that´s not why software is built. The purpose of software is to be more efficient than the alternative. Money mainly is spent to get a certain level of quality (e.g. performance, scalability, security etc.). But without functionality being present, there is nothing to work on the quality of. What customers want is functionality of a certain quality. ASAP. And tomorrow new functionality needs to be added, existing functionality needs to be changed, and quality needs to be increased. No customer ever wanted data or structures. Of course data should be processed. Data is there, data gets generated, transformed, stored. But how the data is structured for this to happen efficiently is of no concern to the customer. Ask a customer (or user) whether she likes the data structured this way or that way. She´ll say, “I don´t care.” But ask a customer (or user) whether he likes the functionality and its quality this way or that way. He´ll say, “I like it” (or “I don´t like it”). Build software incrementally From this very natural focus of customers and users on functionality and its quality follows we should develop software incrementally. That´s what Agility is about. Deliver small increments quickly and often to get frequent feedback. That way less waste is produced, and learning can take place much easier (on the side of the customer as well as on the side of developers). An increment is some added functionality or quality of functionality.[1] So as it turns out, Agility is about functionality over whatever. But software developers’ thinking is still stuck in the object oriented mindset of whatever over functionality. Bummer. I guess that (at least partly) explains why Agility always hits a glass ceiling in projects. It´s a clash of mindsets, of cultures. Driving software development by demanding small increases in functionality runs against thinking about software as growing (data) structures sprinkled with functionality. (Excuse me, if this sounds a bit broad-brush. But you get my point.) The need for abstraction In the end there need to be data structures. Of course. Small and large ones. The phrase functionality over data does not deny that. It´s not functionality instead of data or something. It´s just over, i.e. functionality should be thought of first. It´s a tad more important. It´s what the customer wants. That´s why we need a way to design functionality. Small and large. We need to be able to think about functionality before implementing it. We need to be able to reason about it among team members. We need to be able to communicate our mental models of functionality not just by speaking about them, but also on paper. Otherwise reasoning about it does not scale. We learned thinking about functionality in the small using flow charts, Nassi-Shneiderman diagrams, pseudo code, or UML sequence diagrams. That´s nice and well. But it does not scale. You can use these tools to describe manageable algorithms. But it does not work for the functionality triggered by pressing the “1-Click Order” on an amazon product page for example. There are several reasons for that, I´d say. Firstly, the level of abstraction over code is negligible. It´s essentially non-existent. Drawing a flow chart or writing pseudo code or writing actual code is very, very much alike. All these tools are about control flow like code is.[2] In addition all tools are computationally complete. They are about logic which is expressions and especially control statements. Whatever you code in Java you can fully (!) describe using a flow chart. And then there is no data. They are about control flow and leave out the data altogether. Thus data mostly is assumed to be global. That´s shooting yourself in the foot, as I hope you agree. Even if it´s functionality over data that does not mean “don´t think about data”. Right to the contrary! Functionality only makes sense with regard to data. So data needs to be in the picture right from the start - but it must not dominate the thinking. The above tools fail on this. Bottom line: So far we´re unable to reason in a scalable and abstract manner about functionality. That´s why programmers are so driven to start coding once they are presented with a problem. Programming languages are the only tool they´ve learned to use to reason about functional solutions. Or, well, there might be exceptions. Mathematical notation and SQL may have come to your mind already. Indeed they are tools on a higher level of abstraction than flow charts etc. That´s because they are declarative and not computationally complete. They leave out details - in order to deliver higher efficiency in devising overall solutions. We can easily reason about functionality using mathematics and SQL. That´s great. Except for that they are domain specific languages. They are not general purpose. (And they don´t scale either, I´d say.) Bummer. So to be more precise we need a scalable general purpose tool on a higher than code level of abstraction not neglecting data. Enter: Flow Design. Abstracting functionality using data flows I believe the solution to the problem of abstracting functionality lies in switching from control flow to data flow. Data flow very naturally is not about logic details anymore. There are no expressions and no control statements anymore. There are not even statements anymore. Data flow is declarative by nature. With data flow we get rid of all the limiting traits of former approaches to modeling functionality. In addition, nomen est omen, data flows include data in the functionality picture. With data flows, data is visibly flowing from processing step to processing step. Control is not flowing. Control is wherever it´s needed to process data coming in. That´s a crucial difference and needs some rewiring in your head to be fully appreciated.[2] Since data flows are declarative they are not the right tool to describe algorithms, though, I´d say. With them you don´t design functionality on a low level. During design data flow processing steps are black boxes. They get fleshed out during coding. Data flow design thus is more coarse grained than flow chart design. It starts on a higher level of abstraction - but then is not limited. By nesting data flows indefinitely you can design functionality of any size, without losing sight of your data. Data flows scale very well during design. They can be used on any level of granularity. And they can easily be depicted. Communicating designs using data flows is easy and scales well, too. The result of functional design using data flows is not algorithms (too low level), but processes. Think of data flows as descriptions of industrial production lines. Data as material runs through a number of processing steps to be analyzed, enhances, transformed. On the top level of a data flow design might be just one processing step, e.g. “execute 1-click order”. But below that are arbitrary levels of flows with smaller and smaller steps. That´s not layering as in “layered architecture”, though. Rather it´s a stratified design à la Abelson/Sussman. Refining data flows is not your grandpa´s functional decomposition. That was rooted in control flows. Refining data flows does not suffer from the limits of functional decomposition against which object orientation was supposed to be an antidote. Summary I´ve been working exclusively with data flows for functional design for the past 4 years. It has changed my life as a programmer. What once was difficult is now easy. And, no, I´m not using Clojure or F#. And I´m not a async/parallel execution buff. Designing the functionality of increments using data flows works great with teams. It produces design documentation which can easily be translated into code - in which then the smallest data flow processing steps have to be fleshed out - which is comparatively easy. Using a systematic translation approach code can mirror the data flow design. That way later on the design can easily be reproduced from the code if need be. And finally, data flow designs play well with object orientation. They are a great starting point for class design. But that´s a story for another day. To me data flow design simply is one of the missing links of systematic lightweight software design. There are also other artifacts software development can produce to get feedback, e.g. process descriptions, test cases. But customers can be delighted more easily with code based increments in functionality. ? No, I´m not talking about the endless possibilities this opens for parallel processing. Data flows are useful independently of multi-core processors and Actor-based designs. That´s my whole point here. Data flows are good for reasoning and evolvability. So forget about any special frameworks you might need to reap benefits from data flows. None are necessary. Translating data flow designs even into plain of Java is possible. ?

    Read the article

< Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >