Search Results

Search found 744 results on 30 pages for 'sarah sides'.

Page 30/30 | < Previous Page | 26 27 28 29 30 

  • What's up with OCFS2?

    - by wcoekaer
    On Linux there are many filesystem choices and even from Oracle we provide a number of filesystems, all with their own advantages and use cases. Customers often confuse ACFS with OCFS or OCFS2 which then causes assumptions to be made such as one replacing the other etc... I thought it would be good to write up a summary of how OCFS2 got to where it is, what we're up to still, how it is different from other options and how this really is a cool native Linux cluster filesystem that we worked on for many years and is still widely used. Work on a cluster filesystem at Oracle started many years ago, in the early 2000's when the Oracle Database Cluster development team wrote a cluster filesystem for Windows that was primarily focused on providing an alternative to raw disk devices and help customers with the deployment of Oracle Real Application Cluster (RAC). Oracle RAC is a cluster technology that lets us make a cluster of Oracle Database servers look like one big database. The RDBMS runs on many nodes and they all work on the same data. It's a Shared Disk database design. There are many advantages doing this but I will not go into detail as that is not the purpose of my write up. Suffice it to say that Oracle RAC expects all the database data to be visible in a consistent, coherent way, across all the nodes in the cluster. To do that, there were/are a few options : 1) use raw disk devices that are shared, through SCSI, FC, or iSCSI 2) use a network filesystem (NFS) 3) use a cluster filesystem(CFS) which basically gives you a filesystem that's coherent across all nodes using shared disks. It is sort of (but not quite) combining option 1 and 2 except that you don't do network access to the files, the files are effectively locally visible as if it was a local filesystem. So OCFS (Oracle Cluster FileSystem) on Windows was born. Since Linux was becoming a very important and popular platform, we decided that we would also make this available on Linux and thus the porting of OCFS/Windows started. The first version of OCFS was really primarily focused on replacing the use of Raw devices with a simple filesystem that lets you create files and provide direct IO to these files to get basically native raw disk performance. The filesystem was not designed to be fully POSIX compliant and it did not have any where near good/decent performance for regular file create/delete/access operations. Cache coherency was easy since it was basically always direct IO down to the disk device and this ensured that any time one issues a write() command it would go directly down to the disk, and not return until the write() was completed. Same for read() any sort of read from a datafile would be a read() operation that went all the way to disk and return. We did not cache any data when it came down to Oracle data files. So while OCFS worked well for that, since it did not have much of a normal filesystem feel, it was not something that could be submitted to the kernel mail list for inclusion into Linux as another native linux filesystem (setting aside the Windows porting code ...) it did its job well, it was very easy to configure, node membership was simple, locking was disk based (so very slow but it existed), you could create regular files and do regular filesystem operations to a certain extend but anything that was not database data file related was just not very useful in general. Logfiles ok, standard filesystem use, not so much. Up to this point, all the work was done, at Oracle, by Oracle developers. Once OCFS (1) was out for a while and there was a lot of use in the database RAC world, many customers wanted to do more and were asking for features that you'd expect in a normal native filesystem, a real "general purposes cluster filesystem". So the team sat down and basically started from scratch to implement what's now known as OCFS2 (Oracle Cluster FileSystem release 2). Some basic criteria were : Design it with a real Distributed Lock Manager and use the network for lock negotiation instead of the disk Make it a Linux native filesystem instead of a native shim layer and a portable core Support standard Posix compliancy and be fully cache coherent with all operations Support all the filesystem features Linux offers (ACL, extended Attributes, quotas, sparse files,...) Be modern, support large files, 32/64bit, journaling, data ordered journaling, endian neutral, we can mount on both endian /cross architecture,.. Needless to say, this was a huge development effort that took many years to complete. A few big milestones happened along the way... OCFS2 was development in the open, we did not have a private tree that we worked on without external code review from the Linux Filesystem maintainers, great folks like Christopher Hellwig reviewed the code regularly to make sure we were not doing anything out of line, we submitted the code for review on lkml a number of times to see if we were getting close for it to be included into the mainline kernel. Using this development model is standard practice for anyone that wants to write code that goes into the kernel and having any chance of doing so without a complete rewrite or.. shall I say flamefest when submitted. It saved us a tremendous amount of time by not having to re-fit code for it to be in a Linus acceptable state. Some other filesystems that were trying to get into the kernel that didn't follow an open development model had a lot harder time and a lot harsher criticism. March 2006, when Linus released 2.6.16, OCFS2 officially became part of the mainline kernel, it was accepted a little earlier in the release candidates but in 2.6.16. OCFS2 became officially part of the mainline Linux kernel tree as one of the many filesystems. It was the first cluster filesystem to make it into the kernel tree. Our hope was that it would then end up getting picked up by the distribution vendors to make it easy for everyone to have access to a CFS. Today the source code for OCFS2 is approximately 85000 lines of code. We made OCFS2 production with full support for customers that ran Oracle database on Linux, no extra or separate support contract needed. OCFS2 1.0.0 started being built for RHEL4 for x86, x86-64, ppc, s390x and ia64. For RHEL5 starting with OCFS2 1.2. SuSE was very interested in high availability and clustering and decided to build and include OCFS2 with SLES9 for their customers and was, next to Oracle, the main contributor to the filesystem for both new features and bug fixes. Source code was always available even prior to inclusion into mainline and as of 2.6.16, source code was just part of a Linux kernel download from kernel.org, which it still is, today. So the latest OCFS2 code is always the upstream mainline Linux kernel. OCFS2 is the cluster filesystem used in Oracle VM 2 and Oracle VM 3 as the virtual disk repository filesystem. Since the filesystem is in the Linux kernel it's released under the GPL v2 The release model has always been that new feature development happened in the mainline kernel and we then built consistent, well tested, snapshots that had versions, 1.2, 1.4, 1.6, 1.8. But these releases were effectively just snapshots in time that were tested for stability and release quality. OCFS2 is very easy to use, there's a simple text file that contains the node information (hostname, node number, cluster name) and a file that contains the cluster heartbeat timeouts. It is very small, and very efficient. As Sunil Mushran wrote in the manual : OCFS2 is an efficient, easily configured, quickly installed, fully integrated and compatible, feature-rich, architecture and endian neutral, cache coherent, ordered data journaling, POSIX-compliant, shared disk cluster file system. Here is a list of some of the important features that are included : Variable Block and Cluster sizes Supports block sizes ranging from 512 bytes to 4 KB and cluster sizes ranging from 4 KB to 1 MB (increments in power of 2). Extent-based Allocations Tracks the allocated space in ranges of clusters making it especially efficient for storing very large files. Optimized Allocations Supports sparse files, inline-data, unwritten extents, hole punching and allocation reservation for higher performance and efficient storage. File Cloning/snapshots REFLINK is a feature which introduces copy-on-write clones of files in a cluster coherent way. Indexed Directories Allows efficient access to millions of objects in a directory. Metadata Checksums Detects silent corruption in inodes and directories. Extended Attributes Supports attaching an unlimited number of name:value pairs to the file system objects like regular files, directories, symbolic links, etc. Advanced Security Supports POSIX ACLs and SELinux in addition to the traditional file access permission model. Quotas Supports user and group quotas. Journaling Supports both ordered and writeback data journaling modes to provide file system consistency in the event of power failure or system crash. Endian and Architecture neutral Supports a cluster of nodes with mixed architectures. Allows concurrent mounts on nodes running 32-bit and 64-bit, little-endian (x86, x86_64, ia64) and big-endian (ppc64) architectures. In-built Cluster-stack with DLM Includes an easy to configure, in-kernel cluster-stack with a distributed lock manager. Buffered, Direct, Asynchronous, Splice and Memory Mapped I/Os Supports all modes of I/Os for maximum flexibility and performance. Comprehensive Tools Support Provides a familiar EXT3-style tool-set that uses similar parameters for ease-of-use. The filesystem was distributed for Linux distributions in separate RPM form and this had to be built for every single kernel errata release or every updated kernel provided by the vendor. We provided builds from Oracle for Oracle Linux and all kernels released by Oracle and for Red Hat Enterprise Linux. SuSE provided the modules directly for every kernel they shipped. With the introduction of the Unbreakable Enterprise Kernel for Oracle Linux and our interest in reducing the overhead of building filesystem modules for every minor release, we decide to make OCFS2 available as part of UEK. There was no more need for separate kernel modules, everything was built-in and a kernel upgrade automatically updated the filesystem, as it should. UEK allowed us to not having to backport new upstream filesystem code into an older kernel version, backporting features into older versions introduces risk and requires extra testing because the code is basically partially rewritten. The UEK model works really well for continuing to provide OCFS2 without that extra overhead. Because the RHEL kernel did not contain OCFS2 as a kernel module (it is in the source tree but it is not built by the vendor in kernel module form) we stopped adding the extra packages to Oracle Linux and its RHEL compatible kernel and for RHEL. Oracle Linux customers/users obviously get OCFS2 included as part of the Unbreakable Enterprise Kernel, SuSE customers get it by SuSE distributed with SLES and Red Hat can decide to distribute OCFS2 to their customers if they chose to as it's just a matter of compiling the module and making it available. OCFS2 today, in the mainline kernel is pretty much feature complete in terms of integration with every filesystem feature Linux offers and it is still actively maintained with Joel Becker being the primary maintainer. Since we use OCFS2 as part of Oracle VM, we continue to look at interesting new functionality to add, REFLINK was a good example, and as such we continue to enhance the filesystem where it makes sense. Bugfixes and any sort of code that goes into the mainline Linux kernel that affects filesystems, automatically also modifies OCFS2 so it's in kernel, actively maintained but not a lot of new development happening at this time. We continue to fully support OCFS2 as part of Oracle Linux and the Unbreakable Enterprise Kernel and other vendors make their own decisions on support as it's really a Linux cluster filesystem now more than something that we provide to customers. It really just is part of Linux like EXT3 or BTRFS etc, the OS distribution vendors decide. Do not confuse OCFS2 with ACFS (ASM cluster Filesystem) also known as Oracle Cloud Filesystem. ACFS is a filesystem that's provided by Oracle on various OS platforms and really integrates into Oracle ASM (Automatic Storage Management). It's a very powerful Cluster Filesystem but it's not distributed as part of the Operating System, it's distributed with the Oracle Database product and installs with and lives inside Oracle ASM. ACFS obviously is fully supported on Linux (Oracle Linux, Red Hat Enterprise Linux) but OCFS2 independently as a native Linux filesystem is also, and continues to also be supported. ACFS is very much tied into the Oracle RDBMS, OCFS2 is just a standard native Linux filesystem with no ties into Oracle products. Customers running the Oracle database and ASM really should consider using ACFS as it also provides storage/clustered volume management. Customers wanting to use a simple, easy to use generic Linux cluster filesystem should consider using OCFS2. To learn more about OCFS2 in detail, you can find good documentation on http://oss.oracle.com/projects/ocfs2 in the Documentation area, or get the latest mainline kernel from http://kernel.org and read the source. One final, unrelated note - since I am not always able to publicly answer or respond to comments, I do not want to selectively publish comments from readers. Sometimes I forget to publish comments, sometime I publish them and sometimes I would publish them but if for some reason I cannot publicly comment on them, it becomes a very one-sided stream. So for now I am going to not publish comments from anyone, to be fair to all sides. You are always welcome to email me and I will do my best to respond to technical questions, questions about strategy or direction are sometimes not possible to answer for obvious reasons.

    Read the article

  • The Incremental Architect&acute;s Napkin - #2 - Balancing the forces

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/02/the-incremental-architectacutes-napkin---2---balancing-the-forces.aspxCategorizing requirements is the prerequisite for ecconomic architectural decisions. Not all requirements are created equal. However, to truely understand and describe the requirement forces pulling on software development, I think further examination of the requirements aspects is varranted. Aspects of Functionality There are two sides to Functionality requirements. It´s about what a software should do. I call that the Operations it implements. Operations are defined by expressions and control structures or calls to frameworks of some sort, i.e. (business) logic statements. Operations calculate, transform, aggregate, validate, send, receive, load, store etc. Operations are about behavior; they take input and produce output by considering state. I´m not using the term “function” here, because functions - or methods or sub-programs - are not necessary to implement Operations. Functions belong to a different sub-aspect of requirements (see below). Operations alone are not enough, though, to make a customer happy with regard to his/her Functionality requirements. Only correctly implemented Operations provide full value. This should make clear, why testing is so important. And not just manual tests during development of some operational feature, but automated tests. Because only automated tests scale when over time the number of operations increases. Without automated tests there is no guarantee formerly correct operations are still correct after more got added. To retest all previous operations manually is infeasible. So whoever relies just on manual tests is not really balancing the two forces Operations and Correctness. With manual tests more weight is put on the side of the scale of Operations. That might be ok for a short period of time - but in the long run it will bite you. You need to plan for Correctness in the long run from the first day of your project on. Aspects of Quality As important as Functionality is, it´s not the driver for software development. No software has ever been written to just implement some operation in code. We don´t need computers just to do something. All computers can do with software we can do without them. Well, at least given enough time and resources. We could calculate the most complex formulas without computers. We could do auctions with millions of people without computers. The only reason we want computers to help us with this and a million other Operations is… We don´t want to wait for the results very long. Or we want less errors. Or we want easier accessability to complicated solutions. So the main reason for customers to buy/order software is some Quality. They want some Functionality with a higher Quality (e.g. performance, scalability, usability, security…) than without the software. But Qualities come in at least two flavors: Most important are Primary Qualities. That´s the Qualities software truely is written for. Take an online auction website for example. Its Primary Qualities are performance, scalability, and usability, I´d say. Auctions should come within reach of millions of people; setting up an auction should be very easy; finding a suitable auction and bidding on it should be as fast as possible. Only if those Qualities have been implemented does security become relevant. A secure auction website is important - but not as important as a fast auction website. Nobody would want to use the most secure auction website if it was unbearably slow. But there would be people willing to use the fastest auction website even it was lacking security. That´s why security - with regard to online auction software - is not a Primary Quality, but just a Secondary Quality. It´s a supporting quality, so to speak. It does not deliver value by itself. With a password manager software this might be different. There security might be a Primary Quality. Please get me right: I don´t want to denigrate any Quality. There´s a long list of non-functional requirements at Wikipedia. They are all created equal - but that does not mean they are equally important for all software projects. When confronted with Quality requirements check with the customer which are primary and which are secondary. That will help to make good economical decisions when in a crunch. Resources are always limited - but requirements are a bottomless ocean. Aspects of Security of Investment Functionality and Quality are traditionally the requirement aspects cared for most - by customers and developers alike. Even today, when pressure rises in a project, tunnel vision will focus on them. Any measures to create and hold up Security of Investment (SoI) will be out of the window pretty quickly. Resistance to customers and/or management is futile. As long as SoI is not placed on equal footing with Functionality and Quality it´s bound to suffer under pressure. To look closer at what SoI means will help to become more conscious about it and make customers and management aware of the risks of neglecting it. SoI to me has two facets: Production Efficiency (PE) is about speed of delivering value. Customers like short response times. Short response times mean less money spent. So whatever makes software development faster supports this requirement. This must not lead to duct tape programming and banging out features by the dozen, though. Because customers don´t just want Operations and Quality, but also Correctness. So if Correctness gets compromised by focussing too much on Production Efficiency it will fire back. Customers want PE not just today, but over the whole course of a software´s lifecycle. That means, it´s not just about coding speed, but equally about code quality. If code quality leads to rework the PE is on an unsatisfactory level. Also if code production leads to waste it´s unsatisfactory. Because the effort which went into waste could have been used to produce value. Rework and waste cost money. Rework and waste abound, however, as long as PE is not addressed explicitly with management and customers. Thanks to the Agile and Lean movements that´s increasingly the case. Nevertheless more could and should be done in many teams. Each and every developer should keep in mind that Production Efficiency is as important to the customer as Functionality and Quality - whether he/she states it or not. Making software development more efficient is important - but still sooner or later even agile projects are going to hit a glas ceiling. At least as long as they neglect the second SoI facet: Evolvability. Delivering correct high quality functionality in short cycles today is good. But not just any software structure will allow this to happen for an indefinite amount of time.[1] The less explicitly software was designed the sooner it´s going to get stuck. Big ball of mud, monolith, brownfield, legacy code, technical debt… there are many names for software structures that have lost the ability to evolve, to be easily changed to accomodate new requirements. An evolvable code base is the opposite of a brownfield. It´s code which can be easily understood (by developers with sufficient domain expertise) and then easily changed to accomodate new requirements. Ideally the costs of adding feature X to an evolvable code base is independent of when it is requested - or at least the costs should only increase linearly, not exponentially.[2] Clean Code, Agile Architecture, and even traditional Software Engineering are concerned with Evolvability. However, it seems no systematic way of achieving it has been layed out yet. TDD + SOLID help - but still… When I look at the design ability reality in teams I see much room for improvement. As stated previously, SoI - or to be more precise: Evolvability - can hardly be measured. Plus the customer rarely states an explicit expectation with regard to it. That´s why I think, special care must be taken to not neglect it. Postponing it to some large refactorings should not be an option. Rather Evolvability needs to be a core concern for every single developer day. This should not mean Evolvability is more important than any of the other requirement aspects. But neither is it less important. That´s why more effort needs to be invested into it, to bring it on par with the other aspects, which usually are much more in focus. In closing As you see, requirements are of quite different kinds. To not take that into account will make it harder to understand the customer, and to make economic decisions. Those sub-aspects of requirements are forces pulling in different directions. To improve performance might have an impact on Evolvability. To increase Production Efficiency might have an impact on security etc. No requirement aspect should go unchecked when deciding how to allocate resources. Balancing should be explicit. And it should be possible to trace back each decision to a requirement. Why is there a null-check on parameters at the start of the method? Why are there 5000 LOC in this method? Why are there interfaces on those classes? Why is this functionality running on the threadpool? Why is this function defined on that class? Why is this class depending on three other classes? These and a thousand more questions are not to mean anything should be different in a code base. But it´s important to know the reason behind all of these decisions. Because not knowing the reason possibly means waste and having decided suboptimally. And how do we ensure to balance all requirement aspects? That needs practices and transparency. Practices means doing things a certain way and not another, even though that might be possible. We´re dealing with dangerous tools here. Like a knife is a dangerous tool. Harm can be done if we use our tools in just any way at the whim of the moment. Over the centuries rules and practices have been established how to use knifes. You don´t put them in peoples´ legs just because you´re feeling like it. You hand over a knife with the handle towards the receiver. You might not even be allowed to cut round food like potatos or eggs with it. The same should be the case for dangerous tools like object-orientation, remote communication, threads etc. We need practices to use them in a way so requirements are balanced almost automatically. In addition, to be able to work on software as a team we need transparency. We need means to share our thoughts, to work jointly on mental models. So far our tools are focused on working with code. Testing frameworks, build servers, DI containers, intellisense, refactoring support… That´s all nice and well. I don´t want to miss any of that. But I think it´s not enough. We´re missing mental tools, tools for making thinking and talking about software (independently of code) easier. You might think, enough of such tools already exist like all those UML diagram types or Flow Charts. But then, isn´t it strange, hardly any team is using them to design software? Or is that just due to a lack of education? I don´t think so. It´s a matter value/weight ratio: the current mental tools are too heavy weight compared to the value they deliver. So my conclusion is, we need lightweight tools to really be able to balance requirements. Software development is complex. We need guidance not to forget important aspects. That´s like with flying an airplane. Pilots don´t just jump in and take off for their destination. Yes, there are times when they are “flying by the seats of their pants”, when they are just experts doing thing intuitively. But most of the time they are going through honed practices called checklist. See “The Checklist Manifesto” for very enlightening details on this. Maybe then I should say it like this: We need more checklists for the complex businss of software development.[3] But that´s what software development mostly is about: changing software over an unknown period of time. It needs to be corrected in order to finally provide promised operations. It needs to be enhanced to provide ever more operations and qualities. All this without knowing when it´s going to stop. Probably never - until “maintainability” hits a wall when the technical debt is too large, the brownfield too deep. Software development is not a sprint, is not a marathon, not even an ultra marathon. Because to all this there is a foreseeable end. Software development is like continuously and foreever running… ? And sometimes I dare to think that costs could even decrease over time. Think of it: With each feature a software becomes richer in functionality. So with each additional feature the chance of there being already functionality helping its implementation increases. That should lead to less costs of feature X if it´s requested later than sooner. X requested later could stand on the shoulders of previous features. Alas, reality seems to be far from this despite 20+ years of admonishing developers to think in terms of reusability.[1] ? Please don´t get me wrong: I don´t want to bog down the “art” of software development with heavyweight practices and heaps of rules to follow. The framework we need should be lightweight. It should not stand in the way of delivering value to the customer. It´s purpose is even to make that easier by helping us to focus and decreasing waste and rework. ?

    Read the article

  • Fast block placement algorithm, advice needed?

    - by James Morris
    I need to emulate the window placement strategy of the Fluxbox window manager. As a rough guide, visualize randomly sized windows filling up the screen one at a time, where the rough size of each results in an average of 80 windows on screen without any window overlapping another. It is important to note that windows will close and the space that closed windows previously occupied becomes available once more for the placement of new windows. The window placement strategy has three binary options: Windows build horizontal rows or vertical columns (potentially) Windows are placed from left to right or right to left Windows are placed from top to bottom or bottom to top Why is the algorithm a problem? It needs to operate to the deadlines of a real time thread in an audio application. At this moment I am only concerned with getting a fast algorithm, don't concern yourself over the implications of real time threads and all the hurdles in programming that that brings. So far I have two choices which I have built loose prototypes for: 1) A port of the Fluxbox placement algorithm into my code. The problem with this is, the client (my program) gets kicked out of the audio server (JACK) when I try placing the worst case scenario of 256 blocks using the algorithm. This algorithm performs over 14000 full (linear) scans of the list of blocks already placed when placing the 256th window. 2) My alternative approach. Only partially implemented, this approach uses a data structure for each area of rectangular free unused space (the list of windows can be entirely separate, and is not required for testing of this algorithm). The data structure acts as a node in a doubly linked list (with sorted insertion), as well as containing the coordinates of the top-left corner, and the width and height. Furthermore, each block data structure also contains four links which connect to each immediately adjacent (touching) block on each of the four sides. IMPORTANT RULE: Each block may only touch with one block per side. The problem with this approach is, it's very complex. I have implemented the straightforward cases where 1) space is removed from one corner of a block, 2) splitting neighbouring blocks so that the IMPORTANT RULE is adhered to. The less straightforward case, where the space to be removed can only be found within a column or row of boxes, is only partially implemented - if one of the blocks to be removed is an exact fit for width (ie column) or height (ie row) then problems occur. And don't even mention the fact this only checks columns one box wide, and rows one box tall. I've implemented this algorithm in C - the language I am using for this project (I've not used C++ for a few years and am uncomfortable using it after having focused all my attention to C development, it's a hobby). The implementation is 700+ lines of code (including plenty of blank lines, brace lines, comments etc). The implementation only works for the horizontal-rows + left-right + top-bottom placement strategy. So I've either got to add some way of making this +700 lines of code work for the other 7 placement strategy options, or I'm going to have to duplicate those +700 lines of code for the other seven options. Neither of these is attractive, the first, because the existing code is complex enough, the second, because of bloat. The algorithm is not even at a stage where I can use it in the real time worst case scenario, because of missing functionality, so I still don't know if it actually performs better or worse than the first approach. What else is there? I've skimmed over and discounted: Bin Packing algorithms: their emphasis on optimal fit does not match the requirements of this algorithm. Recursive Bisection Placement algorithms: sounds promising, but these are for circuit design. Their emphasis is optimal wire length. Both of these, especially the latter, all elements to be placed/packs are known before the algorithm begins. I need an algorithm which works accumulatively with what it is given to do when it is told to do it. What are your thoughts on this? How would you approach it? What other algorithms should I look at? Or even what concepts should I research seeing as I've not studied computer science/software engineering? Please ask questions in comments if further information is needed. [edit] If it makes any difference, the units for the coordinates will not be pixels. The units are unimportant, but the grid where windows/blocks/whatever can be placed will be 127 x 127 units.

    Read the article

  • OpenGL - Frustum not culling polygons beyond far plane

    - by Pladnius Brooks
    I have implemented frustum culling and am checking the bounding box for its intersection with the frustum planes. I added the ability to pause frustum updates which lets me see if the frustum culling has been working correctly. When I turn around after I have paused it, nothing renders behind me and to the left and right side, they taper off as well just as you would expect. Beyond the clip distance (far plane), they still render and I am not sure whether it is a problem with my frustum updating or bounding box checking code or I am using the wrong matrix or what. As I put the distance in the projection matrix at 3000.0f, it still says that bounding boxes well past that are still in the frustum, which isn't the case. Here is where I create my modelview matrix: projectionMatrix = glm::perspective(newFOV, 4.0f / 3.0f, 0.1f, 3000.0f); viewMatrix = glm::mat4(1.0); viewMatrix = glm::scale(viewMatrix, glm::vec3(1.0, 1.0, -1.0)); viewMatrix = glm::rotate(viewMatrix, anglePitch, glm::vec3(1.0, 0.0, 0.0)); viewMatrix = glm::rotate(viewMatrix, angleYaw, glm::vec3(0.0, 1.0, 0.0)); viewMatrix = glm::translate(viewMatrix, glm::vec3(-x, -y, -z)); modelViewProjectiomMatrix = projectionMatrix * viewMatrix; The reason I scale it by -1 in the Z direction is because the levels were designed to be rendered with DirectX so I reverse the Z direction. Here is where I update my frustum: void CFrustum::calculateFrustum() { glm::mat4 mat = camera.getModelViewProjectionMatrix(); // Calculate the LEFT side m_Frustum[LEFT][A] = (mat[0][3]) + (mat[0][0]); m_Frustum[LEFT][B] = (mat[1][3]) + (mat[1][0]); m_Frustum[LEFT][C] = (mat[2][3]) + (mat[2][0]); m_Frustum[LEFT][D] = (mat[3][3]) + (mat[3][0]); // Calculate the RIGHT side m_Frustum[RIGHT][A] = (mat[0][3]) - (mat[0][0]); m_Frustum[RIGHT][B] = (mat[1][3]) - (mat[1][0]); m_Frustum[RIGHT][C] = (mat[2][3]) - (mat[2][0]); m_Frustum[RIGHT][D] = (mat[3][3]) - (mat[3][0]); // Calculate the TOP side m_Frustum[TOP][A] = (mat[0][3]) - (mat[0][1]); m_Frustum[TOP][B] = (mat[1][3]) - (mat[1][1]); m_Frustum[TOP][C] = (mat[2][3]) - (mat[2][1]); m_Frustum[TOP][D] = (mat[3][3]) - (mat[3][1]); // Calculate the BOTTOM side m_Frustum[BOTTOM][A] = (mat[0][3]) + (mat[0][1]); m_Frustum[BOTTOM][B] = (mat[1][3]) + (mat[1][1]); m_Frustum[BOTTOM][C] = (mat[2][3]) + (mat[2][1]); m_Frustum[BOTTOM][D] = (mat[3][3]) + (mat[3][1]); // Calculate the FRONT side m_Frustum[FRONT][A] = (mat[0][3]) + (mat[0][2]); m_Frustum[FRONT][B] = (mat[1][3]) + (mat[1][2]); m_Frustum[FRONT][C] = (mat[2][3]) + (mat[2][2]); m_Frustum[FRONT][D] = (mat[3][3]) + (mat[3][2]); // Calculate the BACK side m_Frustum[BACK][A] = (mat[0][3]) - (mat[0][2]); m_Frustum[BACK][B] = (mat[1][3]) - (mat[1][2]); m_Frustum[BACK][C] = (mat[2][3]) - (mat[2][2]); m_Frustum[BACK][D] = (mat[3][3]) - (mat[3][2]); // Normalize all the sides NormalizePlane(m_Frustum, LEFT); NormalizePlane(m_Frustum, RIGHT); NormalizePlane(m_Frustum, TOP); NormalizePlane(m_Frustum, BOTTOM); NormalizePlane(m_Frustum, FRONT); NormalizePlane(m_Frustum, BACK); } And finally, where I check the bounding box: bool CFrustum::BoxInFrustum( float x, float y, float z, float x2, float y2, float z2) { // Go through all of the corners of the box and check then again each plane // in the frustum. If all of them are behind one of the planes, then it most // like is not in the frustum. for(int i = 0; i < 6; i++ ) { if(m_Frustum[i][A] * x + m_Frustum[i][B] * y + m_Frustum[i][C] * z + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x2 + m_Frustum[i][B] * y + m_Frustum[i][C] * z + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x + m_Frustum[i][B] * y2 + m_Frustum[i][C] * z + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x2 + m_Frustum[i][B] * y2 + m_Frustum[i][C] * z + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x + m_Frustum[i][B] * y + m_Frustum[i][C] * z2 + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x2 + m_Frustum[i][B] * y + m_Frustum[i][C] * z2 + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x + m_Frustum[i][B] * y2 + m_Frustum[i][C] * z2 + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x2 + m_Frustum[i][B] * y2 + m_Frustum[i][C] * z2 + m_Frustum[i][D] > 0) continue; // If we get here, it isn't in the frustum return false; } // Return a true for the box being inside of the frustum return true; }

    Read the article

  • Representing robot's elbow angle in 3-D

    - by Onkar Deshpande
    I am given coordinates of two points in 3-D viz. shoulder point and object point(to which I am supposed to reach). I am also given the length from my shoulder-to-elbow arm and the length of my forearm. I am trying to solve for the unknown position(the position of the joint elbow). I am using cosine rule to find out the elbow angle. Here is my code - #include <stdio.h> #include <math.h> #include <stdlib.h> struct point { double x, y, z; }; struct angles { double clock_wise; double counter_clock_wise; }; double max(double a, double b) { return (a > b) ? a : b; } /* * Check if the combination can make a triangle by considering the fact that sum * of any two sides of a triangle is greater than the remaining side. The * overlapping condition of links is handled separately in main(). */ int valid_triangle(struct point p0, double l0, struct point p1, double l1) { double dist = sqrt(pow((fabs(p1.z - p0.z)), 2) + pow((fabs(p1.y - p0.y)), 2) + pow((fabs(p1.x - p0.x)), 2)); if((max(dist, l0) == dist) && max(dist, l1) == dist) { return (dist < (l0 + l1)); } else if((max(dist, l0) == l0) && (max(l0, l1) == l0)) { return (l0 < (dist + l1)); } else { return (l1 < (dist + l0)); } } /* * Cosine rule is used to find the elbow angle. Positive value indicates a * counter clockwise angle while negative value indicates a clockwise angle. * Since this problem has at max 2 solutions for any given position of P0 and * P1, I am returning a structure of angles which can be used to consider angles * from both direction viz. clockwise-negative and counter-clockwise-positive */ void return_config(struct point p0, double l0, struct point p1, double l1, struct angles *a) { double dist = sqrt(pow((fabs(p1.z - p0.z)), 2) + pow((fabs(p1.y - p0.y)), 2) + pow((fabs(p1.x - p0.x)), 2)); double degrees = (double) acos((l0 * l0 + l1 * l1 - dist * dist) / (2 * l0 * l1)) * (180.0f / 3.1415f); a->clock_wise = -degrees; a->counter_clock_wise = degrees; } int main() { struct point p0, p1; struct angles a; p0.x = 15, p0.y = 4, p0.z = 0; p1.x = 20, p1.y = 4, p1.z = 0; double l0 = 5, l1 = 8; if(valid_triangle(p0, l0, p1, l1)) { printf("Three lengths can make a valid configuration \n"); return_config(p0, l0, p1, l1, &a); printf("Angle of the elbow point (clockwise) = %lf, (counter clockwise) = %lf \n", a.clock_wise, a.counter_clock_wise); } else { double dist = sqrt(pow((fabs(p1.z - p0.z)), 2) + pow((fabs(p1.y - p0.y)), 2) + pow((fabs(p1.x - p0.x)), 2)); if((dist <= (l0 + l1)) && (dist > l0)) { a.clock_wise = -180.0f; a.counter_clock_wise = 180.0f; printf("Angle of the elbow point (clockwise) = %lf, (counter clockwise) = %lf \n", a.clock_wise, a.counter_clock_wise); } else if((dist <= fabs(l0 - l1)) && (dist < l0)){ a.clock_wise = -0.0f; a.counter_clock_wise = 0.0f; printf("Angle of the elbow point (clockwise) = %lf, (counter clockwise) = %lf \n", a.clock_wise, a.counter_clock_wise); } else printf("Given combination cannot make a valid configuration\n"); } return 0; } However, this solution makes sense only in 2-D. Because clockwise and counter-clockwise are meaningless without an axis and direction of rotation. Returning only an angle is technically correct but it leaves a lot of work for the client of this function to use the result in meaningful way. How can I make the changes to get the axis and direction of rotation ? Also, I want to know how many possible solution could be there for this problem. Please let me know your thoughts ! Any help is highly appreciated ...

    Read the article

  • Office 2010: It&rsquo;s not just DOC(X) and XLS(X)

    - by andrewbrust
    Office 2010 has released to manufacturing.  The bits have left the (product team’s) building.  Will you upgrade? This version of Office is officially numbered 14, a designation that correlates with the various releases, through the years, of Microsoft Word.  There were six major versions of Word for DOS, during whose release cycles came three 16-bit Windows versions.  Then, starting with Word 95 and counting through Word 2007, there have been six more versions – all for the 32-bit Windows platform.  Skip version 13 to ward off folksy bad luck (and, perhaps, the bugs that could come with it) and that brings us to version 14, which includes implementations for both 32- and 64-bit Windows platforms.  We’ve come a long way baby.  Or have we? As it does every three years or so, debate will now start to rage on over whether we need a “14th” version the PC platform’s standard word processor, or a “13th” version of the spreadsheet.  If you accept the premise of that question, then you may be on a slippery slope toward answering it in the negative.  Thing is, that premise is valid for certain customers and not others. The Microsoft Office product has morphed from one that offered core word processing, spreadsheet, presentation and email functionality to a suite of applications that provides unique, new value-added features, and even whole applications, in the context of those core services.  The core apps thus grow in mission: Excel is a BI tool.  Word is a collaborative editorial system for the production of publications.  PowerPoint is a media production platform for for live presentations and, increasingly, for delivering more effective presentations online.  Outlook is a time and task management system.  Access is a rich client front-end for data-driven self-service SharePoint applications.  OneNote helps you capture ideas, corral random thoughts in a semi-structured way, and then tie them back to other, more rigidly structured, Office documents. Google Docs and other cloud productivity platforms like Zoho don’t really do these things.  And there is a growing chorus of voices who say that they shouldn’t, because those ancillary capabilities are over-engineered, over-produced and “under-necessary.”  They might say Microsoft is layering on superfluous capabilities to avoid admitting that Office’s core capabilities, the ones people really need, have become commoditized. It’s hard to take sides in that argument, because different people, and the different companies that employ them, have different needs.  For my own needs, it all comes down to three basic questions: will the new version of Office save me time, will it make the mundane parts of my job easier, and will it augment my services to customers?  I need my time back.  I need to spend more of it with my family, and more of it focusing on my own core capabilities rather than the administrative tasks around them.  And I also need my customers to be able to get more value out of the services I provide. Help me triage my inbox, help me get proposals done more quickly and make them easier to read.  Let me get my presentations done faster, make them more effective and make it easier for me to reuse materials from other presentations.  And, since I’m in the BI and data business, help me and my customers manage data and analytics more easily, both on the desktop and online. Those are my criteria.  And, with those in mind, Office 2010 is looking like a worthwhile upgrade.  Perhaps it’s not earth-shattering, but it offers a combination of incremental improvements and a few new major capabilities that I think are quite compelling.  I provide a brief roundup of them here.  It’s admittedly arbitrary and not comprehensive, but I think it tells the Office 2010 story effectively. Across the Suite More than any other, this release of Office aims to give collaboration a real workout.  In certain apps, for the first time, documents can be opened simultaneously by multiple users, with colleagues’ changes appearing in near real-time.  Web-browser-based versions of Word, Excel, PowerPoint and OneNote will be available to extend collaboration to contributors who are off the corporate network. The ribbon user interface is now more pervasive (for example, it appears in OneNote and in Outlook’s main window).  It’s also customizable, allowing users to add, easily, buttons and options of their choosing, into new tabs, or into new groups within existing tabs. Microsoft has also taken the File menu (which was the “Office Button” menu in the 2007 release) and made it into a full-screen “Backstage” view where document-wide operations, like saving, printing and online publishing are performed. And because, more and more, heavily formatted content is cut and pasted between documents and applications, Office 2010 makes it easier to manage the retention or jettisoning of that formatting right as the paste operation is performed.  That’s much nicer than stripping it off, or adding it back, afterwards. And, speaking of pasting, a number of Office apps now make it especially easy to insert screenshots within their documents.  I know that’s useful to me, because I often document or critique applications and need to show them in action.  For the vast majority of users, I expect that this feature will be more useful for capturing snapshots of Web pages, but we’ll have to see whether this feature becomes popular.   Excel At first glance, Excel 2010 looks and acts nearly identically to the 2007 version.  But additional glances are necessary.  It’s important to understand that lots of people in the working world use Excel as more of a database, analytics and mathematical modeling tool than merely as a spreadsheet.  And it’s also important to understand that Excel wasn’t designed to handle such workloads past a certain scale.  That all changes with this release. The first reason things change is that Excel has been tuned for performance.  It’s been optimized for multi-threaded operation; previously lengthy processes have been shortened, especially for large data sets; more rows and columns are allowed and, for the first time, Excel (and the rest of Office) is available in a 64-bit version.  For Excel, this means users can take advantage of more than the 2GB of memory that the 32-bit version is limited to. On the analysis side, Excel 2010 adds Sparklines (tiny charts that fit into a single cell and can therefore be presented down an entire column or across a row) and Slicers (a more user-friendly filter mechanism for PivotTables and charts, which visually indicates what the filtered state of a given data member is).  But most important, Excel 2010 supports the new PowerPIvot add-in which brings true self-service BI to Office.  PowerPivot allows users to import data from almost anywhere, model it, and then analyze it.  Rather than forcing users to build “spreadmarts” or use corporate-built data warehouses, PowerPivot models function as true columnar, in-memory OLAP cubes that can accommodate millions of rows of data and deliver fast drill-down performance. And speaking of OLAP, Excel 2010 now supports an important Analysis Services OLAP feature called write-back.  Write-back is especially useful in financial forecasting scenarios for which Excel is the natural home.  Support for write-back is long overdue, but I’m still glad it’s there, because I had almost given up on it.   PowerPoint This version of PowerPoint marks its progression from a presentation tool to a video and photo editing and production tool.  Whether or not it’s successful in this pursuit, and if offering this is even a sensible goal, is another question. Regardless, the new capabilities are kind of interesting.  A greatly enhanced set of slide transitions with 3D effects; in-product photo and video editing; accommodation of embedded videos from services such as YouTube; and the ability to save a presentation as a video each lay testimony to PowerPoint’s transformation into a media tool and away from a pure presentation tool. These capabilities also recognize the importance of the Web as both a source for materials and a channel for disseminating PowerPoint output. Congruent with that is PowerPoint’s new ability to broadcast a slide presentation, using a quickly-generated public URL, without involving the hassle or expense of a Web meeting service like GoToMeeting or Microsoft’s own LiveMeeting.  Slides presented through this broadcast feature retain full color fidelity and transitions and animations are preserved as well.   Outlook Microsoft’s ubiquitous email/calendar/contact/task management tool gains long overdue speed improvements, especially against POP3 email accounts.  Outlook 2010 also supports multiple Exchange accounts, rather than just one; tighter integration with OneNote; and a new Social Connector providing integration with, and presence information from, online social network services like LinkedIn and Facebook (not to mention Windows Live).  A revamped conversation view now includes messages that are part of a given thread regardless of which folder they may be stored in. I don’t know yet how well the Social Connector will work or whether it will keep Outlook relevant to those who live on Facebook and LinkedIn.  But among the other features, there’s very little not to like.   OneNote To me, OneNote is the part of Office that just keeps getting better.  There is one major caveat to this, which I’ll cover in a moment, but let’s first catalog what new stuff OneNote 2010 brings.  The best part of OneNote, is the way each of its versions have managed hierarchy: Notebooks have sections, sections have pages, pages have sub pages, multiple notes can be contained in either, and each note supports infinite levels of indentation.  None of that is new to 2010, but the new version does make creation of pages and subpages easier and also makes simple work out of promoting and demoting pages from sub page to full page status.  And relationships between pages are quite easy to create now: much like a Wiki, simply typing a page’s name in double-square-brackets (“[[…]]”) creates a link to it. OneNote is also great at integrating content outside of its notebooks.  With a new Dock to Desktop feature, OneNote becomes aware of what window is displayed in the rest of the screen and, if it’s an Office document or a Web page, links the notes you’re typing, at the time, to it.  A single click from your notes later on will bring that same document or Web page back on-screen.  Embedding content from Web pages and elsewhere is also easier.  Using OneNote’s Windows Key+S combination to grab part of the screen now allows you to specify the destination of that bitmap instead of automatically creating a new note in the Unfiled Notes area.  Using the Send to OneNote buttons in Internet Explorer and Outlook result in the same choice. Collaboration gets better too.  Real-time multi-author editing is better accommodated and determining author lineage of particular changes is easily carried out. My one pet peeve with OneNote is the difficulty using it when I’m not one a Windows PC.  OneNote’s main competitor, Evernote, while I believe inferior in terms of features, has client versions for PC, Mac, Windows Mobile, Android, iPhone, iPad and Web browsers.  Since I have an Android phone and an iPad, I am practically forced to use it.  However, the OneNote Web app should help here, as should a forthcoming version of OneNote for Windows Phone 7.  In the mean time, it turns out that using OneNote’s Email Page ribbon button lets you move a OneNote page easily into EverNote (since every EverNote account gets a unique email address for adding notes) and that Evernote’s Email function combined with Outlook’s Send to OneNote button (in the Move group of the ribbon’s Home tab) can achieve the reverse.   Access To me, the big change in Access 2007 was its tight integration with SharePoint lists.  Access 2010 and SharePoint 2010 continue this integration with the introduction of SharePoint’s Access Services.  Much as Excel Services provides a SharePoint-hosted experience for viewing (and now editing) Excel spreadsheet, PivotTable and chart content, Access Services allows for SharePoint browser-hosted editing of Access data within the forms that are built in the Access client itself. To me this makes all kinds of sense.  Although it does beg the question of where to draw the line between Access, InfoPath, SharePoint list maintenance and SharePoint 2010’s new Business Connectivity Services.  Each of these tools provide overlapping data entry and data maintenance functionality. But if you do prefer Access, then you’ll like  things like templates and application parts that make it easier to get off the blank page.  These features help you quickly get tables, forms and reports built out.  To make things look nice, Access even gets its own version of Excel’s Conditional Formatting feature, letting you add data bars and data-driven text formatting.   Word As I said at the beginning of this post, upgrades to Office are about much more than enhancing the suite’s flagship word processing application. So are there any enhancements in Word worth mentioning?  I think so.  The most important one has to be the collaboration features.  Essentially, when a user opens a Word document that is in a SharePoint document library (or Windows Live SkyDrive folder), rather than the whole document being locked, Word has the ability to observe more granular locks on the individual paragraphs being edited.  Word also shows you who’s editing what and its Save function morphs into a sync feature that both saves your changes and loads those made by anyone editing the document concurrently. There’s also a new navigation pane that lets you manage sections in your document in much the same way as you manage slides in a PowerPoint deck.  Using the navigation pane, you can reorder sections, insert new ones, or promote and demote sections in the outline hierarchy.  Not earth shattering, but nice.   Other Apps and Summarized Findings What about InfoPath, Publisher, Visio and Project?  I haven’t looked at them yet.  And for this post, I think that’s fine.  While those apps (and, arguably, Access) cater to specific tasks, I think the apps we’ve looked at in this post service the general purpose needs of most users.  And the theme in those 2010 apps is clear: collaboration is key, the Web and productivity are indivisible, and making data and analytics into a self-service amenity is the way to go.  But perhaps most of all, features are still important, as long as they get you through your day faster, rather than adding complexity for its own sake.  I would argue that this is true for just about every product Microsoft makes: users want utility, not complexity.

    Read the article

  • ASp.Net Mvc 1.0 Dynamic Images Returned from Controller taking 154 seconds+ to display in IE8, firef

    - by julian guppy
    I have a curious problem with IE, IIS 6.0 dynamic PNG files and I am baffled as to how to fix.. Snippet from Helper (this returns the URL to the view for requesting the images from my Controller. string url = LinkBuilder.BuildUrlFromExpression(helper.ViewContext.RequestContext, helper.RouteCollection, c = c.FixHeight(ir.Filename, ir.AltText, "FFFFFF")); url = url.Replace("&", "&"); sb.Append(string.Format("<removed id=\"TheImage\" src=\"{0}\" alt=\"\" /", url)+Environment.NewLine); This produces a piece of html as follows:- img id="TheImage" src="/ImgText/FixHeight?sFile=Images%2FUser%2FJulianGuppy%2FMediums%2Fconservatory.jpg&backgroundColour=FFFFFF" alt="" / brackets missing because i cant post an image... even though I dont want to post an image I jsut want to post the markup... sigh Snippet from Controller ImgTextController /// <summary> /// This function fixes the height of the image /// </summary> /// <param name="sFile"></param> /// <param name="alternateText"></param> /// <param name="backgroundColour"></param> /// <returns></returns> [AcceptVerbs(HttpVerbs.Get)] public ActionResult FixHeight(string sFile, string alternateText, string backgroundColour) { #region File if (string.IsNullOrEmpty(sFile)) { return new ImgTextResult(); } // MVC specific change to prepend the new directory if (sFile.IndexOf("Content") == -1) { sFile = "~/Content/" + sFile; } // open the file System.Drawing.Image img; try { img = System.Drawing.Image.FromFile(Server.MapPath(sFile)); } catch { img = null; } // did we fail? if (img == null) { return new ImgTextResult(); } #endregion File #region Width // Sort out the width from the image passed to me Int32 nWidth = img.Width; #endregion Width #region Height Int32 nHeight = img.Height; #endregion Height // What is the ideal height given a width of 2100 this should be 1400. var nIdealHeight = (int)(nWidth / 1.40920096852); // So is the actual height of the image already greater than the ideal height? Int32 nSplit; if (nIdealHeight < nHeight) { // Yes, do nothing, well i need to return the iamge... nSplit = 0; } else { // rob wants to not show the white at the top or bottom, so if we were to crop the image how would be do it // 1. Calculate what the width should be If we dont adjust the heigt var newIdealWidth = (int)(nHeight * 1.40920096852); // 2. This newIdealWidth should be smaller than the existing width... so work out the split on that Int32 newSplit = (nWidth - newIdealWidth) / 2; // 3. Now recrop the image using 0-nHeight as the height (i.e. full height) // but crop the sides so that its the correct aspect ration var newRect = new Rectangle(newSplit, 0, newIdealWidth, nHeight); img = CropImage(img, newRect); nHeight = img.Height; nWidth = img.Width; nSplit = 0; } // No, so I want to place this image on a larger canvas and we do this by Creating a new image to be the size that we want System.Drawing.Image canvas = new Bitmap(nWidth, nIdealHeight, PixelFormat.Format24bppRgb); Graphics g = Graphics.FromImage(canvas); #region Color // Whilst we can set the background colour we shall default to white if (string.IsNullOrEmpty(backgroundColour)) { backgroundColour = "FFFFFF"; } Color bc = ColorTranslator.FromHtml("#" + backgroundColour); #endregion Color // Filling the background (which gives us our broder) Brush backgroundBrush = new SolidBrush(bc); g.FillRectangle(backgroundBrush, -1, -1, nWidth + 1, nIdealHeight + 1); // draw the image at the position var rect = new Rectangle(0, nSplit, nWidth, nHeight); g.DrawImage(img, rect); return new ImgTextResult { Image = canvas, ImageFormat = ImageFormat.Png }; } My ImgTextResult is a class that returns an Action result for me but embedding the image from a memory stream into the response.outputstream. snippet from my ImageResults /// <summary> /// Execute the result /// </summary> /// <param name="context"></param> public override void ExecuteResult(ControllerContext context) { // output context.HttpContext.Response.Clear(); context.HttpContext.Response.ContentType = "image/png"; try { var memStream = new MemoryStream(); Image.Save(memStream, ImageFormat.Png); context.HttpContext.Response.BinaryWrite(memStream.ToArray()); context.HttpContext.Response.Flush(); context.HttpContext.Response.Close(); memStream.Dispose(); Image.Dispose(); } catch (Exception ex) { string a = ex.Message; } } Now all of this works locally and lovely, and indeed all of this works on my production server BUT Only for Firefox, Safari, Chrome (and other browsers) IE has a fit and decides that it either wont display the image or it does display the image after approx 154seconds of waiting..... I have made sure my HTML is XHTML compliant, I have made sure I am getting no Routing errors or crashes in my event log on the server.... Now obviously I have been a muppet and have done something wrong... but what I cant fathom is why in development all works fine, and in production all non IE browsers also work fine, but IE 8 using IIS 6.0 production server is having some kind of problem in returning this PNG and I dont have an error to trace... so what I am looking for is guidance as to how I can debug this problem.

    Read the article

  • Webkit browser jQuery transformations/transitions not working with jSplitSlider

    - by user3689793
    I am helping to build a site and i'm having an issue with the functionality of an add-in called jsplitslider when running it in chrome. Right now, when I navigate between the slides, the div's get stuck on top of each other and never clear the webkit transformations/animations: <div class="sl-content-slice" style="transition: all 800ms ease-in-out; -webkit-transition: all 800ms ease-in-out;"> I think the problem is due to timing of the functions, but I can't seem to figure out where I would need to add a setTimeout(). I only think this because I exhausted a lot of the other options like display: inline-block, notransitions css, etc. I'm desperate to figure out how to make this work in chrome. It works in FF and IE(surprisingly enough). I'm not great at webcoding, so any help will be appreciated! The code on the site isn't minimized. Here is the jQuery where I think the problem lies: var cssStyle = config.orientation === 'horizontal' ? { marginTop : -this.size.height / 2 } : { marginLeft : -this.size.width / 2 }, // default slide's slices style resetStyle = { 'transform' : 'translate(0%,0%) rotate(0deg) scale(1)', opacity : 1 }, // slice1 style slice1Style = config.orientation === 'horizontal' ? { 'transform' : 'translateY(-' + this.options.translateFactor + '%) rotate(' + config.slice1angle + 'deg) scale(' + config.slice1scale + ')' } : { 'transform' : 'translateX(-' + this.options.translateFactor + '%) rotate(' + config.slice1angle + 'deg) scale(' + config.slice1scale + ')' }, // slice2 style slice2Style = config.orientation === 'horizontal' ? { 'transform' : 'translateY(' + this.options.translateFactor + '%) rotate(' + config.slice2angle + 'deg) scale(' + config.slice2scale + ')' } : { 'transform' : 'translateX(' + this.options.translateFactor + '%) rotate(' + config.slice2angle + 'deg) scale(' + config.slice2scale + ')' }; if( this.options.optOpacity ) { slice1Style.opacity = 0; slice2Style.opacity = 0; } // we are adding the classes sl-trans-elems and sl-trans-back-elems to the slide that is either coming "next" // or going "prev" according to the direction. // the idea is to make it more interesting by giving some animations to the respective slide's elements //( dir === 'next' ) ? $nextSlide.addClass( 'sl-trans-elems' ) : $currentSlide.addClass( 'sl-trans-back-elems' ); $currentSlide.removeClass( 'sl-trans-elems' ); var transitionProp = { 'transition' : 'all ' + this.options.speed + 'ms ease-in-out' }; // add the 2 slices and animate them $movingSlide.css( 'z-index', this.slidesCount ) .find( 'div.sl-content-wrapper' ) .wrap( $( '<div class="sl-content-slice" />' ).css( transitionProp ) ) .parent() .cond( dir === 'prev', function() { var slice = this; this.css( slice1Style ); setTimeout( function() { slice.css( resetStyle ); }, 150 ); }, function() { var slice = this; setTimeout( function() { slice.css( slice1Style ); }, 150 ); } ) .clone() .appendTo( $movingSlide ) .cond( dir === 'prev', function() { var slice = this; this.css( slice2Style ); setTimeout( function() { $currentSlide.addClass( 'sl-trans-back-elems' ); if( self.support ) { slice.css( resetStyle ).on( self.transEndEventName, function() { self._onEndNavigate( slice, $currentSlide, dir ); } ); } else { self._onEndNavigate( slice, $currentSlide, dir ); } }, 150 ); }, function() { var slice = this; setTimeout( function() { $nextSlide.addClass( 'sl-trans-elems' ); if( self.support ) { slice.css( slice2Style ).on( self.transEndEventName, function() { self._onEndNavigate( slice, $currentSlide, dir ); } ); } else { self._onEndNavigate( slice, $currentSlide, dir ); } }, 150 ); } ) .find( 'div.sl-content-wrapper' ) .css( cssStyle ); $nextSlide.show(); }, _validateValues : function( config ) { // OK, so we are restricting the angles and scale values here. // This is to avoid the slices wrong sides to be shown. // you can adjust these values as you wish but make sure you also ajust the // paddings of the slides and also the options.translateFactor value and scale data attrs if( config.slice1angle > this.options.maxAngle || config.slice1angle < -this.options.maxAngle ) { config.slice1angle = this.options.maxAngle; } if( config.slice2angle > this.options.maxAngle || config.slice2angle < -this.options.maxAngle ) { config.slice2angle = this.options.maxAngle; } if( config.slice1scale > this.options.maxScale || config.slice1scale <= 0 ) { config.slice1scale = this.options.maxScale; } if( config.slice2scale > this.options.maxScale || config.slice2scale <= 0 ) { config.slice2scale = this.options.maxScale; } if( config.orientation !== 'vertical' && config.orientation !== 'horizontal' ) { config.orientation = 'horizontal' } }, _onEndNavigate : function( $slice, $oldSlide, dir ) { // reset previous slide's style after next slide is shown var $slide = $slice.parent(), removeClasses = 'sl-trans-elems sl-trans-back-elems'; // remove second slide's slice $slice.remove(); // unwrap.. $slide.css( 'z-index', 10 ) .find( 'div.sl-content-wrapper' ) .unwrap(); // hide previous current slide $oldSlide.hide().removeClass( removeClasses ); $slide.removeClass( removeClasses ); // now we can navigate again.. this.isAnimating = false; this.options.onAfterChange( $slide, this.current ); }, Sorry if I missed any conventions when posting, this is my first S.O. post. Thanks in advance for any help.

    Read the article

  • directX texture appears incorrectly

    - by numerical25
    I finally managed to get a texture onto a cube sadly, but it is appearing incorrectly. as the below picture identifies. Anyways, I am not sure what it could be. My first guess is it could be my uv mapping or my vertex positioning is off. If someone could check and make sure thats good. The first element is the vertex position, second is the color, and third is the uv texture. //Create vectors and put in vertices // Create vertex buffer VertexPos vertices[] = { // BACK SIDES { D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(1.0,1.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(1.0,1.0)}, { D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(1.0,1.0)}, // 2 FRONT SIDE { D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f) , D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(1.0,1.0)}, // 3 { D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,2.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, // 4 { D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, // 5 { D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,2.0)}, // 6 {D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, {D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, {D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, {D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, {D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, {D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, }; My second guess could be an error that I am receiving as I run the program. But I don't know where to begin with that. The following is the description of the error . D3D10: WARNING: ID3D10Device::Draw: Vertex Buffer at the input vertex slot 0 is not big enough for what the Draw*() call expects to traverse. This is OK, as reading off the end of the Buffer is defined to return 0. However the developer probably did not intend to make use of this behavior. [ EXECUTION WARNING #356: DEVICE_DRAW_VERTEX_BUFFER_TOO_SMALL ] Not sure what it could be. but where is my vertex layout description //Create Layout D3D10_INPUT_ELEMENT_DESC layout[] = { {"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT, 0 , 0, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"COLOR",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 12, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"NORMAL",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 28, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"TEXCOORD",0, DXGI_FORMAT_R32G32_FLOAT, 0 , 44, D3D10_INPUT_PER_VERTEX_DATA, 0} }; UINT numElements = (sizeof(layout)/sizeof(layout[0])); modelObject.numVertices = sizeof(vertices)/sizeof(VertexPos); for(int i = 0; i < modelObject.numVertices; i += 3) { D3DXVECTOR3 out; D3DXVECTOR3 v1 = vertices[0 + i].pos; D3DXVECTOR3 v2 = vertices[1 + i].pos; D3DXVECTOR3 v3 = vertices[2 + i].pos; D3DXVECTOR3 u = v2 - v1; D3DXVECTOR3 v = v3 - v1; D3DXVec3Cross(&out, &u, &v); D3DXVec3Normalize(&out, &out); vertices[0 + i].normal = out; vertices[1 + i].normal = out; vertices[2 + i].normal = out; } //Create buffer desc D3D10_BUFFER_DESC bufferDesc; bufferDesc.Usage = D3D10_USAGE_DEFAULT; bufferDesc.ByteWidth = sizeof(VertexPos) * modelObject.numVertices; bufferDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER; bufferDesc.CPUAccessFlags = 0; bufferDesc.MiscFlags = 0; D3D10_SUBRESOURCE_DATA initData; initData.pSysMem = vertices; //Create the buffer HRESULT hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &modelObject.pVertexBuffer); if(FAILED(hr)) return false;

    Read the article

  • Fibre channel long distance woes

    - by Marki
    I need a fresh pair of eyes. We're using a 15km fibre optic line across which fibrechannel and 10GbE is multiplexed (passive optical CWDM). For FC we have long distance lasers suitable up to 40km (Skylane SFCxx0404F0D). The multiplexer is limited by the SFPs which can do max. 4Gb fibrechannel. The FC switch is a Brocade 5000 series. The respective wavelengths are 1550,1570,1590 and 1610nm for FC and 1530nm for 10GbE. The problem is the 4GbFC fabrics are almost never clean. Sometimes they are for a while even with a lot of traffic on them. Then they may suddenly start producing errors (RX CRC, RX encoding, RX disparity, ...) even with only marginal traffic on them. I am attaching some error and traffic graphs. Errors are currently in the order of 50-100 errors per 5 minutes when with 1Gb/s traffic. Optics Here is the power output of one port summarized (collected using sfpshow on different switches) SITE-A units=uW (microwatt) SITE-B ********************************************** FAB1 SW1 TX 1234.3 RX 49.1 SW3 1550nm (ko) RX 95.2 TX 1175.6 FAB2 SW2 TX 1422.0 RX 104.6 SW4 1610nm (ok) RX 54.3 TX 1468.4 What I find curious at this point is the asymmetry in the power levels. While SW2 transmits with 1422uW which SW4 receives with 104uW, SW2 only receives the SW4 signal with similar original power only with 54uW. Vice versa for SW1-3. Anyway the SFPs have RX sensitivity down to -18dBm (ca. 20uW) so in any case it should be fine... But nothing is. Some SFPs have been diagnosed as malfunctioning by the manufacturer (the 1550nm ones shown above with "ko"). The 1610nm ones apparently are ok, they have been tested using a traffic generator. The leased line has also been tested more than once. All is within tolerances. I'm awaiting the replacements but for some reason I don't believe it will make things better as the apparently good ones don't produce ZERO errors either. Earlier there was active equipment involved (some kind of 4GFC retimer) before putting the signal on the line. No idea why. That equipment was eliminated because of the problems so we now only have: the long distance laser in the switch, (new) 10m LC-SC monomode cable to the mux (for each fabric), the leased line, the same thing but reversed on the other side of the link. FC switches Here is a port config from the Brocade portcfgshow (it's like that on both sides, obviously) Area Number: 0 Speed Level: 4G Fill Word(On Active) 0(Idle-Idle) Fill Word(Current) 0(Idle-Idle) AL_PA Offset 13: OFF Trunk Port ON Long Distance LS VC Link Init OFF Desired Distance 32 Km Reserved Buffers 70 Locked L_Port OFF Locked G_Port OFF Disabled E_Port OFF Locked E_Port OFF ISL R_RDY Mode OFF RSCN Suppressed OFF Persistent Disable OFF LOS TOV enable OFF NPIV capability ON QOS E_Port OFF Port Auto Disable: OFF Rate Limit OFF EX Port OFF Mirror Port OFF Credit Recovery ON F_Port Buffers OFF Fault Delay: 0(R_A_TOV) NPIV PP Limit: 126 CSCTL mode: OFF Forcing the links to 2GbFC produces no errors, but we bought 4GbFC and we want 4GbFC. I don't know where to look anymore. Any ideas what to try next or how to proceed? If we can't make 4GbFC work reliably I wonder what the people working with 8 or 16 do... I don't assume that "a few errors here and there" are acceptable. Oh and BTW we are in contact with everyone of the manufacturers (FC switch, MUX, SFPs, ...) Except for the SFPs to be changed (some have been changed before) nobody has a clue. Brocade SAN Health says the fabric is ok. MUX, well, it's passive, it's only a prism, nature at it's best. Any shots in the dark? APPENDIX: Answers to your questions @Chopper3: This is the second generation of Brocades exhibiting the problem. Before we had 5000s, now we have 5100s. In the beginning when we still had the active MUX we rented a longdistance laser once to put it into the switch directly in order to make tests for a day, during that day of course it was clean. But as I said, sometimes it's clean just like that. And sometimes it's not. Alternative switches would mean to rebuild the entire SAN with those only to test. Alternative SFPs, well they're hard to come by just like that. @longneck: The line is rented. It's a dark fibre (9um monomode) so there's noone else on it. Sure there are splices. I can't go and look but I have to trust they have been done correctly. As I said the line has been checked and rechecked (using an optical time-domain reflectometer). Obviously you don't have all this equipment yourself because it's way too expensive. @mdpc: What would be the "wrong" type of cable according to you? Up to the switch everything is monomode, yes. The connectors are the correct ones too. Yeah I know there are the green ones where the fibre is cut off at a certain angle etc. But we have the correct ones for all that I know. Progress Report #1 We have had two fabrics (=2x2 switches) with Brocade 5100s with FabricOS 6.4.1 and two fabrics (another 2x4 switches) on FabricOS 7.0.2. On the longdistance ISLs (one in each fabric) it turned out that with FOS 6.4.1 setting it to long distance issues warnings about the VC Init setting and consequently the fill word. But those are only warnings. FOS 7.0.2 requires you to do modifications to VCI and the fillword for long distance links. Setting FOS 6.4.1 to the LS (long-distance static distance) setting with wrong VCI and fillword setting made the whole fabric inoperational (stuck in an SCN loop, use fabriclog -s to see, you don't see it anywhere else, no port error counters or anything increasing). Currently I'm giving the one fabric with the IMHO more correct settings a beating and it seems to do fine, whereas the other one without much traffic still has errors here and there. In short: We have eliminated the active part of the MUX (the FC retimer). We are putting the long distance SFPs into the end equipment themselves. Just to be sure we bought new monomode cables to connect the end equipment to the remaining passive part of the MUX. We are now trying out several long distance configs. It's almost black magic. Everything that happens is mostly empirical, noone seems to have a clue what are the exact reasons to do something. ("We have tried this, and it didn't work, then we tried that and it worked, so we stuck with that." But noone really seems to know why.) I'll keep you updated. Progress Report #2 We got the new lasers for one of the fabrics on warranty. It's ultra clean even on 4GbFC. They're transmitting with roughly 2mW (3dBm) whereas the others are only at 1.5mW (1.5dBm) although that should really be enough. The other fabric (where the lasers are apparently ok) still produces one or two CRCs infrequently. Using sfpshow the SFP producing the actual RX errors shows Status/Ctrl: 0x82 Alarm flags[0,1] = 0x5, 0x40 Warn Flags[0,1] = 0x5, 0x40 Now I'll have to find out what that means. Not sure if it was there before. Well I'll first clear my head with a week of vacation. 8-)

    Read the article

  • Installing vim7.2 on Solaris Sparc 10 as non-root

    - by Tobbe
    I'm trying to install vim to $HOME/bin by compiling the sources. ./configure --prefix=$home/bin seems to work, but when running make I get: > make Starting make in the src directory. If there are problems, cd to the src directory and run make there cd src && make first gcc -c -I. -Iproto -DHAVE_CONFIG_H -DFEAT_GUI_GTK -I/usr/include/gtk-2.0 -I/usr/lib/gtk-2.0/include -I/usr/include/atk-1.0 -I/usr/include/pango-1.0 -I/usr/openwin/include -I/usr/sfw/include -I/usr/sfw/include/freetype2 -I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -g -O2 -I/usr/openwin/include -o objects/buffer.o buffer.c In file included from buffer.c:28: vim.h:41: error: syntax error before ':' token In file included from os_unix.h:29, from vim.h:245, from buffer.c:28: /usr/include/sys/stat.h:251: error: syntax error before "blksize_t" /usr/include/sys/stat.h:255: error: syntax error before '}' token /usr/include/sys/stat.h:309: error: syntax error before "blksize_t" /usr/include/sys/stat.h:310: error: conflicting types for 'st_blocks' /usr/include/sys/stat.h:252: error: previous declaration of 'st_blocks' was here /usr/include/sys/stat.h:313: error: syntax error before '}' token In file included from /opt/local/bin/../lib/gcc/sparc-sun-solaris2.6/3.4.6/include/sys/signal.h:132, from /usr/include/signal.h:26, from os_unix.h:163, from vim.h:245, from buffer.c:28: /usr/include/sys/siginfo.h:259: error: syntax error before "ctid_t" /usr/include/sys/siginfo.h:292: error: syntax error before '}' token /usr/include/sys/siginfo.h:294: error: syntax error before '}' token /usr/include/sys/siginfo.h:390: error: syntax error before "ctid_t" /usr/include/sys/siginfo.h:398: error: conflicting types for '__fault' /usr/include/sys/siginfo.h:267: error: previous declaration of '__fault' was here /usr/include/sys/siginfo.h:404: error: conflicting types for '__file' /usr/include/sys/siginfo.h:273: error: previous declaration of '__file' was here /usr/include/sys/siginfo.h:420: error: conflicting types for '__prof' /usr/include/sys/siginfo.h:287: error: previous declaration of '__prof' was here /usr/include/sys/siginfo.h:424: error: conflicting types for '__rctl' /usr/include/sys/siginfo.h:291: error: previous declaration of '__rctl' was here /usr/include/sys/siginfo.h:426: error: syntax error before '}' token /usr/include/sys/siginfo.h:428: error: syntax error before '}' token /usr/include/sys/siginfo.h:432: error: syntax error before "k_siginfo_t" /usr/include/sys/siginfo.h:437: error: syntax error before '}' token In file included from /usr/include/signal.h:26, from os_unix.h:163, from vim.h:245, from buffer.c:28: /opt/local/bin/../lib/gcc/sparc-sun-solaris2.6/3.4.6/include/sys/signal.h:173: error: syntax error before "siginfo_t" In file included from os_unix.h:163, from vim.h:245, from buffer.c:28: /usr/include/signal.h:111: error: syntax error before "siginfo_t" /usr/include/signal.h:113: error: syntax error before "siginfo_t" buffer.c: In function `buflist_new': buffer.c:1502: error: storage size of 'st' isn't known buffer.c: In function `buflist_findname': buffer.c:1989: error: storage size of 'st' isn't known buffer.c: In function `setfname': buffer.c:2578: error: storage size of 'st' isn't known buffer.c: In function `otherfile_buf': buffer.c:2836: error: storage size of 'st' isn't known buffer.c: In function `buf_setino': buffer.c:2874: error: storage size of 'st' isn't known buffer.c: In function `buf_same_ino': buffer.c:2894: error: dereferencing pointer to incomplete type buffer.c:2895: error: dereferencing pointer to incomplete type *** Error code 1 make: Fatal error: Command failed for target `objects/buffer.o' Current working directory /home/xluntor/vim72/src *** Error code 1 make: Fatal error: Command failed for target `first' How do I fix the make errors? Or is there another way to install vim as non-root? Thanks in advance EDIT: I took a look at the google groups link Sarah posted. The "Compiling Vim" page linked from there was for Linux, so the commands doesn't even work on Solars. But it did hint at logging the output of ./configure to a file, so I did that. Here it is: ./configure output removed. New version further down. Does anyone spot anything critical missing? EDIT 2: So I downloaded the vim package from sunfreeware. I couldn't just install it, since I don't have root privileges, but I was able to extract the package file. This was the file structure in it: `-- SMCvim `-- reloc |-- bin |-- doc | `-- vim `-- share |-- man | `-- man1 `-- vim `-- vim72 |-- autoload | `-- xml |-- colors |-- compiler |-- doc |-- ftplugin |-- indent |-- keymap |-- lang |-- macros | |-- hanoi | |-- life | |-- maze | `-- urm |-- plugin |-- print |-- spell |-- syntax |-- tools `-- tutor I moved the three files (vim, vimtutor, xdd) in SMCvim/reloc/bin to $HOME/bin, so now I can finally run $HOME/bin/vim! But where do I put the "share" directory and its content? EDIT 3: It might also be worth noting that there already exists an install of vim on the system, but it is broken. When I try to run it I get: ld.so.1: vim: fatal: libgtk-1.2.so.0: open failed: No such file or directory "which vim" outputs /opt/local/bin/vim EDIT 4: Trying to compile this on Solaris 10. uname -a SunOS ws005-22 5.10 Generic_141414-10 sun4u sparc SUNW,SPARC-Enterprise New ./configure output: ./configure --prefix=$home/bin ac_cv_sizeof_int=8 --enable-rubyinterp configure: loading cache auto/config.cache checking whether make sets $(MAKE)... yes checking for gcc... gcc checking for C compiler default output file name... a.out checking whether the C compiler works... yes checking whether we are cross compiling... no checking for suffix of executables... checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether gcc accepts -g... yes checking for gcc option to accept ISO C89... unsupported checking how to run the C preprocessor... gcc -E checking for grep that handles long lines and -e... /usr/sfw/bin/ggrep checking for egrep... /usr/sfw/bin/ggrep -E checking for library containing strerror... none required checking for gawk... gawk checking for strip... strip checking for ANSI C header files... yes checking for sys/wait.h that is POSIX.1 compatible... no configure: checking for buggy tools... checking for BeOS... no checking for QNX... no checking for Darwin (Mac OS X)... no checking --with-local-dir argument... Defaulting to /usr/local checking --with-vim-name argument... Defaulting to vim checking --with-ex-name argument... Defaulting to ex checking --with-view-name argument... Defaulting to view checking --with-global-runtime argument... no checking --with-modified-by argument... no checking if character set is EBCDIC... no checking --disable-selinux argument... no checking for is_selinux_enabled in -lselinux... no checking --with-features argument... Defaulting to normal checking --with-compiledby argument... no checking --disable-xsmp argument... no checking --disable-xsmp-interact argument... no checking --enable-mzschemeinterp argument... no checking --enable-perlinterp argument... no checking --enable-pythoninterp argument... no checking --enable-tclinterp argument... no checking --enable-rubyinterp argument... yes checking for ruby... /opt/sfw/bin/ruby checking Ruby version... OK checking Ruby header files... /opt/sfw/lib/ruby/1.6/sparc-solaris2.10 checking --enable-cscope argument... no checking --enable-workshop argument... no checking --disable-netbeans argument... no checking for socket in -lsocket... yes checking for gethostbyname in -lnsl... yes checking whether compiling netbeans integration is possible... no checking --enable-sniff argument... no checking --enable-multibyte argument... no checking --enable-hangulinput argument... no checking --enable-xim argument... defaulting to auto checking --enable-fontset argument... no checking for xmkmf... /usr/openwin/bin/xmkmf checking for X... libraries /usr/openwin/lib, headers /usr/openwin/include checking whether -R must be followed by a space... no checking for gethostbyname... yes checking for connect... yes checking for remove... yes checking for shmat... yes checking for IceConnectionNumber in -lICE... yes checking if X11 header files can be found... yes checking for _XdmcpAuthDoIt in -lXdmcp... no checking for IceOpenConnection in -lICE... yes checking for XpmCreatePixmapFromData in -lXpm... yes checking if X11 header files implicitly declare return values... no checking --enable-gui argument... yes/auto - automatic GUI support checking whether or not to look for GTK... yes checking whether or not to look for GTK+ 2... yes checking whether or not to look for GNOME... no checking whether or not to look for Motif... yes checking whether or not to look for Athena... yes checking whether or not to look for neXtaw... yes checking whether or not to look for Carbon... yes checking --with-gtk-prefix argument... no checking --with-gtk-exec-prefix argument... no checking --disable-gtktest argument... gtk test enabled checking for gtk-config... /opt/local/bin/gtk-config checking for pkg-config... /usr/bin/pkg-config checking for GTK - version = 2.2.0... yes; found version 2.4.9 checking X11/SM/SMlib.h usability... yes checking X11/SM/SMlib.h presence... yes checking for X11/SM/SMlib.h... yes checking X11/xpm.h usability... yes checking X11/xpm.h presence... yes checking for X11/xpm.h... yes checking X11/Sunkeysym.h usability... yes checking X11/Sunkeysym.h presence... yes checking for X11/Sunkeysym.h... yes checking for XIMText in X11/Xlib.h... yes X GUI selected; xim has been enabled checking whether toupper is broken... no checking whether __DATE__ and __TIME__ work... yes checking elf.h usability... yes checking elf.h presence... yes checking for elf.h... yes checking for main in -lelf... yes checking for dirent.h that defines DIR... yes checking for library containing opendir... none required checking for sys/wait.h that defines union wait... no checking stdarg.h usability... yes checking stdarg.h presence... yes checking for stdarg.h... yes checking stdlib.h usability... yes checking stdlib.h presence... yes checking for stdlib.h... yes checking string.h usability... yes checking string.h presence... yes checking for string.h... yes checking sys/select.h usability... yes checking sys/select.h presence... yes checking for sys/select.h... yes checking sys/utsname.h usability... yes checking sys/utsname.h presence... yes checking for sys/utsname.h... yes checking termcap.h usability... yes checking termcap.h presence... yes checking for termcap.h... yes checking fcntl.h usability... yes checking fcntl.h presence... yes checking for fcntl.h... yes checking sgtty.h usability... yes checking sgtty.h presence... yes checking for sgtty.h... yes checking sys/ioctl.h usability... yes checking sys/ioctl.h presence... yes checking for sys/ioctl.h... yes checking sys/time.h usability... yes checking sys/time.h presence... yes checking for sys/time.h... yes checking sys/types.h usability... yes checking sys/types.h presence... yes checking for sys/types.h... yes checking termio.h usability... yes checking termio.h presence... yes checking for termio.h... yes checking iconv.h usability... yes checking iconv.h presence... yes checking for iconv.h... yes checking langinfo.h usability... yes checking langinfo.h presence... yes checking for langinfo.h... yes checking math.h usability... yes checking math.h presence... yes checking for math.h... yes checking unistd.h usability... yes checking unistd.h presence... yes checking for unistd.h... yes checking stropts.h usability... no checking stropts.h presence... yes configure: WARNING: stropts.h: present but cannot be compiled configure: WARNING: stropts.h: check for missing prerequisite headers? configure: WARNING: stropts.h: see the Autoconf documentation configure: WARNING: stropts.h: section "Present But Cannot Be Compiled" configure: WARNING: stropts.h: proceeding with the preprocessor's result configure: WARNING: stropts.h: in the future, the compiler will take precedence checking for stropts.h... yes checking errno.h usability... yes checking errno.h presence... yes checking for errno.h... yes checking sys/resource.h usability... yes checking sys/resource.h presence... yes checking for sys/resource.h... yes checking sys/systeminfo.h usability... yes checking sys/systeminfo.h presence... yes checking for sys/systeminfo.h... yes checking locale.h usability... yes checking locale.h presence... yes checking for locale.h... yes checking sys/stream.h usability... no checking sys/stream.h presence... yes configure: WARNING: sys/stream.h: present but cannot be compiled configure: WARNING: sys/stream.h: check for missing prerequisite headers? configure: WARNING: sys/stream.h: see the Autoconf documentation configure: WARNING: sys/stream.h: section "Present But Cannot Be Compiled" configure: WARNING: sys/stream.h: proceeding with the preprocessor's result configure: WARNING: sys/stream.h: in the future, the compiler will take precedence checking for sys/stream.h... yes checking termios.h usability... yes checking termios.h presence... yes checking for termios.h... yes checking libc.h usability... no checking libc.h presence... no checking for libc.h... no checking sys/statfs.h usability... yes checking sys/statfs.h presence... yes checking for sys/statfs.h... yes checking poll.h usability... yes checking poll.h presence... yes checking for poll.h... yes checking sys/poll.h usability... yes checking sys/poll.h presence... yes checking for sys/poll.h... yes checking pwd.h usability... yes checking pwd.h presence... yes checking for pwd.h... yes checking utime.h usability... yes checking utime.h presence... yes checking for utime.h... yes checking sys/param.h usability... yes checking sys/param.h presence... yes checking for sys/param.h... yes checking libintl.h usability... yes checking libintl.h presence... yes checking for libintl.h... yes checking libgen.h usability... yes checking libgen.h presence... yes checking for libgen.h... yes checking util/debug.h usability... no checking util/debug.h presence... no checking for util/debug.h... no checking util/msg18n.h usability... no checking util/msg18n.h presence... no checking for util/msg18n.h... no checking frame.h usability... no checking frame.h presence... no checking for frame.h... no checking sys/acl.h usability... yes checking sys/acl.h presence... yes checking for sys/acl.h... yes checking sys/access.h usability... no checking sys/access.h presence... no checking for sys/access.h... no checking sys/sysctl.h usability... no checking sys/sysctl.h presence... no checking for sys/sysctl.h... no checking sys/sysinfo.h usability... yes checking sys/sysinfo.h presence... yes checking for sys/sysinfo.h... yes checking wchar.h usability... yes checking wchar.h presence... yes checking for wchar.h... yes checking wctype.h usability... yes checking wctype.h presence... yes checking for wctype.h... yes checking for sys/ptem.h... no checking for pthread_np.h... no checking strings.h usability... yes checking strings.h presence... yes checking for strings.h... yes checking if strings.h can be included after string.h... yes checking whether gcc needs -traditional... no checking for an ANSI C-conforming const... yes checking for mode_t... yes checking for off_t... yes checking for pid_t... yes checking for size_t... yes checking for uid_t in sys/types.h... yes checking whether time.h and sys/time.h may both be included... yes checking for ino_t... yes checking for dev_t... yes checking for rlim_t... yes checking for stack_t... yes checking whether stack_t has an ss_base field... no checking --with-tlib argument... empty: automatic terminal library selection checking for tgetent in -lncurses... yes checking whether we talk terminfo... yes checking what tgetent() returns for an unknown terminal... zero checking whether termcap.h contains ospeed... yes checking whether termcap.h contains UP, BC and PC... yes checking whether tputs() uses outfuntype... no checking whether sys/select.h and sys/time.h may both be included... yes checking for /dev/ptc... no checking for SVR4 ptys... yes checking for ptyranges... don't know checking default tty permissions/group... can't determine - assume ptys are world accessable world checking return type of signal handlers... void checking for struct sigcontext... no checking getcwd implementation is broken... no checking for bcmp... yes checking for fchdir... yes checking for fchown... yes checking for fseeko... yes checking for fsync... yes checking for ftello... yes checking for getcwd... yes checking for getpseudotty... no checking for getpwnam... yes checking for getpwuid... yes checking for getrlimit... yes checking for gettimeofday... yes checking for getwd... yes checking for lstat... yes checking for memcmp... yes checking for memset... yes checking for nanosleep... no checking for opendir... yes checking for putenv... yes checking for qsort... yes checking for readlink... yes checking for select... yes checking for setenv... yes checking for setpgid... yes checking for setsid... yes checking for sigaltstack... yes checking for sigstack... yes checking for sigset... yes checking for sigsetjmp... yes checking for sigaction... yes checking for sigvec... no checking for strcasecmp... yes checking for strerror... yes checking for strftime... yes checking for stricmp... no checking for strncasecmp... yes checking for strnicmp... no checking for strpbrk... yes checking for strtol... yes checking for tgetent... yes checking for towlower... yes checking for towupper... yes checking for iswupper... yes checking for usleep... yes checking for utime... yes checking for utimes... yes checking for st_blksize... no checking whether stat() ignores a trailing slash... no checking for iconv_open()... yes; with -liconv checking for nl_langinfo(CODESET)... yes checking for strtod in -lm... yes checking for strtod() and other floating point functions... yes checking --disable-acl argument... no checking for acl_get_file in -lposix1e... no checking for acl_get_file in -lacl... no checking for POSIX ACL support... no checking for Solaris ACL support... yes checking for AIX ACL support... no checking --disable-gpm argument... no checking for gpm... no checking --disable-sysmouse argument... no checking for sysmouse... no checking for rename... yes checking for sysctl... not usable checking for sysinfo... not usable checking for sysinfo.mem_unit... no checking for sysconf... yes checking size of int... (cached) 8 checking whether memmove handles overlaps... yes checking for _xpg4_setrunelocale in -lxpg4... no checking how to create tags... ctags -t checking how to run man with a section nr... man -s checking --disable-nls argument... no checking for msgfmt... msgfmt checking for NLS... no "po/Makefile" - disabled checking dlfcn.h usability... yes checking dlfcn.h presence... yes checking for dlfcn.h... yes checking for dlopen()... yes checking for dlsym()... yes checking setjmp.h usability... yes checking setjmp.h presence... yes checking for setjmp.h... yes checking for GCC 3 or later... yes configure: updating cache auto/config.cache configure: creating auto/config.status config.status: creating auto/config.mk config.status: creating auto/config.h Make: make Starting make in the src directory. If there are problems, cd to the src directory and run make there cd src && make first mkdir objects CC="gcc -Iproto -DHAVE_CONFIG_H -DFEAT_GUI_GTK -I/usr/include/gtk-2.0 -I/usr/lib/gtk-2.0/include -I/usr/include/atk-1.0 -I/usr/include/pango-1.0 -I/usr/openwin/include -I/usr/sfw/include -I/usr/sfw/include/freetype2 -I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -I/usr/openwin/include -I/opt/sfw/lib/ruby/1.6/sparc-solaris2.10 " srcdir=. sh ./osdef.sh gcc -c -I. -Iproto -DHAVE_CONFIG_H -DFEAT_GUI_GTK -I/usr/include/gtk-2.0 -I/usr/lib/gtk-2.0/include -I/usr/include/atk-1.0 -I/usr/include/pango-1.0 -I/usr/openwin/include -I/usr/sfw/include -I/usr/sfw/include/freetype2 -I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -g -O2 -I/usr/openwin/include -I/opt/sfw/lib/ruby/1.6/sparc-solaris2.10 -o objects/buffer.o buffer.c In file included from os_unix.h:29, from vim.h:245, from buffer.c:28: /usr/include/sys/stat.h:251: error: syntax error before "blksize_t" /usr/include/sys/stat.h:255: error: syntax error before '}' token /usr/include/sys/stat.h:309: error: syntax error before "blksize_t" /usr/include/sys/stat.h:310: error: conflicting types for 'st_blocks' /usr/include/sys/stat.h:252: error: previous declaration of 'st_blocks' was here /usr/include/sys/stat.h:313: error: syntax error before '}' token In file included from /opt/local/bin/../lib/gcc/sparc-sun-solaris2.6/3.4.6/include/sys/signal.h:132, from /usr/include/signal.h:26, from os_unix.h:163, from vim.h:245, from buffer.c:28: /usr/include/sys/siginfo.h:259: error: syntax error before "ctid_t" /usr/include/sys/siginfo.h:292: error: syntax error before '}' token /usr/include/sys/siginfo.h:294: error: syntax error before '}' token /usr/include/sys/siginfo.h:390: error: syntax error before "ctid_t" /usr/include/sys/siginfo.h:398: error: conflicting types for '__fault' /usr/include/sys/siginfo.h:267: error: previous declaration of '__fault' was here /usr/include/sys/siginfo.h:404: error: conflicting types for '__file' /usr/include/sys/siginfo.h:273: error: previous declaration of '__file' was here /usr/include/sys/siginfo.h:420: error: conflicting types for '__prof' /usr/include/sys/siginfo.h:287: error: previous declaration of '__prof' was here /usr/include/sys/siginfo.h:424: error: conflicting types for '__rctl' /usr/include/sys/siginfo.h:291: error: previous declaration of '__rctl' was here /usr/include/sys/siginfo.h:426: error: syntax error before '}' token /usr/include/sys/siginfo.h:428: error: syntax error before '}' token /usr/include/sys/siginfo.h:432: error: syntax error before "k_siginfo_t" /usr/include/sys/siginfo.h:437: error: syntax error before '}' token In file included from /usr/include/signal.h:26, from os_unix.h:163, from vim.h:245, from buffer.c:28: /opt/local/bin/../lib/gcc/sparc-sun-solaris2.6/3.4.6/include/sys/signal.h:173: error: syntax error before "siginfo_t" In file included from os_unix.h:163, from vim.h:245, from buffer.c:28: /usr/include/signal.h:111: error: syntax error before "siginfo_t" /usr/include/signal.h:113: error: syntax error before "siginfo_t" buffer.c: In function `buflist_new': buffer.c:1502: error: storage size of 'st' isn't known buffer.c: In function `buflist_findname': buffer.c:1989: error: storage size of 'st' isn't known buffer.c: In function `setfname': buffer.c:2578: error: storage size of 'st' isn't known buffer.c: In function `otherfile_buf': buffer.c:2836: error: storage size of 'st' isn't known buffer.c: In function `buf_setino': buffer.c:2874: error: storage size of 'st' isn't known buffer.c: In function `buf_same_ino': buffer.c:2894: error: dereferencing pointer to incomplete type buffer.c:2895: error: dereferencing pointer to incomplete type *** Error code 1 make: Fatal error: Command failed for target `objects/buffer.o' Current working directory /home/xluntor/vim72/src *** Error code 1 make: Fatal error: Command failed for target `first'

    Read the article

  • Wireless access point -> Powerline -> Router -> Internet, should this work?

    - by Anthony
    My network at home used to be a laptop and desktop connected wirelessly to a single Wireless ADSL router, a Cisco 877W. Wireless reception around the house with this setup was quite unreliable, so I've gone about looking to improve it. I purchased some Belkin Gigabit powerline adapters and I've got these working fine. I can hook a computer up to one of the powerline adapters, and with the other one plugged into the ADSL router the computer has internet access. Additionally I can hook a Netgear DG834G Wireless ADSL router into it with the adsl not plugged in, and after turning off DHCP can RJ45 a computer up to the network. Everything works fine. However, if I setup a wireless network on the Netgear then any computer that connects wirelessly to it cannot access the internet. It gets an IP address very slowly via DHCP which is a good one, but it cannot access the internet. It can however communicate with the RJ45'd computer also connected to the Netgear. I wondered whether this could be a problem with the Netgear so I've borrowed a Cisco Aironet 1200 and got this working fine when it's attached directly to the primary ADSL router. I can connect to it wireless and get onto the internet. However, if I then plug it into the Netgear I can communicate with other devices attached to the Netgear, but can't get any further than the Netgear. All the while though the other devices RJ45'd to the Netgear are communicating with the internet just fine. I'm starting to suspect it's one of two things causing the problem: 1) For some reason the belkin powerline adapters don't like carrying wireless-originating signals. Could this be possible? 2) The primary Cisco ADSL router doesn't want to communicate with other devices on my network more than one hop away from it. I'm making an assumption here that within the Netgear box the wireless and wired sides are handled differently. Could this be true? Has anyone successfully setup something similar to what I'm trying, with a wireless device on the otherside of a pair of powerline connectors? Update 06/07/2010 - Response to irrational John 28 June Thanks for the answer John - and for clearing up some of my questions. The model number of the belkin powerline adapters are F5D4076. Security was apparently enabled by default on them, and I didn't change them from their default setting. The network diagram in your answer shows exactly what I'm trying to setup: I've followed that guide and I'm still not able to get things working properly. The thing that perplexes me is that wired network traffic works just fine - it's only the wireless traffic that doesn't. This is with the same laptop, and the same DHCP or static IPs. "1. What IP addresses did you assign to each router? What subnet masks are you using?" - subnet is 255.255.255.0, the router connected to the adsl is 192.168.153.1 and that has the DHCP server. The access point on the other side of the powerline adapters I've tried both a static IP of 192.168.153.110, same subnet, and a DHCP-assigned IP. The other devices are DHCP, although I also tried manually entering IP settings. "2. Have you correctly enabled DHCP on only one of the routers and disabled it on all the others?" Yes I have - only the internet-connected router has DHCP enabled. The IP range for the DHCP is from 192.168.153.11 - 192.168.153.200. The strange thing is that wired connections work fine on the LAN, plugged into any router, work fine - it's only the wireless connections that aren't working when they're plugged into the non-primary AP. "Since the routers you are using appear to integrate an ADSL modem I'm assuming there is no WAN port on them." There's no NAT within the LAN, and all wired connections are connected to LAN ports. It's something wrong with the wireless - wired works fine throughout the whole LAN. Update 06/07/2010 - Response to irrational John 29 June The diagram you've drawn in your answer shows pretty much exactly what I'm trying to do. I've spent another evening trying different things and made some progress but I'm still scratching my head. I've borrowed a Netgear access point and been trying with this, and the strange thing is that my PC is working now - this is a Windows 7 PC connected to the access point in the position of where the DG834G is in the diagram. Meanwhile, however, I have an old Powerbook G4 12" I use for music, and while that has a DHCP-assigned IP address, it's not getting any network throughput to either LAN or internet addresses. To make matters more strange, my phone appears to be intermittently working when it's on the wifi. The access point is a Netgear WPN802v1, DHCP, NAT both switched off, running firmware 2.0.9.0. Last night I set it up with exactly the same settings, and similar to tonight I could get a couple of devices to work, and a couple not to. By the morning, however, everything had stopped working - nothing could get a DHCP IP address. I rebooted the 877W earlier this evening and I'm wondering whether this is why a few things are working now. "Could it be possible that the issue could be with the 877W?" I didn't configure this - is it possible that the DHCP server only likes assigning devices that are immediately attached to it? Or similar, could a firewall be stopping too many addresses that are coming through one device? (ie. the Access Point) This could explain why devices are working at the start but then not by the end. In reply to your questions, "1. I looked at the Netgear DG834G support page. There are five versions of this router. Which version do you have? Netgear usually lists this on the label on the bottom of the router. What version of the firmware does it have?" It's a DG834Gv3, and the firmware is the last on the netgear site version 4.01.40. "3. Not knowing which version you have, I glanced at the reference manual for the DG834G v3. In the section for Wireless Settings under the subsection Wireless Access Point there is a check box for a Wireless Isolation setting. If you have this setting it should be off/unchecked. If it is checked then any device connected via wireless would not be able to talk to any other device on the LAN. This sounds like your problem so maybe this is the cause?" I've checked this and it's switched off. I've made a change to the IP of the access point to something outside the DHCP range - it's now 192.158.153.5, with DHCP starting at 11 and going up to 254. Thanks for the tip about this - I only have a few devices so wouldn't anticipate the DHCP server assigning up to 110, but better safe than sorry. Finally one more thing I thought I should add, is with the Powerbook G4 that's not working - it's getting a DHCP IP address and it can communicate with the WPN802 as I can visit the administration page. Anything further than this, however, it can't reach; I can't administrate the 192.168.153.1 (877W router). Strangely, however, when I open Finder on the same powerbook it's detecting my NAS which is attached directly via wire to the 877W. If I try to browse it, it says connection failed. RE: "Perhaps the problem with your Powerbook is with DNS?.." The IP settings on the powerbook are identical to that of the PC with the exception of the IP address; the PC is 192.168.153.17 and the powerbook is 192.168.153.12. Subnets are the same, 255.255.255.0 and default gateway is the same, .1, and the DNS servers are the same. I administrate the 877W by going to 192.168.153.1 in the browser. This is what isn't working from the Powerbook, despite the PC working fine when I do the same. Meanwhile, however, I can administrate the AP on 192.168.153.5 from both PC and Powerbook Update 06/07/2010 - FINAL RESOLUTION of sorts: First off, sorry for the length of this question. I need start to practice a more concise writing style, so I'm going to try to keep this bit brief. After much fiddling, and with the hugely-appreciated help of irrational John, I have come to the conclusion that it's something wrong with the powerbook. I believe that this was perhaps the reason I doubted things worked at the very beginning. I now have the original DG834Gv3 running both wirelessly and wired, and both wired devices and wireless devices get internet connectivity. The only anomaly is the powerbook which I've had to keep wired, as no matter what I do it refuses to work wirelessly. I still have suspicions that the 877W isn't quite right; I'm fairly sure that if I RJ45 the powerline adapter into a different LAN port on it then everything will break. I've just about run out of patience to test this further, and I think I need to go into the 877W's config to match the 877w's lan port's settings. I'm accepting irrational John's answer as he's been enormously helpful, way above the call of duty, and for this line he wrote: Beats the heck out of me. which in the midst of great frustration made me chuckle, and for a sentence in one of his comments to the same answer: If it is specific to the Powerbook I would put that issue aside until after you feel you have the rest of your LAN and the additional WAP all working together correctlyt It was this second sentence that made me put the powerbook aside and concentrate on the other devices that ultimately led me to getting things working.

    Read the article

  • Reading input from a text file, omits the first and adds a nonsense value to the end?

    - by Greenhouse Gases
    Hi there When I input locations from a txt file I am getting a peculiar error where it seems to miss off the first entry, yet add a garbage entry to the end of the link list (it is designed to take the name, latitude and longitude for each location you will notice). I imagine this to be an issue with where it starts collecting the inputs and where it stops but I cant find the error!! It reads the first line correctly but then skips to the next before adding it because during testing for the bug it had no record of the first location Lisbon though whilst stepping into the method call it was reading it. Very bizarre but hopefully someone knows the issue. Here is firstly my header file: #include <string> struct locationNode { char nodeCityName [35]; double nodeLati; double nodeLongi; locationNode* Next; void CorrectCase() // Correct upper and lower case letters of input { int MAX_SIZE = 35; int firstLetVal = this->nodeCityName[0], letVal; int n = 1; // variable for name index from second letter onwards if((this->nodeCityName[0] >90) && (this->nodeCityName[0] < 123)) // First letter is lower case { firstLetVal = firstLetVal - 32; // Capitalise first letter this->nodeCityName[0] = firstLetVal; } while(n <= MAX_SIZE - 1) { if((this->nodeCityName[n] >= 65) && (this->nodeCityName[n] <= 90)) { letVal = this->nodeCityName[n] + 32; this->nodeCityName[n] = letVal; } n++; } //cityNameInput = this->nodeCityName; } }; class Locations { private: int size; public: Locations(){ }; // constructor for the class locationNode* Head; //int Add(locationNode* Item); }; And here is the file containing main: // U08221.cpp : main project file. #include "stdafx.h" #include "Locations.h" #include <iostream> #include <string> #include <fstream> using namespace std; int n = 0,x, locationCount = 0, MAX_SIZE = 35; string cityNameInput; char targetCity[35]; bool acceptedInput = false, userInputReq = true, match = false, nodeExists = false;// note: addLocation(), set to true to enable user input as opposed to txt file locationNode *start_ptr = NULL; // pointer to first entry in the list locationNode *temp, *temp2; // Part is a pointer to a new locationNode we can assign changing value followed by a call to Add locationNode *seek, *bridge; void setElementsNull(char cityParam[]) { int y=0, count =0; while(cityParam[y] != NULL) { y++; } while(y < MAX_SIZE) { cityParam[y] = NULL; y++; } } void addLocation() { temp = new locationNode; // declare the space for a pointer item and assign a temporary pointer to it if(!userInputReq) // bool that determines whether user input is required in adding the node to the list { cout << endl << "Enter the name of the location: "; cin >> temp->nodeCityName; temp->CorrectCase(); setElementsNull(temp->nodeCityName); cout << endl << "Please enter the latitude value for this location: "; cin >> temp->nodeLati; cout << endl << "Please enter the longitude value for this location: "; cin >> temp->nodeLongi; cout << endl; } temp->Next = NULL; //set to NULL as when one is added it is currently the last in the list and so can not point to the next if(start_ptr == NULL){ // if list is currently empty, start_ptr will point to this node start_ptr = temp; } else { temp2 = start_ptr; // We know this is not NULL - list not empty! while (temp2->Next != NULL) { temp2 = temp2->Next; // Move to next link in chain until reach end of list } temp2->Next = temp; } ++locationCount; // increment counter for number of records in list if(!userInputReq){ cout << "Location sucessfully added to the database! There are " << locationCount << " location(s) stored" << endl; } } void populateList(){ ifstream inputFile; inputFile.open ("locations.txt", ios::in); userInputReq = true; temp = new locationNode; // declare the space for a pointer item and assign a temporary pointer to it do { inputFile.get(temp->nodeCityName, 35, ' '); setElementsNull(temp->nodeCityName); inputFile >> temp->nodeLati; inputFile >> temp->nodeLongi; setElementsNull(temp->nodeCityName); if(temp->nodeCityName[0] == 10) //remove linefeed from input { for(int i = 0; temp->nodeCityName[i] != NULL; i++) { temp->nodeCityName[i] = temp->nodeCityName[i + 1]; } } addLocation(); } while(!inputFile.eof()); userInputReq = false; cout << "Successful!" << endl << "List contains: " << locationCount << " entries" << endl; cout << endl; inputFile.close(); } bool nodeExistTest(char targetCity[]) // see if entry is present in the database { match = false; seek = start_ptr; int letters = 0, letters2 = 0, x = 0, y = 0; while(targetCity[y] != NULL) { letters2++; y++; } while(x <= locationCount) // locationCount is number of entries currently in list { y=0, letters = 0; while(seek->nodeCityName[y] != NULL) // count letters in the current name { letters++; y++; } if(letters == letters2) // same amount of letters in the name { y = 0; while(y <= letters) // compare each letter against one another { if(targetCity[y] == seek->nodeCityName[y]) { match = true; y++; } else { match = false; y = letters + 1; // no match, terminate comparison } } } if(match) { x = locationCount + 1; //found match so terminate loop } else{ if(seek->Next != NULL) { bridge = seek; seek = seek->Next; x++; } else { x = locationCount + 1; // end of list so terminate loop } } } return match; } void deleteRecord() // complete this { int junction = 0; locationNode *place; cout << "Enter the name of the city you wish to remove" << endl; cin >> targetCity; setElementsNull(targetCity); if(nodeExistTest(targetCity)) //if this node does exist { if(seek == start_ptr) // if it is the first in the list { junction = 1; } if(seek != start_ptr && seek->Next == NULL) // if it is last in the list { junction = 2; } switch(junction) // will alter list accordingly dependant on where the searched for link is { case 1: start_ptr = start_ptr->Next; delete seek; --locationCount; break; case 2: place = seek; seek = bridge; delete place; --locationCount; break; default: bridge->Next = seek->Next; delete seek; --locationCount; break; } } else { cout << targetCity << "That entry does not currently exist" << endl << endl << endl; } } void searchDatabase() { char choice; cout << "Enter search term..." << endl; cin >> targetCity; if(nodeExistTest(targetCity)) { cout << "Entry: " << endl << endl; } else { cout << "Sorry, that city is not currently present in the list." << endl << "Would you like to add this city now Y/N?" << endl; cin >> choice; /*while(choice != ('Y' || 'N')) { cout << "Please enter a valid choice..." << endl; cin >> choice; }*/ switch(choice) { case 'Y': addLocation(); break; case 'N': break; default : cout << "Invalid choice" << endl; break; } } } void printDatabase() { temp = start_ptr; // set temp to the start of the list do { if (temp == NULL) { cout << "You have reached the end of the database" << endl; } else { // Display details for what temp points to at that stage cout << "Location : " << temp->nodeCityName << endl; cout << "Latitude : " << temp->nodeLati << endl; cout << "Longitude : " << temp->nodeLongi << endl; cout << endl; // Move on to next locationNode if one exists temp = temp->Next; } } while (temp != NULL); } void nameValidation(string name) { n = 0; // start from first letter x = name.size(); while(!acceptedInput) { if((name[n] >= 65) && (name[n] <= 122)) // is in the range of letters { while(n <= x - 1) { while((name[n] >=91) && (name[n] <=97)) // ERROR!! { cout << "Please enter a valid city name" << endl; cin >> name; } n++; } } else { cout << "Please enter a valid city name" << endl; cin >> name; } if(n <= x - 1) { acceptedInput = true; } } cityNameInput = name; } int main(array<System::String ^> ^args) { //main contains test calls to functions at present cout << "Populating list..."; populateList(); printDatabase(); deleteRecord(); printDatabase(); cin >> cityNameInput; } The text file contains this (ignore the names, they are just for testing!!): Lisbon 45 47 Fattah 45 47 Darius 42 49 Peter 45 27 Sarah 85 97 Michelle 45 47 John 25 67 Colin 35 87 Shiron 40 57 George 34 45 Sean 22 33 The output omits Lisbon, but adds on a garbage entry with nonsense values. Any ideas why? Thank you in advance.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • 100% height with fixed footer and embedded Google Map

    - by Carl
    I have a problem with a layout - it's not online anywhere, just local, but if you copy and paste the code below into an html page and run it locally you will see the same page I do. It's very nearly there. What I'm trying to achieve is a page with no scrollbars using up all available vertical space. Yes, I can set "overflow:hidden" on the container declaration and that helps, but it's not quite right. I want to actually have the google map surrounded with a 1em border. I have this on 3 sides but the 100% height declaration on the content div crashes the bottom border. If you don't realise the implications of a percentage-sized google map div, then the parent HAS to have a height declared for it to work. As the footer is absolute and outside of the flow, there is no "bottom" border to work to and the layout just doesn't work. The content div 100% height basically seems to take its size from the viewport and not the containing div. It's driving me mad... just can't seem to work out how to do this and I'd really appreciate some input. Start here: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head><title>Google map test</title> <script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=false"></script> <style type="text/css"> html,body { margin:0; padding:0; height:100%; /* needed for container min-height */ background:fff; font-family:arial,sans-serif; font-size:small; color:#666; } h1 { font:1.5em georgia,serif; margin:0.5em 0; } h2 { font:1.25em georgia,serif; margin:0 0 0.5em; } div#container { position:relative; /* needed for footer positioning*/ margin:0 auto; /* center, not in IE5 */ width:960px; background:#fff; border-left:1px solid #ccc; border-right:1px solid #ccc; /*height:auto !important; real browsers */ height:100%; /* IE6: treaded as min-height*/ min-height:100%; /* real browsers */ } div#header { border-bottom:1px solid #ccc; border-left:1em solid #ccc; height:108px; position:relative; } div#header h1 { position:absolute; bottom: 0; left:0.5em; } div#header2 { border-bottom:1px solid #ccc; border-left:1em solid #999; height: 40px; position: relative; } div#header2 p { position:absolute; bottom: 0; left:0.5em; } div#headerInternal { border-bottom:1px solid #ccc; border-left:1em solid #cc3300; height: 40px; position: relative; } div#headerInternal p { position:absolute; bottom: 0; left:0.5em; } div#headerInternal2 { height: 40px; position: relative; } div#headerInternal2 p { position:absolute; bottom: 0; left:0.5em; } div#rightCol { float:right; width:29%; padding-bottom:5em; /* bottom padding for footer */ } div#content { float:left; width:70%; height:100%; /* fill that hole! */ border-right:1px solid #ccc; } div#content p { } div#footer { position:absolute; clear:both; width:100%; height:40px; bottom:0; /* stick to bottom */ background:#fff; border-top:1px solid #ccc; } div#footer p { padding:1em; margin:0; } .paddedContent { height:100%; margin: 1em; } </style> <script type="text/javascript"> function initialize() { var latlng = new google.maps.LatLng(52.397, 1.644); var myOptions = { zoom: 8, center: latlng, mapTypeId: google.maps.MapTypeId.ROADMAP }; var map = new google.maps.Map(document.getElementById("map_canvas"), myOptions); } </script> </head> <body onload="initialize()"> <div id="container"> <div id="header"> <h1>Title here...</h1> </div> <div id="header2"> <p>Secondary menu...</p> </div> <div id="rightCol"> <div id="headerInternal2"> <p>Right Header</p> </div> <p class="paddedContent">This is the right column</p> </div> <div id="content"> <div id="headerInternal"> <p>Page Context Menu</p> </div> <div class="paddedContent"> <div id="map_canvas" style="width: 100%; height: 100%;"></div> </div> <div id="footer"> <p>This footer is absolutely positioned</p> </div> </div> </div> </body> </html>

    Read the article

  • Will these optimizations to my Ruby implementation of diff improve performance in a Rails app?

    - by grg-n-sox
    <tl;dr> In source version control diff patch generation, would it be worth it to use the optimizations listed at the very bottom of this writing (see <optimizations>) in my Ruby implementation of diff for making diff patches? </tl;dr> <introduction> I am programming something I have never done before and there might already be tools out there to do the exact thing I am programming but at this point I am having too much fun to care so I am still going to do it from scratch, even if there is a tool for this. So anyways, I am working on a Ruby on Rails app and need a certain feature. Basically I want each entry in a table of mine, let's say for example a table of video games, to have a stored chunk of text that represents a review or something of the sort for that table entry. However, I want this text to be both editable by any registered user and also keep track of different submissions in a version control system. The simplest solution I could think of is just implement a solution that keeps track of the text body and the diff patch history of different versions of the text body as objects in Ruby and then serialize it, preferably in human readable form (so I'll most likely use YAML for this) for editing if needed due to corruption by a software bug or a mistake is made by an admin doing some version editing. So at first I just tried to dive in head first into this feature to find that the problem of generating a diff patch is more difficult that I thought to do efficiently. So I did some research and came across some ideas. Some I have implemented already and some I have not. However, it all pretty much revolves around the longest common subsequence problem, as you would already know if you have already done anything with diff or diff-like features, and optimization the function that solves it. Currently I have it so it truncates the compared versions of the text body from the beginning and end until non-matching lines are found. Then it solves the problem using a comparison matrix, but instead of incrementing the value stored in a cell when it finds a matching line like in most longest common subsequence algorithms I have seen examples of, I increment when I have a non-matching line so as to calculate edit distance instead of longest common subsequence. Although as far as I can tell between the two approaches, they are essentially two sides of the same coin so either could be used to derive an answer. It then back-traces through the comparison matrix and notes when there was an incrementation and in which adjacent cell (West, Northwest, or North) to determine that line's diff entry and assumes all other lines to be unchanged. Normally I would leave it at that, but since this is going into a Rails environment and not just some stand-alone Ruby script, I started getting worried about needing to optimize at least enough so if a spammer that somehow knew how I implemented the version control system and knew my worst case scenario entry still wouldn't be able to hit the server that bad. After some searching and reading of research papers and articles through the internet, I've come across several that seem decent but all seem to have pros and cons and I am having a hard time deciding how well in this situation that the pros and cons balance out. So are the ones listed here worth it? I have listed them with known pros and cons. </introduction> <optimizations> Chop the compared sequences into multiple chucks of subsequences by splitting where lines are unchanged, and then truncating each section of unchanged lines at the beginning and end of each section. Then solve the edit distance of each subsequence. Pro: Changes the time increase as the changed area gets bigger from a quadratic increase to something more similar to a linear increase. Con: Figuring out where to split already seems like you have to solve edit distance except now you don't care how it is changed. Would be fine if this was solvable by a process closer to solving hamming distance but a single insertion would throw this off. Use a cryptographic hash function to both convert all sequence elements into integers and ensure uniqueness. Then solve the edit distance comparing the hash integers instead of the sequence elements themselves. Pro: The operation of comparing two integers is faster than the operation of comparing two strings, so a slight performance gain is received after every comparison, which can be a lot overall. Con: Using a cryptographic hash function takes time to convert all the sequence elements and may end up costing more time to do the conversion that you gain back from the integer comparisons. You could use the built in hash function for a string but that will not guarantee uniqueness. Use lazy evaluation to only calculate the three center-most diagonals of the comparison matrix and then only calculate additional diagonals as needed. And then also use this approach to possibly remove the need on some comparisons to compare all three adjacent cells as desribed here. Pro: Can turn an algorithm that always takes O(n * m) time and make it so only worst case scenario is that time, best case becomes practically linear, and average case is somewhere between the two. Con: It is an algorithm I've only seen implemented in functional programming languages and I am having a difficult time comprehending how to convert this into Ruby based on how it is described at the site linked to above. Make a C module and do the hard work at the native level in C and just make a Ruby wrapper for it so Ruby can make all the calls to it that it needs. Pro: I have to imagine that evaluating something like this in could be a LOT faster. Con: I have no idea how Rails handles apps with ruby code that has C extensions and it hurts the portability of the app. This is an optimization for after the solving of edit distance, but idea is to store additional combined diffs with the ones produced by each version to make a delta-tree data structure with the most recently made diff as the root node of the tree so getting to any version takes worst case time of O(log n) instead of O(n). Pro: Would make going back to an old version a lot faster. Con: It would mean every new commit, the delta-tree would get a new root node that will cost time to reorganize the delta-tree for an operation that will be carried out a lot more often than going back a version, not to mention the unlikelihood it will be an old version. </optimizations> So are these things worth the effort?

    Read the article

  • CSS div/overflow Question: Why does the first HTML file work but not the second?

    - by kidvid
    Notice how the first HTML/CSS works when you re-size the browser horizontally. It will shrink no further than around 800 pixels, but it will expand as far as you drag the right edge of the browser. It will also correctly overflow the table at the top and scroll it horizontally. The thing I don't like about the first code snippet is where the scrollbar is. I want it to show up within the borders of the fieldset, so even if I narrow the browser down to 800 pixels wide, I can see both the left and right sides of the fieldset's border. The second code snippet is exactly the same as the first except I add another div tag to the mix, inside of the field set and around the grid. Notice how the top fieldset's width won't correctly shrink when you make the viewport of your browser narrower. Any ideas on why it doesn't work, what I can do to get it to work like the first code snippet? I don't think I'm describing this clearly, but if you run the two side by side, and expand and contract the horizontal edge of your browser windows, you'll see the differences between the two. I'm pretty new to CSS and HTML layout, so my understanding of why CSS handles sizing the way it does in some situations is still really confusing to me. Thanks, Adrian Working HTML file: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/> <meta http-equiv="Content-Style-Type" content="text/css"></meta> <style type="text/css"> #divBody { margin-top: 5px; top:24px; margin-top: 10px; } #divContainer { top: 5px; position:relative; min-height:100%; #width:expression(document.body.clientWidth < 830? "800": "90%" ); width:90%; min-width: 800px; padding-bottom:70px; } #divMasterGrid { position:relative; margin:5px; top:5px; width:99%; margin:0 auto; overflow-x:scroll; } #divRadioButtonArea { position:relative; top:20px; height:51px; font-size: 12px; width:99%; margin:5px; } </style> <title>TEST TEST</title> </head> <body id="divBody"> <div id="divContainer" class="gridRegion"> <div id="divMasterGrid"> <fieldset style="margin: 5px;"> <legend style="font-size: 12px; color: #000;">Numbers</legend> <table border="1px"> <tr> <td>One </td> <td>Two </td> <td>Three </td> <td>Fout </td> <td>Five </td> <td>Six </td> <td>Seven </td> <td>Eight </td> <td>Nine </td> <td>Ten </td> <td>Eleven </td> <td>Twelve </td> <td>Thirteen </td> <td>Fourteen </td> <td>Fifteen </td> <td>Sixteen </td> <td>Seventeen </td> <td>Eighteen </td> <td>Nineteen </td> <td>Twenty </td> </tr> </table> </fieldset> </div> <div id="divRadioButtonArea"> <fieldset style=" padding-left: 5px;"> <legend style="color: #000; height:auto">Colors</legend> <table style="width:100%;padding-left:5%;padding-right:5%;"> <tr> <td> <input type="radio" name="A" value="Y"/><label>Red</label> </td> <td> <input type="radio" name="O" value="O"/><label>White</label> </td> <td> <input type="radio" name="W"/><label>Blue</label> </td> </tr> </table> </fieldset> </div> </div> </body> </html> Broken HTML file: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/> <meta http-equiv="Content-Style-Type" content="text/css"></meta> <style type="text/css"> #divBody { margin-top: 5px; top:24px; margin-top: 10px; } #divContainer { top: 5px; position:relative; min-height:100%; #width:expression(document.body.clientWidth < 830? "800": "90%" ); width:90%; min-width: 800px; padding-bottom:70px; } #divTopFieldSet { position:relative; margin:5px; top:5px; width:99%; } #divRadioButtonArea { position:relative; top:20px; height:51px; font-size: 12px; width:99%; margin:5px; } #divTable { position:relative; width:99%; margin:5px auto; overflow-x:scroll; } </style> <title>TEST TEST</title> </head> <body id="divBody"> <div id="divContainer" class="gridRegion"> <div id="divTopFieldSet"> <fieldset style="margin: 5px;"> <legend style="font-size: 12px; color: #000;">Numbers</legend> <div id="divTable"> <table border="1px"> <tr> <td>One </td> <td>Two </td> <td>Three </td> <td>Fout </td> <td>Five </td> <td>Six </td> <td>Seven </td> <td>Eight </td> <td>Nine </td> <td>Ten </td> <td>Eleven </td> <td>Twelve </td> <td>Thirteen </td> <td>Fourteen </td> <td>Fifteen </td> <td>Sixteen </td> <td>Seventeen </td> <td>Eighteen </td> <td>Nineteen </td> <td>Twenty </td> </tr> </table> </div> </fieldset> </div> <div id="divRadioButtonArea"> <fieldset style=" padding-left: 5px;"> <legend style="color: #000; height:auto">Colors</legend> <table style="width:100%;padding-left:5%;padding-right:5%;"> <tr> <td> <input type="radio" name="A" value="Y"/><label>Red</label> </td> <td> <input type="radio" name="O" value="O"/><label>White</label> </td> <td> <input type="radio" name="W"/><label>Blue</label> </td> </tr> </table> </fieldset> </div> </div> </body> </html>

    Read the article

  • Retrieving saved checkboxes' name and values from database

    - by sermed
    I have a form with checkboxes, each one has a value. When the registered user select any checkbox the value is incremented (the summation) and then then registred user save his selection of checkbox if he satisfied with the result of summation into database all this work fine ...i want to enable the registred user to view his selection history by retriving and displaying the checkboxes he selected in a page with thier values ... How I can do that? I'm just able to save the selected checkboxes as choice 1, choice 2, for example .. I want to view the selected checkboxes that is saved in database as the appear in the page when the user first select them: for example if the registred user selects these 3 options LEAD DEEP KEEL (1825) FULLY BATTENED MAINSAIL (558) TEAK SIDE DECKS (2889) They will be saved as for example (choice1, choice2, choice3). But if he want to view selected checkboxes the appear exactly as first he selects them: LEAD DEEP KEEL (1825) FULLY BATTENED MAINSAIL (558) TEAK SIDE DECKS (2889) This is my user table: $query="CREATE TABLE User( user_id varchar(20), password varchar(40), user_type varchar(20), firstname varchar(30), lastname varchar(30), street varchar(50), city varchar(50), county varchar(50), post_code varchar(10), country varchar(50), gender varchar(6), dob varchar(15), tel_no varchar(50), vals varchar(50), email varchar(50))"; and the code to inser the options selected to database <?php include("databaseconnection.php"); $str = ''; foreach($_POST as $key => $val) if (strpos($key,'choice') !== false) $str .= $key.','; $query = "INSERT INTO User (vals) VALUES('$str')"; $result=mysql_query($query,$conn); if ($result) { (mysql_error(); } else { echo " done"; } ?> And this is my form: function checkTotal() { document.listForm.total.value = ''; var sum = 0; for (i=0;i <form name="listForm" method="post" action="insert_options.php" > <TABLE cellPadding=3 width=600 border=0> <TBODY> <TR> <TH align=left width="87%" bgColor=#b0b3b4><SPAN class=whiteText>Item</SPAN></TH> <TH align=right width="13%" bgColor=#b0b3b4><SPAN class=whiteText>Select</SPAN></TH></TR> <TR> <TD bgcolor="#9da8af"colSpan=2><SPAN class=normalText><B>General</B></SPAN></TD></TR> <TR> <TD bgcolor="#c4c8ca"><SPAN class=normalText >TEAK SIDE DECKS (2889)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="2889" type="checkbox" onchange="checkTotal()" /></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>LEAD DEEP KEEL (1825)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="1825" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>FULLY BATTENED MAINSAIL (558)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="558" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>HIGH TECH SAILS FOR CONVENTIONAL RIG (1979)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="1979" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>IN MAST REEFING WITH HIGH TECH SAILS (2539)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="2539" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>SPlNNAKER GEAR (POLE LINES DECK FITTINGS) (820)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="820" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>SPINNAKER POLE VERTICAL STOWAGE SYSTEM (214)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="214" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>GAS ROD KICKER (208)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="208" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>SIDE RAIL OPENINGS (BOTH SIDES) (392)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="392" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>SPRING CLEATS MIDSHIPS -ALUMIMIUM (148)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="148" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>ELECTRIC ANCHOR WINDLASS (1189)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="1189" type="checkbox" onchange="checkTotal()"> </TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>ANCHOR CHAIN GALVANISED (50m) (202)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="202" type="checkbox" onchange="checkTotal()"> </TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>ANCHOR CHAIN GALVANISED (50m) (1141)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="1141" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgcolor="#9da8af"colSpan=2><SPAN class=normalText><B>NAVIGATION & ELECTRONICS</B></SPAN></TD></TR> <TR> <TD bgcolor="#c4c8ca"><SPAN class=normalText >WIND VANE (STAINLESS STEEL)(41)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="41" type="checkbox" onchange="checkTotal()" /></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>RAYMARINE ST6O LOG & DEPTH (SEPARATE UNITS)(226)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="226" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgcolor="#9da8af"colSpan=2><SPAN class=normalText><B>ENGINES & ELECTRICS</B></SPAN></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>SHORE SUPPLY (220V) WITH 3 OUTLETS (EXCLUDJNG SHORE CABLE) (327)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="327" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgColor=#c4c8ca><SPAN class=normalText>3rd BATTERY(14OA/H)(196)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="196" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>24 AMP BATTERY CHARGER (475)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="475" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>2 BLADED FOLDING PROPELLER (UPGRADE)(299)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="299" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgcolor="#9da8af"colSpan=2><SPAN class=normalText><B>BELOW DECKS/DOMESTIC</B></SPAN></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>WARM WATER (FROM ENGINE & 220V)(749)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="749" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>SHOWER IN AFT HEADS WITH PUMPOUT(446)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="446" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>DECK SUCTION DISPOSAL FOR HOLDINGTANK(166)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="166" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>REFRIGERATED COOLBOX (12V)(666)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="666" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>LFS SAFETY PACKAGE (COCKPIT HARNESS POINTS STAINLESS STEEL JACKSTAYS)(208)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="208" type="checkbox" onchange="checkTotal()"></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>UPHOLSTERY UPGRADE IN SALOON (SUEDETYPE)(701)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="701" type="checkbox" onchange="checkTotal()"></TD></TR> <TR> <TD bgcolor="#9da8af"colSpan=2><SPAN class=normalText><B>NAVIGATION ELECTRONICS & ELECTRICS</B></SPAN></TD></TR> <TD bgColor=#c4c8ca><SPAN class=normalText>VHF RADIO AERIAL CABLED TO NAVIGATION AREA(178)</SPAN></TD> <TD align=right bgColor=#c4c8ca><input name="choice" value="178" type="checkbox" onchange="checkTotal()"></TD></TR> </table>

    Read the article

  • Texture will not apply to my 3d Cube directX

    - by numerical25
    I am trying to apply a texture onto my 3d cube but it is not showing up correctly. I believe that it might some what be working because the cube is all brown which is almost the same complexion as the texture. And I did not originally make the cube brown. These are the steps I've done to add the texture I first declared 2 new varibles ID3D10EffectShaderResourceVariable* pTextureSR; ID3D10ShaderResourceView* textureSRV; I also added a variable and a struct to my shader .fx file Texture2D tex2D; SamplerState linearSampler { Filter = MIN_MAG_MIP_LINEAR; AddressU = Wrap; AddressV = Wrap; }; I then grabbed the image from my local hard drive from within the .cpp file. I believe this was successful, I checked all varibles for errors, everything has a memory address. Plus I pulled resources before and never had a problem. D3DX10CreateShaderResourceViewFromFile(mpD3DDevice,L"crate.jpg",NULL,NULL,&textureSRV,NULL); I grabbed the tex2d varible from my fx file and placed into my resource varible pTextureSR = modelObject.pEffect->GetVariableByName("tex2D")->AsShaderResource(); And added the resource to the varible pTextureSR->SetResource(textureSRV); I also added the extra property to my vertex layout D3D10_INPUT_ELEMENT_DESC layout[] = { {"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT, 0 , 0, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"COLOR",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 12, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"NORMAL",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 24, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"TEXCOORD",0, DXGI_FORMAT_R32G32_FLOAT, 0 , 36, D3D10_INPUT_PER_VERTEX_DATA, 0} }; as well as my struct struct VertexPos { D3DXVECTOR3 pos; D3DXVECTOR4 color; D3DXVECTOR3 normal; D3DXVECTOR2 texCoord; }; Then I created a new pixel shader that adds the texture to it. Below is the code in its entirety matrix Projection; matrix WorldMatrix; Texture2D tex2D; float3 lightSource; float4 lightColor = {0.5, 0.5, 0.5, 0.5}; // PS_INPUT - input variables to the pixel shader // This struct is created and fill in by the // vertex shader struct PS_INPUT { float4 Pos : SV_POSITION; float4 Color : COLOR0; float4 Normal : NORMAL; float2 Tex : TEXCOORD; }; SamplerState linearSampler { Filter = MIN_MAG_MIP_LINEAR; AddressU = Wrap; AddressV = Wrap; }; //////////////////////////////////////////////// // Vertex Shader - Main Function /////////////////////////////////////////////// PS_INPUT VS(float4 Pos : POSITION, float4 Color : COLOR, float4 Normal : NORMAL, float2 Tex : TEXCOORD) { PS_INPUT psInput; // Pass through both the position and the color psInput.Pos = mul( Pos, Projection ); psInput.Normal = Normal; psInput.Tex = Tex; return psInput; } /////////////////////////////////////////////// // Pixel Shader /////////////////////////////////////////////// float4 PS(PS_INPUT psInput) : SV_Target { float4 finalColor = 0; finalColor = saturate(dot(lightSource, psInput.Normal) * lightColor); return finalColor; } float4 textured( PS_INPUT psInput ) : SV_Target { return tex2D.Sample( linearSampler, psInput.Tex ); } // Define the technique technique10 Render { pass P0 { SetVertexShader( CompileShader( vs_4_0, VS() ) ); SetGeometryShader( NULL ); SetPixelShader( CompileShader( ps_4_0, textured() ) ); } } Below is my CPU code. It maybe a little sloppy. But I am just adding code anywhere cause I am just experimenting and playing around. You should find most of the texture code at the bottom createObject #include "MyGame.h" #include "OneColorCube.h" /* This code sets a projection and shows a turning cube. What has been added is the project, rotation and a rasterizer to change the rasterization of the cube. The issue that was going on was something with the effect file which was causing the vertices not to be rendered correctly.*/ typedef struct { ID3D10Effect* pEffect; ID3D10EffectTechnique* pTechnique; //vertex information ID3D10Buffer* pVertexBuffer; ID3D10Buffer* pIndicesBuffer; ID3D10InputLayout* pVertexLayout; UINT numVertices; UINT numIndices; }ModelObject; ModelObject modelObject; // World Matrix D3DXMATRIX WorldMatrix; // View Matrix D3DXMATRIX ViewMatrix; // Projection Matrix D3DXMATRIX ProjectionMatrix; ID3D10EffectMatrixVariable* pProjectionMatrixVariable = NULL; ID3D10EffectMatrixVariable* pWorldMatrixVarible = NULL; ID3D10EffectVectorVariable* pLightVarible = NULL; ID3D10EffectShaderResourceVariable* pTextureSR; bool MyGame::InitDirect3D() { if(!DX3dApp::InitDirect3D()) { return false; } D3D10_RASTERIZER_DESC rastDesc; rastDesc.FillMode = D3D10_FILL_WIREFRAME; rastDesc.CullMode = D3D10_CULL_FRONT; rastDesc.FrontCounterClockwise = true; rastDesc.DepthBias = false; rastDesc.DepthBiasClamp = 0; rastDesc.SlopeScaledDepthBias = 0; rastDesc.DepthClipEnable = false; rastDesc.ScissorEnable = false; rastDesc.MultisampleEnable = false; rastDesc.AntialiasedLineEnable = false; ID3D10RasterizerState *g_pRasterizerState; mpD3DDevice->CreateRasterizerState(&rastDesc, &g_pRasterizerState); //mpD3DDevice->RSSetState(g_pRasterizerState); // Set up the World Matrix D3DXMatrixIdentity(&WorldMatrix); D3DXMatrixLookAtLH(&ViewMatrix, new D3DXVECTOR3(0.0f, 10.0f, -20.0f), new D3DXVECTOR3(0.0f, 0.0f, 0.0f), new D3DXVECTOR3(0.0f, 1.0f, 0.0f)); // Set up the projection matrix D3DXMatrixPerspectiveFovLH(&ProjectionMatrix, (float)D3DX_PI * 0.5f, (float)mWidth/(float)mHeight, 0.1f, 100.0f); if(!CreateObject()) { return false; } return true; } //These are actions that take place after the clearing of the buffer and before the present void MyGame::GameDraw() { static float rotationAngleY = 15.0f; static float rotationAngleX = 0.0f; static D3DXMATRIX rotationXMatrix; static D3DXMATRIX rotationYMatrix; D3DXMatrixIdentity(&rotationXMatrix); D3DXMatrixIdentity(&rotationYMatrix); // create the rotation matrix using the rotation angle D3DXMatrixRotationY(&rotationYMatrix, rotationAngleY); D3DXMatrixRotationX(&rotationXMatrix, rotationAngleX); rotationAngleY += (float)D3DX_PI * 0.0008f; rotationAngleX += (float)D3DX_PI * 0.0005f; WorldMatrix = rotationYMatrix * rotationXMatrix; // Set the input layout mpD3DDevice->IASetInputLayout(modelObject.pVertexLayout); pWorldMatrixVarible->SetMatrix((float*)&WorldMatrix); // Set vertex buffer UINT stride = sizeof(VertexPos); UINT offset = 0; mpD3DDevice->IASetVertexBuffers(0, 1, &modelObject.pVertexBuffer, &stride, &offset); // Set primitive topology mpD3DDevice->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST); //ViewMatrix._43 += 0.005f; // Combine and send the final matrix to the shader D3DXMATRIX finalMatrix = (WorldMatrix * ViewMatrix * ProjectionMatrix); pProjectionMatrixVariable->SetMatrix((float*)&finalMatrix); // make sure modelObject is valid // Render a model object D3D10_TECHNIQUE_DESC techniqueDescription; modelObject.pTechnique->GetDesc(&techniqueDescription); // Loop through the technique passes for(UINT p=0; p < techniqueDescription.Passes; ++p) { modelObject.pTechnique->GetPassByIndex(p)->Apply(0); // draw the cube using all 36 vertices and 12 triangles mpD3DDevice->Draw(36,0); } } //Render actually incapsulates Gamedraw, so you can call data before you actually clear the buffer or after you //present data void MyGame::Render() { DX3dApp::Render(); } bool MyGame::CreateObject() { //Create Layout D3D10_INPUT_ELEMENT_DESC layout[] = { {"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT, 0 , 0, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"COLOR",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 12, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"NORMAL",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 24, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"TEXCOORD",0, DXGI_FORMAT_R32G32_FLOAT, 0 , 36, D3D10_INPUT_PER_VERTEX_DATA, 0} }; UINT numElements = (sizeof(layout)/sizeof(layout[0])); modelObject.numVertices = sizeof(vertices)/sizeof(VertexPos); for(int i = 0; i < modelObject.numVertices; i += 3) { D3DXVECTOR3 out; D3DXVECTOR3 v1 = vertices[0 + i].pos; D3DXVECTOR3 v2 = vertices[1 + i].pos; D3DXVECTOR3 v3 = vertices[2 + i].pos; D3DXVECTOR3 u = v2 - v1; D3DXVECTOR3 v = v3 - v1; D3DXVec3Cross(&out, &u, &v); D3DXVec3Normalize(&out, &out); vertices[0 + i].normal = out; vertices[1 + i].normal = out; vertices[2 + i].normal = out; } //Create buffer desc D3D10_BUFFER_DESC bufferDesc; bufferDesc.Usage = D3D10_USAGE_DEFAULT; bufferDesc.ByteWidth = sizeof(VertexPos) * modelObject.numVertices; bufferDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER; bufferDesc.CPUAccessFlags = 0; bufferDesc.MiscFlags = 0; D3D10_SUBRESOURCE_DATA initData; initData.pSysMem = vertices; //Create the buffer HRESULT hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &modelObject.pVertexBuffer); if(FAILED(hr)) return false; /* //Create indices DWORD indices[] = { 0,1,3, 1,2,3 }; ModelObject.numIndices = sizeof(indices)/sizeof(DWORD); bufferDesc.ByteWidth = sizeof(DWORD) * ModelObject.numIndices; bufferDesc.BindFlags = D3D10_BIND_INDEX_BUFFER; initData.pSysMem = indices; hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &ModelObject.pIndicesBuffer); if(FAILED(hr)) return false;*/ ///////////////////////////////////////////////////////////////////////////// //Set up fx files LPCWSTR effectFilename = L"effect.fx"; modelObject.pEffect = NULL; hr = D3DX10CreateEffectFromFile(effectFilename, NULL, NULL, "fx_4_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, mpD3DDevice, NULL, NULL, &modelObject.pEffect, NULL, NULL); if(FAILED(hr)) return false; pProjectionMatrixVariable = modelObject.pEffect->GetVariableByName("Projection")->AsMatrix(); pWorldMatrixVarible = modelObject.pEffect->GetVariableByName("WorldMatrix")->AsMatrix(); pTextureSR = modelObject.pEffect->GetVariableByName("tex2D")->AsShaderResource(); ID3D10ShaderResourceView* textureSRV; D3DX10CreateShaderResourceViewFromFile(mpD3DDevice,L"crate.jpg",NULL,NULL,&textureSRV,NULL); pLightVarible = modelObject.pEffect->GetVariableByName("lightSource")->AsVector(); //Dont sweat the technique. Get it! LPCSTR effectTechniqueName = "Render"; D3DXVECTOR3 vLight(1.0f, 1.0f, 1.0f); pLightVarible->SetFloatVector(vLight); modelObject.pTechnique = modelObject.pEffect->GetTechniqueByName(effectTechniqueName); if(modelObject.pTechnique == NULL) return false; pTextureSR->SetResource(textureSRV); //Create Vertex layout D3D10_PASS_DESC passDesc; modelObject.pTechnique->GetPassByIndex(0)->GetDesc(&passDesc); hr = mpD3DDevice->CreateInputLayout(layout, numElements, passDesc.pIAInputSignature, passDesc.IAInputSignatureSize, &modelObject.pVertexLayout); if(FAILED(hr)) return false; return true; } And here is my cube coordinates. I actually only added coordinates to one side. And that is the front side. To double check I flipped the cube in all directions just to make sure i didnt accidentally place the text on the incorrect side //Create vectors and put in vertices // Create vertex buffer VertexPos vertices[] = { // BACK SIDES { D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, // 2 FRONT SIDE { D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(2.0,0.0)}, { D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(0.0,2.0)}, { D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(0.0,2.0)}, { D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f) , D3DXVECTOR2(2.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(2.0,2.0)}, // 3 { D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, // 4 { D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, // 5 { D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)}, // 6 {D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, {D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, {D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, {D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, {D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, {D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, };

    Read the article

< Previous Page | 26 27 28 29 30