Search Results

Search found 41123 results on 1645 pages for 'type casting'.

Page 30/1645 | < Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >

  • Naming methods that do the same thing but return different types

    - by Konstantin Ð.
    Let's assume that I'm extending a graphical file chooser class (JFileChooser). This class has methods which display the file chooser dialog and return a status signature in the form of an int: APPROVE_OPTION if the user selects a file and hits Open /Save, CANCEL_OPTION if the user hits Cancel, and ERROR_OPTION if something goes wrong. These methods are called showDialog(). I find this cumbersome, so I decide to make another method that returns a File object: in the case of APPROVE_OPTION, it returns the file selected by the user; otherwise, it returns null. This is where I run into a problem: would it be okay for me to keep the showDialog() name, even though methods with that name — and a different return type — already exist? To top it off, my method takes an additional parameter: a File which denotes in which directory the file chooser should start. My question to you: Is it okay to call a method the same name as a superclass method if they return different types? Or would that be confusing to API users? (If so, what other name could I use?) Alternatively, should I keep the name and change the return type so it matches that of the other methods? public int showDialog(Component parent, String approveButtonText) // Superclass method public File showDialog(Component parent, File location) // My method

    Read the article

  • Duck checker in Python: does one exist?

    - by elliot42
    Python uses duck-typing, rather than static type checking. But many of the same concerns ultimately apply: does an object have the desired methods and attributes? Do those attributes have valid, in-range values? Whether you're writing constraints in code, or writing test cases, or validating user input, or just debugging, inevitably somewhere you'll need to verify that an object is still in a proper state--that it still "looks like a duck" and "quacks like a duck." In statically typed languages you can simply declare "int x", and anytime you create or mutate x, it will always be a valid int. It seems feasible to decorate a Python object to ensure that it is valid under certain constraints, and that every time that object is mutated it is still valid under those constraints. Ideally there would be a simple declarative syntax to express "hasattr length and length is non-negative" (not in those words. Not unlike Rails validators, but less human-language and more programming-language). You could think of this as ad-hoc interface/type system, or you could think of it as an ever-present object-level unit test. Does such a library exist to declare and validate constraint/duck-checking on Python-objects? Is this an unreasonable tool to want? :) (Thanks!) Contrived example: rectangle = {'length': 5, 'width': 10} # We live in a fictional universe where multiplication is super expensive. # Therefore any time we multiply, we need to cache the results. def area(rect): if 'area' in rect: return rect['area'] rect['area'] = rect['length'] * rect['width'] return rect['area'] print area(rectangle) rectangle['length'] = 15 print area(rectangle) # compare expected vs. actual output! # imagine the same thing with object attributes rather than dictionary keys.

    Read the article

  • How do you encode Algebraic Data Types in a C#- or Java-like language?

    - by Jörg W Mittag
    There are some problems which are easily solved by Algebraic Data Types, for example a List type can be very succinctly expressed as: data ConsList a = Empty | ConsCell a (ConsList a) consmap f Empty = Empty consmap f (ConsCell a b) = ConsCell (f a) (consmap f b) l = ConsCell 1 (ConsCell 2 (ConsCell 3 Empty)) consmap (+1) l This particular example is in Haskell, but it would be similar in other languages with native support for Algebraic Data Types. It turns out that there is an obvious mapping to OO-style subtyping: the datatype becomes an abstract base class and every data constructor becomes a concrete subclass. Here's an example in Scala: sealed abstract class ConsList[+T] { def map[U](f: T => U): ConsList[U] } object Empty extends ConsList[Nothing] { override def map[U](f: Nothing => U) = this } final class ConsCell[T](first: T, rest: ConsList[T]) extends ConsList[T] { override def map[U](f: T => U) = new ConsCell(f(first), rest.map(f)) } val l = (new ConsCell(1, new ConsCell(2, new ConsCell(3, Empty))) l.map(1+) The only thing needed beyond naive subclassing is a way to seal classes, i.e. a way to make it impossible to add subclasses to a hierarchy. How would you approach this problem in a language like C# or Java? The two stumbling blocks I found when trying to use Algebraic Data Types in C# were: I couldn't figure out what the bottom type is called in C# (i.e. I couldn't figure out what to put into class Empty : ConsList< ??? >) I couldn't figure out a way to seal ConsList so that no subclasses can be added to the hierarchy What would be the most idiomatic way to implement Algebraic Data Types in C# and/or Java? Or, if it isn't possible, what would be the idiomatic replacement?

    Read the article

  • How to distinguish doc, ppt, xls files, without looking at file extension

    - by Shelby. S
    So I was wondering how would you differentiate ppt, xls and doc files from each other in linux regardless of extensions. I tried 'file' but from the looks of it, all of MSOffice files are categorized under the same file type. Similarly I'm having trouble with docx, xlsx and pptx files, since they're essentially all zip files containing a bunch of xml. I also tried a python script importing the magic module, but no go. I'm trying to identify the actual file for a sandbox analysis. And for this specific purpose I need to find the actual file type in order to run it in the sandbox vm (the Windows vm runs everything by extension). Let's say my sample file is labeled as try.exe, but in reality it's just a doc file. My script will rename it as try.exe.doc, which would work fine for doc files. But since linux identifies all MSOffice files as simple DOC files then there's no way to identify ppt or xls files. As a result the sandbox wont' analyze the sample correctly.

    Read the article

  • Matlab: Why is '1' + 1 == 50? [migrated]

    - by phi
    Matlab has weak dynamic typing, which is what causes this weird behaviour. What I do not understand is what exactly happens, as this result really surprises me. Edit: To clarify, what I'm describing is clearly a result of Matlab storing chars in ASCII-format, which was also mentioned in the comments. I'm more interested in the way Matlab handles its variables, and specifically, how and when it assigns a type/tag to the values. Thanks. '1' is a 1-by-1 matrix of chars in matlab and '123' is a 1-by-3 matrix of chars. As expected, 1 returns a 1-by-1 double. Now if I enter '1' + 1 I get 50 as a 1-by-1 double, and if I enter '123' + 1 I get a 1-by-3 double [ 50 51 52 ] Furthermore, if I type 'a' + 1 the result is 98 in a 1-by-1 double. I assume this has to do with how Matlab stores char-variables in ascii form, but how exactly is it handling these? Are the data actually unityped and tagged, or how does it work? Thanks.

    Read the article

  • How can I make the C# compiler infer these type parameters automatically?

    - by John Feminella
    I have some code that looks like the following. First I have some domain classes and some special comparators for them. public class Fruit { public int Calories { get; set; } public string Name { get; set; } } public class FruitEqualityComparer : IEqualityComparer<Fruit> { // ... } public class BasketEqualityComparer : IEqualityComparer<IEnumerable<Fruit>> { // ... } Next, I have a helper class called ConstraintChecker. It has a simple BaseEquals method that makes sure some simple base cases are considered: public static class ConstraintChecker { public static bool BaseEquals(T lhs, T rhs) { bool sameObject = l == r; bool leftNull = l == null; bool rightNull = r == null; return sameObject && !leftNull && !rightNull; } There's also a SemanticEquals method which is just a BaseEquals check and a comparator function that you specify. public static bool SemanticEquals<T>(T lhs, T rhs, Func<T, T, bool> f) { return BaseEquals(lhs, rhs) && f(lhs, rhs); } And finally there's a SemanticSequenceEquals method which accepts two IEnumerable<T> instances to compare, and an IEqualityComparer instance that will get called on each pair of elements in the list via Enumerable.SequenceEquals. public static bool SemanticSequenceEquals<T, U, V>(U lhs, U rhs, V comparator) where U : IEnumerable<T> where V : IEqualityComparer<T> { return SemanticEquals(lhs, rhs, (l, r) => lhs.SequenceEqual(rhs, comparator)); } } // end of ConstraintChecker The point of SemanticSequenceEquals is that you don't have to define two comparators whenever you want to compare both IEnumerable<T> and T instances; now you can just specify an IEqualityComparer<T> and it will also handle lists when you invoke SemanticSequenceEquals. So I could get rid of the BasketEqualityComparer class, which would be nice. But there's a problem. The C# compiler can't figure out the types involved when you invoke SemanticSequenceEquals: return ConstraintChecker.SemanticSequenceEquals(lhs, rhs, new FruitEqualityComparer()); If I specify them explicitly, it works: return ConstraintChecker.SemanticSequenceEquals< Fruit, IEnumerable<Fruit>, IEqualityComparer<Fruit> > (lhs, rhs, new FruitEqualityComparer()); What can I change here so that I don't have to write the type parameters explicitly?

    Read the article

  • gcc, strict-aliasing, and casting through a union

    - by Joseph Quinsey
    About a year ago the following paragraph was added to the GCC Manual, version 4.3.4, regarding -fstrict-aliasing: Similarly, access by taking the address, casting the resulting pointer and dereferencing the result has undefined behavior [emphasis added], even if the cast uses a union type, e.g.: union a_union { int i; double d; }; int f() { double d = 3.0; return ((union a_union *)&d)->i; } Does anyone have an example to illustrate this undefined behavior? Note this question is not about what the C99 standard says, or does not say. It is about the actual functioning of gcc, and other existing compilers, today. My simple, naive, attempt fails. For example: #include <stdio.h> union a_union { int i; double d; }; int f1(void) { union a_union t; t.d = 3333333.0; return t.i; // gcc manual: 'type-punning is allowed, provided ...' } int f2(void) { double d = 3333333.0; return ((union a_union *)&d)->i; // gcc manual: 'undefined behavior' } int main(void) { printf("%d\n", f1()); printf("%d\n", f2()); return 0; } works fine, giving on CYGWIN: -2147483648 -2147483648 Also note that taking addresses is obviously wrong (or right, if you are trying to illustrate undefined behavior). For example, just as we know this is wrong: extern void foo(int *, double *); union a_union t; t.d = 3.0; foo(&t.i, &t.d); // UD behavior so is this wrong: extern void foo(int *, double *); double d = 3.0; foo(&((union a_union *)&d)->i, &d); // UD behavior For background discussion about this, see for example: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1422.pdf http://gcc.gnu.org/ml/gcc/2010-01/msg00013.html http://davmac.wordpress.com/2010/02/26/c99-revisited/ http://cellperformance.beyond3d.com/articles/2006/06/understanding-strict-aliasing.html http://stackoverflow.com/questions/98650/what-is-the-strict-aliasing-rule http://stackoverflow.com/questions/2771023/c99-strict-aliasing-rules-in-c-gcc/2771041#2771041 The first link, draft minutes of an ISO meeting seven months ago, notes in section 4.16: Is there anybody that thinks the rules are clear enough? No one is really able to interpret tham.

    Read the article

  • Why is my (Type).GetFields(BindingFlags.Instance | BindingFlags.Public) not working?

    - by granadaCoder
    My code can see the NonPublic members, but not the Public ones. (???) Full sample code below. FieldInfo[] publicFieldInfos = t.GetFields(BindingFlags.Instance | BindingFlags.Public); is returning nothing. Note, I'm trying to get at the properties on the abstract class as well as the 1 concrete class. (And read the attributes as well). I'm going bonkers on this one....the msdn example works with the 2 flags (BindingFlags.Instance | BindingFlags.Public).....but my mini inheritance example below is not. THANKS in advance. /////////////START CODE private void RunTest1() { try { textBox1.Text = string.Empty; Type t = typeof(MyInheritedClass); //Look at the BindingFlags *** NonPublic *** int fieldCount = 0; while (null != t) { fieldCount += t.GetFields(BindingFlags.Instance | BindingFlags.NonPublic).Length; FieldInfo[] nonPublicFieldInfos = t.GetFields(BindingFlags.Instance | BindingFlags.NonPublic); foreach (FieldInfo field in nonPublicFieldInfos) { if (null != field) { Console.WriteLine(field.Name); } } t = t.BaseType; } Console.WriteLine("\n\r------------------\n\r"); //Look at the BindingFlags *** Public *** t = typeof(MyInheritedClass); FieldInfo[] publicFieldInfos = t.GetFields(BindingFlags.Instance | BindingFlags.Public); foreach (FieldInfo field in publicFieldInfos) { if (null != field) { Console.WriteLine(field.Name); object[] attributes = field.GetCustomAttributes(t, true); if (attributes != null && attributes.Length > 0) { foreach (Attribute att in attributes) { Console.WriteLine(att.GetType().Name); } } } } } catch (Exception ex) { ReportException(ex); } } private void ReportException(Exception ex) { Exception innerException = ex; while (innerException != null) { Console.WriteLine(innerException.Message + System.Environment.NewLine + innerException.StackTrace + System.Environment.NewLine + System.Environment.NewLine); innerException = innerException.InnerException; } } public abstract class MySuperType { public MySuperType(string st) { this.STString = st; } public string STString { get; set; } public abstract string MyAbstractString {get;set;} } public class MyInheritedClass : MySuperType { public MyInheritedClass(string ic) : base(ic) { this.ICString = ic; } [Description("This is an important property"),Category("HowImportant")] public string ICString { get; set; } private string _oldSchoolPropertyString = string.Empty; public string OldSchoolPropertyString { get { return _oldSchoolPropertyString; } set { _oldSchoolPropertyString = value; } } [Description("This is a not so importarnt property"), Category("HowImportant")] public override string MyAbstractString { get; set; } }

    Read the article

  • SQL SERVER – Signal Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28

    - by pinaldave
    In this post, let’s delve a bit more in depth regarding wait stats. The very first question: when do the wait stats occur? Here is the simple answer. When SQL Server is executing any task, and if for any reason it has to wait for resources to execute the task, this wait is recorded by SQL Server with the reason for the delay. Later on we can analyze these wait stats to understand the reason the task was delayed and maybe we can eliminate the wait for SQL Server. It is not always possible to remove the wait type 100%, but there are few suggestions that can help. Before we continue learning about wait types and wait stats, we need to understand three important milestones of the query life-cycle. Running - a query which is being executed on a CPU is called a running query. This query is responsible for CPU time. Runnable – a query which is ready to execute and waiting for its turn to run is called a runnable query. This query is responsible for Signal Wait time. (In other words, the query is ready to run but CPU is servicing another query). Suspended – a query which is waiting due to any reason (to know the reason, we are learning wait stats) to be converted to runnable is suspended query. This query is responsible for wait time. (In other words, this is the time we are trying to reduce). In simple words, query execution time is a summation of the query Executing CPU Time (Running) + Query Wait Time (Suspended) + Query Signal Wait Time (Runnable). Again, it may be possible a query goes to all these stats multiple times. Let us try to understand the whole thing with a simple analogy of a taxi and a passenger. Two friends, Tom and Danny, go to the mall together. When they leave the mall, they decide to take a taxi. Tom and Danny both stand in the line waiting for their turn to get into the taxi. This is the Signal Wait Time as they are ready to get into the taxi but the taxis are currently serving other customer and they have to wait for their turn. In other word they are in a runnable state. Now when it is their turn to get into the taxi, the taxi driver informs them he does not take credit cards and only cash is accepted. Neither Tom nor Danny have enough cash, they both cannot get into the vehicle. Tom waits outside in the queue and Danny goes to ATM to fetch the cash. During this time the taxi cannot wait, they have to let other passengers get into the taxi. As Tom and Danny both are outside in the queue, this is the Query Wait Time and they are in the suspended state. They cannot do anything till they get the cash. Once Danny gets the cash, they are both standing in the line again, creating one more Signal Wait Time. This time when their turn comes they can pay the taxi driver in cash and reach their destination. The time taken for the taxi to get from the mall to the destination is running time (CPU time) and the taxi is running. I hope this analogy is bit clear with the wait stats. You can check the Signalwait stats using following query of Glenn Berry. -- Signal Waits for instance SELECT CAST(100.0 * SUM(signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%signal (cpu) waits], CAST(100.0 * SUM(wait_time_ms - signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%resource waits] FROM sys.dm_os_wait_stats OPTION (RECOMPILE); Higher the Signal wait stats are not good for the system. Very high value indicates CPU pressure. In my experience, when systems are running smooth and without any glitch the Signal wait stat is lower than 20%. Again, this number can be debated (and it is from my experience and is not documented anywhere). In other words, lower is better and higher is not good for the system. In future articles we will discuss in detail the various wait types and wait stats and their resolution. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL SERVER – Single Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28

    - by pinaldave
    In this post, let’s delve a bit more in depth regarding wait stats. The very first question: when do the wait stats occur? Here is the simple answer. When SQL Server is executing any task, and if for any reason it has to wait for resources to execute the task, this wait is recorded by SQL Server with the reason for the delay. Later on we can analyze these wait stats to understand the reason the task was delayed and maybe we can eliminate the wait for SQL Server. It is not always possible to remove the wait type 100%, but there are few suggestions that can help. Before we continue learning about wait types and wait stats, we need to understand three important milestones of the query life-cycle. Running - a query which is being executed on a CPU is called a running query. This query is responsible for CPU time. Runnable – a query which is ready to execute and waiting for its turn to run is called a runnable query. This query is responsible for Single Wait time. (In other words, the query is ready to run but CPU is servicing another query). Suspended – a query which is waiting due to any reason (to know the reason, we are learning wait stats) to be converted to runnable is suspended query. This query is responsible for wait time. (In other words, this is the time we are trying to reduce). In simple words, query execution time is a summation of the query Executing CPU Time (Running) + Query Wait Time (Suspended) + Query Single Wait Time (Runnable). Again, it may be possible a query goes to all these stats multiple times. Let us try to understand the whole thing with a simple analogy of a taxi and a passenger. Two friends, Tom and Danny, go to the mall together. When they leave the mall, they decide to take a taxi. Tom and Danny both stand in the line waiting for their turn to get into the taxi. This is the Signal Wait Time as they are ready to get into the taxi but the taxis are currently serving other customer and they have to wait for their turn. In other word they are in a runnable state. Now when it is their turn to get into the taxi, the taxi driver informs them he does not take credit cards and only cash is accepted. Neither Tom nor Danny have enough cash, they both cannot get into the vehicle. Tom waits outside in the queue and Danny goes to ATM to fetch the cash. During this time the taxi cannot wait, they have to let other passengers get into the taxi. As Tom and Danny both are outside in the queue, this is the Query Wait Time and they are in the suspended state. They cannot do anything till they get the cash. Once Danny gets the cash, they are both standing in the line again, creating one more Single Wait Time. This time when their turn comes they can pay the taxi driver in cash and reach their destination. The time taken for the taxi to get from the mall to the destination is running time (CPU time) and the taxi is running. I hope this analogy is bit clear with the wait stats. You can check the single wait stats using following query of Glenn Berry. -- Signal Waits for instance SELECT CAST(100.0 * SUM(signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%signal (cpu) waits], CAST(100.0 * SUM(wait_time_ms - signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%resource waits] FROM sys.dm_os_wait_stats OPTION (RECOMPILE); Higher the single wait stats are not good for the system. Very high value indicates CPU pressure. In my experience, when systems are running smooth and without any glitch the single wait stat is lower than 20%. Again, this number can be debated (and it is from my experience and is not documented anywhere). In other words, lower is better and higher is not good for the system. In future articles we will discuss in detail the various wait types and wait stats and their resolution. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Different location of assemblies stoped the type casting.

    - by smwikipedia
    I am writing a custom Control class in C# for my main project. There're 2 projects, one for my Control and one for my main project. These 2 projects are in the same solution. I add a reference from my main project to my Control project. I notice that the first time after I drag my Control from the Tool Panel onto my main winform, an assembly folder was generated at the C:\Users\XXX\AppData\Local\Microsoft\VisualStudio\9.0\ProjectAssemblies, and the folder name is something like "jlebh-py01". The first build is always OK, but after I rebuild my Control class or whole solution, a new assembly folder will be generated at C:\Users\XXX\AppData\Local\Microsoft\VisualStudio\9.0\ProjectAssemblies, and then problem arises, my Control fails to behave well because Visual Studio says that the two types "originates from different location". The error message is as below: [A]MyControl.TypeXXX cannot be cast to [B]MyControl.TypeXXX. Type A orginates from assemblyXXX at location 'C:\Users\XXX\AppData\Local\Microsoft\VisualStudio\9.0\ProjectAssemblies\jlebh-py01\MyControl.dll' Type B originats from assemblyXXX at location 'C:\Users\XXX\AppData\Local\Microsoft\VisualStudio\9.0\ProjectAssemblies\ue4i-z3j01\MyControl.dll' If I reference the Control DLL directly instead of through project reference, or never rebuild the Control project after use my Control in the main project, things seem to be OK. Does anyone knows why? Is it the proper way to develop a control and a main project within the same solution? Many thanks...

    Read the article

  • Polymorphism problem: How to check type of derived class?

    - by malymato
    Hi, this is my first question here :) I know that I should not check for object type but instead use dynamic_cast, but that would not solve my problem. I have class called Extension and interfaces called IExtendable and IInitializable, IUpdatable, ILoadable, IDrawable (the last four are basicly the same). If Extension implements IExtendable interface, it can extend itself with different Extension objects. The problem is that I want to allow the Extension which implements IExtendable to extend only with Extension that implements the same interfaces as the original Extension. You probably don't unerstand that mess so I try to explain it with code: class IExtendable { public: IExtendable(void); void AddExtension(Extension*); void RemoveExtensionByID(unsigned int); vector<Extension*>* GetExtensionPtr(){return &extensions;}; private: vector<Extension*> extensions; }; class IUpdatable { public: IUpdatable(void); ~IUpdatable(void); virtual void Update(); }; class Extension { public: Extension(void); virtual ~Extension(void); void Enable(){enabled=true;}; void Disable(){enabled=false;}; unsigned int GetIndex(){return ID;}; private: bool enabled; unsigned int ID; static unsigned int _indexID; }; Now imagine the case that I create Extension like this: class MyExtension : public Extension, public IExtendable, public IUpdatable, public IDrawable { public: MyExtension(void); virtual ~MyExtension(void); virtual void AddExtension(Extension*); virtual void Update(); virtual void Draw(); }; And I want to allow this class to extend itself only with Extensions that implements the same interfaces (or less). For example I want it to be able to take Extension which implements IUpdatable; or both IUpdatable and IDrawable; but e.g. not Extension which implements ILoadable. I want to do this because when e.g. Update() will be called on some Extension which implements IExtendable and IUpdateable, it will be also called on these Extensions which extends this Extension. So when I'm adding some Extension to Extension which implements IExtendable and some of the IUpdatable, ILoadable... I'm forced to check if Extension that is going to be add implements these interfaces too. So In the IExtendable::AddExtension(Extension*) I would need to do something like this: void IExtendable::AddExtension(Extension* pEx) { bool ok = true; // check wheather this extension can take pEx // do this with every interface if ((*pEx is IUpdatable) && (*this is_not IUpdatable)) ok = false; if (ok) this->extensions.push_back(pEx); } But how? Any ideas what would be the best solution? I don't want to use dynamic_cast and see if it returns null... thanks

    Read the article

  • Casting error in my form

    - by Siva
    I have a ComboBox in a DataGridView. However I get an error when I run it: Unable to cast object of type 'System.Windows.Forms.DataGridView' to type 'System.Windows.Forms.ComboBox'. What can I do to resolve this error? ComboBox comboBox; private void dataGridView1_EditingControlShowing(object sender, DataGridViewEditingControlShowingEventArgs e) { if (e.Control is ComboBox) { comboBox = e.Control as ComboBox; if (dataGridView1.CurrentCell.ColumnIndex >= 0) { System.Diagnostics.Debug.WriteLine("Edit Control Showing"); comboBox.SelectedIndexChanged -= new EventHandler(comboBoxItems_SelectedIndexChanged); comboBox.SelectedIndexChanged += new EventHandler(comboBoxItems_SelectedIndexChanged); } } } void comboBoxItems_SelectedIndexChanged(object sender, EventArgs e) { try { int comboBoxSelectedIndex = ((ComboBox)sender).SelectedIndex; string comboboxSelectedValue = ((ComboBox)sender).SelectedText; int gridViewSelectedRow = dataGridView1.CurrentRow.Index; if (comboBoxSelectedIndex >= 0 && gridViewSelectedRow >= 0) { System.Diagnostics.Debug.WriteLine("ComboBox Index - " + comboBoxSelectedIndex); System.Diagnostics.Debug.WriteLine("GridView Index - " + gridViewSelectedRow); if (comboBox != null) { comboBox.SelectedIndexChanged -= new EventHandler(comboBoxItems_SelectedIndexChanged); } } } catch(Exception E) { } }

    Read the article

  • Question about member function pointers in a heirarchy

    - by Jesse Beder
    I'm using a library that defines an interface: template<class desttype> void connect(desttype* pclass, void (desttype::*pmemfun)()); and I have a small heirarchy class base { void foo(); }; class derived: public base { ... }; In a member function of derived, I want to call connect(this, &derived::foo); but it seems that &derived::foo is actually a member function pointer of base; gcc spits out error: no matching function for call to ‘connect(derived* const&, void (base::* const&)())’ I can get around this by explicitly casting this to base *; but why can't the compiler match the call with desttype = base (since derived * can be implicitly cast to base *)? Also, why is &derived::foo not a member function pointer of derived?

    Read the article

  • Need help for this syntax: "#define LEDs (char *) 0x0003010"

    - by Noge
    I'm doing programming of a softcore processor, Nios II from Altera, below is the code in one of the tutorial, I manage to get the code working by testing it on the hardware (DE2 board), however, I could not understand the code. #define Switches (volatile char *) 0x0003000 #define LEDs (char *) 0x0003010 void main() { while (1) *LEDs = *Switches; } What I know about #define is that, it is either used to define a constant, or a macro, but why in the above code, there are casting like, (char *) 0x0003010, in #define? why the 2 constants, Switches and LEDs act like a variable instead of a constant? Thanks in advance !

    Read the article

  • AS3 Accessing Variables of Parent Class From Child

    - by TheDarkIn1978
    i'm trying to assign a parent's variable from the parent's child //Parent public class Main extends Sprite { public var selectedSquare:Sprite; public function Main() { //inits and adds new Square child class to display list } ... ------- //Child public function dragSquare(evt:MouseEvent):void { Sprite(parent).selectedSquare = this; //evil doesn't work! parent.addChild(this); this.startDrag(); } i'm receiving this error, but i'm casting parent from displayObjectContainer to a Sprite so i have no idea why it's not working. 1119: Access of possibly undefined property selectedSquare through a reference with static type flash.display:Sprite.

    Read the article

  • How to convert from integer to unsigned char in C, given integers larger than 256?

    - by Alf_InPogform
    As part of my CS course I've been given some functions to use. One of these functions takes a pointer to unsigned chars to write some data to a file (I have to use this function, so I can't just make my own purpose built function that works differently BTW). I need to write an array of integers whose values can be up to 4095 using this function (that only takes unsigned chars). However am I right in thinking that an unsigned char can only have a max value of 256 because it is 1 byte long? I therefore need to use 4 unsigned chars for every integer? But casting doesn't seem to work with larger values for the integer. Does anyone have any idea how best to convert an array of integers to unsigned chars?

    Read the article

  • java.lang.classcastExcption

    - by Tara Singh
    Hi, I have an array list of objects in my application. private static ArrayList<Player> userList=new ArrayList<Player>(); In my application, I am converting this list to byte array and then sending it to other clients. At client When I am trying to cast it back to the ArrayList, its giving me casting error. I am doing this in client side after receiving this list as byte array: ArrayList<Player> pl = (ArrayList<Player>) toObject(receivedByteArray); where toObject is my function to convert the byte array to object; Any Suggestions please !!! Thanks.

    Read the article

  • Calling a method on a Object says "disallows late binding"

    - by Maury Markowitz
    I have a calls called DtaDate that stores an integer "key", a string name, a string for the date, and a Date object that is created from that string. I have some code that needs to accept a date-like object. I'd like the user to be able to pass in anything date like - a Date object which I'll extract the information from, another DtaDate, a string with the date in it, or even the key, which I'll use to look up the DtaDate from a collection. So I have this: Friend Sub New(NameIn As String, DateFormulaIn As String, Optional FromDateIn As Object = Nothing) [stuff that works] [check that we got a FromDateIn...] If TypeOf FromDateIn Is DtaDate Then fdk = FromDateIn.Key Ans.FromDate = fdk VB tells me that "Option Strict On disallows late binding". The other cases, where a string or integer is the TypeOf, I use CInt or CStr. But this is the first time I've actually run into a case where the casting is a non-base type. What's the trick?

    Read the article

  • Anatomy of a .NET Assembly - Custom attribute encoding

    - by Simon Cooper
    In my previous post, I covered how field, method, and other types of signatures are encoded in a .NET assembly. Custom attribute signatures differ quite a bit from these, which consequently affects attribute specifications in C#. Custom attribute specifications In C#, you can apply a custom attribute to a type or type member, specifying a constructor as well as the values of fields or properties on the attribute type: public class ExampleAttribute : Attribute { public ExampleAttribute(int ctorArg1, string ctorArg2) { ... } public Type ExampleType { get; set; } } [Example(5, "6", ExampleType = typeof(string))] public class C { ... } How does this specification actually get encoded and stored in an assembly? Specification blob values Custom attribute specification signatures use the same building blocks as other types of signatures; the ELEMENT_TYPE structure. However, they significantly differ from other types of signatures, in that the actual parameter values need to be stored along with type information. There are two types of specification arguments in a signature blob; fixed args and named args. Fixed args are the arguments to the attribute type constructor, named arguments are specified after the constructor arguments to provide a value to a field or property on the constructed attribute type (PropertyName = propValue) Values in an attribute blob are limited to one of the basic types (one of the number types, character, or boolean), a reference to a type, an enum (which, in .NET, has to use one of the integer types as a base representation), or arrays of any of those. Enums and the basic types are easy to store in a blob - you simply store the binary representation. Strings are stored starting with a compressed integer indicating the length of the string, followed by the UTF8 characters. Array values start with an integer indicating the number of elements in the array, then the item values concatentated together. Rather than using a coded token, Type values are stored using a string representing the type name and fully qualified assembly name (for example, MyNs.MyType, MyAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToken=0123456789abcdef). If the type is in the current assembly or mscorlib then just the type name can be used. This is probably done to prevent direct references between assemblies solely because of attribute specification arguments; assemblies can be loaded in the reflection-only context and attribute arguments still processed, without loading the entire assembly. Fixed and named arguments Each entry in the CustomAttribute metadata table contains a reference to the object the attribute is applied to, the attribute constructor, and the specification blob. The number and type of arguments to the constructor (the fixed args) can be worked out by the method signature referenced by the attribute constructor, and so the fixed args can simply be concatenated together in the blob without any extra type information. Named args are different. These specify the value to assign to a field or property once the attribute type has been constructed. In the CLR, fields and properties can be overloaded just on their type; different fields and properties can have the same name. Therefore, to uniquely identify a field or property you need: Whether it's a field or property (indicated using byte values 0x53 and 0x54, respectively) The field or property type The field or property name After the fixed arg values is a 2-byte number specifying the number of named args in the blob. Each named argument has the above information concatenated together, mostly using the basic ELEMENT_TYPE values, in the same way as a method or field signature. A Type argument is represented using the byte 0x50, and an enum argument is represented using the byte 0x55 followed by a string specifying the name and assembly of the enum type. The named argument property information is followed by the argument value, using the same encoding as fixed args. Boxed objects This would be all very well, were it not for object and object[]. Arguments and properties of type object allow a value of any allowed argument type to be specified. As a result, more information needs to be specified in the blob to interpret the argument bytes as the correct type. So, the argument value is simple prepended with the type of the value by specifying the ELEMENT_TYPE or name of the enum the value represents. For named arguments, a field or property of type object is represented using the byte 0x51, with the actual type specified in the argument value. Some examples... All property signatures start with the 2-byte value 0x0001. Similar to my previous post in the series, names in capitals correspond to a particular byte value in the ELEMENT_TYPE structure. For strings, I'll simply give the string value, rather than the length and UTF8 encoding in the actual blob. I'll be using the following enum and attribute types to demonstrate specification encodings: class AttrAttribute : Attribute { public AttrAttribute() {} public AttrAttribute(Type[] tArray) {} public AttrAttribute(object o) {} public AttrAttribute(MyEnum e) {} public AttrAttribute(ushort x, int y) {} public AttrAttribute(string str, Type type1, Type type2) {} public int Prop1 { get; set; } public object Prop2 { get; set; } public object[] ObjectArray; } enum MyEnum : int { Val1 = 1, Val2 = 2 } Now, some examples: Here, the the specification binds to the (ushort, int) attribute constructor, with fixed args only. The specification blob starts off with a prolog, followed by the two constructor arguments, then the number of named arguments (zero): [Attr(42, 84)] 0x0001 0x002a 0x00000054 0x0000 An example of string and type encoding: [Attr("MyString", typeof(Array), typeof(System.Windows.Forms.Form))] 0x0001 "MyString" "System.Array" "System.Windows.Forms.Form, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" 0x0000 As you can see, the full assembly specification of a type is only needed if the type isn't in the current assembly or mscorlib. Note, however, that the C# compiler currently chooses to fully-qualify mscorlib types anyway. An object argument (this binds to the object attribute constructor), and two named arguments (a null string is represented by 0xff and the empty string by 0x00) [Attr((ushort)40, Prop1 = 12, Prop2 = "")] 0x0001 U2 0x0028 0x0002 0x54 I4 "Prop1" 0x0000000c 0x54 0x51 "Prop2" STRING 0x00 Right, more complicated now. A type array as a fixed argument: [Attr(new[] { typeof(string), typeof(object) })] 0x0001 0x00000002 // the number of elements "System.String" "System.Object" 0x0000 An enum value, which is simply represented using the underlying value. The CLR works out that it's an enum using information in the attribute constructor signature: [Attr(MyEnum.Val1)] 0x0001 0x00000001 0x0000 And finally, a null array, and an object array as a named argument: [Attr((Type[])null, ObjectArray = new object[] { (byte)2, typeof(decimal), null, MyEnum.Val2 })] 0x0001 0xffffffff 0x0001 0x53 SZARRAY 0x51 "ObjectArray" 0x00000004 U1 0x02 0x50 "System.Decimal" STRING 0xff 0x55 "MyEnum" 0x00000002 As you'll notice, a null object is encoded as a null string value, and a null array is represented using a length of -1 (0xffffffff). How does this affect C#? So, we can now explain why the limits on attribute arguments are so strict in C#. Attribute specification blobs are limited to basic numbers, enums, types, and arrays. As you can see, this is because the raw CLR encoding can only accommodate those types. Special byte patterns have to be used to indicate object, string, Type, or enum values in named arguments; you can't specify an arbitary object type, as there isn't a generalised way of encoding the resulting value in the specification blob. In particular, decimal values can't be encoded, as it isn't a 'built-in' CLR type that has a native representation (you'll notice that decimal constants in C# programs are compiled as several integer arguments to DecimalConstantAttribute). Jagged arrays also aren't natively supported, although you can get around it by using an array as a value to an object argument: [Attr(new object[] { new object[] { new Type[] { typeof(string) } }, 42 })] Finally... Phew! That was a bit longer than I thought it would be. Custom attribute encodings are complicated! Hopefully this series has been an informative look at what exactly goes on inside a .NET assembly. In the next blog posts, I'll be carrying on with the 'Inside Red Gate' series.

    Read the article

  • Base class -> Derived class and vice-versa conversions in C++

    - by Ivan Nikolaev
    Hi! I have the following example code: #include <iostream> #include <string> using namespace std; class Event { public: string type; string source; }; class KeyEvent : public Event { public: string key; string modifier; }; class MouseEvent : public Event { public: string button; int x; int y; }; void handleEvent(KeyEvent e) { if(e.key == "ENTER") cout << "Hello world! The Enter key was pressed ;)" << endl; } Event generateEvent() { KeyEvent e; e.type = "KEYBOARD_EVENT"; e.source = "Keyboard0"; e.key = "SPACEBAR"; e.modifier = "none"; return e; } int main() { KeyEvent e = generateEvent(); return 0; } I can't compile it, G++ throws an error of kind: main.cpp: In function 'int main()': main.cpp:47:29: error: conversion from 'Event' to non-scalar type 'KeyEvent' requested I know that the error is obvious for C++ guru's, but I can't understand why I can't do the conversion from base class object to derived one. Can someone suggest me the solution of the problem that I have? Thx in advice

    Read the article

  • Java: Typecasting to Generics

    - by bguiz
    This method that uses method-level generics, that parses the values from a custom POJO, JXlistOfKeyValuePairs (which is exactly that). The only thing is that both the keys and values in JXlistOfKeyValuePairs are Strings. This method wants to taken in, in addition to the JXlistOfKeyValuePairs instance, a Class<T> that defines which data type to convert the values to (assume that only Boolean, Integer and Float are possible). It then outputs a HashMap with the specified type for the values in its entries. This is the code that I have got, and it is obviously broken. private <T extends Object> Map<String, T> fromListOfKeyValuePairs(JXlistOfKeyValuePairs jxval, Class<T> clasz) { Map<String, T> val = new HashMap<String, T>(); List<Entry> jxents = jxval.getEntry(); T value; String str; for (Entry jxent : jxents) { str = jxent.getValue(); value = null; if (clasz.isAssignableFrom(Boolean.class)) { value = (T)(Boolean.parseBoolean(str)); } else if (clasz.isAssignableFrom(Integer.class)) { value = (T)(Integer.parseInt(str)); } else if (clasz.isAssignableFrom(Float.class)) { value = (T)(Float.parseFloat(str)); } else { logger.warn("Unsupported value type encountered in key-value pairs, continuing anyway: " + clasz.getName()); } val.put(jxent.getKey(), value); } return val; } This is the bit that I want to solve: if (clasz.isAssignableFrom(Boolean.class)) { value = (T)(Boolean.parseBoolean(str)); } else if (clasz.isAssignableFrom(Integer.class)) { value = (T)(Integer.parseInt(str)); } I get: Inconvertible types required: T found: Boolean Also, if possible, I would like to be able to do this with more elegant code, avoiding Class#isAssignableFrom. Any suggestions? Sample method invocation: Map<String, Boolean> foo = fromListOfKeyValuePairs(bar, Boolean.class);

    Read the article

  • When to use reinterpret_cast?

    - by HeretoLearn
    I am little confused with the applicability of reinterpret_cast vs static_cast. From what I have read the general rules are to use static cast when the types can be interpreted at compile time hence the word static. This is the cast the C++ compiler uses internally for implicit casts also. reinterpret_cast are applicable in two scenarios, convert integer types to pointer types and vice versa or to convert one pointer type to another. The general idea I get is this is unportable and should be avoided. Where I am a little confused is one usage which I need, I am calling C++ from C and the C code needs to hold on to the C++ object so basically it holds a void*. What cast should be used to convert between the void * and the Class type? I have seen usage of both static_cast and reinterpret_cast? Though from what I have been reading it appears static is better as the cast can happen at compile time? Though it says to use reinterpret_cast to convert from one pointer type to another?

    Read the article

  • C Typecast: How to

    - by Jean
    #include<stdio.h> int main(void) { unsigned short a,e,f ; // 2 bytes data type unsigned int temp1,temp2,temp4; // 4 bytes data type unsigned long temp3; // 8 bytes data type a=0xFFFF; e=((a*a)+(a*a))/(2*a); // Line 8 //e=(((unsigned long)(a*a)+(unsigned long)(a*a)))/(unsigned int)(2*a); temp1=a*a; temp2=a*a; temp3=(unsigned long)temp1+(unsigned long)temp2; // Line 14 temp4=2*a; f=temp3/temp4; printf("%u,%u,%lu,%u,%u,%u,%u\n",temp1,temp2,temp3,temp4,e,f,a); return(1); } How do I fix the arithmetic (At Line 8 by appropriate typecasting of intermediate results) so that overflows are taken care of ? Currently it prints 65534 instead of expected 65535. Why is the typecast necessary for Line 14 ?

    Read the article

  • scala Slider throws casting exception

    - by coubeatczech
    hello, I create an Slider object: val slider = new Slider{ min = 0 max = 30 labels = Map(0 -> new Label("Nula"),15-> new Label("Pul"),30-> new Label("Max")) paintLabels = true } when I run this, an exception is thrown: scala.swing.Label cannot be cast to java.awt.Component but why? When i browse the docs, the excpected type for labels is a Map[Int,Label].

    Read the article

< Previous Page | 26 27 28 29 30 31 32 33 34 35 36 37  | Next Page >